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ABSTRACT 
 
 

Occludin is hyperphosphorylated on Ser and Thr residues in intact epithelial tight 
junctions. The dynamics of epithelial tight junctions appear to involve reversible 
phosphorylation of occludin on Ser and Thr residues. In the present study we determined 
the role of PKCζ in occludin phosphorylation and the dynamics of tight junctions. 
Inhibition of PKCζ by specific PKCζ pseudo substrate rapidly reduced TER, increased 
inulin permeability and induced redistribution of occludin and ZO-1 in Caco-2 and 
MDCK cell monolayers without inducing cytotoxicity. Reduced expression of PKCζ also 
resulted in compromised tight junction integrity. Both PKCζ pseudo substrate and 
reduced expression of PKCζ delayed the calcium-induced assembly of tight junctions. 
PKCζ pseudo substrate rapidly reduced occludin phosphorylation on Ser and Thr, and 
prevented Ser/Thr phosphorylation of occludin during the assembly of tight junctions. 
Pairwise binding studies showed that PKCζ directly bound to and phosphorylated the 
C-terminal tail of occludin on Ser and Thr residues. Site directed point mutation 
demonstrated that PKCζ predominantly phosphorylated T438, but also phosphorylated 
T403 and T404. This study demonstrates that PKCζ phosphorylated occludin on Ser/Thr 
residues and regulated the assembly of tight junctions. 
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CHAPTER 1: TIGHT JUNCTIONS 
 
 

1.1 Intercellular Junctions 
 

A defining characteristic of all organisms is their ability to respond to stimuli, 
growth and development, propagation of their own kind (reproduction) and maintenance 
of a steady-state (homeostasis). The multicellular organisms (eukaryotes) have a more 
complex cellular structure as compared to the relatively simple unicellular organisms 
(prokaryotes). Over time the multicellular organisms have evolved to have differentiated 
cells which can form organs and tissues and have specialized functions. One of the most 
important functions is to prevent the internal environment from external insults and 
injury. This is achieved by maintaining homeostasis by establishing an internal milieu 
distinct from the external environment.1 Epithelium and endothelium form the barrier 
function in different organs. This barrier function is important to maintain different 
physiological compartments in a multi-organ system and also maintain the interior 
milieu/homeostasis.2-4 Epithelial barrier function prevents the internal body 
compartments from external environment whether it be infective agents, chemical agents 
or physical injury. The skin, blood brain barrier, renal epithelium and intestinal 
epithelium are examples of such barriers across different organ systems. Breakdown of 
barrier function leads to changes in the homeostatic state of these organ systems and 
could contribute to disease pathogenesis.5 

 
Epithelial and endothelial cells form selective barriers between different body 

compartments and tissues as well as extrinsic environmental factors. In order to perform 
the barrier function, these cells form complexes and adhere to each other by forming 
junctional complexes with each other.6 These intercellular junctions in the vertebrate cells 
consist of the tight junctions (zonula occludens), desmosomes (macula adherens), 
adherens junctions (zonula adherens) and gap junctions (nexus).7 The first three are 
together referred to, as the epithelial junctional complex6 (Figure 1.1). 

 
Before the advent of electron microscopy, not much was known about this 

complex. However, based on physiological evidence of a ‘barrier function’, an 
intercellular seal was suspected. The epithelial cells were thought to have an absolute 
barrier which was termed as the terminal bar.2,8 It was thought to be formed from 
intercellular secretions and their main function was supposed to be cell-cell adhesion 
rather than regulation of epithelial permeability.2 Farquhar and Palade first described the 
tripartite junctional complex that is found between two adjacent cells. They observed that 
even though the exact arrangement of the complex differs from one organ to the other it 
was ubiquitous in its distribution throughout the body.9 The universal distribution of this 
junctional complex across species and organs further underlines their significance for 
existence of multicellular life forms. 

 



2 
 

 
 
Figure 1.1: Epithelial junction complex.  
(a) Schematic drawing of intestinal epithelial cells. (b) Electron micrograph of the 
junctional complex in mouse intestinal epithelial cells. Reprinted with permission. 
Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell 
Biol 2001;2(4):285-293.6   

 
 
1.1.1 Tight Junctions 
 

Tight junctions are the most apical members of the epithelial junction complex. 
They are located at the luminal end of the intercellular space. They form a barrier which 
prevents passage of pathogens, solutes across the mucosal layer into the bloodstream. 
However, they are not absolute barriers but are semipermeable10 and regulated11 diffusion 
barriers across epithelium. They also play a role in maintaining the polarity of epithelial 
cells by forming a fence around the cells and separate the apical and basolateral 
compartment.12 On transmission electron microscopy they can be seen as dots between 
adjoining cells.9 On freeze fracture electron microscopy they are seen as encircling bands 
around the apicolateral margins of cells.13 Also they are seen as continuous anastomosing 
strands between different cells14 (Figure 1.2). The tight junctions are composed of 
various proteins that may be divided into three groups: the integral proteins, plaque 
proteins and regulatory proteins.14 
 
