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Abstract Abstract 
Ever since Dr. Brånemark discovered that titanium was biocompatible with bone, extensive research has 
been done to improve the osseointegration of dental implants. As advances in medicine continue, the 
average life span of the population is ever increasing. Today, people of all ages are investing more money 
and time into dental treatment than ever before. Patients are becoming more educated on dental 
treatment options and expect the best treatment possible. As a result, the replacement of missing teeth 
with implants is becoming more and more commonplace in dental practices. 

The purpose of the present study is to evaluate bone-implant interaction of functionally graded, thin film 
hydroxyapatite (HA) coatings in an animal model. The rationale for the graded coatings is such that they 
elicit different biological responses from different layers within the thin film (less than two microns). As 
such in this study, the graded coatings consist of an initial layering of crystalline HA coatings followed by 
the layering of an amorphous coating on the crystalline HA surface. Controls for this study are (a) 
plasma-sprayed HA, (b) amorphous HA, (c) crystalline HA, and (d) non-coated Titanium (Ti). The long-
term goal is to improve the bone-implant interface leading to improved design and construction of 
implants and improved long term success. With this development it is expected that dental implants will 
be restored following shorter post-operative healing periods and patients will more quickly regain 
masticatory function resulting in the overall improvement of physical and mental health. 

This study focused on mechanical and histological analysis of HA-coated and non-coated Titanium 
implants placed into the left femur of 40 male Sprague-Dawley rats. The rat was selected for this 
experiment because the specimen is affordable and historically proven to be a very good model for initial 
evaluation of the bone healing response to metal and metal coated implants. In vivo experimentation is 
preferred for these studies because bone wound healing is a complex process requiring the interaction of 
many cell types and factors. These conditions can not presently be predictably duplicated with in vitro 
experimentation. 

In this study, two implants were placed into the left femur of each rat. At two time intervals (three weeks 
and nine weeks after implantation) 20 rats were euthanized and the femur containing the implants 
excised. A total of 40 implants were yielded at each time point. Since there were five groups (titanium, 
plasma sprayed HA, amorphous HA, crystalline HA and graded HA), there were eight implants per group 
per time point (40/5 = 8). Of these eight implants per time point per group, six were used for mechanical 
testing and two for histological evaluation. To evaluate the interfacial strength of the implants at the 
bone-implant interface, push-out test were performed. The evaluation of the bone response to implant 
was done using histological analysis. 

At three weeks following implantation, there was no significant difference in the interfacial strength 
between the different implants. The interfacial strength had increased in all groups by nine weeks. The 
plasma sprayed HA implants had the greater interfacial strength followed by the graded HA, crystalline 
HA, amorphous HA and titanium implants. At three weeks post implantation, the presence of connective 
tissue at the tissue-implant interface was noted for all implant groups tested. By nine weeks post 
implantation, all HA coated implants exhibited more bone formation at the bone-implant interface when 
compared to the non-coated Ti implants. The greatest response was seen in the plasma sprayed 
implants. A similar response was seen between the graded and crystalline as well as the amorphous and 
pure titanium. This study suggested that graded HA is a viable option for implant coatings. 
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ABSTRACT 
 
 

 Ever since Dr. Brånemark discovered that titanium was biocompatible with bone, 
extensive research has been done to improve the osseointegration of dental implants.  As 
advances in medicine continue, the average life span of the population is ever increasing.  
Today, people of all ages are investing more money and time into dental treatment than 
ever before.  Patients are becoming more educated on dental treatment options and expect 
the best treatment possible.  As a result, the replacement of missing teeth with implants is 
becoming more and more commonplace in dental practices. 

   
     The purpose of the present study is to evaluate bone-implant interaction of 
functionally graded, thin film hydroxyapatite (HA) coatings in an animal model.  The 
rationale for the graded coatings is such that they elicit different biological responses 
from different layers within the thin film (less than two microns).  As such in this study, 
the graded coatings consist of an initial layering of crystalline HA coatings followed by 
the layering of an amorphous coating on the crystalline HA surface.  Controls for this 
study are (a) plasma-sprayed HA, (b) amorphous HA, (c) crystalline HA, and (d) non-
coated Titanium (Ti).  The long-term goal is to improve the bone-implant interface 
leading to improved design and construction of implants and improved long term success.  
With this development it is expected that dental implants will be restored following 
shorter post-operative healing periods and patients will more quickly regain masticatory 
function resulting in the overall improvement of physical and mental health. 
 
     This study focused on mechanical and histological analysis of HA-coated and non-
coated Titanium implants placed into the left femur of 40 male Sprague-Dawley rats.  
The rat was selected for this experiment because the specimen is affordable and 
historically proven to be a very good model for initial evaluation of the bone healing 
response to metal and metal coated implants.  In vivo experimentation is preferred for 
these studies because bone wound healing is a complex process requiring the interaction 
of many cell types and factors.  These conditions can not presently be predictably 
duplicated with in vitro experimentation. 
 
     In this study, two implants were placed into the left femur of each rat.  At two time 
intervals (three weeks and nine weeks after implantation) 20 rats were euthanized and the 
femur containing the implants excised.  A total of 40 implants were yielded at each time 
point.  Since there were five groups (titanium, plasma sprayed HA, amorphous HA, 
crystalline HA and graded HA), there were eight implants per group per time point (40/5 
= 8).  Of these eight implants per time point per group, six were used for mechanical 
testing and two for histological evaluation.  To evaluate the interfacial strength of the 
implants at the bone-implant interface, push-out test were performed.  The evaluation of 
the bone response to implant was done using histological analysis. 
    
     At three weeks following implantation, there was no significant difference in the 
interfacial strength between the different implants.  The interfacial strength had increased 
in all groups by nine weeks.  The plasma sprayed HA implants had the greater interfacial 
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strength followed by the graded HA, crystalline HA, amorphous HA and titanium 
implants.  At three weeks post implantation, the presence of connective tissue at the 
tissue-implant interface was noted for all implant groups tested.  By nine weeks post 
implantation, all HA coated implants exhibited more bone formation at the bone-implant 
interface when compared to the non-coated Ti implants.  The greatest response was seen 
in the plasma sprayed implants. A similar response was seen between the graded and 
crystalline as well as the amorphous and pure titanium.  This study suggested that graded 
HA is a viable option for implant coatings.  
      
