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Activity of Epithelial Defensin HBD-3 Against a Periodontal Pathogen Activity of Epithelial Defensin HBD-3 Against a Periodontal Pathogen 

Abstract Abstract 
Defensins are cationic (positive-charged) peptides with broad-spectrum antibiotic activity. In humans, 
there are two types of defensins, alpha (α) and beta (β). Human neutrophils contain four α-defensins 
known as Human Neutrophil Peptide (HNP) 1-4. Epithelial cells produce four β-defensins known as 
Human Beta Defensin (HBD) 1-4. Gram-negative anaerobic bacteria that are associated with periodontal 
disease are resistant to human α-defensins, but are killed by β-defensins. 

HBD-3 is the most active β-defensin. HBD-3 is a longer peptide than HNP 1-4. HBD-3 has additional amino 
acid residues with hydrophobic side chains near the N-terminus and residues with cationic side chains at 
the C-terminus. 

Objectives: (1) Confirm that the periodontal pathogen A.a. (Aggregatibacter actinomycetemcomitans) is 
resistant to HNP-1 but killed by HBD-3; (2) Determine if the N-terminal or C-terminal portion of HBD-3 can 
account for activity against A.a.; (3) Determine whether HBD-3 binds to lipopolysaccharide (LPS), which 
covers the surface of gram-negative bacteria; (4) Determine whether binding of the hydrophobic N-
terminus of HBD-3 to the hydrophobic lipid A portion of LPS accounts for activity of HBD-3 against A.a. 

Methods: Non-pathogenic Escherichia coli and pathogenic A.a. Y4 bacteria were incubated with 
recombinant HBD-3 or HNP-1 purified from human neutrophils. Bacteria were also incubated with 
synthetic peptides CHRG07 and CHRG01. These peptides have sequences derived from the HBD-3 N-
terminus and C-terminus, respectively. The number of viable bacteria was determined by diluting, plating 
on solid growth medium, and counting colonies. 

Bacteria were also incubated with HBD-3 and purified LPS from E. coli or A.a. to determine whether 
purified LPS absorbs HBD-3 and blocks killing. Similar experiments used purified lipid A or deacylated-
LPS, which lacks the hydrophobic fatty acids of the lipid Aportion of LPS. 

Results: HBD-3 had strong bactericidal activity against A.a. under the usual assay conditions for α-
defensins (in dilute culture medium) and the usual assay conditions for β-defensins (in buffer without 
nutrients). HBD-3 at 5 µM gave 90 to 99% killing of A.a.within 2 to 4 h. In contrast, HNP-1 had no activity 
against A.a. regardless of assay conditions, confirming that A.a. is resistant to HNP-1 but killed by HBD-3. 

Both CHRG07 and CHRG01 killed A.a., but CHRG07 was much more active. The activity of CHRG07 was 
equal to that of HBD-3, indicating that the mixture of hydrophobic and cationic amino acid residues at the 
N-terminus can account for HBD-3 activity againstA.a. 

Purified LPS from E. coli or A.a. blocked the activity of HBD-3 at a 1:1 ratio of LPS to HBD-3, indicating 
that one molecule of HBD-3 binds to each molecule of LPS. Deacylated-LPS also blocked HBD-3 at a 1:1 
ratio, but purified lipid A did not block. Although HBD-3 binds to LPS, and hydrophobic residues near the 
N-terminus of HBD-3 appear to be important for killing of A.a., the hydrophobic lipid A portion of LPS was 
not the binding site for HBD-3. Binding of HBD-3 to other hydrophobic substances such as membrane 
proteins or phospholipids may be important to HBD-3 activity against A.a. 

Conclusions: Resistance of A.a. to leukocyte α-defensins is probably important to the ability of A.a. to 
cause disease. On the other hand, the epithelial cell β-defensins probably help to protect healthy 
individuals against oral disease. Small synthetic peptides such as CHRG07 that contain the portion of 
HBD-3 active against the periodontal pathogen A.a. may be useful to prevent or treat gingivitis and 
periodontitis. 
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Figure 1.1  Amino acid sequences of human leukocyte ααααα-defensins and epithelial cell βββββ-defensins
Shaded areas indicate positions of the six conserved cysteine (C) residues.  Spaces have been added to the HBD-4
sequence to improve alignment of the cysteine residues.
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CHAPTER 3.  MATERIALS AND METHODS

Materials

Chemicals

Bovine serum albumin was from Sigma Aldrich Chemical Co., St. Louis, MO.
Sodium bicarbonate, triethylamine, and hydrochloric acid were from Fisher Scientific,
Pittsburgh, PA.  Bacto-agar and Trypticase Soy Broth (TSB) were from Becton
Dickinson, Sparks, MD.

Antimicrobial Peptides

HNP-1 was purified from a 10% acetic acid extract of human neutrophil granules
by the method of Ganz et al. (3) in the laboratory of Dr. Thomas at the UTHSC College
of Dentistry.  The protein concentration of purified HNP-1 was determined by the method
of Lowry et al. (69) with bovine serum albumin as the standard.

Four 1 mg vials of sterile recombinant HBD-3 were purchased from ProSpec-
Tany TechnoGene Ltd., Rehovot, Israel.  HBD-3 was provided as a lyophilized powder
without additives and was stored dry at -80°C until needed.  HBD-3 (1.0 mg) was
dissolved in 0.647 mL 0.01% acetic acid to give a 300 µM solution, assuming a
molecular weight of 5155.  The 300 µM HBD-3 solution was aliquoted and stored at
-80°C.  Solutions of 100, 50, 30, and 10 µM HBD-3 were prepared by dilution of the 300
µM solution in 0.01% acetic acid and stored at -80°C.

CHRG07 and CHRG01 were synthesized by American Peptide Co, Inc.,
Sunnyvale, CA.  Peptides were provided as lyophilized dry powders with trifluoroacetate
as a counter ion.

A certificate of analysis was provided for each peptide.  Purity was 95.6% and
98.6% for CHRG07 and CHRG01, respectively.  Purity was calculated from the areas of
major and minor peaks on an HPLC chromatogram.  The amino acid composition was
determined for each peptide and was within expected error limits of the composition of
the requested sequence.  Molecular weights of 1982 and 1662 were determined for
CHRG07 and CHRG01 by electrospray liquid chromatography mass spectrometry (LC/
MS) and were close to or the same as the calculated values of 1981 and 1662.