 
1.1.2 Adherens Junctions 
 

Adherens junctions are present between two adjoining cell surfaces, situated 
basally to the tight junctions. They form a continuous adhesion belt. They either encircle 
the cells in the form of Zonula adherens or occur as points of attachment to the 
extracellular matrix called adhesion plaques. Adherens junctions are responsible for  
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Figure 1.2: Freeze fracture image of tight junctions between bronchial epithelial 
cells in the rat lung.  
PF-protoplasmic face, EF-ectoplasmic face. Reprinted with permission. Mitic LL, 
Anderson JM. Molecular architecture of tight junctions. Ann Rev Phys 1998; 60:121-
142.147 
 
 
keeping adjacent cells together through attachments to actin filaments. They are also 
known to play a role in contact inhibition.15-17 

 
 
1.1.3 Desmosomes  
 

Desmosomes are spot like adhesions and are present at the junctional surfaces of 
the adjacent cells. They are randomly distributed along the surface and protect the cells 
from shearing forces. Desmosomes are responsible for keeping adjacent cells together 
and provide attachment sites for intermediate filaments.18,19 
 
 
1.1.4 Gap Junctions  
 

Gap junctions are present between adjoining cells and connect the cytoplasm of 
two cells. They allow for movement of intracellular signaling molecules from one cell to 
another and also provide cell-cell adhesion.20,21 

 
In this study, our focus is on studying the tight junctions. So, the following 

sections contain a detailed description of the tight junctions. 
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1.2 Morphology of Tight Junctions 
 

Among the vertebrates, there are various organs which require a separation of 
environment between the apical and basolateral sides of the epithelial cell surfaces. A few 
examples are the gastrointestinal tract, urinary tract, blood-brain barrier in the central 
nervous system and blood-testis barrier in the male reproductive system etc. In the 
present study, we have tried to look at the tight junctions in the intestinal epithelium and 
the renal epithelium. 

 
In the intestinal epithelium, mucosa performs an important function of regulating 

the selective passage of nutrients from the luminal side into the blood stream, and 
preventing the passage of toxins, pathogens, allergens and other unwanted substances 
across the epithelium.22 In the renal tubular epithelium, again the significant function of 
regulation of passage of solutes and water between the tubules and the renal interstitium 
is performed by the epithelial cells and the junctions situated in between the adjacent 
cells. Another interesting fact is that even within the renal tubules, the characteristics of 
the epithelial cells to allow or restrict the passage of substances vary between the 
proximal and distal convoluted tubules.23-25 

 
These facts including numerous other characteristics of various epithelia, the 

selective passage of substances across these epithelial layers, and their regulation has 
evinced considerable interest among the scientific community to study the structure and 
function of tight junctions. The earlier investigators had proposed a ‘lipid model’ or a 
‘protein model’ to describe the structure of tight junctions.26 But with the advances in cell 
biology, it is now known that tight junctions consist of at least 50 different structural and 
signaling proteins. Thus, in addition to the structural proteins, the signaling molecules 
have become a whole new area of interest for scientists involved in tight junction 
research. 

 
Several of the details of tight junction structure were obscure from us in the era of 

light microscopy. But electron microscopy has made it possible for us to study their 
structure in the greatest possible detail. As explained before, both transmission electron 
microscopy and freeze-fracture electron microscopy have been used to study tight 
junctions. 

 
The new research in the field has shattered the old myth that tight junctions are 

rigid structures made up of some proteins or molecules and connecting the adjacent cells 
by calcium links. We now know that tight junctions are dynamic structures and their 
tightness of structure and function depends upon the organ system they are present in.  
This variation or dynamics is understood to be dependent upon number of sealing strands 
that constitute the tight junction between any two adjacent cells. Moreover, presence of 
numerous signaling molecules in the vicinity of these sealing strands, and their proven 
role in the regulation of tight junction structure and function has only given credence to 
the theory of dynamic tight junctions. 
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1.3 Tight Junction Components 
 

 The TJ complex consists of three elements (Figure 1.3): 
 

a)   Integral/transmembrane proteins- Occludin, Claudins and junctional adhesion 
molecule (JAM). The integral proteins consist of the transmembrane spanning 
domains which form the basic architecture of the TJs. Also they have cytoplasmic 
domain(s) which anchor them to the actin cytoskeleton via the  scaffolding 
proteins.6,23,27-29 

 
b)   Scaffolding proteins- Zonula Occludens-1(ZO-1), ZO-2, and ZO-3. These provide 

an anchor for the transmembrane proteins and connect them to the actin 
cytoskeleton.6,23,27-29 

 
c)   Regulatory proteins- G-proteins, Rho GTPases, Cingulin, PTEN, protein kinases 

and phosphatases. These proteins regulate the signaling to and from TJs and 
maintain TJ permeability.2,23,27-36 

 
 Newer findings suggest that there maybe a fourth class of proteins which mediate 
membrane vesicle targeting. All of these proteins act together to couple TJ proteins with 
the actin cytoskeleton and thus function to control cell permeability, polarization etc. The 
following sections include a detailed description of various proteins that constitute the 
tight junction complex. 
 
