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degradation pattern whereby the final erosion phase does not begin until the polymer reaches a certain 
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studies and mathematical modeling. 

Results indicated transformation of drug release from an erosion based process to a complete diffusion 
controlled phenomenon by the use of a hydrophobic polymer plasticizer(s). Glycero‑lipid provided extra 
physical stability to the PLGA micro particle suspension. The PCL crystallites not only provided the 
essential stability characteristics to the delivery system i.e. structural stability of the micro particle 
suspension and a thixotropic and shear thinning behavior for the ease of injectability but further 
controlled the initial drug release. Biocompatibility studies indicated that the in situ PLGA micro 
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ABSTRACT 
 
 

 Poly lactide-co-glycolide (PLGA) polymer has been the polymer of choice for 
many parenteral controlled drug release applications. This is mainly due to the inherent 
advantages of this polymer i.e. biodegradability, biocompatibility and non-toxic nature. 
The polymer, however, has a characteristic degradation pattern whereby the final erosion 
phase does not begin until the polymer reaches a certain molecular weight (MW) limit. 
After this, the accumulated acidic degradation byproducts initiate a bulk erosion 
phenomenon that leads to a disruption of the polymer matrix and release of the remaining 
drug in a short period of time. Furthermore, most of the delivery systems or devices made 
from PLGA polymer i.e. microspheres or polymeric solutions forming in situ implants 
are associated with another limitation of an initial drug burst. A major percentage of the 
drug is released during first few hours thereby leaving a relatively smaller portion of the 
total drug load to be released slowly over the remaining duration. By and large it results 
in a characteristic “tri-phasic release pattern” from the PLGA matrices consisting of a 
first burst release phase, a second plateau phase and a final burst release phase.  

 
 Plasticizer molecules are well known for their ability to create a flexible polymer 
matrix thereby allowing a continuous drug release. Polymer solutions made with certain 
highly hydrophilic plasticizers however, are not completely devoid of the initial burst 
release of drug due to a lag time between injection of the polymer solution and complete 
precipitation of the polymer. Other most common drawbacks of the PLGA polymeric 
solution based delivery systems is their high viscosity and therefore painful injections and 
poor injectability, and a variable surface area of implant resulting in a highly variable 
drug release.  

 
 The objective of present work was therefore to make an in situ polymer gelling 
system formulated as polymer micro particle suspension for low viscosity and better 
injectability. The system comprised of a hydrophobic polymer plasticizer(s) that resulted 
in a more diffusion controlled drug release. Necessary physical stability of the suspension 
based formulation was derived from a glycerol lipid (polymer immiscible component) 
and polycaprolactone (PCL) crystallites/spherulites. The system was structurally 
characterized by differential scanning calorimetry (DSC), scanning electron microscopy 
(SEM) and polarized microscopy studies. Drug release mechanism was studied by 
conducting plasticizer release studies and mathematical modeling. 

 
 Results indicated transformation of drug release from an erosion based process to 
a complete diffusion controlled phenomenon by the use of a hydrophobic polymer 
plasticizer(s). Glycero-lipid provided extra physical stability to the PLGA micro particle 
suspension. The PCL crystallites not only provided the essential stability characteristics 
to the delivery system i.e. structural stability of the micro particle suspension and a 
thixotropic and shear thinning behavior for the ease of injectability but further controlled 
the initial drug release. Biocompatibility studies indicated that the in situ PLGA micro 
particulate implant formulation containing PCL crystallites is safe and biocompatible 
with only a normal tissue response.  
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CHAPTER 1. INTRODUCTION 
 
 

 The method by which a drug is delivered can have a significant effect on its 
efficacy. Some drugs have an optimum concentration range within which maximum 
benefit is derived and concentrations above or below this range can be toxic or produce 
no therapeutic benefit at all. To achieve this optimum concentration of drug in the body, 
the drug needs to reach the blood stream and further needs to arrive at the site of action in 
order to show any efficacy. Oral route of drug administration, although considered to be 
the most preferred route due to patient compliance, it is not always possible. Some 
difficult and more complex drug molecules require direct administration into the blood 
stream thereby bypassing the oral route of absorption. The scientific advances in disease 
treatment have resulted in a greater focus on the development and production of 
biological molecules such as peptides, proteins and antibodies etc. Such complex drug 
molecules face an immense challenge in terms of chemical stability as well as absorption 
if administered orally. The clusters of enzymes present in the gastrointestinal (GI) tract 
rip the drug molecule apart much before the actual absorption process resulting in 
inefficacious blood concentrations of the drug. This calls for an alternate route of drug 
delivery that can be relied upon for delivery of such complex drug molecules. 

  
 Further, certain chronic disease conditions demand a continuous drug delivery to 
the patient along with improved patient compliance. Injectable controlled drug delivery 
systems can play a crucial role in treatment/prophylaxis of chronic disease states as they 
can be designated for a significantly longer duration than the oral administration. 
Parenteral drug delivery systems were first reported in the mid-19th century by Alexander 
Wood. Since then a number of technological advances have been made in the area of 
parenteral drug delivery leading to the development of sophisticated systems that allow 
drug targeting and the sustained or controlled release of parenteral medicines. One of the 
recent areas of controlled drug delivery through parenteral route includes injectable 
in situ forming drug delivery systems. 

 
 

1.1. Biodegradable Injectable In Situ Forming Drug Delivery Systems 
 

 Development of injectable drug delivery systems has received noticeable attention 
in past few years. Past advancements include delivery systems such as emulsions,1-3 
liposomes,4-7 biodegradable micro polymeric systems, due in part to rapid clearance by 
spheres8-10 and micelles.11,12 Although such formulations have provided considerable 
advantages towards efficient drug delivery, they are associated with certain limitations. 
Emulsions have limitations as long acting formulations due to the associated stability 
issues of loss of structure by dilution with the surrounding body fluid.13 Liposomes face a 
challenge for long term drug delivery due to their rapid clearance by macrophages and 
other cells.14,15 Microspheres have inherent disadvantages such as complex 
manufacturing processes and a high percentage of surface adsorbed drug that results in a 
burst release of drug and toxicity. Stability of the micelles is essentially determined by 
the critical micelle concentration (CMC) of the surfactant molecules resulting in dilution 
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of the formulation and breaking apart of micelles once the surfactant concentration falls 
below the CMC.16,17  

 
 The injectable in situ forming drug delivery systems are therefore being 
developed with the idea of overcoming the shortcomings in currently known injectable 
formulations.18-20 The characteristics of some of the most common in situ forming drug 
delivery systems are as follows: 

 
 

1.1.1. Thermoplastic pastes 
 

 Thermoplastic polymers form a semi-solid mass upon cooling to the body 
temperature after injecting in the molten form. They are characterized as having a low 
melting point or glass transition temperature (Tg) in the range of 25-65°C and an intrinsic 
viscosity (IV) in the range of 0.05-0.8 dl/g.21 Viscosity plays a critical role as 
thermoplastic pastes with viscosities lower than 0.05 dL/g do not show any delayed 
release effect whereas those with viscosities above 0.8 dL/g are not injectable using a 
needle. Monomers such as D,L-lactide, glycolide, E-caprolactone, and orthoesters can be 
used for preparation of thermoplastic pastes.22,23 Thermoplastic pastes are biocompatible 
and biodegradable and have applications in carriers of pharmaceutical compounds,24 
surgical sutures,25 ocular implants26 and soft tissue repair.27,28 

 
 

1.1.2. In situ cross-linked polymer systems 
 

 In situ cross-linked polymeric systems have applications in sustained drug release 
due to formation of a cross linked network of polymer chains at the site of injection. The 
cross-linking is essentially accomplished by free radical reactions initiated by heat or 
absorption of photons, or ionic interactions between small cations and polymer anions. 

 
 

1.1.2.1. Thermosets 
 

 Thermosets are the polymers that have low viscosity and are free flowing during 
the formation process but set into a permanent shape upon heating. The process of 
heating is known as “curing” which essentially supplies the energy required for cross-
linking. The controlled release properties of such polymeric systems are therefore due to 
the rigid structure formed upon curing. However, certain inherent limitations of these 
polymeric systems such as stringent reaction conditions for in vivo applications and 
requirements for non-toxic monomers and solvents do not allow them to be used 
extensively for pharmaceutical drug delivery.29,30 

 
 
 
 



3 
 

1.1.2.2. Photo cross-linked gels 
 

 These polymers that form photo cross-linked gels are introduced at the site of 
injection and then photo cured in situ with fiber optic cables.30 The polymers have a 
liquid or moldable nature and are rapidly cross linked compared to the thermosets. 
Delivery of various proteins from a polyethylene glycol-poly lactic acid (PEG-PLA) 
hydrogel illustrates the drug delivery capabilities of this approach.31  

 
 

1.1.2.3. Ion mediated gelation 
 

 Polymers such as alginates have the capability to form a gel upon contact with 
divalent cations such as calcium ions. These polymers can therefore be directly used as 
drug carriers or carriers for other delivery systems e.g. liposomes.32 One of the most 
common examples is the calcium loaded liposomes administered along with sodium 
alginate in the form of a fluid suspension. The calcium ions are released when the system 
gets heated to body temperature and interact with the alginate polymer resulting in the 
formation of a gel that controls the drug release. 

 
 

1.1.3. In situ polymer precipitation 
 
 

1.1.3.1. Solvent-removal precipitation 
 

 Such a system involves dissolving a biodegradable polymer such as 
polylactide-co-glycolide (PLGA) in a solvent that also acts as a polymer plasticizer. The 
polymeric solutions contain either dissolved or dispersed drug, which upon injection into 
the subcutaneous or intramuscular tissue results in the leaching of the solvent into 
surrounding tissue and precipitation of the polymer. Such a system has been developed 
for various peptide drugs e.g. Eligard® based on Atrix technology of in situ solvent 
removal and polymer precipitation containing leuprolide acetate as the active. Delivery 
systems based on solvent removal and polymer precipitation, however, presents three 
basic limitations: 

 
 A huge burst release of drug.  

 A tri-phasic drug release pattern. 

 High viscosity of the polymer solution resulting in painful injections. 

 The mechanism for huge burst and tri-phasic release of drug is depicted in Figure 
1-1. Essentially, the solvent, while diffusion out into the surrounding tissue carries a 
major percentage of the drug with it resulting in a high initial drug release. Further since 
the formulation when administered is a liquid and it takes some time for it to turn into a 
gel. This lag period provides enough time for the drug to leave out resulting in huge 
initial plasma drug concentrations. Most commonly used solvents in this approach  
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Figure 1-1. Burst release mechanism from in situ polymer precipitation systems. 
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include N-methyl pyrrolidone (NMP), propylene glycol (PG), acetone, dimethyl 
sulfoxide (DMSO), tetrahydrofuran (THF) and triacetin. The most preferred ones are, 
however, NMP and DMSO due to their pharmaceutical precedence.33 Table 1-1 shows 
the in situ forming depot systems formulated with PLGA polymer currently available on 
market.34 

 
 

1.1.3.2. Thermally induced sol-gel transitions 
 

 Certain polymers exhibit the capacity to undergo a solubility change with 
temperature thereby transforming from a sol to a gel state that is responsible for 
controlled drug release.35-37 The transformation from a sol to a gel like structure takes 
place upon injection of the polymeric system into the body. Poly (N-isopropyl 
acrylamide) [poly (NIPAAM)] and pluronics tri-block copolymers are the examples of 
thermo sensitive polymers and they exhibit the unique phenomenon of a lower critical 
solution temperature (LCST). 

 
 

1.1.4. In situ solidifying organogels 
 

 The organogels are essentially water insoluble amphiphilic lipids that form 
various types of lyotropic liquid crystals upon equilibration with excess of water. The 
commonly used amhiphilic lipids include glyceryl esters of fatty acids such as glyceryl 
monoleate, glyceryl monopalmitostearate, glyceryl monolinoleate etc. Such lipids form 
cubic liquid crystalline structures that are used for sustained drug delivery due to their 
high viscosities.38-40 Such systems are completely biodegradable and the biodegradation 
occurs through the action of lipases.41 A significant amount of work has been done to 
date in the area of in situ forming drug delivery systems with numerous drug delivery 
applications. However, there are certain limitations associated with the aforementioned 
systems and are highlighted in Table 1-2.42  

 
 

1.2. Biodegradable Polymers 
 

 Talking of the parenteral sustained or controlled drug delivery systems, one of the 
utmost desirable features is biodegradability of the polymer used for drug delivery. Back 
in 1920s, when polymers were synthesized from glycolic acid, polymer degradation was 
not one of the desired features where properties and performance deteriorated with time. 
The concept of polymer degradation, however, has changed completely over a period of 
time with polymer degradation being one of the most desired characteristics of the 
polymers used for injectable drug delivery. Polymer degradability apart from offering 
tremendous potential as the basis for controlled drug delivery also helps avoid a surgical 
procedure to remove the remaining polymer from the body after the course of treatment. 
 
 Based on the source of origin, biodegradable polymers are categorized as natural 
and synthetic polymers. Figure 1-2 shows the two polymer classes with some common 
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Table 1-1. PLGA depot formulations on market. 
 

Product Active ingredient Manufacturer Formulation 
    
Lupron Depot® Leuprolide acetate TAP Inc. Micro particles 
Nutropin Depot® Growth hormone Genetech Micro particles 
Suprecur® MP Buserelin acetate Aventis Micro particles 
Decapeptyl® Triptorelin pamoate Ferring Micro particles 
Sandostatin LAR® Depot Octreotide acetate Novartis Micro particles 
Somatuline® LA Lanreotide Ipsen Micro particles 
TrelstarTM Depot Triptorelin pamoate Pfizer Micro particles 
Vivitrol® Naltrexone Alkermes Micro particles 
Profact® Depot Buserelin acetate Aventis Implant 
Zoladex® Goserelin acetate Astrazeneca Implant 
Eligard® Leuprolide acetate Sanofi 

Synthelabo 
In situ forming 

Implant 
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Table 1-2. Limitations of current biodegradable in situ forming drug delivery 
systems. 

 
Delivery system Limitations 
  
Thermoplastic pastes High temperature at the time of injection 
  
In situ cross-linked systems  

Thermosets Unacceptable level of heat released during 
reaction 

Burst in drug release 
Toxicity of unreacted monomers 

  
Photocross-linked gels Shrinkage and brittleness of the polymer 

due to high degree of cross linking 
  
Ion mediated gelation Low shelf life 

Burst in drug release 
Long degradation time 

  
In situ polymer precipitation  

Solvent induced precipitation Burst in drug release 
Utilization of organic solvents 

  
Thermally induced sol-gel 
transition 

Burst in drug release 

  
Organogels Stability of oil and purity of waxes 

Lack of toxicity data 
Phase separation 
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Figure 1-2. Biodegradable injectable polymer classification. 
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examples. Despite of the availability of many naturally existing biodegradable polymers, 
major emphasis has been on the synthetic polymers. This is due to several different 
reasons such as the tailor able properties, predictable lot to lot uniformity, less concerns 
of immunogenicity and reliability of the source of raw material for the synthetic 
polymers. There are two major degradation mechanisms that have been characterized for 
the currently known synthetic biodegradable polymers. These include enzymatic 
degradation and hydrolysis. The degree and rate of hydrolysis depends on the main 
polymer chain structure and acids show a faster rate of degradation than esters. Such 
variation in the rate of polymer degradation allows the selection of the most appropriate 
polymer that would control the drug release for a certain period of time. Polymer 
degradation can be divided into four steps as depicted in Figure 1-3.43   

 
 Furthermore, certain biodegradable polymers undergo a surface erosion process, 
whereby, the polymer sample is eroded from the surface and the overall mass loss is 
much faster than the entry of water into the bulk. Examples of synthetic polymers that 
exhibit surface erosion include poly (ortho) esters and polyanhydrides. The second 
scheme of degradation is the bulk erosion where degradation takes place throughout the 
whole body of the polymer sample and entry of water is faster than the rate of polymer 
degradation,44 The diagrammatic representation of surface and bulk erosion processes is 
shown in Figure 1-4.44 

 
 Factors that influence polymer degradation behavior include: 

 
 Chemical structure and chemical composition 

 Distribution of repeat units in multimers 

 Molecular weight (MW) 

 Polydispersity (PD) 

 Presence of low molecular weight (MW) Compounds (monomer, oligomers, 
solvents, plasticizers, etc.) 

 Presence of ionic groups 

 Presence of chain defects 

 Presence of unexpected units 

 Configurational structure 

 Morphology (crystallinity, presence of microstructure, orientation and residue 
stress) 

 Processing methods & conditions 

 Method of sterilization 

 Annealing 
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Figure 1-3. Polymer degradation steps. 
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Figure 1-4. Polymer erosion schemes. 
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 Storage history 

 Site of implantation 

 Absorbed compounds 

 Physiochemical factors (shape, size) 

 Mechanism of hydrolysis (enzymes vs. water) 
 
 

1.2.1. Polyesters PLA and PLGA 
 

 Aliphatic polyester polymers such as poly lactic acid (PLA) and poly 
lactide-co-glycolide (PLGA), which is the copolymer of poly lactic acid with poly 
glycolic acid (PGA) polymer, are the most commonly known and well used polymers 
among various biodegradable polymers known for parenteral drug delivery. This is due to 
their inherent characteristics such as excellent biodegradability and biocompatibility.45-47 
These polymers degrade by non-enzymatic hydrolysis of ester bond in the body resulting 
in formation of metabolic products such as lactic acid and glycolic acid (Figure 1-5).48 A 
number of groups have publishes excellent work on PLGA polymeric based drug delivery 
systems. Various polymeric devices such as implants, microspheres, microcapsules, 
nanoparticles have been designed using these polymers. 
 
 
1.2.1.1. Biodegradation of PLGA polymer 

 
 PLGA polymers undergo chain scission at the ester linkage in an aqueous 
environment both in vitro as well as in vivo. The polymer undergoes a bulk degradation 
process with the degradation usually occurring as a faster rate in the core of polymer 
matrix due to accumulation of acidic degradation by-products. More carboxylic acid 
groups appear on the polymer chains as they undergo random chain scission. These 
carboxylic acid groups create an acidic micro-environment around the individual PLGA 
polymer chains thereby catalyzing the degradation reaction. The amorphous regions in 
the polymer chains degrade faster than the crystalline regions. The degradation rate of 
PLGA polymers is determined by various factors such as molar ratio of lactic acid and 
glycolic acid in the polymer chains, molecular weight (MW) of the polymer, degree of 
crystallinity and glass transition temperature (Tg) of the polymer.49-57 
 
 A three phase degradation mechanism has been proposed for PLGA: 

 
(1). Random chain scission process: The MW of the polymer decreases significantly 

without appreciable weight loss and no soluble monomer products are formed. 
 
(2). Middle phase: A decrease in MW is accompanied by a rapid loss of mass along 

with the formation of soluble oligomeric and monomer products. 
 
(3). Complete polymer solubilization: Monomer products are formed from the  
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Figure 1-5. PLGA polymer and its metabolic products.  
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larger oligomeric fragments.58 These monomeric products are more soluble. 
 

 
1.2.1.2. Biocompatibility of PLGA polymer 

 
 The PLGA polymer has low immunogenicity, minimal toxicity, and excellent 
biocompatibility and biodegradation characteristics. These characteristics made these 
polymers excellent candidates for biomedical applications such as ligament 
reconstruction, tracheal replacement, surgical dressings, vascular grafts and fracture 
repairs.59,60 PLGA microspheres have known to induce mild immune response such as 
infiltration of macrophages, neutrophils, fibroblasts and some lymphocytes; however, the 
response subsides gradually over time.61,62 
 
 
1.2.1.3.  Physicochemical properties of PLGA 

 
 The overall biodegradation behavior of PLGA polymers depends on their 
physicochemical properties such as molecular weight, glass transition temperature and 
copolymer ratios. Numerous techniques are available to understand and characterize the 
aforementioned properties of PLGA polymer and this information helps in designing the 
delivery systems based on PLGA polymers with desired drug release characteristics. 

 
 

1.2.1.3.1. Molecular weight and polydispersity 
 

 The average molecular weight can be calculated by different ways. The type of 
molecular weight estimation on any given polymer sample depends on the property of the 
polymer to be studied. For example, high molecular weight molecules may contribute 
more towards the strength of polymer than low molecular weight molecules and thus the 
average molecular weight for strength properties should be weighted to highlight the 
presence of high molecular weight polymer. The number average molecular weight (MN) 
of a polymer is represented by Equation 1-1. 
 

MNതതതതത= 
∑ NiMi
∞
i=1

∑ Ni
∞
i=1

=
Total weight

Number of polymers
= 

Weight

Polymer
   (Eq. 1-1) 

 
 The weight average molecular weight (MW) on the other hand, is represented by 
the Equation 1-2 as follows: 

 

MNതതതതത= 
∑ NiMi

2∞
i=1

∑ Ni
∞
i=1 Mi

      (Eq. 1-2) 

 
 Polydispersity (PD), is therefore represented as the ratio between the weight 
average and number average molecular weights (Equation 1-3).63 
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PD= 
MW

MN
     (Eq. 1-3) 

 
 Where Ni = number of moles of the ith component, Mi = the molecular weight of 
the ith component, Wi = weight of the ith component. 

 
 

1.2.1.3.2. Optical activity and crystallinity 
 

 PLA can exist in two stereo forms due to an asymmetric carbon atom in lactic 
acid molecule, known as an optically active form L-poly lactic acid (L-PLA) and 
optically inactive racemic form (DL-PLA). PLGA prepared from L-PLA and poly 
glycolic acid (PGA) are crystalline co-polymers while those from DL-PLA and PGA are 
amorphous in nature.58 It has been reported that PLGAs containing >70% glycolide are 
amorphous in nature and the degree of crystallinity and melting point of the polymers are 
directly related to the MW of these polymers.64 The properties affected by the 
crystallinity of PLGA polymers include mechanical strength, swelling behavior, capacity 
to undergo hydrolysis and the rate of biodegradation. The crystallinity of PLGA polymer 
in turn is further dependent on the type and molar ratio of the two individual monomer 
components (lactide and glycolide) in the polymer chain. 

 
 

1.2.1.3.3. Glass transition temperature (Tg) 
 

 Tg is the temperature at which the polymer changes from a glassy state to a more 
rubbery state. At this temperature, the polymer changes from a brittle structure to a more 
plastic structure. The Tg of PLGA polymers is above the normal body temperature of 
37°C and therefore, it is easy to fabricate these polymers into appropriate delivery 
devices. The most common technique to determine the Tg of a polymer is differential 
scanning calorimetry (DSC) or modulated differential scanning calorimetry (MDSC). The 
Tg of PLGA polymer decreases with a decrease in percent lactide content and a decrease 
in MW of the polymer.65 

 
 

1.3. Biodegradable Polymer Devices 
 
 

1.3.1. Implants 
 

 The implants are polymer sticks about 1 centimeter long with a diameter of about 
1 millimeter. Physicians apply them with a commercially available standard syringe 
under the skin. The implants are placed under the skin into the subcutaneous tissue with 
the help of a large bore needle (trocar).66 The biggest advantage of polymeric implants is 
the long term drug delivery with patient compliance. However, the most common 
limitation of such implants is painful injection48 and also the degradation of drug within 
the polymer matrix during implant fabrication procedure. The common techniques for 
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implant preparation are melt extrusion,67 compression68 and injection molding.69 Most of 
the polymer implants are manufactured by dispersing the drug into the polymer melt and 
therefore, the high temperatures required to melt certain polymers could be detrimental to 
drug stability.69 

  
 Despite of the aforementioned limitations, the implants are currently being 
prepared for various drugs e.g. insulin, leuprolide, somatostatin analogue69 etc. The 
double-layered implant consisting of a polymer matrix containing insulin and a poly 
lactic acid layer which was coated partially on one of the surfaces of the insulin-polymer 
matrix was prepared by Yamakawa and co-workers.70 The octreotide implant is available 
in the market as a soft, flexible 6-monthhydrogel implant based on a patented HYDRON 
Polymer Technology. PLGA based implant systems for controlled delivery of leuprorelin 
hormone releasing hormone (LHRH) agonists are available on the market under the brand 
names Zoladex® and Profact® for treatment of prostate cancer. 