One vial containing 5 mg net peptide weight was provided for each peptide.  The
peptides were stored dry at -80°C until they were solubilized.  Molecular weights of 1981
and 1662 were calculated for CHRG07 and CHRG01, respectively.  CHRG07 (5.0 mg)
was dissolved in 2.523 mL 0.01% acetic acid to give a 1000 µM solution, assuming a



molecular weight of 1981. Solutions of 300, 100, 50, 30, and 10 µM CHRG07 were
prepared by dilution of the 1000 µM CHRG07 solution in 0.01% acetic acid.  CHRG01
(5.0 mg) was dissolved in 3.008 mL 0.01% acetic acid to give a 1000 µM solution,
assuming a molecular weight of 1662. Solutions of 300, 100, 50, 30, and 10 µM
CHRG01 were prepared by dilution of the 1000 µM CHRG01 solution in 0.01% acetic
acid.  The peptide solutions were aliquoted and stored at -80°C.

LPS, Deacyl-LPS, and Lipid A

LPS from E. coli of serotype O111:B4 was purchased from List Biological
Laboratories, Campbell, CA. A.a. LPS was purified from the Y4 strain in the laboratory
of Dr. Jegdish Babu at the UTHSC College of Dentistry using the method of Millar et al.
(70) in which LPS is extracted from an outer membrane fraction (71) by the hot water-
phenol method of Westphal and Jann (72).

Deacylated (detoxified) LPS (deacyl-LPS), prepared by alkaline hydrolysis (73) of
LPS from E. coli serotype O111:B4, was purchased from Sigma Aldrich Chemical Co.
Lipid A (diphosphoryl) prepared  by acid hydrolysis (74) from LPS of the rough (Re)
mutant E. coli K12-D31m4 was purchased from List Biological Laboratories Inc.

LPS and deacyl-LPS were dispersed in water or 10 mM potassium phosphate pH
7.4 buffer by incubating 5 min in a sonicator bath at 25°C.  Lipid A was solubilized with
triethylamine by the procedure of Tanamoto et al. (75).

Bacteria

All bacterial strains were obtained from the American Type Culture Collection
(ATCC), Manassas, VA.  E. coli ML-35 (ATCC 43827) was used as the standard test
organism for measuring defensin activity.  The Y4 strain of A.a. (ATCC 43718) is
serotype b.

Methods

Bacterial Inocula

E. coli ML-35 bacteria were grown to early stationary phase in Medium A-
Glucose (0.06 M potassium phosphate, 1.7 mM sodium citrate, 7.6 mM ammonium
sulfate, 0.014 mM magnesium sulfate, 20 mM glucose) (76). A.a. bacteria were grown as
indicated below in filter-sterilized Trypticase soy broth (TSB).  Portions (1.5 mL) of the
bacterial cultures were frozen at -80°C.  The frozen cultures were used to inoculate
cultures for experiments.

17



Bacterial Cultures

An inoculum was thawed and a 1 mL portion was added to 100 mL of TSB.  E.
coli ML-35 bacteria were grown for 16 h to stationary phase in foam-stoppered flasks at
37°C with continuous mixing in a rotary shaker for aeration. A.a. Y4 was grown for 24 h
to stationary phase at 37°C with continuous mixing in sealed 100 mL bottles to restrict
aeration.  Media for both liquid and solid cultures of A.a. were sterilized by ultrafiltration
through 0.2 micron nitrocellulose filters (Nalgene Co., Rochester, NY).  Media for liquid
cultures of E. coli were sterilized by ultrafiltration, and media for solid-phase cultures of
E. coli were sterilized by autoclaving.

For experiments with E. coli, the bacteria in a 10 mL portion of a stationary phase
culture were collected and washed twice by centrifugation at 17,000 x g for 12 min at 4°C
with 10 mM potassium phosphate pH 7.4 buffer.  The washed bacteria were suspended in
the buffer solution to an optical density of 0.6 at 600 nm to give 2 x 108 colony forming
units (CFU)/mL.

For experiments with A.a., a portion of a 24 h culture was diluted 10 fold to 1 x
108 CFU/mL with 10 mM phosphate buffer at 25°C and used immediately.

Antibacterial Assay

Bacteria (106 CFU/mL) in 100 µL total volume (E. coli) or 200 µL total volume
(A.a.) were incubated with gentle mixing in 10 mM potassium phosphate pH 7.4 buffer
with or without 1% TSB.  Antimicrobial peptides and LPS were added in various
concentrations as indicated for each experiment.  Incubation mixtures with E. coli were
incubated 2 or 4 h at 37°C aerobically in 1.8 mL polypropylene vials.  Incubation
mixtures with A.a. were incubated 2 or 4 h at 37°C in 96-well plates that were placed
inside Anaerogen™ GasPak Pouch™ Anaerobic System (Oxoid Ltd., Basingstoke,
Hampshire, England) to lower the oxygen (O2) concentration and raise the carbon dioxide
(CO2) concentration.  At the end of the incubation, the number of viable bacteria was
determined by making serial 1:10 dilutions in sterile 10 mM phosphate pH 7.4 buffer,
plating 0.8 mL portions of the dilutions on solid growth medium (TSB/2% agar), and
counting bacterial colonies after 1 to 2 days at 37°C. E. coli bacteria on solid media were
incubated under air at 37°C. A.a. bacteria on solid media were incubated under 95% air/
5% CO2 at 37°C.  The number of viable bacteria/mL in the incubation mixture was
calculated.

Estimated Molecular Weights of LPS, Deacyl-LPS, and Lipid A

Molecular weights were estimated or calculated for LPS, deacyl-LPS, and lipid A
so that the number of molecules needed to block killing by HBD-3 could be determined.
All LPS preparations are heterogeneous due to variation in the number of repeating units
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in the oligosaccharide part and varying amounts of substitution in the core.  An average
molecular weight of 10,000 Da was reported (77) for LPS of E. coli serotype O111:B4
and was used in calculations in this study.  Because no estimates for the molecular weight
of LPS from the A.a. Y4 strain were found, the same value of 10,000 Da was used.

Figure 1.4 shows schematic representations of the structure of LPS, deacyl-LPS,
and lipid A.  Based on the structure, a molecular weight of 8,704 was calculated for
deacyl-LPS.  The calculation is based on subtracting the molecular weights of one 12-
carbon fatty acid, one 14-carbon fatty acid, and four 14-carbon beta-hydroxy fatty acids
from 10,000, and adding the molecular weight of six water molecules.  A molecular
weight of 1,797 was calculated for lipid A.