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

                                            
 

      iv 



      v 

TABLE OF CONTENTS 
 
 

CHAPTER 1.  INTRODUCTION  . . . . . . . . . . . . . .   1 
 
CHAPTER 2.  REVIEW OF LITERATURE . . . . . . . . . . .   3 
 Osseointegration. . . . . . . . . . . . . . . . . . .   3 
 Surface Modifications of Implants . . . . . . . . . . . . .   4 

 Hydroxyapatite . . . . . . . . . . . . . . . . . .   5 
 Plasma Spraying . . . . . . . . . . . . . . . . . .   6 
 

CHAPTER 3.  RESEARCH OBJECTIVES . . . . . . . . . . . 11 
 Specific Aim I . . . . . . . . . . . . . . . . . . . 11 
      Hypothesis I . . . . . . . . . . . . . . . . . . . 11 
      Specific Aim II . . . . . . . . . . . . . . . . . . 11 
      Hypothesis II . . . . . . . . . . . . . . . . . . . 11 
 
CHAPTER 4.  METHODS AND MATERIALS . . . . . . . . . . 12 
 Materials Preparation (Implants) . . . . . . . . . . . . . . 12 
      Implantation . . . . . . . .  . . . . . . . . . . . 12 

 Implant Recovery . . . . . . . . . . . . . . . . . . 13 
 Mechanical Testing . . . . . . . . . . . . . . . . . 13 

      Histological Analysis . . . . . . . . . . . . . . . . . 13 

CHAPTER 5.  RESULTS . . . . . . . . . . . . . . . . 15 
 Push-Out Testing . . . . . . . . . . . . . . . . . . 15               
      Histological Analysis . . . . . . . . . . . . . . . . . 15 
 
CHAPTER 6.  DISCUSSION . . . . . . . . . . . . . . . 27 

CHAPTER 7.  CONCLUSION . . . . . . . . . . . . . . . 30 

LIST OF REFERENCES . . . . . . . . . . . . . . . . 31 

VITA . . . . . . . . . . . . . . . . . . . . . . 34



LIST OF FIGURES 
 
 

Fig 1   Mean interfacial strengths of different implant surfaces three and nine weeks 
            post implantation   . . . . . . . . . . . . . . . . . 16
  
Fig 2   Titanium implants at three weeks post implantation . . . . . . . . 17 
 
Fig 3   Titanium implants at nine weeks post implantation . . . . . . . . 18 
 
Fig 4   Plasma spray HA coated implants at three weeks post implantation . . . . 19
    
Fig 5   Plasma spray HA coated implants at nine weeks post implantation . . . . 20 
 
Fig 6   Amorphous HA coated implants at three weeks post implantation . . . . 21
   
Fig 7   Amorphous HA coated implants at nine weeks post implantation . . . . 22
  
Fig 8   Crystalline HA coated implants at three weeks post implantation . . . . 23 
 
Fig 9   Crystalline HA coated implants at nine weeks post implantation . . . . . 24 
 
Fig 10 Graded HA coated implants at three weeks post implantation . . . . . 25
  
Fig 11 Graded HA coated implants at nine weeks post implantation . . . . . . 26
  
 

 

      vi 



CHAPTER 1.  INTRODUCTION 
 
 

 In the Old Testament book, Song of Songs it reads “Your teeth are like a flock of 
sheep just shorn, coming up from the washing.  Each has its own twin; not one of them is 
alone.”  These words were spoken by King Solomon, expressing his admiration to his 
new bride.   Reading this, you can see that sound, healthy teeth were highly valued by the 
early Hebrews.  These words express the esthetic concepts of color, evenness, alignment, 
symmetry, and completeness (Lozada and Goodacre 2003).  Teeth were considered 
objects of beauty, a symbol of strength and the loss of them was equated with weakness 
(Ring 1985). 
 
 Almost since the time man started loosing teeth there have been attempts to replace 
them. Various materials and methods have been utilized in this attempt.  The 
Phoenicians, contemporaries of the Egyptians and Hebrews, attached “ivory teeth” to 
adjacent natural teeth using gold wire (Ring 1985). Between 1,000 and 200 B.C., the 
Etruscans, influenced by the Egyptian and Phoenician civilizations, made bridges to 
replace one or more missing teeth.  The usual practice was to devise bands of soft, pure 
gold to surround remaining teeth.  These bands carried artificial replacements for missing 
teeth and were soldered together. Some had pontics of human teeth, but in most cases, 
they were carved from calves and oxen teeth attached by riveting them to gold bands 
(Lozada and Goodacre 2003; Ring 1985). 
 
 Another method by which lost teeth were replaced was transplantation.  Ambrose 
Pare is credited with being the first to mention transplantation as a way to replace teeth.  
In 1561, he reported that decayed teeth could be replaced with teeth extracted from 
another individual (Lozada and Goodacre 2003).  In “The Surgeon – Dentist; or, Treatise 
on the Teeth” Pierre Fauchard discussed transplantation of teeth from one person to 
another.  An Englishman, John Hunter, was also a strong promoter of tooth 
transplantation.  He introduced a technique where teeth were extracted, boiled, and then 
re-implanted (Ring 1985). 
 
 While excavating in Honduras, an archeological team discovered a mandible of 
Mayan origin.  The specimen, which dated around 600A.D, had three implanted artificial 
teeth carved from shells replacing three mandibular incisors.  After being examined 
radiographically, it was determined that compact bone similar to that which forms around 
blade implants had formed around two of the shells implanted in the mandible (Ring 
1985; Irish 2004).  This may very well be the earliest example of any endosseous 
implant. 
 
 There have been several types of implants used throughout history.  They can be 
classified by their position, constituent material, and design (Worthington et al. 2003).  
According to The American Dental Associations Current Dental Terminology, an implant 
is defined as “material inserted or grafted into tissue; dental implant-device specially 
designed to be placed surgically within or on the mandibular or maxillary bone as a 
means of providing for dental replacement; endosteal (endosseous); eposteal 
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(subperiosteal); transosteal (transosseous)” (The American Dental Association 1995-
2000). 
 
 Endosseous implants are placed into the bone through intraoral incisions in the 
mucoperiosteum.  Some approximate the shape of a tooth root and others are flat plates, 
called blades.  Most claim to incorporate within the living bone or osseointegrate 
(Worthington et al. 2003).  Subperiosteal implants are non-osseointegrated frameworks 
that rest on the surface of the bone.  The framework rests beneath the mucoperiosteum, 
with posts that penetrate the mucosa into the mouth (Worthington et al. 2003).  
Transosseous implants consist of a plate that fits against the lower border of the mandible 
at the symphysis and has posts rising from it.  This type is referred to as the 
transmandibular staple (Worthington et al. 2003).  Among the different types of dental 
implants, endosseous implants are the most commonly used and are the fastest growing 
part of the dental implant market. 
 
 Many types of materials have been used for dental implants.  These include 
vulcanized rubber, porcelain, and metals ranging from alloys of gold, titanium, and 
nickel-chrome-vanadium to commercially pure titanium (Worthington et al. 2003).  
According to a study by Cook et al. (1987), the choice of implant material is just as 
critical an element as the preparation site or the surgical insertion procedure.  Decades of 
materials research have shown that commercially pure titanium (Ti) and its alloys are 
preferred materials for human hard tissue implantation because of their strength, 
comparatively low stiffness, light weight, and relative inertness (Cook et al. 1987).  In 
addition to the different materials, implant designs also come in various forms.  They 
may be either a tapered cylinder or a true cylinder, conforming more or less to the shape 
of a tooth root.  Some implants may also be threaded or non-threaded (Worthington et al. 
2003). 
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CHAPTER 2.  REVIEW OF LITERATURE 
 
 

Osseointegration 
 

 The major breakthrough in implant success came when a physician named Per-Ingvar 
Brånemark and his colleagues were investigating wound healing.  Since 1952, Dr. 
Brånemark and associates have studied the concept of tissue-integrated prostheses at the 
Laboratory of Vital Microscopy at the University of Lund, and subsequently at the 
Laboratory for Experimental Biology at the University of Göteborg (Brånemark 1983). 
 