 
 

1.3.2. Micro particles 
 

 Micro particles have been studied extensively by various researchers as a means 
of controlled injectable drug delivery. Micro particles can be of any morphology 
depending on the method of preparation i.e. microcapsules, microspheres or micro 
particles (Figure 1-6).71 Microcapsules and microspheres are more uniform and spherical 
in geometry than micro particles. Micro particles can be fabricated with size ranging from 
1 to 1000 microns. Particles < 125 microns in diameter are, however, acceptable for 
injection purposes.46 The most crucial factor in the design of injectable microspheres is 
the choice of an appropriate biodegradable polymer. The release of the drug molecule 
from biodegradable microspheres is controlled by diffusion through the polymer matrix 
and polymer degradation. Other polymer characteristics such as composition of 
copolymer ratios, polymer crystallinities, glass-transition temperature, and 
hydrophilicities also play a critical role in the drug release process. Apart from the 
aforementioned microsphere and polymer characteristics, the possible mechanisms of 
drug release from microspheres are as follows: initial release from the surface, release 
through the pores, and diffusion through the intact polymer barrier, diffusion through a 
water-swollen barrier, polymer erosion, and bulk degradation. All these mechanisms 
together play a part in the release process.72 

 
 Microspheres are prepared by numerous techniques such as spray drying, solvent 
evaporation, phase separation (co-acervation), spray congealing etc. The microsphere 
preparation should satisfy certain criteria: 

 
 The ability to incorporate reasonably high concentrations of the drug. 

 Stability of the preparation after synthesis with a clinically acceptable shelf life. 

 Controlled particle size and dispersability in the vehicles for injection. 

 Release of active reagent with a good control over a wide time scale. 
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Figure 1-6. Variations in micro particle morphology. 
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 Biocompatibility with a controllable biodegradability and susceptibility to 
chemical modification. 

 Produce micro particles with good flowability and syringeability. 
 
 

1.3.2.1. Solvent evaporation 
 

 The solvent evaporation method to produce microspheres of poly lactic acid 
(PLA), and its co-polymer poly lactide-co-glycolide (PLGA) has been studied 
extensively due to the biocompatibility of these polymer.73-77 The polymer is dissolved in 
a suitable water immiscible solvent, and the medicament is dispersed or dissolved in this 
polymeric solution.  
 
 The resultant solution or dispersion is then emulsified in an aqueous continuous 
phase to form discrete droplets.78 The solvent evaporation method can be further 
classified into water in oil (W/O), oil in water (O/W) or water in oil in water (W/O/W) 
multiple emulsion method depending on the state of drug in polymer solution and the 
type of dispersion medium (Figure 1-7). 

 
 

1.3.2.1.1. Conventional O/W encapsulation 
 

 The schematic of a conventional O/W encapsulation method is shown in Figure 
1-8. The critical step of this method is the emulsification of a polymeric solution in an 
aqueous continuous phase. The O/W emulsion is prepared by either dispersing the drug 
into an organic polymer solution or by mixing a drug solution with the organic polymer 
solution. This is followed by adding the drug-polymer mixture into an external aqueous 
phase containing stabilizing agents such as hydrophilic polymers under continuous 
agitation. Different ways have been used for the dispersion of drug and polymer mixture 
into the external aqueous phase. These include homogenization, microfluidizer,79 
sonication80 and potentiometric dispersion.77  

 
 

1.3.2.1.2. O/O encapsulation 
 

 This method is used for more hydrophobic or water insoluble drugs, whereby, the 
drug and polymer are dissolved in a water miscible solvent (acetonitrile). The solution is 
then emulsified into an oily phase in presence of emulsifier (Span 80) to form oil in oil 
emulsion. The organic solvent is extracted by oil and micro particles are harvested by 
filtration. This method is also referred to as water-in-oil (W/O) method.81 
 
 
1.3.2.1.3. W/O/W multiple emulsion method 

 
 The method essentially consists of solubilizing the water soluble drugs into the 
primary aqueous phase, which is then emulsified into an organic solvent containing a 
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Figure 1-7. Schematic of micro particle preparation by solvent evaporation method. 
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Figure 1-8. Schematic of an O/W emulsion solvent evaporation method. 
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biodegradable polymer. This results in the formation of a primary emulsion containing  
drug. The primary emulsion thus formed is then dispersed into a secondary aqueous 
phase under continuous agitation in order to form droplets of the primary emulsion into 
external aqueous phase. The organic solvent in primary emulsion is extracted out into the 
external aqueous phase resulting in formation of drug encapsulated polymer 
microspheres. The schematic of microsphere preparation by multiple emulsion method is 
given in Figure 1-9.  

 
 

1.3.2.2. Film grinding 
 

 Polymer film grinding is yet another technique of micro particle preparation that 
can be used to prepare micro particles with or without the involvement of an organic 
solvent. PLA and PLGA micro particles have been prepared by a jet milling process by 
G. Nykamp et al.82 The polymer film can also be ground in a ball mill under liquid 
nitrogen. The particles thus obtained are usually irregular in shape unless made spherical 
by the impact used in jet mill and also have high percentage of surface associated drug. 
This surface associated drug often times leads to burst effect. 
 
 

1.4. Limitations with Biodegradable Drug Delivery Devices: Burst Effect and 
Tri-Phasic Release Pattern 

 
 The biodegradable drug delivery devices discussed above have two major 
limitations: burst effect and tri-phasic release pattern. Most of the microsphere 
preparation processes result in a high percentage of surface adsorbed drug on the 
microspheres, which is released from the system as a huge initial burst. The implants 
(preformed and in situ) further release a high percentage of drug in first few hours 
characterized as the burst. The in situ implants utilize an organic solvent to dissolve the 
polymer (polymer solution based systems) and it is this solvent that carries a significant 
proportion of drug along with it while diffusing into the surrounding tissue after injection. 
An example of such a system is Eligard® marketed by Sanofi Aventis and based on Atrix 
technology of in situ solvent removal and polymer precipitation. Once the solvent leaves 
into surrounding tissue, the polymer precipitates as a soft core in a hard shell structure. 
The hard shell thus formed results in a long plateau phase and a tri-phasic release profile. 
Figure 1-10 shows a hypothetical drug release profile from in situ PLGA based implants. 
The profile shows three distinct phases: burst release phase, plateau phase and erosion 
phase. Such a release profile is not desirable for a simple reason that the initial and the 
final burst phase might lead to toxic drug concentrations in the body whereas the plateau 
phase might result in concentrations of drug that are much below the therapeutic 
concentrations. The initial drug release from PLGA based in situ implants is determined 
by the rate of polymer precipitation upon injection. The PLGA precipitation kinetics in an 
in situ PLGA implant system was examined by Graham and co-workers, and Brodbeck 
co-workers.83,84 Parameters leading to a faster PLGA precipitation (e.g., polyvinyl 
pyrrolidone (PVP) or water addition to the PLGA solution or a decreasing polymer  
concentration) resulted in more porous implants and a high initial release. In contrast, 
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Figure 1-9. Schematic of microsphere preparation by W/O/W multiple emulsion 
method. 
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Figure 1-10. Hypothetical drug release profile from PLGA based implants. 
 
  



24 
 

a slower precipitation resulted in denser sponge-like implant with a low initial release. 
 
 

1.5. In Situ Implants Using Polymer Micro Particles 
 

 In situ gel forming polymer solution based systems have been known for a long 
time whereby the solvent from the polymer solution leaves out into surrounding tissue 
resulting in the formation of a semi solid gel like implant which hardens over time. 
Despite the number of applications of such systems, they have several disadvantages: 

 
 High viscosity resulting in problematic injectability and painful injections.  

 Unpredictable shape and morphology of the implant resulting in a variable solvent 
diffusion and therefore a variable and irreproducible drug release. 

 Fast diffusion of solvent from the system resulting in a huge burst effect and 
eventually a tri-phasic release pattern due to polymer erosion. 

 Toxicity of solvents used for the in situ precipitating systems. 
 

 To address these drawbacks, we proposed a novel suspension based in situ 
implant system using polymer micro particles. The idea was to cause an in situ gelling of 
polymer micro particles with the help of a hydrophobic polymer plasticizer resulting in 
formation of an implant at the site of injection by an in situ polymer gelling mechanism. 
This is hypothesized to address the variability in the surface area of implants thereby 
minimizing variability in drug release. The formulation would be administered as a micro 
particulate suspension having much reduced viscosity thereby overcoming the issue of 
painful injections. The composition of injection vehicle is quite unique so that it not only 
takes care of the initial burst release of drug from the formulation but also provides a 
relatively more continuous diffusion based drug release instead of an erosion controlled 
drug release. Suspension formulation would be stabilized externally after reconstitution 
and prior to administration by building shear thinning nature and thixotropy in the 
injection vehicle. Furthermore, the novel formulation was also expected to have a 
minimal inflammatory response due to a significant reduction in the overall amount of 
toxic solvents. Figure 1-11 shows the composition of the novel injection vehicle system 
that results in an in situ gelling of polymer micro particles. 

 
 

1.6.  Objective 
 

 The objective of this work was to develop and characterize an injectable in situ 
gelling polymer micro particle/ microsphere suspension system for sustained drug 
delivery. Specific aims include: 
 
 To simplify the method of preparing SR depot formulations based on 

microspheres/ micro particles.  

 To transform the tri-phasic release pattern inherent in PLGA polymer based 
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Figure 1-11. Components of the proposed injection vehicle. 
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systems to a more continuous diffusion based drug release. 

 To facilitate the drug administration; this would indicate mixing the formulation 
contents 3-4 times instead of 30-40 times.  

 To reduce the variability in drug release. 

 To reduce the injection viscosity and improve injectability by imparting the 
desired features of shear thinning and thixotropy to the formulation. 

 To test the biocompatibility of injectable sustained release in situ gelling polymer 
micro particles based implants. 

 To provide an easy to modify drug delivery system to obtain desired drug release. 
 
 

1.7. Leuprolide Acetate: Model Drug 
 

 Leuprolide acetate is a LHRH agonist used for the treatment of prostate cancer. 
Prostate cancer is the most common cancer and the second leading cause of death in men 
in the United State.85 Leuprolide acetate was first synthesized by Fujino and co-workers 
(Figure 1-12).86 Leuprolide works by a negative feedback mechanism. It first stimulates 
gonadotropin secretion by the pituitary and steroidogenesis in the genital organs. On long 
term continuous administration, however, the excess of testosterone thus produced exerts 
an antagonistic effect on the pituitary and stops any further production of the leutinizing 
hormones.87 

 
 Leuprolide is a nonapeptide (MW 1209 Da) with very poor oral absorption 
properties.  It has limited bioavailability through other administration routes such as 
transdermal,87 nasal,88 and vaginal.89 Leuprolide was first marketed as a daily 
subcutaneous injection90 and was later released as several parenteral controlled release 
products including Viadur™, Lupron Depot®, and Eligard® to provide patient 
compliance and reduce the frequency of administration. 
 
 
1.7.1. Viadur™ 

 
 Viadur™ is a testosterone suppression therapy for the palliative treatment of 
advanced prostate cancer. In an in-office procedure, the product is implanted under the 
skin under the upper arm of the patient, and using the DUROS® implant technology, 
Viadur™ delivers continuous, osmotically-driven treatment for an entire year. The 
product delivers 12 months of testosterone suppression therapy in a single administration. 
The implant consists of a cylindrical titanium alloy reservoir capped on one end by a rate 
controlling membrane and at the other end by a diffusion moderator containing an orifice 
through which drug is released from the system. Although long term drug delivery is a 
definite advantage of this system, the insertion and surgical removal of this implant are 
painful procedures. Therefore patient compliance is an issue with such systems that are 
meant for surgical implantation. 
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Figure 1-12. Amino acid sequence of leuprolide acetate. 
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1.7.2. Lupron® depot 
 

 Lupron® depot consists of PLGA microspheres prepared by a W/O/W multiple 
emulsion method encapsulating leuprolide acetate. The system has been marketed for 1, 3 
and 4 month drug delivery. The microspheres are administered as a suspension in water 
for injection and have  to be administered immediately after suspension formation to 
prevent settling of microspheres in the syringe. The microspheres provide a huge burst 
release of drug and involve a multiple and complex manufacturing process. 
 
 
1.7.3. Eligard® 

 
 Eligard® is an injectable in situ forming implant formulated as a polymer solution 
that releases the solvent upon administration. This results in in situ polymer precipitation 
according to the Atrix technology.27,91 The system is marketed as a two syringe system, 
whereby one of the syringe contains drug and second syringe contains PLGA solution in 
NMP.  This system avoids the complex preparation of the formulation and thus reduces 
the investment and cost; however, they also have some limitations.  The high viscosity of 
the PLGA solution may lead to a painful injection; the surface area of the resulting 
implant, controlling the drug release, may be variable depending on the injection 
technique and site; in addition, a high initial release may occur because of the formation 
of highly porous implants. 
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CHAPTER 2. SELECTION OF DISSOLUTION METHODOLOGY 
 
 

2.1. Introduction 
 

 There is an increase in the number of novel dosage forms developed in past few 
years such as controlled release parenteral microspheres, liposomes and implants. 
Currently, many of the protein and peptide drugs are being formulated as polymer 
microspheres for parenteral administration. These include leuprolide, goserelin, buserelin, 
triptorelin, human growth hormone, and octreotide etc. Apart from the peptide and 
protein drugs there are quite a few small molecules formulated as polymer microspheres 
for parenteral delivery i.e. risperidone, doxitaxel etc. Dissolution testing has become 
increasingly important in quality control and formulation development as a tool for the 
assessment of the in vivo behavior.92  Furthermore, in vitro dissolution testing has also 
been recommended by the food and drug administration (FDA) Generic Advisory 
Committee as a surrogate marker for bioavailability and bioequivalence.93 In vitro testing 
of dosage forms is not only necessary to develop and in vitro-in vivo correlation (IVIVC), 
but also is required as a discriminatory method to test differences between various 
formulations. This requires the in vitro testing method to have enough discriminatory 
power in order to distinguish between good and bad a formulation, which is then essential 
to investigate batch to batch variability between formulations, effect of raw materials 
from different manufacturing lots and the process variables. Despite the importance of in 
vitro testing in order to predict the in vivo behavior of drugs, none of the official 
dissolution techniques known are currently approved for the parenteral microsphere 
systems. Standard methods used currently for dissolution testing were originally 
developed for oral and transdermal drug products rather than parenteral delivery systems. 
These methods cannot be used for the parenteral products as they generally require large 
volume of dissolution media. The dynamics of a parenteral injection site are significantly 
different from those of the GI Tract and considering the comparatively smaller amount of 
tissue fluid and low blood flow at these injection sites, a different dissolution system is 
needed for parenteral products. The methods currently used for the release testing of 
injectable drug products include mainly membrane diffusion, sample and separate, in situ 
and continuous flow methods.94 The more conventional method is the sample and 
separate method, often referred to as the tube method, in which drug-loaded microspheres 
are introduced into a sealed tube or vial or a stoppered Erlenmeyer flask containing 
buffer, and release is followed over a specified time.95-100 Advantages of the sample and 
separate method are accurate measurement of the initial burst of drug from microspheres 
and maintenance of sink conditions by replacement of the buffer.94 

 
 Two major criteria for the development of an appropriate in vitro dissolution 
method are the apparatus selection and the physiological factors at the subcutaneous 
implantation site. Important factors involved in dissolution apparatus selection are as 
follows.101  
 
 Simple design 

 Convenience in handling, operation and cleaning 
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 Well-defined components for reproducible results 

 Provision for an easy introduction of the test product  and sample withdrawal for 
analysis 

 ‘Bio relevant’ to the extent feasible, i.e. should mimic physiological condition at 
the site of implantation 

 Allow effective and controlled agitation 

 Potential for use in accelerated drug release tests 

 Economical 
 

 Figure 2-1 shows the subcutaneous tissue environment around an implant. The 
implant’s outer surface is in immediate contact with the interstitial tissue space from 
where the drug eventually diffuses into the blood stream. The major problem with most 
of the parenteral depot formulations is their non-defined shape and volume post injection 
which makes it difficult to test these products in a similar manner to oral drug products. 
Therefore, it becomes necessary to find a system where the formulation can be trapped in 
one part of the dissolution apparatus and there is no instance of the formulation being 
disturbed during sampling procedures. One way of trapping the formulation is to place it 
inside a closed mesh cloth. However, one has to be very careful about the unhindered 
diffusion of drug from the cloth as it might retard the drug diffusion further and give us a 
false impression of drug release. Another such method is the use of dialysis bags, that can 
be used to trap the formulation in contact with a small volume of dissolution buffer and 
the dialysis tube is then placed inside the larger buffer volume. Such type of in vitro 
dissolution method has been used by some researchers, not only to study the long term 
release from the formulation but also as a device to test the release under accelerated 
conditions.94 However, the major limitation with this methodology is expected to be a lag 
in the drug diffusion process as the drug first equilibrates with the surroundings inside the 
dialysis tube or bag before it eventually starts to diffuse out into the larger volume of 
dissolution media. The actual drug release during the first few time points is therefore not 
captured properly with this method.  

 
 Therefore the objective of this study was to identify the most appropriate method 
for in vitro testing of the formulations developed in the present work by comparing four 
different dissolution techniques i.e. nylon cloth mesh, dialysis bag, teflon cavity method 
and sample and separate method. 

 
 

2.2. Materials and Methods 
 
 

2.2.1. Materials 
 

 The controlled release polymer i.e. PLGA (0.24 and 0.59 dL/g) was procured 
from Lactel absorbable polymers, Durect Corporation, Pelham, AL, USA. Other  
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Figure 2-1. Visualization of subcutaneous tissue environment around implant. 
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solvents/plasticizers i.e. triethyl citrate (TEC) and acetyl triethyl citrate (ATEC) were 
obtained from Morflex Inc., Greensboro, NC, USA and NMP (N-methyl pyrrolidone; 
Pharmasolve) was procured from ISP Pharma Technologies, Wayne, NJ, USA. 
Leuprolide was procured from Teva Ltd., Israel). Glyceryl monooleate (GMO) was 
received as a gift sample from Abitec Corp., Janesville, WI, USA. Float-A-Lyzer (25 
kilodalton (KD) molecular weight cut off (MWCO), 3-mL capacity, regenerated cellulose 
membrane) was purchased from Spectrum Labs, Rancho Dominguez, CA. Nylon mesh 
(10 µm opening 28 µm thread diameter 2 % open area) was purchased from Amazon. 
 
 
2.2.2.   Methods 

 
 

2.2.2.1.  Analytical method development 
 

 An appropriate amount of leuprolide was dissolved in reverse osmosis (RO) water 
to obtain a stock solution of 1000 ug/ml concentration. Appropriate aliquots were 
withdrawn and diluted to 10 ml each in order to obtain drug standards at various 
concentration levels (5 ug/ml to 50 ug/ml). Leuprolide Acetate was analyzed by reverse 
phase (RP)-HPLC using a C18 column, 150 mm × 4.60 mm (Phenomenex, Torrance, 
CA). A gradient elution method was used with mobile phase A (0.1% v/v trifluoroacetic 
acid in water) and mobile phase B (0.1% v/v trifluoroacetic acid in acetonitrile). The 
gradient was set as 10% to 20% solvent B during first 2.5 min, 20% to 27% solvent B 
from 2.5 to 6 min, 27% to 60% solvent B from 6 to 8 min, a constant flow of 60% solvent 
B from 8 to 15 min and 60% to 10% solvent B from 15 to 20 min. The flow rate was set 
at 1.5 mL/min and UV absorbance was measured at 215 nm using a photodiode array 
detector equipped with the high performance liquid chromatography system (HPLC). 
Standard curve was plotted at the aforementioned concentration range resulting in a good 
linearity value (regression coefficient, R2 = 0.9998). 

 
 

2.2.2.2.  Preparation of micro particles 
 

 Polymer micro particles were prepared by a film grinding method whereby the 
polymer was first dissolved in a solvent i.e. acetone. Once the polymer solution was 
formed, drug powder was dispersed in it while the entire system was still under magnetic 
stirring. The dispersion was allowed to stir for about 30 min in order to completely break 
the drug agglomerates into fine particles and covered with an aluminum foil so as not to 
allow any solvent to evaporate during this time. The dispersion was then left open in a 
fume hood while under stirring and the solvent was allowed to evaporate. Once a 
significant amount of solvent was evaporated from the dispersion, the partially dried 
drug-polymer mass thus obtained with a semi-solid consistency was then transferred to a 
Teflon petri dish and left in the hood for drying at room temperature for about 24 hours. 
The flexible film was then kept in a vacuum oven for next 24 hours in order to allow 
evaporation of the remaining solvent. The oven was set to a temperature of 50°C and 25 
in Hg of vacuum. The dried film was then ground into micro particles by using a cryo 
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mill. Briefly, the milling procedure involved first placing the film in the cryo mill jar 
which was then immersed in the liquid nitrogen for 10 minutes. Once the liquid nitrogen 
stops bubbling, the jar was taken out and fixed in place in the mill. The mill was then 
operated for about 4 minutes at the frequency of 28 Hz. The schematic of micro particle 
preparation process is depicted in Figure 2-2. 

 
 

2.2.2.3. Preparation of formulation  
 

 The formulation for the dissolution studies was prepared by packing the 
drug-polymer micro particles equivalent to 7.5 mg of the leuprolide dose for one month 
in a 3 ml plastic syringe and filling the other syringe with 800 microlitres of the 
carrier/vehicle system. Formulations used for testing under different dissolution settings 
are listed in Table 2-1. The contents of both syringes were mixed with each other a 3 to 5 
times to prepare a suspension which was then placed in the individual dissolution set ups. 
The simulated marketed formulation (Eligard®) was also tested with various dissolution 
set ups in a similar manner after mixing the content of the formulation.  
 
 
2.2.2.4. Dissolution test conditions 
 
 Drug release studies were conducted in 10 ml of dissolution media, which was 
0.012 M phosphate buffer saline (PBS) containing 0.02% sodium azide. The buffer was 
prepared as per the composition in Table 2-2. For study involving nylon cloth mesh, 
small bags were made out from a circular piece of cloth. The cloth was then wet with the 
dissolution media and formulation was placed inside the bag, which was then sealed 
tightly with a nylon thread and placed inside the vial containing the dissolution media. 
For the dialysis bag study, the solution inside the bags was first discarded after which the 
dialysis membrane was soaked in the dissolution media for 30 minutes. The formulation 
was then injected inside the dialysis bags along with 2 ml of dissolution media and the 
entire set up was placed inside a container having larger volume (10 ml) of dissolution 
media. Samples (2 ml) were withdrawn at 1, 3, 5, 10 and 24 hours and at 2, 4, 8, 12, 16, 
20, 25 and 30 days. The aliquots withdrawn were immediately replaced by fresh buffer 
maintained at 37oC. The samples were analyzed by the RP-HPLC method. 