Data Analysis

All experiments were performed at least twice with duplicate samples.  The mean
± S.E. (Standard Error), the number of values averaged (n), and the p (probability) value
were determined.  Statistical significance was evaluated by Analysis of Variance
(ANOVA) followed by Scheffe’s f test to calculate p values using StatView 5.0 software.
Values less than 0.05 were considered significant.
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Figure 4.1.  HNP-1 kills E. coli in dilute culture medium
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without
HNP-1 (control; white bar) or with 0.3 to 30 μM HNP-1 (gray bars). Values shown on the
logarithmic scale in the bar graph are shown in linear form in the table below the graph.
* Significantly different from the control value without HNP-1.
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Figure 4.2.  HBD-3 kills E. coli in dilute culture medium
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without
HBD-3 (control; white bar) or with 1 to 30 μM HBD-3 (gray bars).
* Significantly different from the control value without HBD-3.

V
ia

bl
e

E
. c

ol
i b

ac
te

ria
 (C

FU
/m

L)

        0               1                3               5              10             30
HBD-3 (μM)

108

107

106

105

104

103

102

43.804

22.219

0.522

0.129

0.026

0.000

4.457

1.832

0.330

0.097

0.021

0.000

6

6

6

6

6

5

—

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

Control (4 h, 37°C)

HBD-3, 1 μM

HBD-3, 3 μM

HBD-3, 5 μM

HBD-3, 10 μM

HBD-3, 30 μM

Conditions   Viable bacteria
  (106 CFU/ml)     S.E.   n P value

*

*

*

*

*

*

*

*

*

*



23

Figure 4.3.  HNP-1 does not kill A.a. in dilute culture medium
A.a. bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without HNP-1
(control; white bar) or with 0.3 to 30 μM HNP-1 (gray bars).
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Figure 4.4.  HBD-3 kills A.a. in dilute culture medium
A.a. bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without HBD-3
(control; white bar) or with 1 to 30 μM HBD-3 (gray bars).
* Significantly different from the control value without HBD-3.
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Figure 4.5.  HNP-1 does not kill E. coli in buffer
E. coli bacteria (106/ml) were incubated 2 h at 37°C in buffer without HNP-1 (control;
white bar) or with 1 to 30 μM HNP-1 (gray bars).
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Figure 4.6.  HBD-3 kills E. coli  in buffer
E. coli bacteria (106/ml) were incubated 2 h at 37°C in buffer without HBD-3 (control;
white bar) or with 1 to 30 μM HBD-3 (gray bars).
* Significantly different from the control value without HBD-3.
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Figure 4.7.  HNP-1 does not  kill A.a. in buffer
A.a. bacteria (106/ml) were incubated 2 h at 37°C in buffer without HNP-1 (control; white
bar) or with 1 to 30 μM HNP-1 (gray bars).
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Figure 4.8.  HBD-3 kills A.a. in buffer
A.a. bacteria (106/ml) were incubated 2 h at 37°C in buffer without HBD-3 (control; white
bar) or with 1 to 30 μM HBD-3 (gray bars).
* Significantly different from the control value without HBD-3.

V
ia

bl
e

A
.a

. b
ac

te
ria

 (C
FU

/m
L)

        0               1                3               5              10             30
HBD-3 (μM)

106

105

104

103

102

101

0.569

0.438

0.101

0.021

0.003

0.000

0.073

0.096

0.028

0.004

0.001

0.000

4

4

4

4

4

4

—

0.7

0.0003

<0.0001

<0.0001

<0.0001

Control (2 h, 37°C)

HBD-3, 1 μM

HBD-3, 3 μM

HBD-3, 5 μM

HBD-3, 10 μM

HBD-3, 30 μM

Conditions   Viable bacteria
  (106 CFU/ml)     S.E.   n P value

*

*

*

*

*

*

*

*



μ
μ

μ
μ μ

μ
μ

μ
μ μ

μ

μ

μ

μ

μ



31

Figure 4.9.  The peptide CHRG07 kills E.coli
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute growth medium without
HBD-3 or CHRG07 (control; white bar), with 5 μM HBD-3 (gray bar), or with 1 to 100
μM CHRG07 (dark gray bars).
* Significantly different from the control value without HBD-3 or CHRG07.
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Figure 4.10.  The peptide CHRG01 kills E. coli
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without
HBD-3 or CHRG01 (control; white bar), with 5 μM HBD-3 (dark gray bar), or with 1 to
100 μM CHRG01 (light gray bars).
* Significantly different from the control value without HBD-3 or CHRG01.
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Figure 4.11.  The peptide CHRG07 kills A.a.
A.a. bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without HBD-3
(control; white bar), with 5 μM HBD-3 (gray bar), or with 1 to 100 μM CHRG07 (dark
gray bars).
* Significantly different from the control value without HBD-3 or CHRG07.
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Figure 4.12.  The peptide CHRG01 kills A.a.
A.a. bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium without HBD-3
or CHRG01 (control; white bar), with 5 μM HBD-3 (dark gray bar), or with 1 to 100 μM
CHRG01 (light gray bars).
* Significantly different from the control value without HBD-3 or CHRG01.
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Figure 4.13. E. coli LPS blocks HBD-3 killing of E. coli
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium with 0 or 5
μM E. coli LPS then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of E. coli LPS (gray bars).
* Significantly different from the value with HBD-3 alone.
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Figure 4.14.  A.a. LPS blocks HBD-3 killing of E. coli
E. coli bacteria (106/ml) were incubated 4 h at 37°C in dilute culture medium with 0 or 5
μM A.a. LPS then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of A.a. LPS (gray bars).
* Significantly different from the value with HBD-3 alone.
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Figure 4.15.  E. coli LPS blocks HBD-3 killing of A.a.
A.a. bacteria (106/mL) with 0 or 5 μM E. coli LPS were incubated 2 h at 37°C in buffer
then diluted and plated (white bars).  Alternatively, the bacteria were incubated with 5 μM
HBD-3 and various levels of E. coli LPS (gray bars).
* Significantly different from the value with HBD-3 alone.
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Figure 4.16.  A.a. LPS blocks HBD-3 killing of A.a.
A.a. bacteria (106/ml) with 0 or 5 μM A.a. LPS were incubated 2 h at 37°C in buffer
witout nutrients then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of A.a. LPS (gray bars).
* Significantly different from the value with HBD-3 alone.
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Figure 4.17.  Deacyl-LPS blocks HBD-3 killing of E. coli
E. coli  bacteria (106/ml) with 0 or 10 μM deacyl-LPS were incubated 4 h at 37°C in
dilute culture medium then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of deacyl-LPS (gray bars).
* Significantly different from the value with HBD-3 alone.