 Osseointegration was defined by Brånemark and associates as a direct structural and 
functional connection between ordered living bone and the surface of a load-carrying 
implant (Raghavendra et al. 2005).  The initial concept of osseointegration stemmed from 
vital microscopic studies of the bone marrow of the rabbit fibula, which was uncovered 
for visual inspection.  The bone covering the prostheses was ground down to a thickness 
of only 10 to 20 µm.  It was shown that circulation was maintained with very few signs of 
microvascular damage, which is the earliest and most sensitive indication of tissue injury 
(Brånemark 1983).  They performed long-term in vivo microscopic studies of bone and 
marrow response to implanted Ti chambers of a screw-shaped design.  These studies in 
the early 1960s strongly suggested the possibility of osseointegration since the chambers 
could not be removed from the bone once they have healed (Brånemark 1983). 
  
 In separate studies on the healing and anchorage stability of titanium tooth root 
implants, Brånemark et al. reported that when such an implant was introduced into the 
marrow cavity, and following an adequate immobilized healing period, a shell of compact 
cortical bone formed around the titanium implant without any apparent soft tissue 
intervention between the normal bone and the surface of the implant (Brånemark 1983).  
These studies showed that titanium was biocompatible and when surgically placed in 
bone, direct bone contact and complete healing occurred.  This work led to development 
and introduction of titanium root form implants and the concept of osseointregration. 
 
 Osseointegration is now considered by the dental profession as mainstream treatment 
for replacing a single tooth up to a whole arch, or to simply stabilize a denture.  This type 
of endosseous implant has become the most widely used implant in the world and will 
play an ever-increasing role in oral rehabilitation well into the 21st century (Worthington 
et al. 2003). 
 
 Although the endpoint of osseointegration was clear, the mechanisms that lead to this 
state were somewhat of a mystery.  Bone wound healing response at the implant surface 
is a complex process.  With this in mind, Clokie and Warshawsky (1995) did an 
investigation with the purpose “to develop an animal model using the rat tibia and to 
design associated implant technology that would allow for detailed analysis by light and 
transmission electron microscopy of the developing interface between threaded Ti root-
form implants and bone” (Clokie and Warshawsky 1995). They designed this study so it 
replicated as closely as possible to those used for human implant placement.  
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 Morphologic observations indicated that the placement of the titanium implants 
resulted in the bone adjacent to the implant becoming necrotic, resulting in resorption.  
New bone growth was observed from the old bone surfaces filling the threads with 
vascular channels and new lamellar bone. 
    
 This study showed that osseointegration was complete six weeks after placement of 
Ti implants.  This technique provided a success rate of 95%, comparable to those seen 
clinically in humans.  The biocompatibility of titanium which allows the implant to 
osseointegrate, has been demonstrated previously by Brånemark.  The osteoinductive 
influence of the titanium in directing bone development however, has not been 
determined.  This study showed that   new bone was deposited only on previously 
existing bone and extended toward the available space.  There was no apparent 
relationship between the implant and the new bone, therefore suggesting that titanium is 
biocompatible, but not necessarily osteoinductive.   The availability of the animal model 
that resembles the human situation has made it possible to analyze the interface between 
healing bone and titanium implants. This tibial bone model system can be used to 
develop new products that might enhance bone formation (Clokie and Warshawsky 
1995). 
 

The process of osseointegration does have a timeline.  In a literature review by 
Raghavendra et al. (2005), the events involved in bone apposition occur in a series of 
discrete but overlapping stages.  First, immediately after implantation, serum proteins 
adhere to the implant.  During the first 3 days, mesenchymal cells attach and proliferate.  
By day 6, osteoid is produced, and in 2 weeks, matrix calcification is complete.  At 3 
weeks, remodeling of the bone is well under way.  The most critical factor in successful 
osseointegration of an implant is primary stability in the bone at the time of placement, 
and this is easily achieved if bone is of adequate quality and volume (Raghavendra et al. 
2005).  Unfortunately, most patients seeking implantation possess bone of inadequate 
quality and/or quantity, and implants placed in poor bone quality and quantity are at 
greater risk of not establishing primary stability.  Relative motion between the implant 
and the surrounding bone during the early healing phase is considered to be a high risk 
factor for early implant loss as failure of osseointegration occurs (Raghavendra et al. 
2005). 
  
 

Surface Modifications of Implants 
 

 One way to improve implants achieving primary stability is through surface 
modifications.  There have been numerous studies on surface modifications of 
endosseous implants (Marinho et al. 2003; Ferguson et al. 2006).  It has been shown 
through these studies that modifications to implant surface geometry and /or its chemistry 
is effective in accelerating bone formation and achieving reliable implant fixation in less 
than ideal situations.  Modifications of machined threaded implant can be done by 
subtractive methods of surface modifications such as abrasion through blasting with 
titanium oxides or other soluble or resorbable biomaterials, or sandblasting with 
aluminous oxides. In one such study by Marinho and coauthors (2003), the differences in 
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bone-implant contact (BIC) between sandblasted/acid-etched (SLA) and machined-
surface implants were evaluated using the rat tibia model.  The BIC was evaluated at 5, 
15, 30 and 60 days.  The result was that the sandblasted/acid-etched surface demonstrated 
a greater BIC percentage than the machined surface but only at 30 and 60 days of healing 
(Marinho et al. 2003). 
 
 Ferguson et al. (2006) did an evaluation of the interfacial strength of a chemically-
modified sandblasted and acid-etched Ti surface (SLA).   In comparing SLA surfaces to 
chemically-modified sandblasted/acid-etched (modSLA) surfaces, removal torque testing 
performed after two, four, and eight weeks of bone healing suggested that the modSLA 
surface was more effective in enhancing the interfacial shear strength of implants than the 
SLA surface during the early stages of bone healing.  It was also concluded that modSLA 
surfaces enhanced bone apposition when compared to SLA surfaces (Ferguson et al. 
2006).  Additive treatments, such as HA coatings and Ti plasma spraying, have also been 
reported (Raghavedra et al. 2005). 

 
 

Hydroxyapatite 
 

 Bone is a specialized form of mineralized connective tissue consisting by weight of 
33% organic matrix, of which 28% are type I collagen and the other 5% are 
noncollagenous glycoproteins, including osteonectin, osteocalcin, bone morphogenetic 
proteins, bone proteoglycan, and bone sialoprotein.  The other 67% inorganic portion of 
the bone is made up of HA, which permeates the organic matrix. 
 