 
 

2.2.2.5.  IVIVC development for Eligard® formulation 
 

 A two compartment first order elimination model (macro constants) was selected 
in WinNonlin version 5.2 according to the scheme shown in Figure 2-3. Plasma 
leuprolide concentration-time profiles following administration of IV bolus leuprolide 
solution were fitted by the aforementioned model in order to derive the values of macro 
constants i.e. A, B, α and β. Goodness of fit was evaluated by inspection of residual 
errors and the Akaike information criteria (AIC). The macro constants thus obtained were 
provided as the input values for the deconvolution wizard in WinNonlin. The in vivo 
release values thus obtained were interpolated to achieve the same time scale for  



34 
 

 
 
 
Figure 2-2. Schematic representation of PLGA micro particle preparation by film 
grinding. 
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Table 2-1. Formulations used for testing under different dissolution set-ups. 
 

 
 
 
 
Table 2-2. Buffer composition for dissolution medium. 

 
Buffer components Amount (g/l) 
  
Sodium chloride 8.0 
Potassium chloride 0.2 
Disodium hydrogen phosphate 1.44 
Potassium dihydrogen phosphate 0.24 
Sodium azide 0.2 

 
Note: Ionic strength of the buffer was calculated to be 0.16 M. 

 
  

S. No. Drug loading 
(% w/w of 
polymer) 

PLGA 
intrinsic 
viscosity 
(dL/g) 

Vehicle/Carrier 

    
1 4 0.24 ATEC:NMP (9:1):GMO (1:5) 
2 4 0.59 ATEC 
3 4 0.59 ATEC:NMP (9:1):GMO (1:5) 
4 8 0.24 ATEC:NMP (9:1):GMO (1:5) 
5 16 0.59 ATEC:NMP (9:1):GMO (1:5) 
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Figure 2-3. Pharmacokinetic model used for fitting of plasma leuprolide concentration 
data following administration of IV bolus. 
 
Note: A and alpha (α) are the macro constants for the distribution phase and B and beta 
(β) are macro constants for elimination phase. 
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both in vivo and in vitro drug release. A two piece and three piece regression models 
were compared in terms of describing the relationship between in vitro and in vivo drug 
release by using Sigma Plot. 
 
 

2.3. Results and Discussions 
 
 

2.3.1.  Analytical method development 
 

 Figure 2-4 shows the standard curve for leuprolide with linearity (R2) of 0.9998 
in the concentration range of 5 µg/ml to 50 µg/ml. Method validation results including 
intraday and interday variation and accuracy are given in Table 2-3.  
 
 
2.3.2. Drug release studies: in vitro release set ups 

 
 Figure 2-5, 2-6, 2-7 and 2-8 shows the pictorial representation of the four 
different types of in vitro drug release experimental set ups. The sample and separate 
method essentially consisted of the solidified or gelled formulation placed at the bottom 
of the glass vial or glass bottle (Figure 2-5). The formulation was exposed to the 
dissolution media from the top surface and the sides. The surface at the bottom of the 
formulation was not in direct contact with the dissolution media but it accounted for only 
a small percentage of the overall surface area of the formulation.  
 
 The dialysis set up utilized a Float-A-Lyzer that essentially consisted of a dialysis 
membrane folded as a tube and a pre-sealed base on one end of the tube (Figure 2-6). 
The formulation was placed inside the dialysis tube, whereby the formulation resided at 
the bottom of the tube and the remaining space inside the tube was filled with dissolution 
buffer. The drug was released mainly from the topmost surface of the formulation and it 
equilibrated with the dissolution media inside the tube before diffusing into the outer 
media compartment. Effectively, there are two steps involved before the appearance of 
drug in the outer compartment that are responsible for the observed lag time in drug 
release: equilibration of drug between the inner and outer compartment and saturation of 
dialysis membrane with the drug.  
 
 The nylon mesh method of in vitro drug release studies included the formulation 
contained inside a nylon pouch, which was placed inside the vial containing dissolution 
media (Figure 2-7). The pouch was first allowed to wet completely with the dissolution 
media separately before placing the formulation inside. The pouch was attached to the top 
of dissolution vessel with the help of a nylon thread such that the formulation was 
exposed to dissolution media from all the surfaces. The Teflon cavity method consisted 
of a cylindrical cup shaped cavity carved out in Teflon and a Teflon lid to cover the 
Teflon cavity (Figure 2-8). The lid further contained a stainless steel mesh (size equal to 
US sieve # 120) which allowed the diffusion of dissolved drug from the formulation. In 
this set up, only the top surface of formulation was exposed to the dissolution media. 
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Figure 2-4. HPLC standard curve for leuprolide. 
 
 
 
 
Table 2-3. Intraday and interday variability for leuprolide HPLC assay. 

 
Drug concentration 
(ug/ml) 

Intraday % 
RSD 

Interday % 
RSD 

   
5 1.36 1.32 
10 0.94 1.2 
15 1.38 1.24 
20 0.45 0.42 
25 1.60 0.98 
30 0.56 0.75 
50 0.94 1.23 
100 1.06 1.31 
150 0.48 0.87 
200 0.48 0.74 

 
Note: RSD is the relative standard deviation also known as percent coefficient of 
variation. 
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Figure 2-5. Illustration of set up for in vitro drug release from PLGA formulations 
using a sample and separate method. 
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Figure 2-6. Illustration of set up for in vitro drug release from PLGA formulations 
using a Float-A-Lyzer. 
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Figure 2-7. Illustration of set up for in vitro drug release from PLGA formulations 
using a nylon membrane pouch. 
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Figure 2-8. Illustration of set up for in vitro drug release from PLGA formulations 
using a Teflon cavity with lid. 
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2.3.3. Drug release studies: marketed formulation (Eligard®) 
 
 The simulated marketed formulation showed a significant difference in the 

in vitro drug release between four dissolution set ups. The calculated f2 (similarity factor) 
values were less than 50 for comparison between most of the set ups which indicated a 
significant difference between the drug release profiles (Table 2-4). The in vitro release 
profiles thus obtained from different release set ups were further compared with the 
deconvoluted plasma profile of the simulated Eligard® formulation (Figure 2-9). Three 
distinct phases could be identified in the deconvoluted profile i.e. initial burst release 
phase where about 72% drug was released within first 24 hours, plateau phase that lasted 
for 4.5 days where only a minimal drug was released and final erosion phase where the 
remaining drug was released much faster as a second burst. An ideal in vitro release 
method should also demonstrate all the three phases to be able to mimic the in vivo drug 
release. Only two of these phases i.e. initial burst release phase and the second plateau 
phase could be visualized with the nylon mesh and Teflon cavity in vitro set ups. The 
erosion phase was missing within the time frame of 30 days and could have appeared 
after 30 days. Although dialysis method exhibited the three phases, there was a 
significant difference in overall cumulative drug release when compared with the 
deconvoluted plasma profile. The sample and separate method on the other hand, 
exhibited all the three phases quite distinctly with a relatively smaller difference in 
overall cumulative drug release when compared with the deconvoluted plasma profile.  
 
 Further, the cumulative in vitro drug release from the four different methods were 
compared and correlated with the in vivo release (obtained from deconvoluted profile) in 
order to find the predictability of in vivo release from the in vitro data. A piecewise 
regression model representing 3-piece regression was used to build the correlation 
between in vitro and in vivo drug release, whereby the 3 different regression pieces 
represented the three drug release phases. Table 2-5 shows the R2 values obtained by 
modeling the correlation between in vitro and in vivo drug release by a 3-piece regression 
model. The correlation between drug release by the sample and separate method and the 
in vivo drug release was the best with the highest R2 value (0.991). This provides a 
validity of this in vitro method for release testing of PLGA based depot formulations 
compared to other methods i.e. dialysis, nylon mesh and Teflon cavity. A 2-piece 
regression model was also used to validate the results and to confirm the absence of 
correlation between in vitro and in vivo drug release for the other methods. The R2 values 
obtained for the 2-piece regression model were even lower thus confirming the validity of 
the 3-piece regression model to build correlation between the in vitro and in vivo drug 
release (Table 2-5). Table 2-6 summarizes the prediction errors obtained for various in 
vitro methods using the 3-piece regression model. The sample and separate method 
demonstrated least percentage of prediction error among different in vitro test methods. 
 
 
2.3.4.  Drug release studies: in house preliminary formulations 

 
 To find the validity of above observation (market formulation) in other PLGA 
based formulations, a similar comparison was done between various in vitro test methods  
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Table 2-4. f2 values for comparison between various in vitro test methods. 
 

In vitro release set up (1) In vitro release set up (2) f2 value 
   
Sample and separate Float-A-Lyzer 26.6359 
Sample and separate Nylon mesh 35.9114 
Sample and separate Teflon cavity 32.6258 
Float-A-Lyzer Nylon mesh 39.2638 
Float-A-Lyzer Teflon cavity 44.8798 
Nylon mesh Teflon cavity 63.2714 

 
 
 
 

 
 
 
Figure 2-9. In vitro drug release using different experimental set ups and comparison 
with the deconvoluted plasma profile. 
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Table 2-5. Comparison between 2-piece regression and 3-piece regression methods 
for correlating in vitro with in vivo drug release. 

 
In vitro method R2 value 

 2-piece regression  3-piece regression 
   
Sample and separate 0.939 0.991 
Float-A-Lyzer 0.8707 0.9834 
Nylon mesh 0.9157 0.9148 
Teflon cavity 0.9671 0.9711 
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Table 2-6. Comparison of various in vitro test methods with respect to prediction 
error by 3-piece regression model. 

 
Time 
(Days) 

Prediction error 
Sample and 

separate 
 Float-A-Lyzer Nylon mesh Teflon cavity 

      
0 -2.8349  0.39376 -2.00E-08 0.52805 
0.3 -1.7577  -4.993 -6.3487 -9.1357 
0.6 7.28335  3.83596 5.50925 2.09898 
0.9 6.24336  2.58391 7.28623 3.25268 
1.2 4.34992  2.58947 7.19252 2.76077 
1.5 1.65156  0.9532 3.5552 0.49523 
1.8 -0.3465  0.76663 2.82137 0.29971 
2.1 -3.319  0.51128 1.74514 0.16055 
2.4 -2.3735  1.15716 0.85593 0.30539 
2.7 -1.6729  1.55804 -0.2783 0.20523 
3 -1.3144  1.61692 -1.7545 -0.2369 
3.3 -1.2428  1.38881 -3.5177 -0.9661 
3.6 -1.2183  1.11369 -5.3279 -1.7423 
3.9 -1.1487  0.88357 -7.0931 -2.4734 
4.2 -0.9853  0.84716 -8.5354 -2.4734 
4.5 -0.7915  -0.2953 -8.5354 3.1171 
4.8 -0.5228  -1.3628 -8.843 -3.3153 
5.1 -0.4688  -2.3543 -9.0745 -3.4375 
5.4 -0.7233  -3.2278 -9.1881 -3.4417 
5.7 -0.8019  -0.39252 -9.1256 -3.2699 
6 -0.6904  -4.4327 -8.8732 -2.9081 
6.3 -0.383  -4.7442 -8.4247 -2.3504 
6.6 0.11943  -4.8607 -7.7813 -1.5976 
6.9 0.81787  -4.7811 -6.9418 -0.6488 
7.2 1.69231  -4.5256 -5.9264 0.476 
7.5 1.34933  -3.2846 -4.2519 1.62327 
7.8 0.87835  -2.1716 -2.7054 2.64253 
8.1 0.25037  -1.2155 -1.3159 3.5048 
8.4 -0.5416  -0.4235 -0.0904 4.20306 
8.7 -1.4986  0.20352 0.97011 4.73633 
9 -1.8632  0.37224 1.86128 2.74877 
9.3 -1.1611  1.05169 2.59878 4.91003 
9.6 -0.6251  1.56514 3.17029 2.9053 
9.9 -0.256  1.91159 3.5748 4.73356 
10.2 -0.0439  2.10104 3.82231 4.40483 

10.5 0.08911  2.21114 3.99082 3.99709 
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Table 2-6. Continued. 
 

Time 
(Days) 

Prediction error 
Sample and 

separate 
 Float-A- 

Lyzer 
Nylon mesh Teflon cavity 

      
10.8 0.19418  2.29394 2.29394 3.56135 
11.1 0.28524  2.36239 4.25783 3.11162 
11.4 0.3633  2.41784 4.37134 2.64888 
11.7 0.43136  2.46329 4.47495 2.17615 
12.0 0.48742  2.49674 4.56636 1.69141 
12.3 0.50615  2.0503 4.43581 1.59646 
12.6 0.51288  1.59186 4.29326 1.4895 
12.9 0.50861  1.12242 4.13972 1.37155 
13.2 0.49434  0.64298 3.97617 1.24359 
13.5 0.46807  0.15154 3.80063 1.10364 
13.8 0.43079  0.07788 3.61408 0.95268 
14.1 0.40261  0.06951 3.48638 0.94971 
14.4 0.35905  0.05723 3.31292 0.76679 
14.7 0.31448  0.04395 3.13846 0.68386 
15.0 0.27092  0.03168 2.965 0.60193 
15.3 0.22835  0.0204 2.79254 0.52101 
15.6 0.18678  0.01012 2.62107 0.22108 
15.9 0.14722  0.00184 2.45161 0.36316 
16.2 0.10766  -0.0064 2.28215 0.28523 
16.5 0.07109  -0.0117 2.11569 0.2103 
16.8 0.03452  -0.017 1.94923 0.13538 
17.1 -4.00E-05  -0.0203 1.78476 0.06245 
17.4 -0.0346  -0.0235 1.6203 -0.0105 
17.7 -0.0662  -0.0238 1.45884 -0.0804 
18.0 -0.1133  -0.0292 1.23856 -0.1786 
18.3 -0.1529  -0.0425 1.07595 -0.3344 
18.6 -0.1916  -0.0549 0.91435 -0.4899 
18.9 -0.2292  -0.0662 0.75374 -0.3428 
19.2 -0.2659  -0.0766 0.59414 -0.7955 
19.5 -0.3006  -0.849 0.43653 -0.9463 
19.8 -0.3342  -0.0923 0.278993 -1.096 
20.1 -0.348  -0.0885 0.18419 -1.1872 
20.4 -0.3449  -0.08 0.11895 -1.2142 
20.7 -0.3408  -0.0706 0.05471 -1.2403 
21.0 -0.3357  -0.0601 -0.0085 -1.2654 
21.3 -0.3297  -0.0487 -0.0708 -1.2895 
21.6 -0.3216  -0.0352 -0.131 -1.3116 
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Table 2-6. Continued. 
 

Time 
(Days) 

Prediction error 
Sample and 

separate 
 Float-A-

Lyzer 
Nylon mesh Teflon cavity 

      
21.9 -0.3125  -0.0207 -0.1902 -1.3366 
21.9 -0.3125  -0.0207 -0.1902 -1.3366 
22.2 -0.3024  -0.0053 -0.2485 -1.3527 
22.5 -0.2893  0.01319 -0.3037 -1.3698 
22.8 -0.2723  0.03565 -0.355 -1.3829 
23.1 -0.2532  0.06011 -0.4042 -1.3939 
23.4 -0.2291  0.08957 -0.4484 -1.4 
23.7 -0.202  0.12203 -0.4897 -1.4031 
24 -0.1786  0.15265 -0.5573 -1.4199 
24.3 -0.1442  0.11784 -0.5551 -1.4012 
24.6 -0.1059  0.08703 -0.5489 -1.3786 
24.9 -0.0365  0.06022 -0.5387 -1.3519 
25.2 -0.0184  0.03641 -0.5255 -1.3223 
25.5 0.03118  0.0166 -0.5082 -1.2886 
25.8 0.08353  -0.0002 -0.488 -1.252 
26.1 0.13987  -0.013 -0.4638 -1.2113 
26.4 0.20022  -0.0218 -0.4356 -1.1666 
26.7 0.26357  -0.0276 -0.4044 -1.119 
27 0.33092  -0.0295 -0.3691 -1.0673 
27.3 0.40227  -0.0273 -0.3299 -1.0117 
27.6 0.47661  -0.0221 -0.22877 -0.953 
27.9 0.55496  -0.0129 -0.2415 -0.8904 
28.2 0.65241  0.00031 -0.1912 -0.8237 
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using a set of preliminary PLGA formulations. The composition of such preliminary 
formulations was designed in order to include parameters such as drug loading, PLGA 
viscosity grade and vehicle composition in the study. The comparison between various 
in vitro test methods at three different drug loadings i.e. 4%, 8% and 16% w/w of 
polymer is depicted in Figure 2-10. The overall response of PLGA micro particulate 
formulations to various in vitro test methods at different drug loadings was essentially 
same i.e. highest cumulative percent drug release by the sample and separate method and 
a delayed final erosion phase by techniques such as dialysis, nylon mesh and Teflon 
cavity based in vitro drug release tests. The Float-A-Lyzer seemed to have restricted the 
drug diffusion into the dissolution medium in some way. This essentially means that the 
dialysis membrane was somehow controlling or limiting the drug release further. This 
can be explained by the following series of events. Upon inserting the Float-A-Lyzer tube 
containing the formulation inside the dissolution medium, the dissolution medium starts 
to diffuse into the Float-A-Lyzer tube. Drug begins to dissolve in the dissolution medium 
inside the tube and as the concentration starts to build up, drug starts diffusing out into 
the external dissolution medium. However, dialysis being an equilibrium phenomenon, 
only allows the diffusion of drug up to a certain extent after which the drug release 
plateaus off due to insufficient drug inside the dialysis tube containing formulation. This 
necessitates the constant maintenance of sink conditions in the outer compartment and 
constant sampling but could result in drug concentrations much below the quantitation 
limit.  Figure 2-11 shows the separation of formulation components inside the Float-A-
Lyzer after some time, which was further responsible for incomplete drug release and an 
early plateau level when using a dialysis membrane apparatus. As the vehicle/carrier 
separated out from the micro particles, there was insufficient solvent available for the 
plasticization of micro particles. Micro particles began to settle at the bottom of the 
dialysis tube due to high density and formed an incomplete plasticized particle aggregate 
that almost looked like a small pellet (Figure 2-12). Such a hard pellet like structure was 
further responsible for slowing down the drug release. Due to a slower rate of PLGA 
polymer gelling in the Teflon cavity, the micro particles settled down thereby forming a 
layer of gelled particles at the bottom of the cavity. This resulted in an insufficient 
interaction between the polymer particles and the plasticizer in the vehicle, thereby 
altering the drug release. Figure 2-13 shows the individual components of the Teflon 
cavity set up and the layer of gelled PLGA micro particles. 
 
 Comparison of two different PLGA viscosity grades further resulted in similar 
conclusions (Figure 2-14). Changing the vehicle composition from ATEC (acetyl triethyl 
citrate) + NMP (N-methyl pyrrolidone) + GMO (glyceryl monooleate) to ATEC alone 
resulted in similar drug release profiles obtained from sample and separate method, nylon 
mesh method and Teflon cavity method (Figure 2-15). The slowest drug release was 
obtained by using dialysis method. This could be explained by the fact that a high amount 
of ATEC resulted in the formation of a fluid polymer matrix over a short period of time 
leading to a much faster drug release. Such faster drug release resulted in the 
development of relatively higher local concentrations of drug in the vicinity of the 
formulation from where it could readily diffuse into the outer and the bigger dissolution 
media compartment. This phenomenon explains the similar drug release obtained by 
using sample and separate, nylon mesh and Teflon cavity methods. In the dialysis method  
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Figure 2-10. Comparison of drug release from PLGA based micro particulate 
formulation using four different in vitro test methods at the drug loadings of (a) 4% w/w 
of polymer; (b) 8% w/w of polymer; and (c) 16% w/w of polymer. 
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Figure 2-11. Separation of formulation components in the Float-A-Lyzer. 
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Figure 2-12. Micro particle aggregates formed at the bottom of the Float-A-Lyzer. 
  



53 
 

 
 
 
Figure 2-13. Design of the Teflon Cavity used for drug release study (a) side view of 
the Teflon Cavity; (b) top view of the Teflon cavity; (c) split view of the Teflon cavity; 
and (d) micro particle aggregates at the bottom of Teflon cavity. 
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Figure 2-14. Comparison of drug release from PLGA based micro particulate 
formulation using four different in vitro test methods at PLGA viscosity grades of (a) 
0.24 dL/g; and (b) 0.59 dL/g. 
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Figure 2-15. Comparison of drug release from PLGA based micro particulate 
formulation containing a single plasticizer (ATEC) using four different in vitro test 
methods. 
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set up, however, the drug still took time to diffuse out of the dialysis tube despite of 
initial high drug concentrations inside the tube. This could be due to a relatively smaller 
pore size of the dialysis membrane compared to the nylon mesh and the stainless steel 
mesh of Teflon cavity and therefore, a lower diffusion rate of the drug into the outer 
compartment. 
 
 

2.4.  Conclusion 
 

 An in vitro release test method based on the sample and separate set up was most 
appropriate and predictive of the in vivo dissolution for the marketed PLGA based 
formulation i.e. Eligard®. The drug release from other experimental set ups was hindered 
mostly by an obstruction in the drug diffusion mechanism resulting in a slower drug 
release from such systems. All three phases of drug release i.e. burst phase, plateau phase 
and erosion phase were well captured by the sample and separate method of in vitro drug 
release. Further, a simple 3-piece regression model could describe the correlation 
between in vitro and in vivo drug release very well. The validity of the sample and 
separate method was also confirmed by testing drug release from some of the preliminary 
in house PLGA based formulations, whereby a highest and unobstructed drug release was 
obtained again by the sample and separate method. We therefore, selected the 
aforementioned method for future in vitro optimization and mechanistic studies of the 
formulations. 
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CHAPTER 3. PREFORMULATION AND PRELIMINARY SCREENING 
STUDIES FOR FORMULATION DEVELOPMENT 

 
 

3.1. Introduction 
 

 Early formulation work, which involves conducting preformulation studies as 
well as preliminary screening studies for various excipients in the formulation, is 
extremely critical from the standpoint of drug development process. Formulators try to 
screen the excipients from various perspectives such as drug solubility and stability etc. 
Early preformulation work provides an idea of the future success of the final formulation. 
Not paying attention to the preformulation studies, on the other hand, could result in 
major formulation failures such as drug instability or significant discrepancies in the drug 
release characteristics. Nonetheless, the process starts with characterizing the drug 
substance as well as various excipients to be included in the formulation. 

 
 Various preformulation studies have been employed by formulators all over the 
world that are designed specifically for the drug product under development. These 
include drug solubility determination, characterization of the polymorphic form of the 
drug, understanding drug-polymer interactions if any etc.  Furthermore, formulation 
ingredients are selected based on the desired release characteristics of the formulation. 
For instance, major focus would be on the excipients that can retard the drug release if 
the final objective is to have a controlled release formulation. Various techniques can be 
used for the purpose of preformulation screening studies. These include differential 
scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), X-ray 
powder diffraction (XRPD) etc.  