V
ia

bl
e

E
. c

ol
i b

ac
te

ria
 (C

FU
/m

L)

      0          10          0          0.3          1           3           5          10
E.coli deacyl-LPS (μM)

108

107

106

105

104

103

102

50.294

77.226

0.001

0.001

0.001

0.243

35.583

87.865

4.433

6.913

0.001

0.000

0.000

0.095

5.718

4.535

8

4

8

4

4

4

4

4

—

—

—

1.0

1.0

1.0

<0.0001

<0.0001

Control (4 h, 37°C)

10 μM deacyl-LPS

5 μM HBD-3

5 μM HBD-3 + 0.3 μM deacyl-LPS

5 μM HBD-3 + 1 μM deacyl-LPS

5 μM HBD-3 + 3 μM deacyl-LPS

5 μM HBD-3 + 5 μM deacyl-LPS

5 μM HBD-3 + 10 μM deacyl-LPS

Conditions   Viable bacteria
  (106 CFU/ml)     S.E.   n P value

*

*

*
*



41

Figure 4.18.  Deacyl-LPS blocks HBD-3 killing of A.a.
A.a. bacteria (106/ml) with 0 or 10 μM deacyl-LPS were incubated 2 h at 37°C in buffer
without nutrients  then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of deacyl-LPS (gray bars).
* Significantly different from the value with HBD-3 alone.
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Figure 4.19.  Lipid A does not block HBD-3 killing of E. coli
E. coli bacteria (106/ml) with 0 or 10 μM lipid A were incubated 4 h at 37°C in dilute
culture medium then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of lipid A (gray bars).
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Figure 4.20. Lipid A does not block HBD-3 killing of A.a.
A.a. bacteria (106/ml) with 0 or 10 μM lipid A were incubated 2 h at 37°C in buffer
without nutrients then diluted and plated (white bars).  Alternatively, the bacteria were
incubated with 5 μM HBD-3 and various levels of lipid A (gray bars).
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 CHAPTER 5.   DISCUSSION

Effect of Assay Conditions on Activity of HBD-3 and HNP-1

Previous studies showed that periodontal pathogens were resistant to killing by α-
defensins HNP 1-3 but were killed by β-defensins HBD 1-3.  In those studies, α- and β-
defensins were assayed under different conditions.  Bacteria were incubated with α-
defensins in dilute growth medium, while incubations with β-defensins were in low ionic
strength buffer without nutrients.  Our study compared killing of A.a. and E. coli by HNP-
1 and HBD-3 under the two sets of conditions.  We found that A.a. was resistant to HNP-
1 and killed by HBD-3 regardless of the assay conditions.

Our results confirm studies indicating that A.a. is killed by HBD-3 and other
human β-defensins.  The presence or absence of nutrients had little effect on activity, or
lack of activity, of HNP-1 and HBD-3 against A.a.  There was, however, a big effect on
activity against E. coli.  Both HNP-1 and HBD-3 killed E. coli, and both were more
effective when assayed in the presence of nutrients.  As expected based on studies by
Ganz et al. (3), HNP-1 killed E. coli only in the presence of nutrients.  We found that
HBD-3 killed E. coli in the absence of nutrients but was more effective when nutrients
were present.

Further studies are needed to confirm that all periodontal pathogens are resistant
to human α-defensins and sensitive to human β-defensins.  Other strains of A.a. as well
as other periodontal pathogens should be tested.

At least one periodontal pathogen, Treponema denticola, was reported to be
relatively resistant to killing by human β-defensins (78).  Therefore, some important
periodontal pathogens may be resistant to human β-defensins.  Further studies are needed
to examine the ability of β-defensins to kill periodontal pathogens other than A.a., P.g.,
P.i. and F.n.

Role of HBD-3 N- and C-terminal Regions in Antimicrobial Activity

Compared with HNP-1, HBD-3 has additional amino acid residues at the N-
terminus and C-terminus.  To determine if these additional residues account for HBD-3
activity against A.a., we measured the activity of synthetic peptides CHRG07 and
CHRG01.  These peptides correspond to the first 17 amino acid residues and the last 14
amino acids residues of HBD-3, with serine substituted for cysteine.

The CHRG07 peptide, derived from the N-terminal region of HBD-3, with four
hydrophobic residues and four cationic residues, was equal to HBD-3 in activity against
A.a. on a molar basis.  Therefore, the N-terminal region of HBD-3 accounts for HBD-3



activity against A.a.  Our results are consistent with studies (56,60) that found cysteine
residues and disulfide bonds were not required for HBD-3 activity in vitro.

HBD-3 has a much greater charge (+11) than any of the human neutrophil α-
defensins (+2 or +3), but charge alone can’t account for the greater activity of HBD-3
against A.a.  CHRG07 has a charge of only +4 but is as active as HBD-3 against A.a.
CHRG01 has a charge of +8 but is much less active than CHRG07 or HBD-3 against A.a.
Instead, hydrophobic residues or a combination of hydrophobic and cationic residues
appear important for activity against A.a. Y4.  CHRG01 has no hydrophobic residues.
Further studies with other strains of A.a. and other periodontal pathogens are needed to
determine whether the mixture of hydrophobic and cationic residues in CHRG07 is
always more effective than the more cationic CHRG01.

Further studies could also try to determine the smallest part of HBD-3 that has
activity equal to HBD-3 against A.a.  CHRG07, with three hydrophobic residues among
the first six N-terminal residues and three cationic residues among the last six C-terminal
residues, has a structure like that of a small β-defensin without disulfides.  Further studies
could determine whether a small peptide with three hydrophobic residues linked to three
cationic residues would be as active as HBD-3 against A.a.

As a control, we also measured killing of E. coli by HBD-3 and the N-terminal
and C-terminal peptides CHRG07 and CHRG01.  Our results with E. coli are different
from those reported by Hoover et al. (60).  It was reported that CHRG01 was much more
effective than CHRG07 or HBD-3 against E. coli.  Concentrations that killed 90% of the
E. coli bacteria were 6, 19, and 1 µg/mL for HBD-3, CHRG07 and CHRG01,
respectively.  These levels correspond to 1.2, 9.6, and 0.6 µM.  We found CHRG07 and
HBD-3 were equal in activity against E. coli, and CHRG01 was less effective than
CHRG07 or HBD-3.