 The feature that distinguishes bone from other connective tissue is the mineralization 
(Ross et al. 1995) (Ong and Chan 1999).  The mineral is calcium phosphate (CaP), in the 
form of HA crystals [Ca10(PO4)6(OH)2].  Since HA is found in bone, it is very 
biocompatible.  It displays osteoconductivity, a property that encourages bone already 
formed to lie closely to, or adhere to, its own surface (Sun et al, 2001).  Because CaP 
materials are ceramics, they are known for their poor mechanical properties, due to their 
brittle behavior.  The rationale for HA coatings of 50-100 µm thickness originated from 
the desire to combine the strength of titanium with a bioactive HA surface (Ong et al. 
2006).    The use of HA-coated implants has been reported to stimulate bone healing.  
This has been attributed to HA’s osteoconductive property, thus resulting in an 
improvement in the rate and strength of initial implant integration (Ong and Chan 1999; 
Ong et al. 2006).  For this reason, HA is being studied as a surface modification on dental 
implants for improved osseointegration. 
 

Various methods have been used to deposit the HA coatings on implants.  Among 
these are dip coating-sintering, immersion coating, electrophoretic deposition, ion-beam 
sputter coating and dynamic mixing, hot isostatic pressing (HIP) and thermal spraying 
techniques such as plasma spraying, flame spraying, and high-velocity oxy-fuel (HVOF) 
combustion spraying (Sun et al. 2001).  The current popular method of deposition of HA 
on titanium implants is by plasma spraying or arc plasma spraying.  
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Plasma Spraying 
 

 Before plasma spraying takes place, the surface of the implant can be textured into 
microstructured, macrostructured, or porous morphologies.  The microstructuring can be 
produced by grit blasting or beading.  Grit blasting alters the smoothness of the metal 
surface to produce a roughness of approximately 3-6 µm.  This method has been shown 
to be successful in implant fixation and is currently the major method for implants in 
clinical use (Sun et al. 2001).   Plasma spraying of HA usually takes place under normal 
atmospheric conditions, as opposed to the plasma spraying of some metallic powders 
during which a vacuum or an inert atmosphere is used to minimize oxidation.  This 
process produces a coating with a thickness of greater than 30 µm (Ong and Chan 1999). 
 
 The thermal spraying process utilizes a gas stream to carry HA powders, which are 
then passed through electrical plasma produced by a low-voltage, high-current electrical 
discharge (Ong and Chan 1999).  An expansion of the gas results as the temperature 
increases (up to 30,000 ºC), causing the carrier gas stream to pass through the electric arc 
at approximately the speed of sound (Ong et al. 2006).  The gas may be pure argon or a 
hotter plasma that is produced by a small addition of hydrogen or other gases.  The semi-
molten HA powders are sprayed onto the titanium substrate, where they solidify.  The use 
of thermal spraying is popular due to its simplicity, high deposition rates, and sufficiently 
low cost (Ong and Chan 1999).  
 
 However, there are problems associated with this process.  Some of the problems 
reported by Ong et al. (1999; 2006) include variations in bond strength between the 
coatings and the metallic substrates, alterations in HA structure due to the coating 
process, poor adhesion between the metallic substrates and the coatings, non-uniformity 
in coating thickness between vendors, alteration in structural and chemical properties 
during the coating process, and non-uniformity in coating density (Ong and Chan 1999; 
Ong et al. 2006). 
 
    Cheang and Khor (1996) attributed the problems associated with plasma spraying to 
improper melting of the feedstock, reproducibility, and satisfying biomedical 
requirements (Cheang and Khor 1996).  Arc instabilities, which have an effect on the 
plasma jet outside the nozzle was also reported by Ong et al. (2006).  Gas injection mode, 
spraying parameters, condition of the anode wall, and electrode design govern these 
instabilities.  Only the spraying parameters (power, current, distance between nozzle and 
substrates, plasma work gas rate, carrier gas rate, powder feed rate, and spraying time) 
are variable, the rest are fixed with the chosen equipment.  Plasma work gas composition 
is the most important spraying parameter, regulating the desired coating properties such 
as the crystallinity and coating thickness.  By adding hydrogen to the argon gas in the 
plasma spraying process, coatings of a higher crystallinity will be produced.  Adding 
nitrogen gas results in a thicker coating layer.  By altering the gas composition of the 
plasma-spraying technique, amorphous or crystalline HA coating with varying thickness 
can be produced (Ong et al. 2006). 
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Despite the concerns, plasma spraying is the current commercial process for 
depositing hydroxyapatite coatings on dental implants.  In 1987, Cook et al. reported a 
study investigating the interface mechanical characteristics and histology of 
Commercially Pure (CP) Ti and plasma sprayed HA-coated Ti at 5, 10, and 32 week 
intervals. Two significant observations were made in this study:  the HA-coated Ti 
implants were always more tightly bound than Ti implants (greater interface shear 
strength) and the establishment of significant interface strength was rapid for the HA-
coated system.  The HA-coated system was reported to develop five to eight times the 
mean interface shear strength of the uncoated, bead-blasted Ti implants (Cook et al. 
1987). 

   
HA-coated implants also showed the best histological results.  By week 10, the 

interface was highly mineralized with direct apposition of bone to the HA-coated implant 
surface.  There was no evidence of fibrous tissue at the interface and partially mineralized 
osseous tissue prevailed over the entire implant surface in areas of noncortical bone 
contact giving the implant the appearance of being totally encapsulated in bone. By week 
32, the osseous layer in areas of noncortical bone contact now appeared fully 
mineralized.  Normal bone histologic features characterized the bone surrounding the 
HA-coated implants.  It was concluded that the use of HA-coated Ti implants may be 
attractive for use in endosseous dental implant systems (Cook et al. 1987). 

  
In comparing titanium plasma-sprayed (TPS) to plasma-sprayed HA implants in vivo, 

it was concluded that TPS and HA implants exhibited similar pull-out strength (Ong et al. 
2004).  In comparing plasma-sprayed HA coatings to CaP coatings produced by 
radiofrequency-sputtering, Ong et al. (2002) suggested that the CaP coatings produced 
bone responses similar to those of the plasma-sprayed HA coatings.  Other studies on 
anodically modified, machined, and HA-coated implants after a healing period of 3, 6, 
and 12 weeks indicated a broad-based apposition of bone to the HA-coated and 
anodically roughened surfaces and a narrow bone contact to the machined surface 
(Zechner et al. 2003).  It was concluded that HA-coated and anodically roughened 
implants provide a similar rate of bone-to-implant contact and that these surfaces may be 
of particular benefit due to their higher stability in maintaining preimplantation functional 
strength after implant healing (Zechner et al. 2003). 
 