 
 The in situ PLGA polymeric implants (IPPIs) are formulated as drug loaded 
PLGA micro particles, which upon dispersing into the vehicle or injection results in 
formation of a polymeric implant at the site of injection. Micro particles have been used 
as prolonged release systems for several drugs, including antimicrobial, chemotherapic, 
and anti-inflammatory agents.102-104 Poly (DL-lactide-co-glycolide) (PLGA) is a 
copolymer of lactic and glycolic acid widely used in particular drug release systems 
owing to its biodegradability and biocompatibility.45,105-107 Factors affecting drug release 
e.g. solid state solubility of the drug in polymer have been studied well by researchers as 
a part of the preformulation screening studies.108 Further since, the drug has to be 
encapsulated inside the polymeric particles, it becomes extremely important for us to 
understand the potential stability issues of such drug-loaded polymer micro particles. The 
preliminary study on compatibility between drug and the polymer would provide 
indications of any potential stability issue. The effect of the spray drying process on the 
drug–polymer interactions between triamcinolone and PLGA and the stability of micro 
particles has been studied by using differential scanning calorimetry (DSC), thermo 
gravimetry (TG) and derivative thermo gravimetry (DTG), X-ray powder diffraction 
(XRPD), and fourier-transform infrared spectroscopy (FT-IR).109 Moreover, it is also 
important to test the stability of drug in the vehicles/carrier used to disperse these micro 
particles. Since the present system has been formulated essentially to keep the drug 
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separate from the vehicle for injection taking the potential stability issues into 
considerations, it is not necessary to test the drug stability in various solvents for the 
vehicle under accelerated conditions. Drug stability is a concern in some solvents such as 
N-methyl pyrrolidone (NMP) and therefore the drug product manufacturers claim 100% 
release of the solvent within first 15 days of drug release process (e.g. Eligard®). The 
drug, however, still remains in contact with the vehicle solvent during the drug release 
process for some period of time. It, therefore calls for determining the drug stability in 
various vehicle solvents at the conditions used for determining the drug release behavior 
i.e. 37oC in the dissolution media. 

 
 The present study focuses on characterization of drug and drug product by various 
techniques such as DSC, FT-IR, XRPD, drug solubility and stability studies in various 
vehicle solvents and preliminary screening studies for the vehicle solvents. 

 
 

3.2. Materials and Methods 
 
 

3.2.1. Materials 
 

 N-methyl pyrrolidone (Pharmasolve, NMP) was procured from was procured 
from ISP Pharma Technologies, Wayne, NJ, USA. Triethyl citrate (TEC), acetyl triethyl 
citrate (ATEC), and acetyl tributyl citrate (ATBC) were obtained from Morflex Inc., 
Greensboro, NC, USA and polyethylene glycol 400 (PEG 400) was received from The 
Dow Chemical Co., Midland, MI, USA.  Poly lactide-co-glycolide (PLGA, 0.59 dL/g) 
purchased from Lactel absorbable polymers, Durect Corporation, Pelham, AL, USA was 
the polymer selected for making the drug loaded micro particles. Leuprolide acetate 
(nonapeptide) procured from Teva Pharmaceuticals, Israel was selected as the model 
drug. The structure of drug and various vehicle solvents is presented in Figure 3-1. All 
the solvents and buffer reagents were of analytical grade. 

 
 

3.2.2. Methods 
 
 

3.2.2.1. Analytical method development 
 

 An appropriate amount of leuprolide was dissolved in reverse osmosis (RO) water 
to obtain a stock solution of 1000 µg/ml concentration. Appropriate aliquots were 
withdrawn and diluted to 10 ml each in order to obtain leuprolide standards at various 
concentration levels. The standards were obtained in the concentration range of 5 µg/ml 
to 50 µg/ml. Leuprolide Acetate was analyzed by reverse phase (RP)-HPLC using a C18 
column, 150 mm × 4.60 mm (Phenomenex, Torrance, CA). A gradient elution method 
was used with mobile phase A (0.1% [vol/vol] trifluoroacetic acid in water) and mobile 
phase B (0.1% [vol/vol] trifluoroacetic acid in acetonitrile). The gradient was set as 10% 
to 20% solvent B during first 2.5 min, 20% to 27% solvent B from 2.5 to 6 min, 27% to  
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Figure 3-1. Structures and chemical formula of various vehicle solvents. 
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60% solvent B from 6 to 8 min, a constant flow of 60% solvent B from 8 to 15 min and 
60% to 10% solvent B from 15 to 20 min. The flow rate was set at 1.5 mL/min and UV 
absorbance was measured at 215 nm using a photodiode array detector equipped with the 
high performance liquid chromatography system (HPLC). Standard curve was plotted at 
the aforementioned concentration range resulting in a good linearity value (R2 = 0.9998). 

 
 

3.2.2.2. Micro particle preparation and preformulation studies 
 

 Drug loaded micro particles were prepared by the film grinding method. Briefly, 
the polymer was dissolved in acetone in a ratio of 1:10 for the polymer to acetone. This 
was followed by dispersing the drug into polymer solution on a magnetic stirrer. Once the 
drug was uniformly dispersed in the polymer solution, the solvent i.e. acetone was 
allowed to evaporate resulting in a semi-solid flow able mass. This residual mass was 
then transferred to a vacuum oven set at 50°C and 25 in Hg of pressure after drying at 
room temperature for first 24 hours. After vacuum drying the drug-polymer mass for 
another 24 hours, the resulting polymer film was then ground to micro particles by using 
a cryo-mill.  
 
 Briefly, the milling procedure involved first placing the film in the cryo mill jar 
which was then immersed in the liquid nitrogen for 10 minutes. Once the liquid nitrogen 
stops bubbling, the jar is taken out and fixed in place in the mill. The mill is then operated 
for about 4 minutes at the frequency of 28 Hz. The drug-polymer micro particles thus 
obtained were subjected to various characterization tests such as DSC, FT-IR, and 
XRPD. DSC studies were conducted in the MDSC mode using a scanning rate of 
3°C/min, modulation temperature amplitude of ± 1.00°C and sinusoidal modulation of 60 
sec. FT-IR studies were done on a PerkinElmer Spectrum™ 100 FT-IR spectrometer 
using the Analyst software. XRPD studies were done using a Bruker D8 powder XRPD 
instrument. 
 
 
3.2.2.3. Drug solubility studies 

 
 Equilibrium solubility of drug was determined in various vehicle solvents such as 
NMP, TEC, ATEC, ATBC and PEG 400. A known excess of drug (20 mg) was added to 
2 ml of each of the above solvents and allowed to stir for 72 hours in a shaker bath 
maintained at 37°C. The study was conducted in triplicates and samples were withdrawn 
at 24, 48 and 72 hours respectively for drug content determination by HPLC. For the 
hydrophilic solvents such as NMP and PEG 400, the sample withdrawn was directly 
dissolved in water for drug quantification purposes. The hydrophobic solvents, on the 
other hand, were allowed to equilibrate with water and the drug was extracted out in the 
water layer and quantified by HPLC. The water used for drug extraction was 
pre-equilibrated with the corresponding solvent before being used for extraction process.  
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3.2.2.4. Drug stability studies 
 
 

3.2.2.4.1. Drug stability in phosphate buffer saline (PBS), pH 7.4 
 

 A known amount of drug was dissolved in phosphate buffer prepared according to 
Table 2-3 (Chapter 2) in order to result in a final drug concentration of 50 µg/ml. The 
drug solution was then divided into two separate parts. First part was left as it is and 0.2% 
of sodium azide was added to the second part. The study was done in triplicates and the 
individual solutions were transferred to tightly capped glass bottles. The samples were 
then loaded into a shaker bath maintained at a temperature of 37°C. 1 ml samples were 
withdrawn periodically and drug content was determined by HPLC.  

 
 

3.2.2.4.2. Drug stability in vehicle solvents 
 
 The PBS, pH 7.4 was equilibrated with all the hydrophobic vehicle solvents 
individually by agitating excess of the solvent with buffer. The hydrophilic solvents were 
added to the buffer resulting in a concentration of 100 µg/ml each. A known amount of 
drug was then added to above solutions to result in a concentration of 50 µg/ml. The 
samples were transferred to shaker bath maintained at 37°C. Samples were withdrawn 
periodically and injected into HPLC to determine the drug content. 

 
 

3.2.2.4.3. Drug stability in polymer micro particles 
 

 Drug loaded polymer micro particles were subjected to analysis by FT-IR and 
sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in order to 
establish structural stability of the drug in these micro particles. Drug-polymer micro 
particles were simply compressed into a small pellet on the diamond crystal window in 
the FT-IR equipment and spectra were recorded for drug as well as drug loaded micro 
particles.  
 
 SDS-PAGE analysis was conducted by using ready gel Tris-tricine peptide gels. 
Such gels are optimized for separating peptides and proteins with low molecular weights. 
Drug was extracted from polymer micro particles by using methylene chloride-water 
liquid-liquid extraction system (Figure 3-2). 50 µl of the drug solution was diluted with 
an equal volume of sample buffer (Table 3-1) followed by heating at 95°C for 5 minutes. 
20 µl of the aforementioned diluted drug solution was then transferred to the individual 
wells in the tris-tricine gel. 20 µl of a reference drug solution was also added to one of the 
adjacent wells after similar treatment. The gel was run at constant 100 V for 60 minutes 
by using the running buffer specified in Table 3-2. Drug stability was further confirmed 
by subjecting the drug extracted from both the ester end group and acid end group 
polymer micro particles to liquid chromatography mass spectrometry (LC-MS) analysis. 
The mass spectra for both the drug solutions were collected in order to determine the total 
molecular weight of the drug in two samples. 
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Figure 3-2. Liquid-liquid extraction method for determining drug loading in leuprolide 
containing PLGA micro particles. 
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Table 3-1. Sample buffer for SDS-PAGE. 
 

Working concentration 2x stock 
   
200 mM Tris HCl, pH 6.8 1.0 mM Tris HCl, pH 6.8 (2.0 ml) 
2% SDS 10% SDS (2.0 ml) 
40% Glycerol Glycerol (4.0 ml) 
0.04% Coomassie blue G-250 0.5% Coomassie blue G-250 (0.8 ml) 
2% 2-mercaptoethanol 2-mercaptoethanol (0.2 ml) 
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Table 3-2. Running buffer for SDS-PAGE. 
 

Working concentration 2x stock 
   
100 mM Tris Tris base (60.55 g) 
100 mM Tricine Tricine (89.60 g) 
0.1% SDS SDS (5.0 g) 
 To 500 ml with deionized water 
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3.2.2.5. Screening studies for vehicle solvent 
 
 

3.2.2.5.1. Drug release study in PBS, pH 7.4 
 

 TEC, ATEC and ATBC were chosen as hydrophobic plasticizers with ATBC > 
ATEC > TEC as order of hydrophobicity and PEG (polyethylene glycol) was selected as 
hydrophilic plasticizer. PEG was combined with all three hydrophobic plasticizers at 
100:0, 70:30, 30:70 and 0:100 (% w/w). Drug loaded polymer micro particles were 
dispersed into corresponding injection vehicle solvents by using the two syringe system 
depicted in Figure 3-3.  
 
 Briefly, the drug-loaded micro particles corresponding to 7.5 mg of drug were 
loaded onto one of the syringes with male luer lock. 800 µl of the injection vehicle 
solvent was added to the second syringe with female luer lock. The contents of both the 
syringes were mixed uniformly by going back and forth in the syringes 3-5 times. The 
entire contents were then withdrawn into the syringe with male luer lock. A 19 gauge 
needle was attached to the tip of the syringe and the contents were emptied into 10 ml of 
the dissolution media (PBS, pH 7.4). The formulation begins to form a gel after coming 
in contact with the media and sets in place. The vials are transferred to the shaker bath 
maintained at 37°C and 100 rpm. 1 ml samples were withdrawn periodically with 
replacement of fresh buffer and drug release was determined by an in house developed 
HPLC method as discussed in Chapter 2. A C18 column and a combination of water and 
acetonitrile were used for the study. 
 
 
3.2.2.5.2. DSC studies for determination of glass transition temperature (Tg) 

 
 Samples were prepared for DSC analysis similar to that for drug release studies. A 
small amount of the formulation was withdrawn from the vials with the help of a curved 
spatula and loaded onto the DSC pan corresponding to a weight of 10-20 mg. The 
remaining formulation was discarded and another vial of same formulation was sampled 
for next time point. The DSC study was conducted in the modulated differential scanning 
mode (MDSC) at the heating rate of 3°C/min, modulation temperature amplitude of ± 
1.00°C and sinusoidal modulation of 60 sec in the temperature range of -90°C to 60°C. 

 
 

3.3. Results and Discussions 
 
 

3.3.1. Analytical method development 
 

 Figure 2-4 (Chapter 2) shows the standard curve for leuprolide with linearity 
(R2) of 0.9998 in the concentration range of 5 µg/ml to 50 µg/ml. Method validation 
results including intraday and interday variation and accuracy are given in Table 2-4 
(Chapter 2).  
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Figure 3-3. Two syringe system for in situ PLGA polymeric implant system (IPPIs). 
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3.3.2. Preformulation studies 
 

 Leuprolide shows a drug degradation peak at around 213.39°C (Figure 3-4). The 
drug appears to be crystalline in nature to the naked eyes. However, the results obtained 
from X-ray diffraction analysis shows that the drug has an amorphous structure (Figure 
3-5). Based on the results obtained from the XRPD analysis, it is clear that the 
endothermic peak in the DSC thermogram of leuprolide corresponds to the peptide 
degradation and not the melting peak of drug. The PLGA polymers with ester end group 
showed a distinct transition from a glassy state to a rubbery structure at the temperature 
corresponding to the Tg of the polymer i.e. 41.24°C. This Tg was reduced to 25.26°C in 
the drug-loaded PLGA micro particles. This could be explained by the plasticizing effect 
of the drug on PLGA polymer that results in a significant reduction in Tg of polymer. A 
similar effect has been observed by Siepmann et al. where they quantify the plasticizing 
effect of ibuprofen, chlorpheniramine maleate and metoprolol tartrate on polyacrylate 
based films.110 The polymer, however, still retains an amorphous structure as depicted by 
the XRPD profile (Figure 3-6). Furthermore, the drug degradation peak was delayed and 
appeared at a relatively higher temperature (286.61°C) in the drug polymer micro 
particles (Figure 3-7), which could be due to the protection provided by the polymer 
matrix to the drug against degradation. Drug- polymer interaction was ascertained from 
FT-IR studies. Figure 3-8 shows the FT-IR spectrum of drug, drug-polymer physical 
mixture and drug-polymer micro particles. The peak at 1746 cm-1 in the FT-IR spectrum 
of the polymer corresponds to the carbonyl stretching frequency of the ester bond and 
peak at 1626 cm-1 in the FT-IR spectrum of the drug corresponds to the carbonyl 
stretching frequency of the amide bond in the polypeptide backbone (amide I band). 
Further, the peak at 1535 cm-1 corresponds to the amide II region of the polypeptide 
representing contributions from C-N stretching and N-H bending modes. Amide II band 
especially provides important information regarding the hydrogen bonding between the 
peptide drug and polymer matrix. According to the results, there is no significant shift in 
the frequency of the amide II band in the drug-polymer micro particles made from PLGA 
polymer with ester end group. The polymer with the acid end group, however, resulted in 
a spectral shift from 1535 cm-1 to 1542 cm-1 indicating hydrogen interaction of N in 
amide II region with carboxylic group of PLGA. A similar interaction has been studied 
before between insulin and PLGA polymer by Hamishehkar et al.111 The results were 
further confirmed by visual examination of the semi-solid drug-polymer mass obtained 
after loading the drug into polymer solution (Figure 3-9). The drug loaded polymer 
matrix with the ester end group polymer appeared cloudy due to immiscibility of the drug 
in polymer matrix. Whereas, the drug polymer matrix prepared with the acid end group 
polymer exhibited a clear and transparent structure indicating miscibility of drug within 
the polymer matrix. 

 
 

3.3.3. Drug solubility studies 
 

 Figure 3-10 shows the solubility results for leuprolide in various vehicle solvents. 
Based on the relative polarity values of various solvents, equilibrium solubility values for 
leuprolide were placed at different locations in the TEAS plot. Leuprolide shows an  
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Figure 3-4. DSC thermogram of leuprolide. 
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Figure 3-5. XRPD plot of leuprolide. 
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Figure 3-6. XRPD plots of drug-loaded polymer micro particles. 
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Figure 3-7. DSC thermograms of (a) PLGA polymer; and (b) drug-loaded polymer 
micro particles. 
 
 



72 
 

 
 
 
Figure 3-8. FT-IR spectra of (a) leuprolide; (b) leuprolide-PLGA-ester physical mixture; (c) drug-loaded PLGA-ester micro 
particles; and (d) drug-loaded PLGA-acid micro particles. 
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Figure 3-9. Visual comparison of drug-loaded polymer mass between (a) polymer 
with ester end group; and (b) polymer with acid end group. 
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Figure 3-10. TEAS diagram for leuprolide solubility in various solvents/plasticizers. 
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equilibrium solubility value of greater than 20 mg/ml in the hydrophilic solvents i.e. PEG 
and NMP. The solubility in TEC was less than 195 µg/ml and even less than 10 µg/ml in 
ATEC and ATBC. 

 
 

3.3.4. Drug stability studies 
 

 The results for leuprolide stability in PBS, pH 7.4 as determined by HPLC shows 
that the drug is not stable and is probably oxidized fairly easily in aqueous conditions 
present in the PBS (Figure 3-11). The aqueous stability of the drug, however, is 
significantly improved in presence of sodium azide, which serves as an anti-microbial 
agent thus preventing further oxidation of the drug. Sufficient stability of the drug (>99 
%) could be achieved for more than 30 days in the aqueous environment in presence of 
0.2% sodium azide.  

 
 Further, drug content did not seem to have changed significantly in the PBS upon 
addition of various vehicle solvents (Figure 3-12). This shows that although there would 
be a leaching out of the solvent from the formulation during the drug release process, it 
would not negatively impact the drug stability in the media.  
 
 The results for drug stability as determined in the polymer micro particles are 
depicted in Figure 3-8, Figure 3-13 and Figure 3-14. It can be clearly seen from the 
Figure 3-8 that although there is a slight shift in the amide II band wave number for the 
acid end group polymer micro particles, there is no other significant change in the peak 
characteristics for the drug encapsulated in micro particles. This slight shift in the amide 
II band as mentioned earlier is attributed to the hydrogen bonding between drug and 
polymer with acid end group and not necessarily due to structural changes in the drug 
molecule. SDS-PAGE further confirms the results (Figure 3-13), where the identical 
nature and position of the bands for the pure drug and drug in the micro particles can be 
observed clearly. The results were still confirmed by the LC-MS analysis of the drug 
extracted out from the micro particles made with both polymer containing ester and acid 
end groups respectively. LC-MS chromatograms show the mass/charge peak at around 
1210, which represents the true molecular weight of the compound (Figure 3-14). This 
essentially shows that drug retains both its primary as well as secondary structure when 
formulated into micro particles with the PLGA polymer. 
 
 
3.3.5. Screening studies for vehicle solvents 

 
 The idea behind choosing some of the solvents as the vehicle to suspend the micro 
particles for drug administration was to achieve polymer plasticization. In other words, 
once the solvent begins to interact with the polymer in the micro particles, the polymer 
chains start to relax. The degree of polymer chain relaxation depends on the overall 
affinity between polymer chains and the solvent with higher interaction resulting in more 
relaxation of polymer chains. Once the polymer chains are relaxed or extended, the drug 
can diffuse through these polymer chains into the outer aqueous medium. Based on the  
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Figure 3-11. Leuprolide stability in PBS in absence and presence of 0.2% sodium 
azide. 
 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 3-12. Drug stability in PBS in presence of various vehicle solvents/plasticizers. 
 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 3-13. SDS-PAGE result for (a) leuprolide; (b) drug extracted from PLGA-ester 
micro particles; and (c) drug extracted from PLGA-acid micro particles. 
 
Note: Samples were run in duplicate and results are presented as two separate sets. 
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Figure 3-14. LC/MS chromatograms for (a) leuprolide; (b) drug extracted from 
PLGA-ester micro particles. 
  



80 
 

interaction between polymer and solvent, we can essentially modulate the release rate of 
drug. Rate of dissolution was calculated for all the formulations and the values at 48 
hours of dissolution were used for profile comparison. Figure 3-15 compares the change 
in Tg for three hydrophobic solvents/plasticizers i.e. TEC, ATEC and ATBC during 
in vitro release studies. Among these three plasticizers, only ATEC is able to maintain 
lowest Tg values for longest time periods. Figure 3-16, Figure 3-17 and Figure 3-18 
shows the relationship between dissolution rate and Tg of the polymer mass as a function 
of dissolution time for formulations containing TEC, ATEC and ATBC respectively. 
Dissolution rate shows a negative correlation with Tg for formulations containing TEC 
and ATEC as hydrophobic solvents/plasticizers (Figure 3-16 and Figure 3-17). This can 
be explained by the relative hydrophilicity of PEG that results in faster release of PEG 
from the formulations. PEG leaves into the dissolution media resulting in an increase in 
the Tg of the remaining polymer mass. This is attributed to the formation of a relatively 
rigid polymer structure after PEG leached out into dissolution media. The effect becomes 
even more pronounced upon increasing the PEG content in the formulation. As PEG 
leaves from the formulations containing initially relatively higher amounts of PEG, the 
remaining polymer mass attains an even higher rigid structure.  

 
 ATBC formulations, on the other hand, show a positive correlation between 
dissolution rate and Tg of polymer mass (Figure 3-18). ATBC formulations on the other 
hand, exhibit an increase in dissolution rate with the increasing amount of PEG in the 
formulations. In this case, although, the fluidity of the polymer mass is increasing with 
higher amount of ATBC in the formulation, however, due to the very hydrophobic nature 
of ATBC, it doesn’t allow water to penetrate into the polymer mass during dissolution 
thereby resulting in a decreased dissolution rate. Further, the Tg of the polymer mass 
remaining after 48 hours of dissolution was compared with the amount of PEG in the 
initial formulation. Figure 3-19 shows the surface response plots with Tg and gel 
thickness (or swelling factor) as the dependent variables and the type of hydrophobic 
plasticizer and percent PEG as the independent variables. It is clearly evident from the 
response plot that Tg of the polymer mass increases as a function of the amount of PEG 
in the formulation in presence of all different hydrophobic plasticizers i.e. TEC, ATEC, 
and ATBC. This can again be explained by the fact that the remaining polymer mass 
becomes rigid after relatively hydrophilic PEG leaves the formulation and diffuses into 
the dissolution media. Larger the amount of PEG in the formulation, higher is the overall 
amount of PEG leaving into the dissolution media resulting in an increase in Tg of the 
polymer mass left. Polymer gel thickness decreases for all the formulations as a function 
of the amount of PEG in the formulations due to a similar reason as explained above i.e. 
PEG leaves the polymer mass fairly easily, thereby decreasing the overall volume of the 
polymer depot in the dissolution media. Overall, as the PEG leaves out with respect to 
time during dissolution, there is a decrease in the swelling factor and a simultaneous 
increase in the Tg of polymer. It can therefore be concluded from this study that a larger 
ratio of the hydrophilic plasticizer to the hydrophobic plasticizer results in a slower drug 
release and lowers the overall drug dissolution rate. 
 