There are a number of possible reasons for these differences in results.  There may
be a strain-selective difference in activity against E. coli.  Hoover et al. (60) used E. coli
ATCC 25922, and we used E. coli ML-35 (ATCC 43827).  The assay conditions for the
studies were similar, but there were differences.  Bacteria were grown to mid-logarithmic
phase in the study by Hoover et al. (60), and the bacteria were not washed before dilution
into the assay medium.  We used washed bacteria from the early stationary phase and
incubated 4 h rather than 3 h.  Finally, although we had the CHRG07 and CHRG01
sequences synthesized as specified by Hoover et al. (60), the peptides were synthesized at
different times in different laboratories.  Side-by-side comparison of their preparations
and ours would be needed to determine whether they have equal activity.  Further studies
with additional E. coli strains would also be needed to determine which peptide is usually
more effective against E. coli.

Hoover et al. (60) also tested CHGR07 and CHRG01 against another gram-
negative bacterium (Pseudomonas aeruginosa), two gram-positive bacteria
(Staphylococcus aureus and Enterococcus faecium) and the fungus C. albicans.  It was
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reported that CHRG07 with a mixture of hydrophobic and cationic amino acids was more
effective than the highly cationic CHRG01 against all of these organisms.  The effect was
most pronounced for the gram-positive organisms and C. albicans.  These results are
more consistent with our results with both A.a. and E. coli.

Some studies report that HBD-3 antimicrobial activity is less subject to
interference by physiologic levels of salt and divalent cations compared with the activity
of α-defensins (e.g. 9,6,79).  The high positive charge of HBD-3 may be responsible for
decreased interference by salt.  High salt disrupts electrostatic interactions between
positive and negative charges such as those involved in binding of cationic defensin
peptides to anionic microbial components.

Further studies are needed to determine whether CHRG07 would become less
effective than HBD-3 at high salt concentrations because it has a smaller positive charge.
Studies with CHRG01 might also find that it is more resistant to interference by salt
because of its high positive charge.

Binding of HBD-3 to LPS

Our third objective was to determine if HBD-3 binds to LPS purified from E. coli
and A.a.  LPS on the surface of gram-negative bacteria might act as the receptor for
defensin binding.  Our results show that HBD-3 does bind to LPS and that one molecule
of HBD-3 binds to one molecule of LPS.  Results were similar with LPS from A.a. or E.
coli, indicating that HBD-3 binds equally well to E. coli and A.a. LPS, despite the small
differences in LPS structure between these organisms.

Role of Lipid A in HBD-3 Binding to LPS

Although HBD-3 binds to LPS and the hydrophobic residues of HBD-3 appear to
be important for activity against A.a., there was no evidence for hydrophobic binding of
HBD-3 to LPS.  Deacyl-LPS without the hydrophobic fatty acids bound HBD-3 and
blocked activity.  Deacyl-LPS was as effective as LPS, indicating that the fatty acids were
not required for binding of HBD-3 to LPS.  Lipid A did not block HBD-3 activity,
indicating that HBD-3 does not bind to lipid A.

Further studies could try to determine whether HBD-3 binds like a lectin to
carbohydrate of the LPS oligosaccharide and core or whether cationic amino acid residues
of HBD-3 bind electrostatically to negative-charged phosphate groups of the LPS core.

Hydrophobic amino acids of HBD-3 are important for antimicrobial activity
against A.a. but must be involved in some process other than binding to LPS.  Further
studies could determine if HBD-3 binds to membrane phospholipids or hydrophobic
membrane proteins or inserts into bacterial membranes.
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General Significance of This Study

HBD-3 is effective against many periodontal pathogens, but periodontal disease
remains a significant problem affecting at least 30% of the population.  Therefore, HBD-3
does not protect everybody against periodontal disease.  HBD-3 levels may not be
adequate to protect the tissues when the microbial burden is high, or HBD-3 may be
expressed in deep layers of the epithelium and may not prevent bacterial penetration
through the surface layers.  HBD-3 may also be destroyed by some periodontal
pathogens.  Proteolytic enzymes called gingipains produced by P. gingivalis have been
reported to destroy HBD-3 (79).  There may also be differences in the amounts of HBD-3
expressed by different individuals or by the same individual at different times.  Most of
the genes for defensins are clustered on chromosome 8 and the number of copies of these
genes is subject to individual variation (11).  Defensin genes have also been reported to
have a high rate of single nucleotide polymorphisms (80,81).  A variation in an
untranslated region of the gene for HBD-1 was reported to be associated with protection
from oral candidiasis (82).  The same gene variant was reported to influence the level of
HBD-1 and HBD-3 mRNA expression by oral keratinocytes.

Small synthetic peptides with good activity against periodontal pathogens might
be useful as topical agents to prevent or treat periodontal disease.  Candidate peptides
with good antimicrobial activity would also need to be tested to be sure they would not be
pro-inflammatory or easily degraded by proteases.  Small peptides cost less to make, are
more easily purified than larger peptides or proteins and are less likely to be contaminated
with endotoxin.  Small peptides are also less likely to provoke an immune reaction.
Further studies may lead to the development of clinically-useful synthetic peptides.

Overall Significance

Gingival and periodontal diseases, in their various forms have afflicted mankind
since the start of history.  Periodontitis is very common and is widely regarded as the
second most common disease worldwide after dental decay.  In the United States, 30-50%
of the population has periodontitis but only about 10% has severe forms.  Periodontitis
appears to be more prevalent in economically disadvantaged populations or regions.  In
the third National Health and Nutrition Examination Survey (NHANES III, 1984-94),
50% of non-institutionalized adult Americans were found to have gingivitis on at least
three teeth.

Periodontitis is a gram-negative infection resulting in severe inflammation with
the potential for intravascular dissemination of microorganisms and their products
throughout the body.  Periodontitis is linked to many systemic health problems
including atherosclerosis and diabetes. New approaches are needed to prevent and
treat disease.
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Understanding why human leukocyte α-defensins are ineffective against
periodontal pathogens such as A.a., while human epithelial cell β-defensins are effective
will help to understand the disease process and may lead to new approaches to treat and
prevent periodontal disease.

49



50

LIST OF REFERENCES

1. Page, R.C., Sims, T.J., Geissler, F., Altman, L.C., Baab, D.A. (1985) Defective
neutrophil and monocyte motility in patients with early onset periodontitis. Infect
Immun 47:169-75.

2. Hart, T.C., Kornman, K.S. (1997) Genetic factors in the pathogenesis of
periodontitis. Periodontol 2000 14:202-215.

3. Ganz, T., Selsted, M.E., Szklarek, D., Harwig, S.S., Daher, K., Bainton, D.F.,
Lehrer, R.I. (1985) Defensins: natural peptide antibiotics of human neutrophils. J
Clin Invest 76:1427-1435.