 In a study by Sun et al. (2002), HA-coated implants were reported to exhibit a more 
rapid fixation and stronger bonding between host bone and the implant.  The use of HA 
coatings were also reported to increase uniform bone ingrowth and/or ongrowth at the 
bone-implant interface (Sun et al. 2002).  Despite excellent bone-implant interaction, one 
concern over the use of HA-coated implants is the resorption of HA coatings in a 
biological environment which may possibly lead to coating disintegration, loss of bond 
strength and fixation, and the threat of particulate debris formation (Sun et al. 2002).  It 
was reported that the amorphous phase has a higher tendency to form at the coating-metal 
interface than in the coating (Sun et al. 2001).  Bone growth occurs at a faster rate when 
the coating has a higher content of amorphous phase because of more rapid initial 
dissolution.  As the bone grows toward the implant, the collagen incorporates the HA 
crystals in the body to produce a strong interface.  However, the fast resorption of the HA 
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coating may lead to the loss of the fixation and coating bonding resulting in loosening of 
the implant. 
 
 There have been six mechanisms of resorption hypothesized, but only two of them 
concern the clinical use of HA coatings.  The first is the dissolution at neutral pH, and the 
second is osteoclastic resorption of the coating as part of normal bone remodeling (Sun et 
al. 2002).   Partial dissolution of the HA coating is essential to trigger bone growth, but 
exceedingly rapid dissolution leads to poor bone bonding and coating disintegration (Sun 
et al. 2002).  In 2001, Sun et al. reported that the coating microstructure and properties 
can be a good predictor of the expected behavior in the body (Sun et al. 2001). 
 
 In a case report by Trisi et al. (2005) two mandibular HA coated implants were 
retrieved postmortem after 10 years of functional loading.  They reported that the 
coatings of the implants examined were maintained on most of the surface.  HA coating 
disappearance did not exceed 25% of the implant surface after 10 years of functional 
loading.  It occurred on both the endosseous and coronal portion of the implant.  They 
concluded that the absence of HA in a few areas did not compromise the direct contact 
between bone and the implant surface, since the bone achieved direct apposition to the 
underlying titanium surface (Trisi et al. 2005). 
 
   Aside from the concern with resorption, there is also a concern with the alteration 
of HA composition during deposition.  According to Sun et al. (2001), the typical 
feedstock for HA coatings is a fully crystalline pure HA powder.  After plasma 
spraying has occurred, both the purity and crystallinity of the HA decreases because 
of the decomposition of HA at high temperature and the rapid cooling rate.  New 
phases appear in the HA coating, including an amorphous phase, tricalcium 
phosphate, tetracalcium phosphate, and calcium oxide.  The calcium oxide phase is 
not biocompatible and should be avoided (Sun et al. 2001).  To obtain HA coatings 
with predictable properties, both the purity and the crystallinity should be effectively 
designed.  For this to occur, both the spray parameters and the quality of the original 
feedstock HA powders should be strictly controlled.  The general agreement is that 
the chemical purity of HA should be as high as possible (≥ 90%) with a Ca/P ratio of 
1.67 (Sun et al. 2001).  Most manufacturers follow this guideline to ensure 
predictable implant performance.  However, there is no agreement on the 
crystallinity of the HA coating.  Plasma spraying has the ability to produce 
crystalline coatings from 30% to 70%.  Under a normal deposition process, the 
crystallinity is approximately 65% (Ong et al. 2006).   The measurement of the 
crystallinity has been mainly performed with x-ray diffraction and supplemented 
with infrared spectroscopy, where both the lower crystal perfection caused by 
cooling from high temperatures and an amorphous phase are considered (Sun et al. 
2001).  Early fixation could also be achieved with a high-crystalline, high-purity 
coating, which is probably because of the existence of residual stress, pores, and the 
small crystal size of the thermal spray coating.  However, these coatings usually 
contain more unmelted or partially melted particles, which could also lead to lower 
bonding and cohesive strength (Sun et al. 2001). 
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Studies have been done evaluating the crystallinities of hydroxyapatite coatings.  Oh 
et al. (2005) stated that the influence of CaP and HA crystallinity on bone-implant 
osseointegration is not well established.   In their study, the effect of HA coatings with 
different crystallinities on the interfacial strength and morphology at the bone-implant 
interface indicated significantly greater interfacial strength and bone contact length for 
implants with the 70% crystalline coating as compared to HA crystallinity of 30%, 50%, 
and 90%.  Berube et al. (2005) indicated that the degree of crystallinity is important for 
the bioactivity of the HA surface.  It was reported that the more crystalline HA the 
coating contains, the more resistant to dissolution.   An increase in the concentration of 
the amorphous calcium phosphate and tricalcium phosphate tend to increase dissolution.  
Using sputtered deposition process to produce 0% (amorphous), 1.9% ± 0.4% 
(crystalline) and 66.4% ± 2.8% (crystalline) coatings, Berube et al. (2005) reported that 
osteoblast differentiation and function were similar on Ti and HA surfaces with 66.4% 
crystallinity.  In addition, HA with 66.4% crystallinity exhibited superior osteoblast 
function when compared to amorphous and poorly crystalline HA surfaces.  Similarly, 
Yang et al. (2005) reported that tissue responds differently to biomaterials of different 
crystallinities.  Although no significant difference in albumin adsorption and initial 
osteoblast precursor cell attachment was observed for amorphous up to 70% HA 
crystallinity, a significant lower albumin adsorption and osteoblast attachment was 
observed on HA surfaces with 100% crystallinity (Yang et al. 2005). 

 
In an in vivo study by Chang et al. (1999) using sand-blasted Ti and HA-coated Ti of 

50%, 70%, and 90% crystallinity, it was reported that all HA coatings decreased in 
thickness over the 26 weeks study period.  Most noticeable decrease in coating thickness 
was observed during the first four weeks of implantation, with the 50% crystallinity 
showing the most resorption of all the coatings.  It was also reported in the study that 
bone contact with Ti implants increased in a time-dependent pattern, whereas a sudden 
increase was noted for the HA-coated implants at the four week but reached a plateau at 
the 12 week mark.  No significant difference in bone contact was observed for the HA-
coated implant during the 26 week study.  This observation suggested that HA-coated 
implants enhanced osseointegration in the early stage of bone healing and provided 
strong bone-bonding capacity, although Ti implants have about the same level of bone 
contact in the later stage of healing. 