 

PEG was further compared to NMP in terms of its ability to control release rate of  
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Figure 3-15. Representation of polymer Tg as a function of time during in vitro release 
study. 
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Figure 3-16. Comparion between dissolution rate and Tg as a function of percentage 
PEG amount in the plasticizer combination with TEC. 
 
Note: Dissolution rate is expressed as percent drug dissolved per day and Tg is 
represented in deg C. 
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Figure 3-17. Comparison between dissolution rate and Tg as a function of percentage 
PEG amount in the plasticizer combination with ATEC. 
 
Note: Dissolution rate is expressed as percent drug dissolved per day and Tg is 
represented in deg C. 
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Figure 3-18. Comparison between dissolution rate and Tg as a function of percentage 
PEG amount in the plasticizer combination with ATBC. 
 
Note: Dissolution rate is expressed as percent drug dissolved per day and Tg is 
represented in deg C. 
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Figure 3-19. Response surface plots for (a) Tg; and (b) gel thickness as a function of 
plasticizer type and percent PEG in the plasticizer composition. 
 
Notes: Tg is represented in deg C.  
Gel thickness was measured with vernier calipers in mm. 
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the drug. Figure 3-20 shows a comparison of drug release from drug-polymer micro 
particles suspended in pure PEG and NMP solvents. It can be clearly seen from the 
results that PEG causes a higher burst effect than NMP, which could be attributed to 
relatively higher drug solubility in PEG than NMP. This difference in solubility could not 
be seen in the equilibrium solubility results since, the entire amount of drug went into 
solution in NMP and PEG thus not leaving behind any excess of drug. The drug release 
studies however clearly show the higher solubility and burst effect of drug with PEG than 
with NMP as the hydrophilic solvents. 

 
 

3.3.6. Selection of solvents/plasticizers for formulation development 
 

 The results from drug solubility, stability and plasticizer screening studies were 
combined together to aid in selection of the solvents/plasticizers for further formulation 
development work. Since the idea was to select a solvent(s)/plasticizer(s) that can interact 
well with the polymer and keep it plasticized for longer times, ATEC was chosen as the 
solvent. To further strengthen the interaction between polymer and plasticizer (as seen by 
an initial greater drop in Tg of polymer in presence of NMP, Figure 3-21), a hydrophilic 
plasticizer was added to the system. NMP was selected over PEG as the hydrophilic 
solvent due to higher burst effects and therefore a greater potential of a biphasic or 
tri-phasic release profile of drug release observed with PEG solvent. However, one 
requirement is also to keep the drug solubility in the system to its minimum. Therefore, 
the minimum amount of NMP required in the solvent system was determined by visual 
comparison of the polymer gelling over a period of first 24 hours (Figure 3-22). 0.5% 
w/w NMP in the plasticizer composition resulted in polymer gelling in 10 hours whereas 
increasing the NMP amount to 10% w/w accelerated the gelling phenomenon 
significantly causing complete polymer gelation within 3 hours. 10% w/w NMP was 
therefore selected in combination with ATEC as the optimal plasticizer composition for 
further evaluation of other formulation factors. 
 
 

3.4. Conclusion 
 

 Optimum plasticizer composition was developed for drug loaded PLGA micro 
particles for the purposes of drug delivery. Based on drug and polymer solubility in 
various plasticizers, molecular interaction between polymer and plasticizer and initial 
burst release of drug, a plasticizer composition containing NMP and ATEC with a 
volume proportion of 1:9 w/w was most appropriate for diffusion controlled drug release 
purposes. PLGA polymer matrix provided the desired stabilizing conditions for the drug 
by preventing peptide aggregation at high temperatures. PLGA with acid end group 
interacted with the positively charged amino group in the drug molecule thereby 
solubilizing the drug in polymer matrix and promising a further reduction in burst release 
of drug and a more continuous drug delivery. 
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Figure 3-20. Leuprolide release from PLGA micro particles as a function of time in 
presence of PEG and NMP. 
 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 3-21. Drop in Tg as a function of NMP concentration in the plasticizer 
composition. 
 
Note: Each data point represents individual polymer gel samples at specific time points. 
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Figure 3-22. Polymer gelling in presence of increasing concentrations of NMP as a 
function of time. 
 
Note: Polymer gelling was much faster and was complete in 3 hours in presence of 10% 
w/w of NMP in the plasticizer composition. 
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CHAPTER 4. DEVELOPMENT AND CHARACTERIZATION OF AN IN SITU 
GELLING PLGA MICRO PARTICLE BASED IMPLANT  

 
 

4.1. Introduction 
 
 PLGA (poly lactide-co-glycolide) polymer is a well-known biodegradable and 
biocompatible polymer for injectable controlled drug delivery applications. Various 
actives have been formulated till date using this polymer and are available on market. 
These include Lupron® depot containing leuprorelin, Trelstar® depot containing 
triptorelin, Sandostatin® depot containing octerotide and Nutropin® depot containing 
human growth hormone to name a few. Most of these systems are formulated as 
microspheres using PLGA polymer. Apart from the microsphere systems, depot systems 
based on polymer solutions are also well studied.112,113 One such system is Eligard® 
based on Atrix technology of in situ solvent removal and polymer precipitation, where 
the solvent used is N-methyl pyrrolidone (NMP) and polymer is PLGA.114 Nonetheless, 
majority of the currently formulated PLGA based delivery systems result in a 
characteristic tri-phasic release of the drug.115-117 This includes an initial burst release 
phase, a second plateau phase and a final erosion phase. The tri-phasic release profile is 
not desirable for several different reasons i.e. the initial burst release might result in toxic 
drug concentrations in the body, the plateau phase might result in drug concentrations 
that are much below the therapeutic level of drug and the final erosion phase might lead 
to a second burst release of drug. Moreover, a high viscosity of some of these PLGA 
solution based implants might lead to painful injections.118 
 
 In order to effectively apply the concept of drug delivery with polymers such as 
PLGA, it is necessary to have a controlled rate of hydrolytic degradation of this polymer. 
One of the factors that work against the constant drug release from PLGA based delivery 
systems is its tendency to undergo bulk degradation phenomenon.117 PLGA polymer 
therefore does not allow for a continuous controlled release of drug without any external 
intervention in the delivery system. A diffusion controlled drug release is much desired 
over an erosion controlled release due to several different reasons. Most importantly, it 
not only results in a more continuous release of the drug but also of the acidic 
degradation products of the PLGA polymer i.e. lactic acid and glycolic acid. Such a 
continuous diffusion of the polymer degradation products from the depot system prevents 
the development of an acidic pH in the microenvironment. This enhances the possibilities 
of encapsulating most of the peptide, polypeptide and protein based drugs in PLGA 
polymeric delivery systems without compromising the structural stability of such drugs.  
An extensive work has been done on modifying the bulk eroding properties of the PLGA 
polymer and imparting a surface erosion element to polymer by e beam irradiation.119 
 
 Furthermore, numerous approaches pertaining to modification of PLGA 
microsphere structure and compositional changes in PLGA based delivery systems have 
been explored till date with the objective of overcoming the tri-phasic release pattern 
inherent in the PLGA based delivery systems. Various formulation strategies are being 
currently introduced that can potentially make the drug release from the PLGA based  
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systems more diffusion controlled.  
 
 These include addition of release rate modifying agents (e.g. medium chain 
triglycerides, glycerol etc.) into the microsphere structure,120 modifying the microsphere 
preparation process or even modifying the PLGA polymer backbone.121 Although able to 
provide a more continuous drug release, most of the current techniques are much 
complicated and are limited by the fact that the drug release is still erosion controlled to a 
certain extent. 
 
 For the purpose of present research work, an ideal in situ polymer gelling system 
is defined as the one, whereby the solid polymer particles interacts with the plasticizer 
molecules resulting in polymer chain relaxation. During this time, the rate of interaction 
of plasticizer with the polymer is greater than its affinity towards the surrounding 
environment. As a result, the polymer particles first undergo gelation before finally the 
plasticizer leaches out leaving the precipitated polymer behind. Further, the rate of 
plasticizer release is much more controlled thereby preventing sudden polymer 
precipitation at any point. This essentially serves a dual purpose: first the viscosity of 
formulation is lower compared to a polymer solution based system thereby resulting in 
lower injection forces and provides ease of injectability and second the drug undergoes a 
diffusion controlled release process due to sufficiently and uniformly plasticizer polymer. 
One of the crucial aspects that should be paid due attention to is the physical stability of 
such in situ gelling polymer suspension systems. It is important that the plasticizer 
although possess great affinity for the polymer, does not interact or plasticizer the 
polymer significantly within the syringe prior to administration as it would otherwise lead 
to serious loss of injectability. A practical way of introducing physical stability into the 
formulation system is to incorporate a polymer immiscible component into the injection 
vehicle. The polymer immiscible component is completely miscible with the plasticizer 
and significantly dampens the polymer plasticizer interaction prior to administration. 
Once administered, the polymer immiscible component forms a separate phase, thereby 
allowing complete interaction between polymer and plasticizer. One such component that 
exhibits the ability of both miscibility with the plasticizer as well as forming a separate 
phase upon equilibration with excess water is glyceryl monooleate (GMO). GMO has 
been known to form various liquid crystalline structures once equilibrated with excess 
water.122 The cubic liquid crystalline structure of GMO has been studied to reduce burst 
release of an oligonucleotide from PLGA micro particles by dispersing the drug loaded 
micro particles in an in situ cubic phase carrier.123 Hydrophilic cosolvents such as 
polyethylene glycol (PEG 300), propylene glycol (PG) and ethanol were used along with 
GMO to constitute an in situ cubic phase forming carrier. The cosolvents being extremely 
hydrophilic leaves immediately into the surrounding media resulting in a matrix 
formation consisting of micro particles embedded in the cubic phase.  
 
 The objective of this study was to simplify drug delivery from PLGA polymer by 
developing a novel injection vehicle system that is capable of modulating the drug release 
from the PLGA polymeric system (micro particles or microspheres) in a more diffusion 
controlled manner. The injection vehicle consists of a relatively hydrophobic polymer 
plasticizer(s) that allows for polymer chain relaxation and drug diffusion. The second 
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important component of the injection vehicle is the polymer immiscible component that 
provides the necessary physical stability to the suspension system prior to administration. 
In this study, we evaluated the system for its ability to release the drug in a diffusion 
controlled manner and for the physical stability of the suspension system prior to 
administration by measuring the injection forces.   
 
 

4.2. Materials and Methods  
 
 
4.2.1. Materials 
 
 PLGA 50:50 (IV 0.59dL/g) was obtained from Lactel absorbable polymers, 
Durect Corporation, Pelham, AL, USA. Glyceryl monoleate (Capmul GMO-50, EP/NF) 
was used as the glycerol lipid and was obtained as a generous gift from Abitec Corp., 
Janesville, WI, USA. NMP (N-methyl pyrrolidone; Pharmasolve), which is the 
hydrophilic solvent was procured from ISP Pharma Technologies, Wayne, NJ, USA and 
ATEC (acetyl triethyl citrate), which is the hydrophobic solvent was obtained from 
Morflex Inc., Greensboro, NC, USA. PEG 1450 (CarbowaxTM) and HPMC E15 PREM 
LV were obtained from The Dow Chemical Co., Midland, MI, USA. Leuprolide acetate 
was used as the model drug and was purchased from Teva Pharmaceuticals, Israel. All 
buffers were prepared in reverse osmosis water. Other chemicals and reagents were 
purchased from Sigma Aldrich. 
 
 
4.2.2. Methods 
 
 
4.2.2.1. Preparation of micro particles by film grinding method 
 
 PLGA polymer was dissolved in acetone in a ratio of 1:10 w/w of polymer to 
solvent under constant magnetic stirring at room temperature. Leuprolide acetate (16% 
w/w of polymer weight) was dispersed in the polymer solution. Any large drug particles 
were broken by brief sonication in a water bath. The drug was allowed to finely disperse 
in the polymer solution under constant magnetic stirring for 30 minutes. The solvent was 
then allowed to evaporate in a fume hood until almost the entire solvent is evaporated 
leaving a flow able polymer solution behind. The flow able polymer solution containing 
finely dispersed drug thus obtained was transferred to a porcelain petri dish that was 
transferred to a vacuum oven for further drying of the polymer mass. The drug containing 
polymer mass was dried for 48 hours at 40°C at 25 in Hg of vacuum.  
 
 The dried polymer film was scrapped off the petri dish followed by grinding into 
fine particles using a cryomill. The film was transferred into a stainless steel cryomill jar, 
which was completely submerged into liquid nitrogen. The jar was taken out after the 
liquid nitrogen stops bubbling. The film was ground at a frequency of 24 Hz for 4 
minutes. The particles thus obtained were passed through a 120 mesh screen to remove 
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any larger particles. Figure 2-2 (Chapter 2) shows the schematic of micro particle 
preparation by film grinding method. 
 
 
4.2.2.2. Preparation of microspheres by modified W/O/W multiple emulsion method 
 
 A primary W/O emulsion was prepared by adding 0.25 ml of an aqueous phase 
containing leuprolide acetate and 50% w/w PEG 1450 (polyethylene glycol) to 2.5 ml of 
an organic phase containing dichloromethane and acetone in a volume ratio of 4:1. The 
emulsion thus formed was immediately subjected to probe sonication in brief pulses of 10 
seconds each. The primary emulsion was then kept at -20°C for 5 minutes. This was 
followed by adding the primary emulsion to the external aqueous phase (0.01 M 
phosphate buffer saline, PBS) containing 1.5% HPMC E15 PREM LV (pH adjusted to 
10.5 with NaOH) as the thickening agent with the entire set up placed on an ice bath. The 
organic solvent was evaporated using a rotary evaporation for 10 minutes followed by 
addition of 35 ml of PBS and further evaporation for next 10 minutes. The particles thus 
obtained were filtered through 0.22 micron nylon filter using a vacuum filtration 
assembly. After drying at 40°C under vacuum for 2 hours, the dried particles were 
scrapped off the filter and passed through 100 mesh screen. The schematic of 
microsphere preparation by the modified W/O/W multiple emulsion method is depicted 
in Figure 4-1. 
 
 
4.2.2.3. Preparation of PLGA solution formulation 
 
 PLGA polymer was dissolved under gentle heat in the plasticizer combination of 
ATEC and NMP (9:1 w/w) at 14% w/w loading. The drug was dispersed in the polymer 
solution immediately before in vitro drug release testing. 
 
 
4.2.2.4. Assay of drug in PLGA micro particles/microspheres 

 
 The drug content in PLGA micro particles/microspheres was determined by 
solvent extraction procedure. The particles were dissolved in 5 ml of dichloromethane 
followed by extraction of drug in 10 ml water under constant stirring. The drug content 
was analyzed by a RP-HPLC method (Chapter 2). 
 
 
4.2.2.5. Construction of phase diagrams for the binary/ternary solvent based system  
 
 Phase diagrams were constructed using PLGA, plasticizer(s) and the glycerol 
lipid as the three individual components. PLGA was dissolved in different quantities of 
the polymer plasticizer(s) and the polymer was forced to precipitate upon addition of the 
anti-solvent (glycerol lipid) in the polymer solution. Glyceryl monoleate being 
immiscible with the PLGA polymer causes the polymer precipitation which was captured 
as the end point.  
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Figure 4-1. Schematic representation of PLGA microsphere preparation by modified 
multiple emulsion method. 
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The results were plotted as a ternary phase diagram. NMP/ATEC (1:9 w/w) represented 
the binary solvent and NMP/ATEC/EB (1:4.5:4.5 w/w/w) represented the ternary solvent 
system for the purpose of constructing the phase diagrams. 
 
 
4.2.2.6. Light microscopy 
 
 Light microscopy was performed on PLGA micro particles/microspheres using a 
Nikon Microphot FX microscope. The images were captured with a high resolution 
Kodak DCS 460 color digital camera mounted on the microscope. Using a PowerPC G4, 
images were viewed on an Apple 20” Cinema Display monitor. 
 
 
4.2.2.7. Polarized light microscopy 
 
 Polarized light microscopy was conducted on the injection vehicle system after 
equilibration with excess water or dissolution media to understand the crystalline 
structures formed by glycerol lipid. A Nikon Microphot FX microscope equipped with a 
polarizing filter. The images were captured with a high resolution Kodak DCS 460 color 
digital camera mounted on the microscope. Using a PowerPC G4, images were viewed 
on an Apple 20” Cinema Display monitor. 
 
 
4.2.2.8. MDSC (Modulated differential scanning calorimetry) studies 
 
 MDSC studies on the injection vehicle system were conducted after equilibration 
with excess water by using a Thermal Analysis (TA) Q 2000 series DSC instrument with 
autosampler. The parameters selected for the scan were: scanning rate of 3°C/min, 
modulation temperature amplitude of ± 1.00°C and sinusoidal modulation of 60 sec. 
 
 
4.2.2.9. In vitro drug release studies 
 
 Drug release was conducted in 0.012 M PBS (pH 7.4) containing 0.02% sodium 
azide. 10 ml of dissolution media was taken in a 20 ml glass scintillation vial. Vials were 
kept in a shaker incubator maintained at 37°C and 100 rpm rotation. Formulations were 
placed at the bottom of glass vials and 2 ml aliquots were taken at specific time points 
with replacement using fresh buffer. Drug content was determined using a RP-HPLC 
method (Chapter 2). 
 
 
4.2.2.10. External and micro environmental pH measurement 
 
 pH of the dissolution media was measured at specific time points during drug 
release studies using a Orion (Model 520 A) pH meter. Micro environmental pH was 
measured by confocal laser scanning microscopy. A Bio-Rad MRC 1024 imaging system 
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equipped with a Krypton/Argon laser and an upright Olympus BX50 microscope was 
used for the study. Fluorescein and Oregon green were selected as pH indicating 
fluorescent dyes with the pKa values of 6.4 and 4.8 respectively. Images were captured at 
20x magnification at a box resolution of 1024 x 1024 pixels. A single green fluorophore 
scanning mode with a krypton/argon laser was used at an excitation wavelength of 488 
nm. The detector parameters were: iris 2.50 mm, gain 1220.00, and black 10.00. Standard 
curves were constructed with fluorescent intensity as the output parameter w.r.t. pH of 
the dissolution media. Fluorescein and Oregon green were added at concentrations of 
0.0054 mg/ml and 0.0045 mg/ml respectively to the dissolution media separately. One 
formulation containing dissolution glass vial was removed from the shaker incubator at 
every time point for both dyes and subjected to image analysis by confocal microscopy. 
The micro environmental pH was determined by measuring the fluorescent intensity and 
calculating the corresponding pH using the standard curves. 
 
 
4.2.2.11. Mathematical modeling of dissolution profiles 
 
 Seven different models were used to determine the drug release mechanism from 
the PLGA micro particulate system in presence of the unique injection vehicle. An excel 
add-in program, “DD Solver” was used for this purpose and R2 values were compared for 
different models. 
 
 
4.2.2.12. Microscopic examination of the structural changes in polymer depot 
 
 A portion of formulation gel was withdrawn from the dissolution vials at specific 
time points at 7, 14, 21 and 32 days and examined for pore formation and other structural 
changes under an optical microscope (Nikon Microphot FX) at 20x optical zoom and 
images were captured using high resolution Kodak DCS 460 color digital camera. 
 
 
4.2.2.13. Viscosity and injection force measurement 
 
 Viscosity of the injection vehicle with and without suspended PLGA micro 
particles and of the PLGA solution formulation was measured using Brookfield DV- III 
Ultra programmable cone and plate rheometer and Rheocalc 3.2 software.  Two different 
cones of 2.4 cm diameter/0.8 degrees angle and 1.2 cm diameter/3.0 degrees angle were 
used for low and high viscosity systems respectively. Shear rate was varied between 0 
and 300/sec and corresponding shear stress was recorded. Injection forces were 
determined using a Chatillon TCD-200 digital force tester connected to a computer and 
controlled by NEXYGEN FM series software A 3 ml syringe was filled with 2 ml of the 
formulation under test connected with a 19 gauge needle having 1 in length. The syringe 
was placed against the cylindrical probe of the load cell (100 N) and the plunger was 
pushed down under the compression mode of the load cell until the plunger was displaced 
from 2 ml to 1 ml mark on the syringe. The maximum injection force was recorded for 3 
measurements per sample.  
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4.3. Results and Discussions 
 
 
4.3.1. Comparison of micro particle morphology from two different methods 
 
 Figure 2-2 (Chapter 2) and 4-1 shows the schematic of micro particle 
preparation using film grinding method and modified W/O/W multiple emulsion method. 
The microscopic images are depicted in Figure 4-2 and clear difference in the shape and 
morphology of micro particles can be observed. The film ground micro particles 
presented an irregular surface along with a high percentage of surface free drug (Figure 
4-3) compared to the multiple emulsion microspheres, which had less than 3% w/w of 
surface free drug. The multiple emulsion microspheres have a relatively more uniform 
and spherical geometry with the morphology resembling that of microcapsules or even a 
honeycomb like structure. 
 
 
4.3.2. Effect of plasticizer and GMO ratio on drug release 
 
 Three different vehicle compositions representing different plasticizer: GMO 
ratios were selected from the ternary phase diagram (Figure 4-4 (a)). The area on the left 
of tie line represents a stable suspension based system of PLGA micro particles in the 
injection vehicle. This essentially indicated that the polymer micro particles would not 
gel immediately upon dispersing into the injection vehicle thereby allowing time prior to 
administration. The region on the right of the tie line however represents a solution 
system, whereby the polymer micro particles would gel instantly thus causing serious 
injectability issues. The desired composition of injection vehicle is therefore selected 
from the region on the left of the tie line. The in vitro drug release from film ground 
PLGA micro particles is depicted in Figure 4-5. It can be clearly seen from the figure 
that a higher percentage of plasticizer(s) in the injection vehicle resulted in a relatively 
faster drug release which can possibly be explained by a greater polymer plasticization. 
Effect of PLGA polymer plasticization on drug release has been previously studied by 
Wang and co-workers where they observed an accelerated drug release by addition of 
PEG as a plasticizer to the PLGA polymer.124 The drug release exhibited a tri-phasic 
pattern at lower plasticizer amounts, whereas, the drug release gradually became more 
continuous upon increasing the amount of plasticizer. This indicates a more diffusion 
controlled drug release at higher plasticizer amounts. Further, a complete drug release 
was obtained from the in situ implant formulations containing relatively higher plasticizer 
amounts and there was almost no drug lost in the polymer matrix. The drug release from 
the multiple emulsion microspheres was also compared with that obtained from the film 
ground micro particles. Figure 4-6 shows the drug release from the two micro particle 
types in presence of an injection vehicle containing 50% w/w of plasticizer(s). The 
multiple emulsion microspheres exhibited an almost linear drug release throughout with 
minimal burst effect, which can be attributed to the total surface associated free drug with 
the micro particles/microspheres (Figure 4-3).After the initial burst phase, however, the 
formulations based on two different micro particle types released the drug in an almost 
continuous linear fashion. This essentially indicates that use of relatively more  
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Figure 4-2. Microscopic images of PLGA micro particles prepared by (a) film grinding method; (b) and (c) W/O/W 
modified multiple emulsion method. 
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Figure 4-3. Surface free drug on PLGA micro particles/microspheres. 
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Figure 4-4. Ternary phase diagrams for the injection vehicle (a) binary solvent based system; and (b) ternary solvent based system. 
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Figure 4-5. In vitro drug release from PLGA micro particles in presence of various 
plasticizer: GMO ratios. 
 