4. Wilde, C.G., Griffith, J.E., Marra, M.N., Snable, J.L., Scott, R.W. (1989)
Purification and characterization of human neutrophil peptide 4, a novel member of
the defensin family. J Biol Chem 264:11200-11203.

5. Weinberg, A., Krisanaprakornkit, S., Dale, B.A. (1998) Epithelial antimicrobial
peptides: review and significance for oral applications. Crit Rev Oral Biol Med
9:399-414.

6. Chung, W.O., Dommisch, H., Yin, L., Dale, B.A. (2007) Expression of defensins in
gingiva and their role in periodontal health and disease. Curr Pharm Des 13:3073-
3083.

7. Diamond, G., Beckloff, N., Weinberg, A. Kisich, K.O. (2009) The roles of
antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377-2392.

8. Lu, Q. Jin, L., Darveau, R.P., Samaranayake, L.P. (2004) Expression of human beta-
defensins-1 and -2 in unresolved chronic periodontitis. J Periodontal Res 39:221-
227.

9. Harder, J., Bartels, J., Christophers, E., Schroder, J.M. (2001) Isolation and
characterization of human beta-defensin-3, a novel human inducible peptide
antibiotic. J Biol Chem 276:5707-5713.

10. Garcia, J.R., Jaumann, F., Schulz, S., Krause, A., Rodriguez-Jimenez, J.,
Forssmann, U., Adermann, K., Kluver, E., Vogelmeier, C., Becker, D., Hedrich, R.,
Forssmann, W.G., Bals, R. (2001) Identification of a novel, multifunctional beta-
defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction
with plasma membranes of Xenopus oocytes and the induction of macrophage
chemoattraction. Cell Tissue Res 306:257-264.



11. Auvynet, C., Rosenstein, Y. (2009) Multifunctional host defense peptides:
antimicrobial peptides, the small yet big players in innate and adaptive immunity.
FEBS J 276:6497-6508.

12. Schibli, D.J., Hunter, H.N., Aseyev, V., Starner, T.D., Wiencek, J.M., McCray, P.B.
Jr., Tack, B.F., Vogel, H.J. (2002) The solution structures of the human beta-
defensins lead to a better understanding of the potent bactericidal activity of HBD3
against Staphylococcus aureus. J Biol Chem 277:8279-8289.

13. Guaní-Guerra, E., Santos-Mendoza, T., Lugo-Reyes, S.O., Terán, L.M. (2010)
Antimicrobial peptides: general overview and clinical implications in human health
and disease. Clin Immunol 135:1-11.

14. Wiesner, J., Vilcinskas, A. (2010) Antimicrobial peptides: the ancient arm of the
human immune system. Virulence 1:440-464.

15. Lehrer, R.I., Ganz, T. (1996) Endogenous vertebrate antibiotics: defensins,
protegrins, and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sci
797:228-239.

16. Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity.  Nat Rev
Immun 3:710-720.

17. Maisetta, G., Batoni, G., Esin, S., Luperini, F., Pardini, M., Bottai, D., Florio, W.,
Giuca, M.R., Gabriele, M., Campa, M. (2003) Activity of human beta-defensin 3
alone or combined with other antimicrobial agents against oral bacteria. Antimicrob
Agents Chemother 47:3349-3351.

18. Midorikawa, K., Ouhara, K., Komatsuzawa, H., Kawai, T., Yamada, S., Fujiwara,
T., Yamazaki, K., Sayama, K., Taubman, M.A., Kurihara, H., Hashimoto, K., Sugai,
M. (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides,
beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun
71:3730-3739.

19. Joly, S., Maze, C., McCray, P.B. Jr., Guthmiller, J.M. (2004) Human beta-defensins
2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin
Microbiol 42:1024-1029.

20. Ouhara, K., Komatsuzawa, H., Yamada, S., Shiba, H., Fujiwara, T., Ohara, M.,
Sayama, K., Hashimoto, K., Kurihara, H., Sugai, M. (2005) Susceptibilities of
periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-
defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother
55:888-996.

51



21. Ji, S., Hyun, J., Park, E., Lee, B.L., Kim, K.K., Choi, Y. (2007) Susceptibility of
various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J
Periodontal Res 42:410-419.

22. Martin, E., Ganz, T., Lehrer, R.I. (1995) Defensins and other endogenous peptide
antibiotics of vertebrates. J Leukoc Biol 58:128-136.

23. Dale, B.A., Krisanaprakornkit, S. (2001) Defensin antimicrobial peptides in the oral
cavity. J Oral Pathol Med 30:321-327.

24. Bosshardt, D.D., Lang, N.P. (2005) The junctional epithelium: from health to
disease. J Dent Res 2005 84:9-20.

25. Dale, B.A., Kimball, J.R., Krisanaprakornkit, S., Roberts, F., Robinovitch, M.,
O'Neal R., Valore, E.V., Ganz, T., Anderson, G.M., Weinberg, A. (2001) Localized
antimicrobial peptide expression in human gingiva. J Periodontal Res 6:285-294.

26. Dale, B.A., Fredericks, L.P. (2005) Antimicrobial peptides in the oral environment:
expression and function in health and disease. Curr Issues Mol Biol 7:119-133.

27. Goebel, C., Mackay, L.G., Vickers, E.R., Mather, L.E. (2000) Determination of
defensin HNP-1, HNP-2, and HNP-3 in human saliva by using LC/MS. Peptides
21:757-765.

28. Mizukawa, N., Sugiyama, K., Ueno, T., Mishima, K., Takagi, S., Sugahara, T.
(1999) Defensin-1, an antimicrobial peptide present in the saliva of patients with
oral diseases. Oral Dis 5:139-142.

29. Pütsep, K., Carlsson, G., Boman, H.G., Andersson, M. (2002) Deficiency of
antibacterial peptides in patients with morbus Kostmann: an observation study.
Lancet 360:1144-1149.

30. Tao, R., Jurevic, R.J., Coulton, K.K., Tsutsui, M.T., Roberts, M.C., Kimball, J.R.,
Wells, N., Berndt, J., Dale, B.A. (2005) Salivary antimicrobial peptide expression
and dental caries experience in children. Antimicrob Agents Chemother 49:3883-
3888.

31. Dale, B.A., Tao, R., Kimball, J.R., Jurevic, R.J. (2006) Oral antimicrobial peptides
and biological control of caries. BMC Oral Health 6 Suppl 1:S13.