 
 It has been observed in recent studies that bone responds differently to hydroxyapatite 
surfaces of different crystallinity (Oh et al. 2005).  Some indicates higher bone activity 
with highly crystalline films, others suggesting that some amorphous phase in the 
coatings is desirable promoting a more stable interface with the biological environment.  
As stated previously, the most common means of applying HA to implants is by plasma 
spraying.  This process produces a thick coating, typically between 79µm and 111µm, 
with a high degree of crystallinity (Rabiei et al. 2005). Although HA has excellent 
biocompatibility properties, the brittleness of the HA coating often results in wear, 
cracking and fracture (Khor et al. 2003).  Some studies have indicated that thin HA 
coatings (2µm) have a significantly greater coating-metal interfacial strength compared 
with commercially available thick (70µm) plasma-sprayed HA coatings (40 MPa vs. 
9MPa) (Rabiei et al. 2005). 
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 Khor et al. (2003) reported that the approach to solving this problem is the 
development of a novel HA/Ti-6Al-4V functionally graded coating.  These functionally 
graded materials (FGM) are a new generation of composites with a gradual compositional 
or structural variation.  The graded structure FGM allow the integration of dissimilar 
materials such as ceramics and metals without severe internal stress and combine diverse 
properties into a single material system.  The FGM shows excellent biocompatibility and 
bone-bonding ability, since the surface layer is HA.  Excellent mechanical strength is 
contributed by Ti-6Al-4V phase (Khor et al. 2003).  In this study by Khor et al. (2003), 
functionally graded hydroxyapatite (HA)/Ti-6Al-4V coatings were produced by plasma 
spraying, using specially developed HA-coated Ti-6Al-4V composite powders as 
feedstock.  Their aim was to characterize the microstructure, phase composition, and 
mechanical properties of single-layered composite coatings and laminated FGC.  Cross-
sectional microstructure revealed the FGC coatings to be relatively uniform and compact.  
No clear differences between two adjacent layers of different compositions were found, 
resulting in a reasonably uniform microstructure.  This graded distribution can decrease 
the high thermal stress and improve the properties of coatings.  X-ray diffractometry 
revealed the presence of HA and α-Ti.  No other calcium phosphate phases were found, 
only a bit of CaO phase.  The tensile bond strength of the two-layered and three-layered 
FGC was much higher than the conventional HA coating on Ti-6Al-4V substrate. 

   
In a study by A. Rabiei et al. (2005), hydroxyapatite films with graded crystallinity 

were prepared using a novel dual-ion beam sputtering in situ annealing process.  These 
graded crystallinity films deposited using IBAD techniques exhibited better nanohardness 
and Young’s modulus values than films that were prepared by sintering or sputtering and 
post-deposition annealing.  The authors anticipate that these novel functionally graded 
films can improve the implant-tissue interface in next-generation dental implants. 
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CHAPTER 3.   RESEARCH OBJECTIVES 
 
 

 Replacing missing teeth with dental implants is becoming more and more 
commonplace.  As the population ages, implants must be developed that will function 
longer.  In vitro experiments have led us to hypothesize that dental and orthopedic 
implants coated with a new type of material that is similar in composition to bone mineral 
(nano-structured hydroxyapatite) will bond more rapidly and more completely to the 
bone when compared to non-coated Ti implants.  The purpose of the present study is to 
evaluate bone-implant interaction of functionally graded, thin film hydroxyapatite (HA) 
coatings in an animal model.  The rationale for the graded coatings is such that they elicit 
different biological responses from different layers within the thin film.  As such in this 
study, the graded coatings consist of an initial layering of crystalline HA coatings 
followed by the layering of an amorphous coating on the crystalline HA surface.  
Controls for this study are (a) plasma-sprayed HA, (b) amorphous HA, (c) crystalline 
HA, and (d) non-coated Ti.  The long-term goal of this study is to improve the bone-
implant interface leading to improved design and construction of implants and improved 
long term success.  As such, the following specific aims and hypotheses for this study 
are: 

 
 

Specific Aim I 
 

 To evaluate bone-implant interfacial strength associated with titanium and available 
HA coatings in a rat model. 

 
 

Hypothesis I 
 

 An improvement in the ultimate interfacial strength of the implants can be achieved 
by having a layer of graded HA coatings.  This hypothesis was tested by placing coated 
pins in the rat femur and push-out testing was performed at three weeks and nine weeks 
after implantation. 

 
 

Specific Aim II 
 

 To histologically correlate the quality of interfacial bone response to interfacial 
implant strength for titanium and available HA coatings. 
  
 

Hypothesis II 
 

 The quality of interfacial bone response to available HA coatings and titanium is 
correlated to the interfacial implant strength.  Histological sections of the bone-implant 
interface will be evaluated at three weeks and nine weeks after implantation. 
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CHAPTER 4.   METHODS AND MATERIALS 
 
 

Material Preparation (Implants) 
 

Rods of grade two commercially pure titanium (President Titanium, Hanson, MA) of 
0.125 inch diameter were machined to produce cylindrical implants 1.8 mm in diameter 
and 2.0 mm in length. 

  
The implants were divided into five groups.  Of these five groups, one group was left 

uncoated and each of the remaining four groups were coated with either a plasma sprayed 
HA, amorphous HA, Crystalline HA or graded coating (crystalline followed by 
amorphous) HA.  The first four implant groups were used as the controls for this study. 
 
 

Implantation 
 

Forty Sprague-Dawley rats weighing approximately 250 g apiece were used for this 
study.  All animal experiments were in compliance with U.S. Department of Agriculture 
programs and U.S. National Institutes of Health publication 86-23, Guide for the Care 
and Use of Laboratory Animals.  Appropriate considerations were given to all policies, 
standards, and guidelines governing the proper use, care, handling, and treatment of 
animals.  The study was approved by an institutional review board. 

  
     The animals were divided into five groups of eight, the first group having 
commercially pure titanium implants placed in the left femur, second group, plasma 
sprayed HA, third group, amorphous HA, fourth group, crystalline HA, and fifth group, 
graded crystalline HA implants. The rats were anesthetized with a premixed cocktail of 
ketamine, xylazine, and acetylopromazine (8.5/1.7/0.2 mg/kg body weight).  The cocktail 
was administered intramuscularly using 0.1 cc of cocktail per 100 g body weight. 
  

Under anesthesia, the hind left limb was shaved and cleaned with a povidone iodine 
solution.  A 15 mm incision was made over the prominence of the femur bone.  Using 
blunt dissection, the muscles were separated over the femur to expose the periosteum.  
After dissection of the periosteium, two transcortical holes were formed at intervals of 4 
mm by drilling with a slow-speed (500 rpm) dental hand- piece equipped with a 1.8 mm 
trephine bur.  The implant sites penetrated into the marrow cavity of the femur.  Profuse 
irrigation with physiologic saline was maintained throughout the drilling to minimize the 
temperature rise in the bone.    

 
Cylindrical implants measuring 1.8 mm in diameter and 2 mm in length were placed 

in each surgically prepared hole by tapping with a mallet until the top of the implant was 
flush with the cortical bone surface.  The periosteium was reapproximated, the muscle 
replaced, and the skin closed using metal surgical staples.  A total of 80 implants were 
used, two in each femur.  The rats were allowed to recover from anesthesia in a warm 
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environment while being observed.  All animal were monitored twice daily, especially 
during the first week after surgery.   