Notes: Each data point corresponds to an average of three measurements and the 
associated standard deviation. 
Plasticizer refers to the combination of NMP and ATEC in a ratio of 1:9 w/w. 
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Figure 4-6. In vitro drug release from PLGA micro particles prepared by using two 
different methods. 
 
Notes: Each data point corresponds to an average of three measurements and the 
associated standard deviation. 
Plasticizer refers to the combination of NMP and ATEC in a ratio of 1:9 w/w. 
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hydrophobic plasticizers surpasses the tendency of the PLGA polymer to show a plateau 
phase of minimal drug release and causes the drug to be released in a continuous 
diffusion controlled manner. Table 4-1 shows the average drug release rates from PLGA 
film ground micro particles obtained by using different injection vehicle compositions. 
The release rate increased upon increasing the proportion of the polymer plasticizer in 
vehicle composition. This was essentially due to the formation of a more fluid polymer 
matrix in presence of large amount of plasticizer(s) that resulted in polymer chain 
relaxation and a continuous diffusion of drug molecules into the dissolution medium. 
 
 
4.3.3. Effect of polymer end group on drug release 
 
 The effect of the PLGA end group (acid or ester) showed a twofold effect on drug 
release from the in situ micro particulate formulations. First, the acid end group in the 
PLGA polymer accelerated the drug release during the final stage resulting in a complete 
drug release relatively faster than the polymer with ester end group. This can be 
explained easily by the known higher degradation rate of the PLGA polymer chains with 
acid end group.125 Secondly, a lower initial drug release was observed with the acid end 
group polymer, which can be attributed to an overall lower amount of surface free drug 
associated with the micro particles made with acid end group PLGA polymer (Figure 
4-7). This is in conformation with a similar observation made earlier by Luan and 
Bodmeier,126 where the acid end group polymer exhibited a lower initial burst release of 
drug compared to the ester end group polymer. An ionic interaction between the terminal 
carboxylic end groups of PLGA and the two basic amino acids (arginine and histidine) of 
the drug leuprolide acetate as reported by Okada and co-workers further explains the 
observations.114 
 
 
4.3.4. Effect of a binary vs. ternary solvent system on drug release 
 
 Ethyl benzoate (EB) is a comparatively more hydrophobic solvent than both NMP 
and ATEC. The Hildebrand solubility parameter has been reported to be 23.1 MPa1/2 for 
NMP,127 19.2 MPa1/2 for ATEC34 and 8.2 MPa1/2 for EB127. This essentially indicates a 
slower phase inversion of the polymer due to a weak solvent-non solvent affinity 
(EB-water) for EB relative to both NMP and ATEC. EB therefore slows down the overall 
rate of drug release. Further the drug release is more gradual and continuous with the 
additional presence of EB again due to a lower water solubility of EB and therefore the 
existence a more fluid polymer matrix for a longer time (Figure 4-8). The initial drug 
release was not affected significantly due to the additional presence of EB possibly due to 
the presence of other plasticizers i.e. NMP and ATEC in the formulation. The ternary 
phase diagram for the vehicle system containing EB along with both NMP and ATEC 
demonstrates a relatively broader range of plasticizer and GMO concentrations that can 
be used to suspend or disperse the drug loaded PLGA micro particles without significant 
gelation/plasticization of PLGA polymer prior to administration (Figure 4-4 (b)). This 
can attributed to the large difference in the solubility parameters of PLGA polymer and 
EB reported to be (22.3 MPa1/2)128 and (8.2 MPa1/2) for PLGA and EB respectively which 
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Table 4-1. Drug release rates from PLGA micro particles in presence of different 
ratio proportions of plasticizer: GMO. 
 

Plasticizer: GMO (w/w) Drug release rate (µg/hr) 
  
0.2:1 2.18603 
0.5:1 4.01834 
1:1 4.09447 

 
 
 
 

 
 
 
Figure 4-7. In vitro drug release from PLGA micro particles prepared by using two 
different end groups. 
 
Notes: Each data point corresponds to an average of three measurements and the 
associated standard deviation. 
Plasticizer refers to the combination of NMP and ATEC in a ratio of 1:9 w/w. 
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Figure 4-8. In vitro drug release from PLGA micro particles in presence and absence 
of the most hydrophobic solvent, EB. 
 
Notes: Each data point corresponds to an average of three measurements and the 
associated standard deviation. 
Plasticizer refers to the combination of NMP and ATEC in a ratio of 1:9 w/w. 
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could be responsible for a delayed interaction between EB and PLGA. 
 
 
4.3.5. Correlation between drug and plasticizer release and lipid structures 
 
 Figure 4-9 shows relationship between percent cumulative drug release and 
percent cumulative plasticizer release during in vitro drug release study. A lower w/w 
ratio of the plasticizer to GMO (0.2:1 w/w) demonstrated a three phase relationship 
between the drug and plasticizer release. First and third phases exhibited a higher 
plasticizer release whereas there was a greater drug release compared to the plasticizer 
release during the second phase. This indicated essentially an erosion controlled drug 
release process beginning at the third phase with the first two phases confirming well 
with the burst phase of drug release. Upon increasing the ratio proportion of the 
plasticizer in vehicle composition, the relationship between drug and plasticizer became 
almost linear indicating a transformation into diffusion controlled drug release process. 
Furthermore, a relatively greater amount of drug was released compared to plasticizer 
released for formulations containing higher overall plasticizer content. This indicated 
greater relaxation of polymer chains in presence of higher plasticizer amounts and 
therefore a higher degree of free diffusion path for the drug molecules. The 1:1 w/w 
vehicle composition essentially showed a drug release which was dependent on 
plasticizer diffusion and the drug release was therefore mainly controlled by the degree of 
polymer plasticization (Table 4-1). The second component of injection vehicle i.e. GMO 
being completely polymer immiscible, did not interact with the polymer. Instead, it 
formed lipid liquid crystalline structures that partially/completely surrounded the drug 
loaded PLGA micro particles and possibly created an additional barrier for drug release. 
Figure 4-10 shows different lipid structures formed after equilibration of formulation 
mass with excess of water in dissolution media. The gelled lipid structure formed from 
formulation with least amount of plasticizer resembled the characteristic liquid crystalline 
network of the glycerol lipids. The lipid structure formed at the highest concentration of 
plasticizer in formulation, however, resembled an aggregated network of lipid vesicles. 
Such a structure has been identified as a W/O micro emulsion phase (aka emulsified 
micro emulsion, EME).129 Yaghmur and co-workers have studied the addition of 
tetradecane induced transition of the internal structure of mono-olein-water system from 
the bi-continuous cubic phase to hexagonal to the isotropic liquid phase (EMEs).130 The 
intermediate concentration of plasticizer resulted in formation of a lamellar phase in 
association with the emulsion phase. The differences in the microcrystalline structures of 
the lipid assemblies at various ratios of plasticizer to GMO were further examined and 
confirmed by DSC studies (Figure 4-11). All three samples showed similar endothermic 
events but with the events occurring at different temperatures. Furthermore, the samples 
showed presence of two endotherms after equilibration with excess of water. The position 
of the endotherms was however, different among samples indicating the disruption of 
lamellar structure by the emulsion system. Furthermore, lowest enthalpy values were 
observed at highest plasticizer to GMO ratio, indicating least amount of lamellar 
constitution in the particular sample. 
 
 Overall, the drug release process was more diffusion controlled and was entirely 
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Figure 4-9. Correlation between cumulative drug release and plasticizer release from 
formulation depot. 
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Figure 4-10. Various lipid microcrystalline structures formed after equilibration with 
excess of water of the formulation with following injection vehicle compositions: (a) 
ATEC:NMP (9:1):GMO (0.2:1); (b) ATEC:NMP (9:1):GMO (0.5:1); and (c) 
ATEC:NMP (9:1):GMO (1:1). 
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Figure 4-11. DSC thermograms of various lipidic microcrystalline structures: (a) 
ATEC:NMP (9:1):GMO (0.2:1); (b) ATEC:NMP (9:1):GMO (0.5:1); and (c) 
ATEC:NMP (9:1):GMO (1:1). 
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controlled by the solvent diffusion from the formulation depot at higher ratios of 
plasticizer to GMO. Decreasing the total amount of plasticizer in the formulation resulted 
in a less dominant diffusion process and the drug release became more erosion controlled. 
 
 
4.3.6. Mathematical modeling of drug release 
 
 The mathematical equations used to model drug release from the PLGA 
microparticulate formulation in novel injection vehicle are summarized in Table 4-2. 
Peppas-Sahlin model demonstrated the best fit for drug release rate as indicated by the R2 
values (Table 4-3). Ratios for the polymer chain relaxation (R) and fickian diffusion (F) 
coefficients were calculated using the Peppas-Sahlin equation and results are summarized 
in Table 4-4. The values for the R/F ratio clearly indicate a more fickian diffusion 
controlled drug release process upon increasing the plasticizer to GMO ratio in the 
injection vehicle. 
 
 
4.3.7. Macro and micro environmental pH  
 
 The standard curves for measuring fluorescent intensity as a function of pH of 
dissolution media are depicted in Figure 4-12, where both fluorescein and oregon green 
showed a polynomial relationship between the fluorescent intensity and the pH of 
dissolution media. The dye concentrations in dissolution media were optimized in order 
to find the respective concentrations of both the dyes at which the change in fluorescent 
intensity is highly sensitive to change in pH of the media. Figure 4-13 shows micro 
environmental as well as the external pH in dissolution media as a function of time. 
Calculated p-values indicated a significant difference between the micro environmental 
and external pH values for formulation containing lower ratios of plasticizer to GMO in 
the injection vehicle. This essentially indicated that apart from the drug, the polymer 
acidic degradation products were also released by erosion dominated process. The 
p-value for the formulation with highest amount of plasticizer, however, showed an 
insignificant difference between micro environmental and external pH values which 
explains diffusion controlled release of the acid degradation products of polymer into the 
dissolution media. 
 
 
4.3.8. Drug release rate and morphological changes 
 
 Three distinct mechanisms could be identified upon plotting drug release rate vs. 
time (Figure 4-14). First phase (0 to 8 days) demonstrates a sharp increase in drug 
release rate attributed to the surface adsorbed drug on micro particles immediately 
followed by a steep decline in the release rate. This decline could be attributed to a high 
permeability of the formulation depot resulting from an increase in pore-density on the 
depot surface. This was followed by a second slow increase in the release rate indicating 
a higher polymer chain rearrangement and more drug molecules exposed to the aqueous 
channels in the depot (8 to 20 days). This phase is known as the medium permeability  
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Table 4-2. Mathematical equations for modeling drug release. 
 

Model Equation 
  
aZero order F = k0*t 
bFirst order F = 100*[1-Exp(-k1*t)] 
cHiguchi F = kH*t^0.5 
dKorsenmeyer Peppas F = kKP*t^n 
ePeppas Sahlin F = k1*t^m+k2*t^(2*m) 
fKopcha F = k1*t^0.5+k2*t 

 
Notes: ak0 is the zero order release rate constant. 
bk1 is the first order release rate constant. 
ckH is the Higuchi release constant. 
dkKP is the release constant incorporating structural and geometric characteristics of the 
drug-dosage form; n is the diffusional exponent indicating the drug-release mechanism. 
ek1 is the constant related to the fickian kinetics; k2 is the constant related to Case-II 
relaxation kinetics; m is the diffusional exponent for a device of any geometric shape 
which inhibits controlled release. 
fk1 is the constant denoting the relative contribution of t0.5-dependent drug diffusion to 
drug release; k2 is the constant denoting the relative contribution of t-dependent polymer 
relaxation to drug release. 
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Table 4-3. Calculated R2 values from various mathematical models. 
 

Formulation R
2

 value 
 Zero order First order Higuchi Korsenmeyer 

Peppas 
Peppas Sahlin Kopcha 

            
ATEC:NMP 
(9:1) + GMO 
(0.2:1) 

0.9248 0.8667 0.6663 0.9414 0.9525 0.9206 

ATEC:NMP 
(9:1) + GMO 
(0.5:1) 

0.9491 0.9843 0.8773 0.9765 0.9921 0.9703 

ATEC:NMP 
(9:1) + GMO 
(1:1) 

0.9831 0.9355 0.8478 0.8964 0.9506 0.8811 

 
 
 
 
Table 4-4. Comparison of relaxation vs. fickian diffusion for various injection vehicles. 
 

Formulation injection vehicle R/F 
  

ATEC:NMP (9:1) + GMO (0.2:1) 0.3027449 
 

ATEC:NMP (9:1) + GMO (0.5:1) 0.287617 
 

ATEC:NMP (9:1) + GMO (1:1) 0.242275 
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Figure 4-12. Standard curves of fluorescent dyes for confocal microscopy study. 
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Figure 4-13. Correlation between micro environmental and external pH as determined 
by confocal microscopy. 
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Figure 4-14. Drug release rate and morphological changes in formulation depot. 
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phase and was further confirmed by light microscopy studies (Figure 4-15) that shows 
the presence of relatively smaller pores in the medium permeability depot structure than a 
high permeability structure. The final phase was a low permeability phase (20 to 40 days) 
where polymer precipitation took place with a simultaneous reduction in the pore-density 
at the depot surface caused due to pore closing. 
 
 
4.3.9. Viscosity and injection force 
 
 The viscosity of the proposed formulation was compared with one of the 
marketed PLGA formulations i.e. Eligard® containing leuprolide acetate and the results 
are depicted in Figure 4-16. Both the injection vehicle as well the final formulation with 
the PLGA micro particles (7.0% w/w of total injection vehicle) suspended in the injection 
vehicle demonstrated a significantly lower viscosity than the currently marketed 
formulation. This not only would provide the ease of administration but also minimize 
pain upon injection. Injection force was correlated with viscosity for the PLGA solutions 
in the plasticizer combination of ATEC:NMP (9:1 w/w) at three different polymer 
loadings of 7%, 14% and 28% w/w (Figure 4-17). Results indicated a significant 
increase in viscosity as well as injection force on increasing the PLGA polymer 
concentration in the plasticizer. The injection force of the PLGA micro particle 
suspension, however, did not show any significant increase upon increasing the total load 
of polymer particles in the plasticizer (Figure 4-18). This demonstrated a much lower 
injection force of the polymer suspension system compared to the polymer solution 
system which could be promising in terms of reduced pain during administration. Further, 
viscosities and injections forces were compared for the injection vehicle in the presence 
and absence of glycerol-lipid (Figure 4-19), whereby injection forces were monitored 
over time. Results showed no significant difference in viscosities of the injection vehicle 
in presence and absence of the glycerol lipid; however, lower injection forces could be 
maintained for a relatively longer period of time in the presence of glycerol lipid. This 
confirms the polymer immiscible functionality of the lipid that would contribute not only 
towards ease of administration but also a more prolonged drug release. 
 
 

4.4. Conclusion 
 
 The present work demonstrated promising features of the novel injection vehicle 
for PLGA micro particulate based drug delivery. Such a system not only allowed for a 
readily controlled drug delivery but further provided the opportunity to modulate the 
release mechanism from a more erosion based drug release system to essentially a 
diffusion based system. Drug release mechanism was confirmed by in vitro drug release 
studies and additionally by microscopic studies and mathematical modeling. Injection 
vehicle composed of hydrophobic polymer plasticizer(s) demonstrated great potential for 
easy to modulate controlled drug delivery. Further presence of a glycero-lipid imparted 
structural stability to the formulation required for easy administration by acting as a 
polymer immiscible component.  
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Figure 4-15. Structural changes in formulation depot during drug release. 
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Figure 4-16. Viscosity studies of the PLGA micro particulate formulation in novel 
injection vehicle system. 
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Figure 4-17. Correlation between viscosity and injection force for PLGA solution in the 
plasticizer. 
 
Note: Plasticizer was selected as the combination of ATEC and NMP in a 9:1 w/w ratio. 
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Figure 4-18. Comparison of injection force between PLGA solution and PLGA micro 
particle suspension in the plasticizer. 
 
Note: Plasticizer was selected as the combination of ATEC and NMP in a 9:1 w/w ratio. 
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Figure 4-19. Viscosity of injection vehicle with (a) plasticizer; and (b) plasticizer and 
glycerol lipid and injection force of injection vehicle with (c) plasticizer; and (d) 
plasticizer and glycerol lipid.  
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CHAPTER 5. DEVELOPMENT AND CHARACTERIZATION OF PLGA MICRO 
PARTICLE: POLYCAPROLACTONE CRYSTALLITE BASED IN SITU 

IMPLANT  
 
 

5.1. Introduction 
 

 Polyesters form an important class of biodegradable polymers that have excellent 
biocompatibility and degrade via hydrolysis under human body conditions.131-135 
Examples of commonly used polyesters include polycaprolactone (PCL) and poly lactic 
acid (PLA) polymers of which PCL exhibits the lowest degradation rate and is therefore 
employed in long term drug delivery. PLA on the other hand, degrades faster than PCL 
due to greater hydrolysis rate of its ester linkages. PCL is a low melting polymer with the 
melting point around 60°C and degrades by hydrolysis of its ester linkages in 
physiological conditions. Due to its excellent biodegradability and biocompatibility, it is 
of particular interest for the preparation of long term implants and other devices. 
Degradation of PCL is an autocatalytic136 and a bulk process that can be divided into two 
stages: 

 
 MN loss up to 5000 due to chain scission. 

 Onset of weight loss. 
 

 Numerous different types of drug molecules such as the well-known 
anti-hypertensive agents,137 taxol,138 gentamicin,139 colchicine,140 chlorpromazine,141 
cyclosporine,142 and cisplatin143 etc. have been encapsulated by using the PCL polymer 
for both controlled drug release and targeted drug delivery purposes. It’s a food and drug 
administration (FDA) approved material for use in the human body as for example a drug 
delivery device or suture (sold under the brand name Monocryl). PCL has also been used 
together with PLGA polymers to modulate drug release characteristics.72 Apart from 
being used widely as carrier materials for microsphere preparation, PCL has another 
unique property of forming crystallites or spherulites, which is attributed to its semi-
crystalline nature. Such spherulites have been well studied by techniques such as 
scanning electron microscopy (SEM), atomic force microscopy (AFM) etc.144 Spherulites 
are generated when a polymer crystallizes from the melt without any disturbance.145,146 
The dimensions of spherulites range from micrometers to millimeters depending on 
crystallizing conditions such as temperature, cooling rate and content of crystallizing 
agent. The individual spherulite morphology is depicted in Figure 5-1.  

 
 The crystallization process can be divided into two important stages: 

 
 

5.1.1. Homogeneous nucleation: birth of primary nuclei 
 

 According to the thermodynamic theory, an embryo or nuclei has to form for the 
crystallization to take place. As the embryo increases in size, its free energy increases 
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Figure 5-1. Schematic representation of the hypothetical growth of polymer spherulites. 
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until it reaches a critical size beyond which the volume to surface ratio becomes large 
enough such that the decrease in enthalpy is larger than the increase in surface energy. 
The embryo is very unstable and can easily disappear below the critical size whereas 
above this size, it is stable.144 Figure 5-2 shows the relationship between Gibbs free 
energy change and nuclei growth. 

 
 

5.1.2. Development of lamellar sheaf: branching of lamellae 
 

 Once the primary nuclei are formed, they branch and split to form a lamellar sheaf 
known as hedrite. A number of such lamellae are connected centrally to result in 
formation of a quite complex structure. For example, Beeksman et al. showed that 
hedrites of PCL with a high degree of complexity could be developed from the melt upon 
lowering the crystallization temperature to approximately 56°C.147 Polymer spherulites 
have been used in drug delivery applications. In most cases, the drug is entrapped within 
the polymer matrix during the crystallization process. The effect is mutual, i.e. the 
incorporated drug in polymer spherulites affects the crystallite or spherulite geometry and 
the drug release is affected by its distribution within the polymer matrix. Incorporation of 
methyl red in crystalline poly hydroxyalkanoates (PHAs) has been well studied by Akhtar 
et al.148 

 
 This study was focused on two aspects of PCL crystallites or spherulites in drug 
delivery, reduction in burst release of drug from in situ implants thereby transforming the 
tri-phasic release pattern of drug and a high structural stability of the micro particulate 
suspension formulation prior to administration e.g. by providing an appropriate shear 
thinning and thixotropic nature to the formulation for ease of administration. The 
hypothesis was therefore, that the crystallites or spherulites surround the drug containing 
PLGA micro particles, thereby forming an additional barrier to control burst drug release 
from the system. Additionally, due to their stable and unique morphology, the crystallites 
or spherulites exhibit shear thinning and thixotropic properties that makes the micro 
particulate suspension system structurally stable. 

 
 

5.2. Materials and Methods 
 
 

5.2.1. Materials 
 

 PLGA 50:50 (IV 0.59dL/g) was obtained from Lactel absorbable polymers, 
Durect Corporation, Pelham, AL, USA. Glyceryl monooleate (Capmul GMO-50, EP/NF) 
was obtained as a generous gift from Abitec Corp., Janesville, WI, USA. NMP (N-methyl 
pyrrolidone; Pharmasolve) was procured from ISP Pharma Technologies, Wayne, NJ, 
USA, and ATEC (acetyl triethyl citrate) was obtained from Morflex Inc., Greensboro, 
NC, USA. Polycaprolactone (PCL) (MW 10,000) was obtained from The Dow Chemical 
Co., Midland, MI, USA. Leuprolide acetate was used as the model drug and was 
purchased from Teva Pharmaceuticals, Israel. All buffers were prepared in reverse 
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Figure 5-2. Gibbs free energy of formation of nucleus as a function of its size. 
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osmosis water. Other chemicals and reagents were purchased from Sigma Aldrich. 
 
 
5.2.2. Methods 

 
 

5.2.2.1. PLGA micro particle preparation 
 

 PLGA micro particles/microspheres were prepared by two different methods of 
polymer film grinding and a modified W/O/W multiple emulsion method as described in 
Chapters 2 and 4. 
 
 
5.2.2.2. PCL crystallites/spherulites preparation 

 
 The spherulites were prepared by melting the PCL polymer in the plasticizer 
combination of ATEC and NMP (9:1 w/w) under continuous stirring. Once the polymer 
was melted completely and mixed uniformly with the plasticizers, GMO was added 
slowly to above solution. The entire system was allowed to cool gradually at room 
temperature while undergoing stirring. The PCL spherulites begin to nucleate once the 
system is close to room temperature followed by larger crystallite or spherulite growth 
resulting in a turbid suspension. The flow chart for crystallite preparation is depicted in 
Figure 5-3. 

 
 

5.2.2.3. PCL crystallites/spherulites characterization 
 

 Crystallites were characterized by polarized light microscopy, SEM and MDSC 
studies. 

 
 

5.2.2.3.1. Polarized light microscopy studies 
 

 Polarized light microscopy was conducted on the injection vehicle system after 
equilibration with excess water or dissolution media to understand the crystalline 
structures formed by glycerol lipid. A Nikon Microphot FX microscope equipped with a 
polarizing filter. The images were captured with a high resolution Kodak DCS 460 color 
digital camera mounted on the microscope. Using a PowerPC G4, images were viewed 
on an Apple 20” Cinema Display monitor. The images were captured at a 200x 
magnification before and after equilibration of PCL spherulites with excess of water. 
 