32. Fanali, C., Inzitari, R., Cabras, T., Pisano, E., Castagnola, M., Celletti, R., Manni,
A., Messana, I. (2008) Alpha-defensin levels in whole saliva of totally edentulous
subjects. Int J Immunopathol Pharmacol 21:845-849.

52



33. McKay, M.S., Olson, E., Hesla, M.A., Panyutich, A., Ganz, T., Perkins, S.,
Rossomando, E.F. (1999) Immunomagnetic recovery of human neutrophil defensins
from the human gingival crevice. Oral Microbiol Immunol 14:190-193.

34. Lundy, F.T., Orr, D.F., Shaw, C., Lamey, P.J., Linden, G.J. (2005) Detection of
individual human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3)
in unfractionated gingival crevicular fluid—a MALDI-MS approach. Mol Immunol
42:575-579.

35. Bostanci, N., Heywood, W., Mills, K., Parkar, M., Nibali, L., Donos, N. (2010)
Application of label-free absolute quantitative proteomics in human gingival
crevicular fluid by LC/MSE (gingival exudatome). J Proteome Res 9:2191-2199.

36. Ngo, L.H., Veith, P.D., Chen, Y.Y., Chen, D., Darby, I.B., Reynolds, E.C. (2010)
Mass spectrometric analyses of peptides and proteins in human gingival crevicular
fluid. J Proteome Res 9:1683-1693.

37. Puklo, M., Guentsch, A., Hiemstra, P.S., Eick, S., Potempa, J. (2008) Analysis of
neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests
importance of cathelicidin LL-37 in the innate immune response against
periodontogenic bacteria. Oral Microbiol Immunol 23:328-335.

38. Mathews, M., Jia, H.P., Guthmiller, J.M., Losh, G., Graham, S., Johnson, G.K.,
Tack, B.F., McCray, P.B. Jr. (1999) Production of beta-defensin antimicrobial
peptides by the oral mucosa and salivary glands. Infect Immun 67:2740-2745.

39. Lu, Q., Samaranayake, L.P., Darveau, R.P., Jin, L. (2005) Expression of human
beta-defensin-3 in gingival epithelia. J Periodontal Res 40:474-481.

40. Dommisch, H., Açil, Y., Dunsche, A., Winter, J., Jepsen, S. (2005) Differential gene
expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival
diseases. Oral Microbiol Immunol 20:186-190.

41. Feucht, E.C., DeSanti, C.L., Weinberg, A. (2003) Selective induction of human
beta-defensin mRNAs by Actinobacillus actinomycetemcomitans in primary and
immortalized oral epithelial cells. Oral Microbiol Immunol 18:359-363.

42. Diamond, D.L., Kimball, J.R., Krisanaprakornkit, S., Ganz, T., Dale, B.A. (2001)
Detection of beta-defensins secreted by human oral epithelial cells. J Immunol
Methods 256:65-76.

43. Brancatisano, F.L., Maisetta, G., Barsotti, F., Esin, S., Miceli, M., Gabriele, M.,
Giuca, M.R., Campa, M., Batoni, G. (2011) Reduced human beta defensin 3 in
individuals with periodontal disease. J Dent Res 90:241-245.

53



44. Genco, R., Kornman, K., Williams, R., Offenbacher, S., Zambon J.J., Ishikawa, I.,
Listgarten, M.A., Michalowicz, B.S., Page, R., Schenckein, H. Slots, J., Socransky,
S.S., Van Dyke, T.E., Consensus report (1996) Periodontal diseases: pathogenesis
and microbial factors. Ann Periodontol 1:926-932.

45. Lovegrove, J.M. (2004) Dental plaque revisited: bacteria associated with
periodontal disease. J N Z Soc Periodontol 87:7-21.

46. Picolos, D.K., Lerche-Sehm, J., Abron. A., Fine, J.B., Pappapanou, P.N. (2005)
Infection patterns in chronic and aggressive periodontitis. J Clin Periodontol
32:1055-1061.

47. Miyasaki, K.T., Bodeau, A.L., Ganz, T., Selsted, M.E., Lehrer, R.I. (1990) In vitro
sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of
human neutrophil defensins. Infect Immun 58:3934-3940.

48. Miyasaki, K.T., Iofel, R., Lehrer, R.I. (1997) Sensitivity of periodontal pathogens to
the bactericidal activity of synthetic protegrins, antibiotic peptides derived from
porcine leukocytes. J Dent Res 76:1453-1459.

49. Raj, P.A,. Antonyraj, K.J., Karunakaran, T. (2000) Large-scale synthesis and
functional elements for the antimicrobial activity of defensins. Biochem J 347 Pt
3:633-641.

50. Lee, S.H., Jun, H.K., Lee, H.R., Chung, C.P., Choi, B.K. (2010) Antibacterial and
lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial
peptides against periodontopathogens. Int J Antimicrob Agents 35:138-145.

51. Miyasaki, K.T. (1991) The neutrophil: mechanisms of controlling periodontal
bacteria. J Periodontol 62:761-774.

52. Miyasaki, K.T, Lehrer, R.I. (1998) Beta-sheet antibiotic peptides as potential dental
therapeutics. Int J Antimicrob Agents 9:269-80.

53. Miyasaki, K.T., Bodeau, A.L., Selsted, M.E., Ganz, T., Lehrer, R.I. (1990) Killing of
oral, gram-negative, facultative bacteria by the rabbit defensin, NP-1. Oral
Microbiol Immunol 5:315-319.

54. Komatsuzawa, H., Ouhara, K., Kawai, T., Yamada, S., Fujiwara, T., Shiba, H.,
Kurihara, H., Taubman, M.A., Sugai M. (2007) Susceptibility of
periodontopathogenic and cariogenic bacteria to defensins and potential therapeutic
use of defensins in oral diseases. Curr Pharm Des 13:3084-3095.

55. Raj, P.A., Dentino, A.R. (2002) Current status of defensins and their role in innate
and adaptive immunity. FEMS Microbiol Lett 206:9-18.

54



56. Wu, Z., Hoover, D.M., Yang, D., Boulègue, C., Santamaria, F., Oppenheim, J.J.,
Lubkowski, J., Lu, W. (2003) Engineering disulfide bridges to dissect antimicrobial
and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci U S A
100:8880-8885.

57. Maemoto, A., Qu, X., Rosengren, K.J., Tanabe, H., Henschen-Edman, A., Craik,
D.J., Ouellette, A.J. (2004) Functional analysis of the alpha-defensin disulfide array
in mouse cryptdin-4. J Biol Chem 279:44188-44196.

58. Selsted, M.E., Ouellette, A.J. (2005) Mammalian defensins in the antimicrobial
immune response. Nat Immunol 6:551-557.