 
 

Implant Recovery 
 

 At two time intervals (three weeks and nine weeks post implantation) 20 rats (four 
from each group) were euthanized using carbon dioxide asphyxiation.  Immediately after 
sacrificing the animals, the femur containing the implants were exposed.  The bone was 
disarticulated at the hip and knee joints, and stored in normal saline solution.  In 
preparation for testing, the excess tissue was removed from the bone-implant block.  To 
evaluate the interfacial strength of the implants at the bone-implant interface, push-out 
testing was preformed.  The testing was done within eight hours after sacrificing the 
animals.  The implants used for the histological analysis of the bone-implant contact were 
fixed for eight hours in a 4% buffered paraformaldehyde solution.   
 
 

Mechanical Testing 
 

The ultimate interfacial strength of the implants at the bone-implant interface over 
time and treatment was determined using push-out testing conducted with an Instron 
mechanical tester (model 1125; Instron, Canton, MA).  Immediately after sacrificing the 
animals, the femur containing the implants were stored in normal saline.  Of the eight 
implants per time point per group, six were used for mechanical testing and two for 
histological evaluation.  The six implants per time point per treatment were evaluated 
within four hours after sacrifice using a crosshead speed of 1 mm/min.  The ultimate 
interfacial strength (s) was calculated using the formula s = P/pdh, where P was the 
ultimate pull-out load (N), d was the diameter of the implant (mm), and h was the length 
of the implant (mm) in bone.  The Ultimate interfacial strengths for the different groups 
of implants were statistically analyzed using an analysis of variance (ANOVA), with 
Sheffe’s procedure as a post-hoc test.  Differences were considered significant at the P 
< .05 level. 

 
 

Histological Analysis 
 

     A total of two implants per time point per treatment were used for histological 
evaluation of the bone-implant interface.  The bone-implant specimens were recovered 
from the 4% buffered paraformaldehyde solution in which they were fixed. They were 
then trimmed to within 4 mm of the implant surface using an electric hand-piece (NSK 
Volvere GX, Model FC-35, Nakanishi Dental, Japan) and a diamond disc (Brasseler 
Dental Rotary Instruments, Savannah,GA).   
 
     Dehydration of the specimens was accomplished using a graded series of ethyl 
alcohols and three stages of clearing fluid (xylene) in tightly capped specimen jars.  
Infiltration was performed using a graded series of xylene and Osteo-Bed resins (Poly-
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sciences, Warrington, PA), followed by a catalyzed mixture of Osteo-Bed resin 
containing 1% (wt/vol) of benzoyl peroxide.  Embedding the specimens involved using a 
final catalyzed resin mixture of Osteo-Bed solution containing 2.5% (wt/vol) of benzoyl 
peroxide.  The specimens were then embedded in the final catalyzed resin mixture and 
placed under a curing lamp until final polymerization. 
 

The embedded specimens were removed from the vials by breaking the glass.  The 
specimens were trimmed of excess resin and sectioned using the Leco VC-50 precision 
diamond saw (Leco Co., St. Joseph, MI).  The specimen sections were furthered reduced 
in size using an electric sander and decreasing grits of sandpaper (rough to fine).  After 
placement of specimens on glass slides they were then stained using Paragon stain 
(purple for connective tissue), destained in acid alcohol (30% ethanol in 1% HCL), and 
counterstained in aqueous 1% alizarin red (for mineralized calcium).  Longitudinal 
sections of the bone-implant specimens were prepared and examined under a stereo 
microscope. The specimens were then qualitatively analyzed. 
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CHAPTER 5.  RESULTS 
 
 

Push-Out Testing 
 

The mean ultimate interfacial strengths of the five implant groups, at three and nine 
weeks post implantation, are shown in Figure 1.  There was no statistical difference 
noted between the five groups at three weeks following implantation.  The interfacial 
strength of all groups had increased by week nine.  The plasma sprayed hydroxyapatite 
implants exhibited the highest statistical interfacial strength (Group 2) among the five 
groups tested.  No statistical difference was indicated for the crystalline hydroxyapatite 
coated (Group 4) and graded crystalline hydroxyapatite coated implants (Group 5).  
Similarly, no statistical difference was observed between the amorphous hydroxyapatite 
coated implants (Group 3) and the commercially pure titanium implants (Group 1). 

  
 

Histological Analysis 
 

 Figures 2 to 11 show representative histological images of implant-bone interfaces at 
three and nine weeks post implantation. The qualitative analysis at three weeks indicated 
the presence of connective tissue at the tissue-implant interface for all implant groups 
tested.  By nine weeks after implantation, all HA coated implants exhibited more bone 
formation at the bone-implant interface when compared to the non-coated Ti implants.  
The amount of bone at the bone-implant interface was greatest for the plasma-sprayed 
HA implants, followed by graded HA implants.  The crystalline HA implant-bone 
interface was observed to have less bone formation when compared to the graded HA 
implant-bone interface, whereas the amorphous HA implant-bone interface was observed 
to have the least amount of bone formation among the HA groups tested. 
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Fig. 1 Mean interfacial strengths of different implant surfaces three and nine weeks post 
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Fig. 2 Titanium implants at three weeks post implantation. 
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Fig. 3 Titanium implants at nine weeks post implantation. 
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Fig. 4 Plasma spray HA coated implants at three weeks post implantation. 
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Fig. 5 Plasma spray HA coated implants at nine weeks post implantation. 
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Fig. 6 Amorphous HA coated implants at three weeks post implantation. 

 

 

 

      21 



 

 

 

Fig. 7 Amorphous HA coated implants at nine weeks post implantation. 
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Fig. 8 Crystalline HA coated implants at three weeks post implantation. 
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Fig. 9 Crystalline HA coated implants at nine weeks post implantation. 
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Fig. 10 Graded HA coated implants at three weeks post implantation. 
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Fig. 11 Graded HA coated implants at nine weeks post implantation. 
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CHAPTER 6.   DISCUSSION 
 
 

 The concept of tooth replacement is not new.  Almost since man started loosing teeth, 
efforts have been made to replace them.  Early attempts can be attributed to the 
Phoenicians, Etruscans and Egyptian civilizations for making bridges to replace one or 
more missing teeth.  The Mayan Indians carved teeth from sea shells and tapped them 
into the mandible, resulting in the earliest example of endosseous implants (Ring 1985). 
 
 Maggiolo introduced the more recent history of dental implants.  In 1809 he used 
gold in the shape of a tooth root to replace missing teeth.  But the early 1900’s marked 
the beginning of the modern implant era.  In 1938, Dr. Alvin Strock inserted the first 
vitallium dental screw implant replacing a maxillary lateral incisor.  This implant lasted 
more than 15 years. 

   
The major breakthrough in dental implant success came in 1952, when a physician, 

Dr. Per-Ingvar Brånemark and his colleagues were investigating the wound healing of 
titanium chambers of a screw-shaped design, inserted into a rabbit fibula.  It was 
observed during these studies that the titanium chambers were hard to remove from the 
bone. These studies led to dental implant application in early 1960 (Brånemark 1983).   
Brånemark coined the term osseointegration, referring to the structural and functional 
connection between ordered living bone and the surface of a load-carrying implant. No 
other person in recent history has influence root form implant concepts more so than 
Brånemark. 