 
5.2.2.3.2. Scanning electron microscopy studies 

 
 SEM studies were done on the acetone cleaded spherulite samples using a FEI 
Philips environmental scanning electron microscope (ESEM). The samples were allowed 
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Figure 5-3. PCL Crystallite/spherulite preparation process. 
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to air dry after removal of other components such as plasticizers and GMO with acetone, 
mounted onto SEM stubs and sputter coated with 40 nm AU/PD.  
 
 
5.2.2.3.3. Modulated differential scanning calorimetry studies 

 
 MDSC studies were conducted on PCL spherulites and pure PCL polymer using a 
Thermal Analysis (TA) Q 2000 series DSC with autosampler. The parameters selected 
for the scan were: scanning rate of 3°C/min, modulation temperature amplitude of ± 
1.00°C and sinusoidal modulation of 60 sec. 

 
 

5.2.2.4. In vitro functionality testing 
 

 Drug release was conducted in 0.012 M PBS (pH 7.4) containing 0.02% sodium 
azide (Chapter 2). 10 ml of dissolution media was taken in a 20 ml glass scintillation 
vial. Vials were kept in a shaker incubator maintained at 37°C and 100 rpm rotation. 
Formulations were placed at the bottom of glass vials and 2 ml aliquots were taken at 
specific time points with replacement using fresh buffer. Drug content was determined 
using a RP-HPLC method. For large volume drug release studies, 150 ml of PBS was 
taken in 250 ml capacity glass cylindrical vessel (Figure 5-4) and 75 ml of media was 
withdrawn for analysis of drug content at specific time points. 

 
 

5.2.2.5. Mechanistic studies 
 

 The drug release from novel PLGA micro particulate: PCL crystallite formulation 
was evaluated mechanistically by comparing percent drug release with percent plasticizer 
(ATEC) release from the formulation. The plasticizer release during in vitro studies was 
determined by a RP-HPLC method that quantifies both drug and plasticizer in a single 
run. The HPLC method has been discussed in detail in Chapter 2. 

 
 

5.2.2.6. Mathematical modeling 
 

 Seven different models were used to determine the drug release mechanism from 
the PLGA micro particulate: PCL crystallite formulation (Table 4-2) (Chapter 4). An 
excel add-in program, “DD Solver” was used for this purpose and R2 values were 
compared for different models. 
 
 
5.2.2.7. Viscosity and injection force measurement 

 
 Viscosity of the novel PLGA micro particulate: PCL crystallite formulation was 
measured using a Brookfield DV- III Ultra programmable rheometer and the Rheocalc 
3.2 software. Injection forces were determined using a Chatillon TCD-200 digital force 
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Figure 5-4. Experimental set up for in vitro drug release studies. 
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tester connected to a computer and controlled by NEXYGEN FM series software. The 
determinations were done at three different PCL crystallite concentrations (6%, 8% and 
12% w/w) in the injection vehicle. 
 

 
5.3. Results and Discussions 

 
 

5.3.1. PCL crystallites/spherulites characterization 
 
 

5.3.1.1. Polarized light microscopy studies 
 

 Polarized microscopic images showed a birefringent pattern for the PCL 
crystallites, which is characteristic of many crystalline substances. The distance between 
individual crystallites was reduced upon contact and equilibration of the crystallites with 
excess of water (Figure 5-5). The crystallites exhibited the characteristic lamellae well 
known and studied for semi-crystalline polymers.144 A detailed microscopic analysis 
confirmed the coexistence of PCL crystallites/ spherulites and the lipid (GMO) 
microcrystalline structures (Figure 5-6). Together the two structures were hypothesized 
to control initial burst from PLGA micro particles, whereby the lipid microcrystalline 
structures could create a well enclosed shell/environment around the PLGA micro 
particles undergoing gelation in presence of plasticizer. The lipid microcrystalline 
structures can be varied based on the vehicle composition (plasticizer to GMO ratio) as 
discussed in Chapter 4 thereby resulting in a PCL crystallite network surrounding PLGA 
micro particles which ranges from a more flexible to a relatively closely packed network. 

 
 

5.3.1.2. Scanning electron microscopy studies 
 

 SEM scans showed the presence of a distinct rough surface for the PCL 
crystallites together with numerous three dimensional projections or grooves on the 
crystallite surface (Figure 5-7). Distinct lamellar structure was observed at a higher 
magnification that correlates well with that observed with polarized microscopic 
examination. The individual crystallites were expected to fit well into each other with the 
help of these surface projections and grooves. This essentially results in formation of a 
tight barrier network around the PLGA micro particles that is responsible for controlling 
the initial drug release. 

 
 

5.3.1.3. Differential scanning calorimetry studies 
 
 MDSC studies showed the characteristic melting point (Tm) of the pure PCL 

polymer at around 60°C (Figure 5-8). This was in confirmation with other studies 
reported on the melting behavior of PCL polymer.149 The melting point was observed as a 
sharp endotherm in the MDSC thermogram. The PCL crystallites/spherulites however
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Figure 5-5. Polarized light microscopic images of PCL crystallites/spherulites (a) before; and (b) after equilibration with 
excess of water. 
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Figure 5-6. Polarized light microscopic images of co-existing PCL crystallites/spherulites and the glycerolipid 
microcrystalline structures. 
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Figure 5-7. Scanning electron microscopic images of PCL crystallites at three 
different magnifications of (a) 50x; (b) 200x; and (c) 3200x. 
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Figure 5-8. MDSC thermograms of (a) pure PCL polymer; and (b) PCL 
crystallites/spherulites. 
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demonstrated a slight lowering of the polymer melting point from 60°C to around 48°C. 
This was attributed to the reduction in melting point of the PCL polymer in presence of 
the other vehicle components i.e. the plasticizers and the lipid. The plasticizers and the 
lipid essentially acted as the impurities thereby causing a reduction in the melting point 
(colligative property) of the PCL polymer. The results, nonetheless, confirmed the 
crystalline nature of PCL crystallites/ spherulites in the injection vehicle. 
 
 
5.3.2. In vitro functionality studies 

 
 

5.3.2.1. Effect of PCL crystallites concentration 
 

 The results for the in vitro drug release studies demonstrated a significant 
reduction in initial drug burst upon increasing the PCL crystallite concentration in the 
injection vehicle (Figure 5-9). Increasing the crystallite concentration from 6% w/w to 
12% w/w in injection vehicle resulted in a twofold reduction in the drug burst i.e. from 
about 20% to 10% drug release in first 24 hours. Further the reduction in drug burst was 
three fold in comparison to the formulation with no crystallites. This essentially 
confirmed our hypothesis of a tight network structure formed by the PCL crystallites 
around the PLGA micro particles once equilibrated with excess of water, which helped in 
reducing the initial drug release from the depot. 

 
 

5.3.2.2. Effect of dissolution media volume 
 

 When placed subcutaneously, the implant is expected to release drug into its 
immediate vicinity (comprised of tissue fluid and cells), followed by passive diffusion or 
possibly facilitated transport into the cells and the vascular system before finally reaching 
the systemic circulation.101 The release of drug is therefore not directly into the systemic 
circulation. Among the various layers of subcutaneous tissue (pre-peritoneal, superficial 
subcutaneous and deep subcutaneous), normal blood flows have been found to range 
from 1.5 to 2.5 ml/100 (g min)-1.150,151 At any one time, there is only a small volume of 
tissue fluid available for drug dissolution from the implant. To consider the effects of 
both the volume of tissue fluid available at the injection site and the continuous blood 
flow, it was imperative to conduct drug release studies at two different media volumes. 
Figure 5-10 shows the drug release profiles at two media volumes of 10 and 150 ml at 
various PCL crystallite concentrations in the injection vehicle. The results showed similar 
dissolution profiles at different media volumes for 6% and 8% w/w crystallite 
concentrations in injection vehicle as further indicated by the respective f2 values. 

 
 
5.3.2.3. Effect of PLGA end group on drug release 

 
 PLGA micro particles prepared by film grinding method and two different end 

groups for PLGA polymer chains were compared in terms of surface adsorbed drug and  
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Figure 5-9. Effect of PCL crystallite concentration in injection vehicle on drug release. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars.  
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Figure 5-10. Effect of volume of dissolution media on drug release from PLGA micro 
particulate: PCL crystallite formulations at (a) 6% w/w PCL crystallite concentration; (b) 
8% w/w PCL crystallite concentration; and (c) 12% w/w PCL crystallite concentration. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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overall drug release behavior. Results showed a significant difference (around two fold) 
in the amount of surface free drug on the two types of PLGA micro particles (Figure 
5-11) with ester end group PLGA micro particles showing around 86% and acid end 
group micro particles showing around 44% of surface free drug. This was attributed to 
the ionic interactions between PLGA terminal carboxylic acid end group and the basic 
amino acids (arginine and histidine) of drug. Similar interactions between PLGA and 
leuprolide have been reported by Luan and Bodmeier.126 Interestingly, the initial drug 
release during first 24 hours was quite similar for the two types of PLGA micro particles 
(Figure 5-12). This was attributed again to the PCL crystallite network surrounding the 
PLGA micro particles, which controls the initial drug release from the micro particles. 
The drug release during the later part (day 15 to day 30), was however, controlled 
efficiently by the PLGA polymer type in the micro particles. The results showed a 
relatively faster drug release at the later stage from the acid end group PLGA micro 
particles than the ester end group micro particles. This can be well explained by the 
degradative nature of the two polymer types. The acid end group polymer, due to its 
greater propensity towards degradation, exhibits a faster drug release at the later stage. 

 
 

5.3.2.4. Effect of micro particle/microsphere morphology on drug release 
 

 Figure 5-13 shows the drug release from two different micro particle 
morphologies, the film ground micro particles and the multiple emulsion microspheres. 
The initial drug release was reduced and became independent of the micro particle 
morphology in the presence of PCL crystallites in the injection vehicle. This further 
confirms the fact that PCL crystallites form a tight network structure around the PLGA 
micro particles such that the initial drug release becomes completely independent of other 
formulation factors i.e. PLGA polymer type and micro particle morphology. This 
presents a definite advantage over PLGA micro particle only based systems as the initial 
drug release is reduced and is well controlled by the PCL crystallite concentration alone. 

 
 

5.3.2.5. Effect of buffer concentration of dissolution media  
 

 Once again PLGA micro particles with two different end groups (acid and ester) 
were compared in terms of drug release behavior at two different buffer concentrations of 
dissolution media. Results showed a relatively faster drug release from the capped PLGA 
micro particles (ester end group) at 1/20 M buffer strength compared to 1/50 M buffer, 
which was attributed to a greater drug solubilization in presence of a higher concentration 
of buffer ions (Figure 5-14). At higher concentrations of the buffering agents in the 
dissolution media, there is an increase in the drug super saturation levels.151 This increase 
in the degree of super-saturation levels, inhibit re-precipitation of drug resulting in a 
faster drug release from the formulation. The uncapped PLGA micro particles (acid end 
group) on the contrary, did not show any significant difference in drug release behavior at 
two different buffer concentrations. This can be described by the ionic interactions 
between the drug and polymer that are sufficient to overcome the increased solubilization 
caused by high concentration of the buffer. 
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Figure 5-11. Effect of PLGA end group on amount of surface adsorbed drug on PLGA 
micro particles. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 5-12. Effect of PLGA end group on drug release from PLGA micro particulate: 
PCL crystallite formulation. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 5-13. Effect of PLGA micro particle morphology on drug release from PLGA 
micro particulate: PCL crystallite formulation. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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Figure 5-14. Effect of buffer strength on drug release from PLGA micro particulate: 
PCL crystallite formulation having PLGA polymer with (a) ester end group; and (b) acid 
end group. 

 
Notes: Each data point represents an average of three measurements.  
Standard deviation of three measurements is presented as error bars. 
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5.3.3. Mechanistic studies 
 

 Percent drug release was compared with the percent plasticizer (ATEC) released 
from the formulations over the course of in vitro dissolution studies. The results showed a 
higher cumulative percent drug release per unit solvent/plasticizer released for smaller 
volume (10 ml) dissolution conditions at various PCL crystallite concentrations compared 
to the larger volume dissolution conditions (Figure 5-15). This had a direct correlation 
with the overall sink conditions in the two media volumes. Larger media volumes 
provided greater sink conditions for the plasticizer thereby increasing the rate of 
plasticizer release compared to the smaller media volumes. Nonetheless, the overall trend 
between different crystallite concentrations was similar between the two dissolution 
media volumes (Figure 5-16) indicating solvent diffusion as the major factor controlling 
drug release rate. Essentially, the initial plasticizer released was lower at higher crystallite 
concentrations for the same amount of drug released (marked as * in Figure 5-16) 
resulting in a relatively greater percentage of plasticizer trapped inside the depot at higher 
crystallite concentrations. This could be attributed to relatively faster crystallite 
aggregation and faster depot formation at higher crystallite concentrations. 

 
 

5.3.4. Mathematical modeling 
 

 The R2 values determined using various mathematical equations are presented in 
Table 5-1 with the Peppas and Sahlin equation showing the highest R2 value indicating 
the best fit at various PCL crystallite concentrations and two different dissolution media 
volumes. Peppas and Sahlin equation is of special interest as it helps in determining the 
relative contributions of the diffusion based drug release process and the erosion based 
release process simply by computation of the diffusion and relaxation coefficients. Ratio 
between the relaxation and diffusion coefficients were calculated at different time points 
throughout the drug release studies and results were plotted with respect to time (Figure 
5-17). Constantly decreasing values for the ratio between relaxation and diffusion 
coefficients with respect to time indicated an increasingly diffusion based drug release 
process over time. Further, the values were compared as a function of PCL crystallite 
concentration and the results showed decreasing values with increasing crystallite 
concentrations. This indicated an overall greater extent of drug diffusion at higher PCL 
crystallite concentrations. As mentioned under mechanistic studies, the higher percentage 
of trapped plasticizer at relatively higher crystallite concentrations could be responsible 
for a greater diffusion based drug release. 
 
 
5.3.5. Viscosity and injectability studies 

 
 The viscosity of formulation containing 6% w/w PCL crystallites in the injection 
vehicle was significantly higher than without any crystallites (Figure 5-18). This could 
mean greater injection forces and a serious loss of injectability for crystallite based 
formulations. Interestingly, however significantly lower injection forces were maintained 
for more than 30 min once the PLGA micro particles were dispersed in the crystallite  



144 
 

 
 
 
Figure 5-15. Mechanistic evaluation and correlation between percent drug and percent plasticizer release at two different 
dissolution media volumes and at PCL crystallite concentrations of (a) 6% w/w; (b) 8% w/w; and (c) 12% w/w in injection 
vehicle. 
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Figure 5-16. Evaluation of drug release mechanism at various PCL crystallite 
concentrations and two different dissolution media volumes of (a) 10 ml; and (b) 150 ml. 
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Table 5-1. Calculated R2 values from various mathematical models. 
 
Formulation R2 value 

Zero order First order Higuchi Korsenmeyer 
Peppas 

Peppas 
Sahlin 

Kopcha

            
6% crystallites Large 
volume 

0.3991 0.7544 0.9305 0.9938 0.997 0.9963 

6% crystallites Small 
volume 

0.7182 0.912 0.9817 0.9961 0.998 0.998 

8% crystallites Large 
volume 

0.7864 0.972 0.9728 0.9738 0.9943 0.9728 

8% crystallites Small 
volume 

0.8553 0.9685 0.9898 0.9904 0.9982 0.9798 

12% crystallites Large 
volume 

0.7261 0.9586 0.955 0.955 0.9884 0.9569 

12% crystallites Small 
volume 

0.8065 0.934 0.9872 0.9878 0.9978 0.9903 
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Figure 5-17. Relative relaxation and diffusion coefficients for drug release at various 
PCL crystallite concentrations. 
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Figure 5-18. Viscosity and injection forces of injection vehicle in (a) absence; and (b) 
presence of PCL crystallites. 
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containing formulation compared to the one with no crystallites. Injection forces of less 
than 3.5 N could be maintained for more than 30 min in presence of crystallites than in 
their absence where the injection forces increased up to 60 N within 10 min after mixing 
the contents of the formulation. This is attributed to the unique morphology of PCL 
crystallites or spherulites, which due to their thixotropic nature, were able to keep PLGA 
micro particles in s stable suspension system. The spherulites further demonstrate the 
much desired shear thinning behavior that provides an ease of injectability and 
administration. Furthermore, although there was an increase in overall viscosity of 
injection vehicle upon increasing the crystallite concentration, there was no significant 
increase in the injection force (Figure 5-19).  
 

 
5.4. Conclusion 

 
 The study showed the unique capability of PCL crystallites or spherulites to cause 
a significant reduction in the initial drug burst and modify tri-phasic release pattern, make 
the initial drug release independent of PLGA polymer type and micro particle 
morphology and provide the desired shear thinning and thixotropic characteristics to the 
formulation. The drug release rate during initial phase was well controlled by the PCL 
concentration and that during later stages was well controlled and modulated by the 
PLGA polymer type. Dissolution media volume showed negligible effect on drug release 
from the novel PLGA micro particulate: PCL crystallite formulation. The PCL 
crystallites imparted a thixotropic nature to the injection vehicle, which then further 
provided excellent structural stability to the formulation for at least 30 minutes prior to 
administration with no significant change in drug release. The drug was released mainly 
by either a solvent/plasticizer controlled diffusion process or by a pore based diffusion 
process. 
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Figure 5-19. Viscosity and injection forces of injection vehicle at various PCL crystallite concentrations of (a) 6% w/w; (b) 
8% w/w; and (c) 12% w/w. 
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CHAPTER 6. EVALUATION OF BIODEGRADABILITY AND 
BIOCOMPATIBILITY OF PLGA MICRO PARTICLE: POLYCAPROLACTONE 

CRYSTALLITE BASED IN SITU IMPLANT  
 
 

6.1. Introduction 
 

 Tremendous progress has been made in recent years pertaining to the 
development of various implantable devices such as drug-eluting stents,152-158 artificial 
organs,158-160 biosensors,161,162 catheters,163 scaffolds for tissue engineering,164-166 heart 
valves167,168 etc. The devices have been employed for several different purposes including 
drug delivery. The biggest concern with any of such devices is their biocompatibility 
whereby different immune reactions are triggered in the body. Various polymeric systems 
have been used till date for drug delivery applications including chitosan polymer,169-171 
alginate,172 collagen,173,174 hyaluronic acid,175 dextran,176,177 PLGA,45,47,178-182 PEG,183,184 
and PVA185-187 based systems etc.  

 
 Biocompatibility is generally defined as the ability of a biomaterial or medical 
device to perform with an appropriate host response in a specific application. Different 
biomaterials may trigger host responses of various extents, which further undergo 
resolution in various time dependent manners. The process of the implant placement into 
the tissue causes an injury that essentially initiates a cascade of the cellular responses 
leading to wound healing.188 The sequence of events involved in the immune response 
following the implantation procedure is as follows: 

 
 Injury 

 Blood-material interactions 

 Provisional matrix formation 

 Acute inflammation 

 Chronic inflammation 

 Granulation tissue 

 Foreign body reaction 

 Fibrosis/fibrous tissue development 
 
 

6.1.1. Blood material interactions 
 

 Blood material interactions are involved in the early responses to injury where 
blood comes in contact with the biomaterial for first time and the process is intimately 
linked to the inflammatory response process.189-192 The process eventually leads to 
thrombus/clot formation thereby resulting in an activation of the extrinsic and intrinsic 
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coagulation systems, the complement system, the fibrinolytic system, the 
kinin-generating system, and platelets.  

 
 

6.1.2. Provisional matrix formation 
 

 Within minutes to hours of implantation procedure, matrix formation around the 
implanted biomaterial takes place. This provisional matrix consists of fibrin, produced by 
activation of the coagulative and thrombosis systems, and inflammatory products, 
released by the complement system, activated platelets, inflammatory cells, and 
endothelial cells.193-195 The provisional matrix essentially acts towards the wound healing 
process by providing a rich source of substances such as mitogens, chemo-attractants, 
cytokines, and growth factors.196-201 Provisional matrix consists of:  

 
 Fibrin, produced by activation of the coagulation and thrombosis systems. 

 Inflammatory products released by the complement system, activated platelets, 
inflammatory cells and endothelial cells. 

 
 

6.1.3. Acute inflammatory response 
 

 In general, the biocompatibility of a material with tissue has been described in 
terms of the acute and chronic inflammatory responses and of the fibrous capsule 
formation that is seen over various time periods following implantation.202,203 The process 
involves emigration of neutrophils (polymorphonuclear leukocytes, PMNs) and other 
motile white cells from the blood vessels to the perivascular tissues and the injury site 
with the process lasting from minutes to days.204-206 Once the leukocytes get localized at 
the site of injury, the neutrophils and macrophages gets activated thereby releasing the 
enzymes. The major role of the neutrophil in acute inflammation is to phagocytose 
microorganisms and foreign materials. The major clinical signs for acute inflammation 
are: 

 
 Redness (rubor) 

 Swelling (tumor) 

 Pain (dolor) 

 Heat (calor) 
 

 Swelling during acute inflammation is mainly due to an increase in the pressure 
difference between capillary and external tissue bed and further due to an increase in the 
permeability of blood capillaries. The blood capillaries have low permeability under 
normal conditions with tight junctioned endothelium and the permeability increases under 
inflamed conditions. This results in permeability of larger molecules into the tissue at 
higher rates. Figure 6-1 shows the hypothetical representation of the endothelial 
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Figure 6-1. Permeability of blood capillaries during an inflammatory response. 
 
Note: (a) represents blood capillaries before inflammation and (b) represents blood 
capillaries after inflammation. 
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junctions of blood capillaries under normal and inflamed conditions. 
 

 Rubor is due to erythrocyte infiltration and pain is mainly the result of edema and 
kinins. Local edema may activate local deep pain receptors (throbbing pain, peaks with 
systolic pressure). Kinins act directly on nerve ends to produce pain sensation (pain of 
bee sting: the activation of a kinin in bee venom). The exact cause of heating during acute 
inflammation is not clear. However, there are numerous possible factors involved such as 
increased cellular metabolic activity, possible generation of pyrogens which are known to 
cause systemic fever and local disturbance of fluid flow.  

 
 

6.1.4. Chronic inflammatory response 
 

 An inflammatory response that is persistent leads to chronic inflammation that is 
characterized by the presence of macrophages, monocytes and lymphocytes. It further 
involves proliferation of blood vessels and connective tissue.191,192,207,208 Chronic 
inflammation is usually less uniform histologically than acute inflammation and is 
dependent on chemical and physical properties of the biomaterial. The degree of chronic 
inflammation is also affected by motion in the implant site. Lymphocytes and plasma 
cells are involved principally in chronic immune reactions and are the key mediators of 
antibody production and delayed hypersensitivity responses. The macrophage produces 
great number of biologically active products such as neutral proteases, chemotactic 
factors, arachidonic acid metabolites, reactive oxygen metabolites, complement 
components, coagulation factors, growth-promoting factors, and cytokines.208 The growth 
factors in turn can further stimulate production of a wide variety of cells thereby initiating 
cell migration, differentiation and tissue remodeling and thus may be involved in various 
stages of wound healing.  