59. Klüver, E., Schulz-Maronde, S., Scheid, S., Meyer, B., Forssmann, W.G.,
Adermann, K. (2005) Structure-activity relation of human beta-defensin 3: influence
of disulfide bonds and cysteine substitution on antimicrobial activity and
cytotoxicity. Biochemistry 44:9804-9816.

60. Hoover, D.M., Wu, Z., Tucker, K., Lu, W., Lubkowski, J. (2003) Antimicrobial
characterization of human beta-defensin 3 derivatives. Antimicrob Agents
Chemother 47:2804-2809.

61. Xie, C., Prahl, A., Ericksen, B., Wu, Z., Zeng, P., Li, X., Lu, W.Y., Lubkowski, J.,
Lu, W. (2005) Reconstruction of the conserved beta-bulge in mammalian defensins
using D-amino acids. J Biol Chem 280:32921-32929.

62. Raetz, C.R. (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129-170.

63. Raetz, C.R., Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu Rev
Biochem 71:635-700.

64. Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H.,
Ulmer, A.J., Zähringer, U., Seydel, U., DiPadova, F., Schreier, M., Brade, H. (1994)
Bacterial endotoxin: molecular relationships of structure to activity and function.
FASEB J. 8:217-225.

65. Nikaido, H., Vaara, M. (1985) Molecular basis of bacterial outer membrane
permeability. Microbiol Rev 49:1-32.

66. Loppnow, H., Brade, H., Dürrbaum, I., Dinarello, C.A., Kusumoto, S., Rietschel,
E.T., Flad, H.D. (1989) IL-1 induction-capacity of defined lipopolysaccharide
partial structures. J Immunol 142:3229-3238.

67. Beutler, B. (1988) The presence of cachectin/tumor necrosis factor in human disease
states. Am J Med 85:287-288.

55



68. Galanos, C., Lüderitz, O., Rietschel, E.T., Westphal, O., Brade, H., Brade, L.,
Freudenberg, M., Schade, U., Imoto, M., Yoshimura, H., Kusumoto, S., Shiba, T.
(1985) Synthetic and natural Escherichia coli free lipid A express identical
endotoxic activities. Eur J Biochem 148:1-5.

69. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein
measurement with the Folin phenol reagent. J Biol Chem 193:265-275.

70. Millar, S.J., Goldstein, E.G., Levine, M.J., Hausmann, E. (1986) Modulation of
bone metabolism by two chemically distinct lipopolysaccharide fractions from
Bacteroides gingivalis. Infect Immun 51:302-306.

71. Mansheim, B.J., Onderdonk, A.B., Kasper, D.L. (1978) Immunochemical and
biologic studies of the lipopolysaccharide of Bacteroides melaninogenicus
subspecies asaccharolyticus. J Immunol 120:72-78.

72. Westphal, O., Jann, K. (1965) Bacterial lipopolysaccharides. Methods in
Carbohydrate Chemistry 5:83-91.

73. Ding, H.F., Nakoneczna, I., Hsu, H.S. (1990) Protective immunity induced in mice
by detoxified salmonella lipopolysaccharide. J Med Microbiol 31:95-102.

74. Qureshi, N., Takayama, K., Heller, D., Fenselau, C. (1983) Position of ester groups
in the lipid A backbone of lipopolysaccharides obtained from Salmonella
typhimurium. J Biol Chem 258:12947-12951.

75. Tanamoto, K., Azumi, S., Haishima, Y., Kumada, H., Umemoto, T. (1997)
Endotoxic properties of free lipid A from Porphyromonas gingivalis. Microbiology
143:63-71.

76. Davis, B.D., Mingioli, E.S. (1950) Mutants of Escherichia coli requiring
methionine or vitamin B12. J Bacteriol 60:17-28.

77. Aurell, C.A., Wistrom, A.O. (1998) Critical aggregation concentrations of gram-
negative bacterial lipopolysaccharides. Biochem Biophys Res Commun 253:119-
123.

78. Brissette, C.A., Lukehart, S.A. (2007) Mechanisms of decreased susceptibility to
beta-defensins by Treponema denticola. Infect Immun 75:2307-2315.

79. Maisetta, G., Brancatisano, F.L., Esin, S., Campa, M., Batoni, G. (2011) Gingipains
produced by Porphyromonas gingivalis ATCC49417 degrade the human-β-defensin
3 and affect peptide's antibacterial activity in vitro. Peptides. Feb 16 [Epub ahead of
print].

56



80. Taylor, K., Barran, P.E., Dorin, J.R. (2008) Structure-activity relationships in beta-
defensin peptides. Biopolymers 90:1-7.

81. Hollox, E.J., Barber, J.C., Brookes, A.J., Armour, J.A. (2008) Defensins and the
dynamic genome: what we can learn from structural variation at human
chromosome band 8p23.1. Genome Res 18:1686-1697.

82. Kalus, A.A., Fredericks, L.P., Hacker, B.M., Dommisch, H., Presland, R.B.,
Kimball, J.R., Dale, B.A. (2009) Association of a genetic polymorphism (-44 C/G
SNP) in the human DEFB1 gene with expression and inducibility of multiple beta-
defensins in gingival keratinocytes. BMC Oral Health 9:21.

57



58

VITA

Dr. Norman B. Fine was born in 1981 in Charleston, S.C.  He graduated from
Charleston Southern University with a Bachelor of Science in Professional Biology.  He
then received his Doctorate of Dental Medicine degree from The Medical University of
South Carolina where he was the representative to the American Dental Education
Association.  Dr. Fine participated as a teaching assistant in the Departments of
Endodontics and Periodontics.  He was awarded the John Meador Sneed scholarship for
his dedication to patient care and practice ethics.  He was on the Academic Deans List
and graduated with honors of magna cum laude.

Dr. Fine is completing his specialty training in Periodontology at The University
of Tennessee Health Science Center.  He is a member of the American Academy of
Periodontology, American Dental Association, and Psi Omega Dental Fraternity.  He has
co-authored an article in The Journal of the Tennessee Dental Association titled
“Periodontal and Cardiovascular Diseases: Common Inflammatory Mediators.”  He will
go on to private practice in Greenville, South Carolina.


	Activity of Epithelial Defensin HBD-3 Against a Periodontal Pathogen
	Recommended Citation

	Activity of Epithelial Defensin HBD-3 Against a Periodontal Pathogen
	Abstract
	Document Type
	Degree Name
	Program
	Research Advisor
	Keywords
	Subject Categories

	17_Vita_02