 
Since that time, extensive research has been done to improve the osseointegration of 

dental implants.  One of the most important factors in establishing osseointegration of an 
endosseous implant is the rapid formation of bone.  Bone consists of organic and 
inorganic components.  The mineral is calcium phosphate, in the form of HA crystals. 
When implants are placed, these components work together to heal and remodel bone 
after the surgical insult. 

 
 The process of osseointegration does have a timeline though.  As described by 
Raghavendra et al. (2005), the events involved in bone apposition occur in a series of 
discrete but overlapping stages.  First, immediately after implantation, serum proteins 
adhere to the implant.  During the first three days, mesenchymal cells attach and 
proliferate.  By day six, osteoid is produced, and in two weeks, matrix calcification is 
complete.  At three weeks, remodeling of the bone is well under way.  The most critical 
factor in successful osseointegration is primary stability in the bone at the time of implant 
placement, and this is easily achieved when bone is of adequate quality and volume 
(Raghavendra et al. 2005).  Unfortunately, most patients lack this, and implants are at 
greater risk of not establishing primary stability.  The relative motion between the 
implant and the surrounding bone caused by lack of primary stability is considered to be 
a high risk factor for early implant loss as failure of osseointegration occurs 
(Raghavendra et al. 2005). 
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Throughout the years many materials have been used in implant fabrication.  But 
decades of materials research have shown that commercially pure titanium (Ti) and its 
alloy Ti-6Al-4V are the preferred materials for human hard tissue implantation because 
of their strength, comparatively low stiffness, light weight, and relative inertness (Cook et 
al. 1987). 

   
It has also been shown through extensive research that surface modifications on 

titanium implants greatly enhance osseointegration.  These modifications to the implants 
surface geometry and /or its chemistry is effective in accelerating bone formation and 
achieving reliable implant fixation in less than ideal situations.   Surface modifications 
can be subtractive, such as acid-etching or additive, using plasma sprayed HA coatings. 

 
Hydroxyapatite coatings over titanium have enjoyed a rapid rise due to its inherent 

biomaterial properties.  Hydroxyapatite is a calcium phosphate that is biocompatible and 
osteoconductive, encouraging bone already formed to lie close to, or adhere, to its surface 
(Sun et al. 2001).  The rationale for HA coatings on implants originated from the desire 
to combine the strength of titanium with a bioactive HA surface (Ong et al. 2006).  Sun et 
al. (2002) noted that HA coated implants exhibited a more rapid fixation and stronger 
bond between the host bone and implant.  They also saw uniform bone ingrowth at the 
bone-implant interface. 
   

The current popular method of deposition of HA on titanium implants is by plasma 
spraying or arc plasma spraying.  This process produces a coating with a thickness of 
greater than 30 µm (Ong and Chan 1999).   However, problems are associated with this 
process.  Ong et al. (1999; 2006) reported variations in bond strength between the 
coatings and the metallic substrates, alterations in HA structure due to the coating 
process, poor adhesion between the metallic substrates and the coatings, non-uniformity 
in coating thickness between vendors, and non-uniformity in coating density.  The 
thickness of the coatings can vary from 79 to 111 µm (Rabiei et al. 2005).  Although the 
biocompatible properties of HA are excellent, the brittleness of the coating often results 
in wear, cracking and fracture (Khor et al. 2003).  In a study by Rabiei and associates 
(2005) it was indicated that thin HA coatings (2µm) have a significantly greater coating-
metal interfacial strength compared with commercially available thick (70µm) plasma-
sprayed HA coatings (40 MPa vs. 9MPa). 

 
In the present study, bone-implant interaction of functionally graded, thin HA 

coatings were evaluated.  These implant coatings consisted of a thin film of crystalline 
coating covered by a thin film amorphous coating.  The thickness of the graded coating 
was 2µm or less.  The controls were non-coated Ti, plasma sprayed HA, Amorphous HA, 
and Crystalline HA coatings.  Push-out mechanical test were used to infer information 
about the interfacial bond strength between the bone and the implant interface and 
histological analysis was used to evaluate bone response in correlation with the interfacial 
strength of the implants.  These tests were performed at three weeks and nine weeks post 
implantation. 
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The push-out test results observed in the present study for graded HA coated implants 
was not statistically different than the control implants at three weeks after implantation, 
suggesting comparable interfacial bond strengths.  At nine weeks post implantation all 
groups had increased interfacial bond strengths.  The graded coated implants interfacial 
bond strength was greater than the Ti, crystalline HA, and amorphous HA, but not the 
plasma sprayed HA.  This result partially supported hypothesis I in that the graded HA 
coated implants showed improved interfacial strength when compared to Ti, crystalline 
HA, and amorphous HA, but not the Plasma sprayed HA.  This was supported by the 
histological findings, which at three weeks, indicated the presence of connective tissues 
at the tissue-implant interface for all implant groups and by week nine, all HA coated 
implants exhibited more bone formation at the bone-implant interface when compared to 
the non-coated Ti implants.  Qualitative assessment of bone at the interface supported the 
second hypothesis, revealing that plasma sprayed HA had greater bone-implant contact 
than the graded HA, followed by crystalline HA, amorphous HA and Ti. 
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CHAPTER 7.   CONCLUSION 
 

 
This study determined that the ultimate interfacial bone-implant strength of all 

implant coatings and the non-coated Ti were similar at the three week post implantation 
period.  In addition, qualitative histological evaluation of the implants at this time 
correlated with these findings showing mostly connective tissue at the implant interface 
with some new bone formation.  This was to be expected at this time period.  However, at 
nine weeks post implantation, the ultimate interfacial strength of the plasma sprayed was 
statistically higher than the other coated and non-coated Ti implants.  The graded and 
crystalline coated hydroxyapatite implants resulted in statistically similar strengths due to 
the early dissolution of the outer amorphous layer of the graded hydroxyapatite.  This 
dissolution caused the bone to react to the crystalline layer, thus resulting in similar push-
out strengths.  The amorphous hydroxyapatite coated implants and non-coated titanium 
implants resulted in statistically similar lowest strengths due to early dissolution of the 
amorphous coating.  This dissolution allowed the bone to react to the titanium implant, 
resulting in similar push-out strengths.  The qualitative analysis of the histological data at 
nine weeks correlated with the interfacial bone-implant results. 

      
To date, plasma spraying is the most commonly used method of depositing 

hydroxyapatite coatings on titanium implants.  Although it is financially feasible, the 
commercially available plasma sprayed coatings can substantially differ in crystallinity, 
thickness and surface characteristics between proprietors.  Anyone of these variables can 
have a distinct affect on how the tissue will respond.  The functionally graded coatings 
used in this study could possible eliminate some of the problems associated with the 
commercially available plasma sprayed hydroxyapatite, especially the variability of the 
coating thickness.  Therefore, it is concluded that the functionally graded hydroxyapatite 
films be further studied to improve tissue-implant interfaces for medical and dental 
implants. 
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