 
 

6.1.5. Granulation tissue 
 

 Granulation tissue formation represents healing of inflammation and occurs 
within one day after implantation of biomaterial. The healing response is initiated by 
reaction of monocytes and macrophages and fibroblasts and vascular endothelial cells in 
the implant site proliferate and begin to form granulation tissue. There is a proliferation 
of new blood vessels (angiogenesis or neovascularization) and fibroblasts that can be 
seen as a pink, soft granular appearance of the granulation tissue on the surface of healing 
wounds.  

 
  

6.1.6. Foreign body giant cells (FBGCs) 
 

 The foreign body reaction to biomaterials is composed of foreign-body giant cells 
(FBGCs) and components of granulation tissue (macrophages, fibroblasts, and 
capillaries). Fabric materials generally have a surface response composed of 
macrophages and foreign body giant cells, with varying degrees of granulation tissue  
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subsequent to the surface response. The foreign-body reaction consists mainly of 
macrophages and/or foreign-body giant cells that may persist at the tissue-implant 
interface for the lifetime of the implant. Generally, fibrosis (i.e. fibrous encapsulation) 
surrounds the biomaterial with its foreign body reaction from the local tissue environment 
(Figure 6-2). Foreign body response depends on the form and geometry of the implant.  

 
 Flat and smooth surfaces such as those found on breast implants; foreign body 

response is composed of a layer of macrophages one to two cells in thickness. 

 Relatively rough surfaces such as those found on the outer surfaces of vascular 
prosthesis; foreign body response is composed of multiple layers of macrophages 
and foreign body giant cells at the surface. 

 Rough surfaces such as fabric-type materials; composed of macrophages and 
foreign body giant cells with varying degrees of granulation tissue. 

 
 

6.1.7. Fibrosis/fibrous encapsulation 
 

 Fibrosis/fibrous encapsulation is the final healing response to biomaterials and 
involves two distinct processes: 

 
 Regeneration, which is replacement of injured tissue by parenchymal cells. 

 Replacement by connective tissue. 
 

 These processes are controlled by either the proliferative capacity of the cells in 
the tissue or organ or persistence of the tissue framework of the implant sites. The 
regenerative capacity of cells can be classified into 3 groups i.e. labile, stable and 
permanent: 
 
 Labile: cells continue to proliferate throughout life. 

 Stable: cells retain capacity and do not replicate. 

 Permanent: cells cannot reproduce themselves after birth. 
 

 Perfect repair with restitution of normal structure can theoretically occur only in 
tissues consisting of stable and labile cells, whereas all injured tissues composed of 
permanent cells may give rise to fibrosis and fibrous capsule formation with very little 
restitution of the normal tissue or organ structure. Figure 6-3 shows the temporal 
variation in various inflammatory responses. Histological examination of tissue adjacent 
to the formulation to determine intensity of inflammation, granulation, foreign body 
reaction and fibrosis, as a function of implant time, has been the most commonly used 
method to assess the biocompatibility of drug delivery systems or biomaterials.61 
Individually both PLGA and polycaprolactone have shown appropriate biocompatibility. 
In rats, d,l lactide/glycolide copolymer microspheres have been shown to be 
biocompatible for implantation with early mild inflammation, which resolved along with  
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Figure 6-2. In vivo transition from blood-borne monocyte to biomaterial adherent 
monocyte/macrophage to foreign body giant cell at the tissue/biomaterial interface.  

 
Note: Little is known regarding the indicated biological responses that are considered to 
play important roles in the transition to foreign body giant cell development.188 
 
Source: Reprinted with permission from Elsevier. J. M. Biological responses to 
materials. Annu Rev Mater Res 31, 81110 (2001).189 
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Figure 6-3. The temporal variation in the acute inflammatory response, chronic 
inflammatory response, granulation tissue development, and foreign body reaction to 
implanted biomaterials. 

 
Note: The intensity and time variables are dependent upon the extent of injury created in 
the implantation and the size, shape, topography, and chemical and physical properties of 
the biomaterial.188 

 
Source: Reprinted with permission from Elsevier. J. M. Biological responses to 
materials. Annu Rev Mater Res 31, 81110 (2001).189 
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biodegradation, with no adverse tissue reaction, and the vast majority of microsphere 
degradation occurring by day 150.209 Biocompatibility of polycaprolactone films has 
been determined in mouse fibroblasts by Serrano et al.210 However, as mentioned earlier, 
the topography and surface characteristics are extremely important factors that determine 
the overall inflammatory response to biomaterial devices; it becomes necessary for us to 
evaluate theinflammatory response to the novel PLGA micro particulate 
polycaprolactone crystallite drug delivery system. 

 
 Since the in situ implant is fabricated as minute micron size crystallites or 
spherulites that are essentially a collection of sharp edged crystals, it presents greater 
likelihood of demonstrating an inflammatory response upon injection into the 
subcutaneous tissue. It was therefore the objective of this study to evaluate the 
inflammatory responses to the novel PLGA: PCL based implant system. Biodegradation 
is another parameter of in vivo response to the biomaterial devices. It is extremely 
important for the device material to be biodegradable on its own thereby eliminating the 
need for surgical removal of the devices or implants. The degradation kinetics of the 
biomaterial is studied during biodegradability determination. Numerous mechanisms 
could be involved in the biodegradation process depending on the type and characteristics 
of biomaterial and therefore all possible degradation mechanisms should be explored 
during the study. It is also the objective of this study to determine the biodegradability 
behavior of the novel PLGA: PCL based formulation. 

 
 

6.2. Materials and Methods 
 
 

6.2.1. Materials 
 
 PLGA (IV: 0.59 dL/g) was purchased from Lactel absorbable polymers, Durect 
Corporation, Pelham, AL, USA. Glyceryl monooleate (Capmul GMO-50, EP/NF) was 
obtained as a generous gift from Abitec Corp., Janesville, WI, USA. PCL  
(polycaprolactone, MW 10,000) was obtained from The Dow Chemical Co., Midland, 
MI, USA. Leuprolide acetate (model drug) was purchased from Teva Pharmaceuticals,  
Israel. NMP (N-methyl pyrrolidone; Pharmasolve) was procured from ISP Pharma 
Technologies, Wayne, NJ, USA. ATEC (acetyl triethyl citrate) was obtained as a 
generous gift from Morflex Inc., Greensboro, NC, USA. All other reagents and chemicals 
were of pharmaceutical grade. 

 
 
6.2.2. Methods 

 
 

6.2.2.1. Preparation of drug loaded PLGA micro particles 
 

 Micro particles were prepared by a cryo film grinding method previously 
described in details in Chapter 2. Briefly, the PLGA polymer was dissolved in acetone 



159 
 

followed by dispersing the required amount of drug into the polymer solution. The 
overall drug loading obtained was 16% w/w of polymer weight. The acetone was allowed 
to evaporate under controlled air flow conditions and the semi dried polymer mass thus 
obtained was transferred to a petri dish and kept in vacuum oven for 48 hours. The dried 
polymer film was then ground into micro particles by using a cryo mill.  

 
 

6.2.2.2. Determination of drug content in micro particles 
 

 Drug content in the micro particles was determined by a liquid-liquid extraction 
procedure as described in Chapter 2. The drug content was analyzed by a RP-HPLC 
procedure. 

 
 

6.2.2.3. Preparation of injection vehicle containing PCL crystallites 
 

 Injection vehicle was prepared as mentioned in Chapter 5. Briefly, 1 part by 
weight of NMP was mixed with 9 parts by weight of ATEC. 8% w/w of PCL was added 
to the above mixture and allowed to melt completely under controlled heating. GMO 
(glyceryl monooleate) was added to above solution in a weight ratio of 1:1 and the entire 
system was allowed to cool gradually under normal room temperature conditions. This 
resulted in formation of PCL crystallites with a uniform geometry. 

 
 

6.2.2.4. Injection of the in situ implant formulation 
 

 A male Sprague-Dawley rat model was selected for the in vivo biodegradability 
and biocompatibility studies. The formulation components i.e. drug loaded PLGA micro 
particles and the PCL crystallite containing injection vehicle were mixed intimately with 
each other using a two syringe system with male and female leur locks and injected into 
the subcutaneous tissue in the left flank region of the rats. The injections were made 
using a 20 gauge needle and the injection site was held between fingers for a few seconds 
to prevent the liquid formulation from leaking out. The animals were caged in a group of 
3 with solid bottom caging. A dose equivalent of 7.5 mg/Kg of animal weight of 
leuprolide acetate was injected into the animals. At 7, 14, 30 and 48 days, one rat was 
sacrificed by using an overdose euthasate. The injection site was incised and the diameter 
of the implant at injection site was measured. The tissue surrounding implant was 
removed and immediately transferred to a 10% buffered formalin solution for further 
histological evaluation.  
 
 
6.2.2.5. Preliminary histological preparation 

 
 The collected biopsy tissue samples were fixed in 10% buffered formalin and then 
submitted for routine histological processing. This involved saturation of tissue with 
organic solvents (i.e. alcohol dilutions, then xylene). The biopsy specimens were then 
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infiltrated with heated paraffin and set in paraffin blocks. Sections were cut from the 
blocks at 5 µm in thickness, placed on a slide, stained with haematoxylin and eosin and 
covered by a glass cover-slip. 4 slides were prepared per tissue sample for microscopic 
analysis and scored according to the following system: 0 = no infiltration up to 10 = 
severe infiltration of leukocytes, lymphocytes, and macrophages. 

 
 

6.3. Results and Discussions 
 
 

6.3.1. Evaluation of biodegradability of implant 
 

 Figure 6-4 shows the images for implant remaining at the injection site at 7, 14, 
30 and 42 days. The implant was identified as a semi-solid or solid gel in the 
subcutaneous tissue at day 7 post injection. A distinct layer of tissue can be seen around 
the implant indicating the encapsulation process. The in vivo degradation profile (Figure 
6-5) shows a gradual reduction in the implant size over time. This is significantly 
different from the normal PLGA degradation process, whereby a very slow degradation 
phenomenon occurs for the first 20 to 30 days after which considerable polymer 
degradation happens within next few days attributed to the final bulk erosion process. A 
more gradual degradation process essentially indicates a more diffusion controlled drug 
release process with the novel PLGA micro particles: PCL crystallite formulation 
compared to the PLGA alone based formulations. PCL crystallite network allow a 
gradual release of the plasticizer from the formulation into the surrounding tissue thereby 
resulting in sufficient plasticization of the PLGA micro particles over time. The 
plasticized PLGA polymer then releases the drug in mainly a diffusion controlled manner 
than erosion dominated process. 
 
 
6.3.2. Biocompatibility of implant 

 
 The primary concern in this study was the local tissue responses instead of 
systemic toxicity to the in situ implant formulations. Both the polymer and solvent used 
in drug delivery systems play an important role in the toxicity to the body.182 Therefore, 
we first evaluated the biocompatibility of the injection vehicle comprised of the PLGA 
polymer plasticizers i.e. NMP and ATEC, and the glycerol lipid (GMO). The skin tissue 
containing subcutis and muscle were excised at day 30 from the site of injection and 
subjected to histological examination. The tissue samples showed no evidence of an 
inflammatory cellular response. The subcutis revealed only a small lymph node in one of 
the tissue samples apparently associated with the mammary chain and there was no 
evidence of any lymphoid infiltrate (Figure 6-6).  
 

The inflammatory response from the test formulation consisting of drug loaded 
PLGA micro particles dispersed uniformly in the injection vehicle constituted of polymer 
plasticizers (ATEC and NMP), GMO and PCL crystallite was evaluated after 7, 14, 30 
and 48 days of subcutaneous injection. Figure 6-7 shows the tissue response after 7 days  
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Figure 6-4. Implant remaining at the site of injection at (a) day 7; (b) day 14; (c) day 
30; and (d) day 48 post injection. 
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Figure 6-5. Biodegradation profile for the in situ PLGA micro particles: PCL 
crystallite implant. 

 
Note: Each data point represents the measured implant diameter remaining at the site of 
injection. 
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Figure 6-6. Light photomicrograph of subcutaneous tissue 30 days after subcutaneous 
injection of test formulation consisting of injection vehicle solvent at (a) 10x; (b) and (c) 
20x; and (d) 40x magnification. 

 
Notes: Photomicrographs (a) and (b) represent one animal and (c) and (d) represent the 
second animal sacrificed at day 30 post injection. 
The subcutis revealed only a small lymph node in the first animal with no evidence of 
lymphoid infiltrate.  
The subcutis had an essentially normal appearance with no evidence of lymphoid cells in 
second animal. 
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Figure 6-7. Light photomicrograph of subcutaneous tissue 7 days after subcutaneous 
injection of test formulation consisting of drug loaded PLGA micro particles dispersed in 
a PCL crystallite based injection vehicle at (a) and (b) 20x; and (c) and (d) 40x 
magnification. 

 
Notes: Photomicrographs (a) and (b) represent one animal and (c) and (d) represent the 
second animal sacrificed at day 7 post injection. 
A prominent influx of mostly lymphoplasmacytic cells was present between the subcutis 
for the first animal. Evidence of fibrovascular proliferation was mild. 
A prominent influx of mixed chronic inflammatory cell infiltrate was present within the 
subcutis and consisted primarily of lymphocytic cells and a moderate fibrovascular 
(granulation) tissue deposition. 
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of subcutaneous injection of the in situ forming implant formulation. A prominent influx 
of mostly lymphoplasmacytic cells was present within the subcutis along with the 
evidence of a mild fibrovascular proliferation. Another sample at day 7 showed a  
prominent influx of mixed chronic inflammatory cell infiltrate within the subcutis and 
consisted primarily of lymphocytic cells and a moderate fibrovascular (granulation) tissue 
diposition. Overall, the cellular response was mostly lymphoplasmacytic with mild to 
moderate evidence of fibrosis (fibrovascular response). 

 
 At day 14, the subcutis revealed a focus of essentially mature lymphoid cells that 
might have been associated with the adnexal structures. Further, there was only a 
minimal evidence of fibrosis (Figure 6-8). The subcutis of a replicate tissue sample 
showed essentially no evidence of a lymphocytic infiltrate (data not shown). The average 
tissue response compared to that observed after 7 days, was a much reduced 
inflammation.  
 
 Figure 6-9 shows the tissue response after 30 days of subcutaneous implantation 
of the formulation. The response ranged from several small foci of essentially mature 
lymphoid cells to an almost of no evidence of a lymphoid infiltrate. Further, there was no 
evidence of fibrosis in any of the tissue samples collected at day 30. After 48 days, the 
subcutis had an essentially normal appearance with no evidence of lymphoid cells 
(Figure 6-10).  

 
 Further, a grading scale of 0 to +10 was used to compare the inflammatory 
response from the test formulations and the positive control (Figure 6-11). The absence 
of an inflammatory infiltrate was given a grade of 0, the smallest cellular infiltrates were 
given a grade of +1 and the most prominent lesions were given a score of +10. The 
animals that received test formulation with injection vehicle solvents had no evidence of 
an inflammatory cellular response with an average score of 0.  
 
 The animals receiving test formulation with PLGA polymer micro particles 
dispersed in injection vehicle and removed on day 7 from the study also had an average 
score of +10. The cellular response was mostly lymphoplasmacytic with mild to 
moderate evidence of fibrosis. The animals removed on day 14 had only an average score 
of +2 with a range of 0 to +4 and those removed on day 30 had an average score of +1.25 
with a range of 0 to +2. Finally, the animals removed on day 48 had an average score of 
+0.5 with a range of 0 to +1. 
 
 The objective of this study was essentially to evaluate and determine the 
inflammatory potential of polymeric crystallites or spherulites upon injection into the 
subcutaneous tissue. Studies have indicated that inflammatory response is directly 
associated with particle size, shape and irregularity.211,212 Sharp edge particles tend to 
induce greater inflammatory response.213 SEM studies for PCL crystallites (Chapter 5) 
have demonstrated a highly irregular surface but essentially no sharp edges. It was 
therefore essential for us to understand the possible tissue reaction of such crystallites. 
The biocompatibility studies, however, have indicated that the in situ implant formulation 
containing PCL crystallites is safe and biocompatible with only a normal tissue response. 
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Figure 6-8. Light photomicrograph of subcutaneous tissue 14 days after subcutaneous 
injection of test formulation consisting of drug loaded PLGA micro particles dispersed in 
a PCL crystallite based injection vehicle at (a) and (b) 20x; and (c) and (d) 40x 
magnification. 

 
Note: The subcutis revealed a focus of essentially mature lymphoid cells and evidence of 
fibrosis was minimal.  
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Figure 6-9. Light photomicrograph of subcutaneous tissue 30 days after subcutaneous 
injection of test formulation consisting of drug loaded PLGA micro particles dispersed in 
a PCL crystallite based injection vehicle at (a) and (c) 20x; and (b) and (d) 40x 
magnification. 

 
Notes: Photomicrographs (a) and (b) represent one animal and (c) and (d) represent the 
second animal sacrificed at day 30 post injection. 
The subcutis revealed one very small focal influx of mostly mature lymphocytes. There 
was no definitive evidence of fibrosis for the first animal. 
The subcutis revealed several small foci of essentially mature lymphoid cells and there 
was no definitive evidence of fibrosis for the second animal. 
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Figure 6-10. Light photomicrograph of subcutaneous tissue 48 days after subcutaneous 
injection of test formulation consisting of drug loaded PLGA micro particles dispersed in 
a PCL crystallite based injection vehicle at 40x magnification. 

 
Notes: Photomicrograph (a) represents one animal and (b) represents the second animal 
sacrificed at day 48 post injection. 
The subcutis had an essentially normal appearance with no evidence of lymphoid cells 
for the first animal. 
The subcutis revealed only a very small focus of mostly mature lymphoid cells. 
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Figure 6-11. Average score for the inflammatory tissue response for control and test 
formulations. 

 
Note: Test formulation I represents the injection vehicle solvent and test formulation II 
represents the novel PLGA micro particulate- PCL crystallite formulation. 
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6.4. Conclusion 
 

 The in vivo biodegradability and biocompatibility of the novel PLGA micro 
particulate- PCL crystallite implant formulation was investigated in this study. The 
results showed that the in situ implant had good biodegradability with a significant 
reduction in implant size by the end of 48 days. Moreover, the degradation process was 
very gradual with a continuous reduction in implant size unlike most of the PLGA alone 
based in situ implant systems that degrade by a bulk erosion phenomenon. Histological 
examination of the tissue from the site of injection showed an initial moderate tissue 
response with a significant reduction in tissue response by the end of 14 days. The 
inflammatory response was almost completely subsided at the end of 48 days post 
injection. The animals administered with the test formulation containing injection solvent 
only showed no evidence of cellular infiltrate. Overall, the biocompatibility studies 
demonstrated a completely normal tissue response from the PCL crystallite based test 
formulation. 
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RESEARCH SUMMARY 
 
 

 A novel in situ gelling polymer depot system has been designed for controlled 
delivery of drugs which is based on a drug loaded PLGA micro particulate suspension 
formulation. The formulation was given desired rheological properties such as shear 
thinning and thixotropic characteristics for the ease of administration. The necessary 
rheological properties were introduced by a novel carrier or vehicle intended for 
reconstitution of the drug loaded micro particles. The vehicle was constituted of three key 
components: 
 
 Hydrophobic solvent(s) 

 Polymer immiscible component 

 Polymeric crystallites/spherulites 
 

 An optimized solvent combination of ATEC and NMP (9:1 w/w) was used as the 
hydrophobic solvent. The hydrophobic solvent due to its limited affinity for the external 
aqueous environment stayed in contact with the PLGA polymer matrix for a sufficient 
length of time to be able to provide a continuous drug release based on solvent diffusion. 
The micro particulate suspension formulation overall resulted in a significantly lower 
viscosity than a polymer solution made with the same hydrophobic solvent.  
 
 Since the system was formulated as a micro particulate suspension, it was 
important to introduce the desired rheological characteristics in the formulation to make it 
structurally more stable. Structural stability in polymer micro particulate suspensions 
means that the interaction between the polymer solvent in the vehicle and the micro 
particles is limited to a sufficient extent in order to have less inter individual variability in 
the properties of the reconstituted suspension for better injectability and ease of 
administration. The objective was successfully accomplished with two key components 
of the injection vehicle, the glycerol lipid and the polymeric crystallites/spherulites.  
 
 The polymer immiscible component was a glycerol lipid (glyceryl monooleate), 
which due to immiscibility with PLGA polymer was able to act as an anti-solvent and 
limit the overall interaction between the PLGA micro particles and the hydrophobic 
solvent. A ternary phase diagram was constructed with the three components being the 
polymer (PLGA), the glycerol lipid (GMO) and the optimized hydrophobic solvent 
(ATEC:NMP 9:1 w/w) in order to identify two distinct phases, the solution phase and the 
stable suspension phase. The vehicle composition selected from the suspension phase 
demonstrated greater structural stability of the micro particulate suspension formulation 
than the solution phase. Further, it was possible to modulate the drug release rate with the 
help of different glycerol lipid based vehicle compositions. Mechanistic studies were 
conducted by comparing percent drug released with percent solvent released during the 
course of study and results indicated overall drug release behavior changing from mainly 
polymer erosion controlled to primarily diffusion controlled with increasing percentage 
of the hydrophobic solvent. Further comparing micro environmental pH with the pH of 
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bulk dissolution media indicated a greater diffusion of the PLGA acidic degradation 
products at higher levels of hydrophobic solvent in the formulation. This essentially 
confirmed the overall diffusion controlled drug release at higher solvent levels. 
 
 The polymeric crystallites were designed with the polycaprolactone polymer. 
Polycaprolactone exists as white waxy pellets and is a semi crystalline polymer but once 
co-heated with the other vehicle components i.e. the hydrophobic solvent and glycero 
lipid followed by gradual cooling at room temperature, forms crystallites. These 
crystallites existed in clusters, which were hypothesized to be responsible for the desired 
thixotropic characteristic of the suspension based formulation. DSC studies demonstrated 
a partial plasticization of polycaprolactone polymer in the crystallites and SEM imaging 
showed a rough surface with numerous three dimensional projections for the crystallites. 
The crystallites essentially aggregated upon contacting the dissolution media thereby 
limiting the initial burst release of the drug. The crystallite based formulations exhibited a 
hysteresis loop in the viscosity measurements indicating their thixotropic behavior. This 
thixotropic characteristic is extremely crucial for the injectable suspension formulations 
as it keeps the PLGA micro particles well separated in the syringe prior to administration 
thereby resulting in lower injection force and good injectability. Mechanistic studies 
indicated drug diffusion mainly controlled by solvent diffusion from the novel 
formulation.  
 

In vivo biocompatibility studies were conducted whereby the optimized PLGA 
micro particulate:PCL crystallite based formulation was injected into the subcutaneous 
tissue of male Sprague Dawley rats. The subcutis tissue from the site of injection was 
examined histologically for tissue reaction. Results indicated an initial tissue response 
similar to chronic inflammatory response at the end of first 7 days following which there 
was a significant reduction observed in the inflammatory response. The average 
inflammatory score reduced from +10 (maximum) at day 7 to less than +2 at day 14 
thereby demonstrating well tolerability and biocompatibility of the novel formulation. 
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