 
1.3.1 Scaffolding Proteins 
 

These are the peripheral proteins which function to organize the integral proteins 
and connect them to cytoplasmic proteins and the actin cytoskeleton. They are also 
involved in signal transduction at tight junctions. These include ZO-1, ZO-2, ZO-3, 
symplekin, ZA-1 TJ, AF-6 and cingulin. 

 
 
1.3.1.1 Zona occludens 
 
 Zona occludens proteins belong to the Membrane Associated Guanylate Kinase 
(MAGUK) family of proteins. Structurally, they are known to contain one SH3 
(Src-homology 3) domain, at least one PDZ domain and a Guanyl kinase (GUK) 
homologous region.34,37 ZO-1 was the first tight junction protein identified. ZO-1 is a 
220-kDa protein that forms a stable complex along with ZO-2 and ZO-3. It binds directly 
to a 150 amino acid domain at the C-terminal tail of occludin at the cytoplasmic end of 
occludin.38 It also binds to the actin binding protein spectrin. ZO-1, ZO-2 and ZO-3 are 
expressed and colocalize with occludin at the tight junction. They are known to be 
associated with the plasma membrane. They are also involved in transcription and may 
influence cell differentiation.39-43 
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Figure 1.3: Components of tight junction.  
Niessen CM. Tight Junctions/Adherens Junctions: Basic Structure and Function. 
Retrieved from http://www.nature.com/jid/journal/v127/n11/full/5700865a.html. 
Accessed on  06 May 2011.148 
  

http://www.nature.com/jid/journal/v127/n11/full/5700865a.html�
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1.3.1.2 Cingulin 
 
 Cingulin is a phosphoprotein with a molecular weight of 140-160 kDa. It forms 
coiled-coil parallel dimers on the cytoplasmic surface of tight junctions.44 Further 
intermolecular aggregations between these coiled-coil dimers lead to their aggregation 
and interaction with ZO-1 and ZO-2 in the cells.  Cingulin has a head domain and a tail 
domain, both of which are essential in its junctional localization. The functional 
importance of cingulin in tight junctions lies in its role in inter-connection between the 
plaque proteins and actin cytoskeleton.45,46 
 
 
1.3.1.3 Symplekin 
 
 This 126 kDa protein is also present in the junctional plaque. Symplekin is present 
in the tight junctions in sertoli cells of the testes. It is, however, not known to be present 
in the endothelial cells. Besides the tight junctions, Symplekin is also present in the 
nuclei of the epithelial cells. It is believed to be involved in control of nuclear events 
relating to tight junctions, like reporting the functional status of tight junction contacts.47 
 
 
1.3.1.4 7H6 Protein 
 
 7H6 is a 155 kDa phosphoprotein, and is known to be found in tight junctions of 
endothelial cells and hepatocytes. It responds to the depletion of ATP in the cells and gets 
reversibly dissociated from the junctional complex. Thus its role in regulation of tight 
junctions is dependent upon the functional status of the cells. 7H6 regulates the barrier 
function in both epithelial and endothelial cells. When the cells are undergoing changes 
from normal to dysplastic to carcinomatous, the level of expression of 7H6 in the cells 
decreases gradually and progressively.48 

 
 
1.3.2 Perijunctional Actin 
 

Actin cytoskeleton is connected to the tight junction proteins though the plaque 
proteins. It has been suggested that the integral proteins are linked to a perijunctional 
F-actin ring.40,49,50 Changes in actin organization have been correlated with permeability 
changes at the epithelial barrier. A suggested model for involvement of perijunctional 
actin in regulating epithelial permeability is by myosin generated cytoskeletal traction on 
the apical junction complex. This has been shown to be mediated by myosin light chain 
kinase (MLCK) which can activate myosin ATPase and contraction of the actin 
cytoskeleton.51, 52 Studies have shown that increased MLCK activity leads to an 
attenuation of the epithelial barrier function. Actin binding to TJ is suggested through 
occludin-ZO-1-ZO-2-F-actin and occludin-ZO-1-ZO-3-F-actin complexes. The actin 
cytoskeleton not only provides support to the TJ complex but is also involved in various 
signaling mechanisms that regulate the tight junction. 
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1.3.3 Integral/Transmembrane Proteins of the Tight Junction  
 

Transmembrane proteins of the tight junction are occludin, claudin and junctional 
adhesion molecule (JAM) (Figure 1.4). Since my thesis topic deals with occludin 
phosphorylation that will be described after the other proteins in more detail.  

 
 

1.3.3.1 Junctional adhesion molecules 
 

JAMs belongs to the IgG superfamily of proteins of which four members JAM-1, 
JAM-2, JAM-3 and JAM-4 have been identified. JAM-1 is a glycosylated protein 
weighing 43-kDa. It consists of two extracellular domains, one intracellular carboxyl 
domain and one transmembrane domain. JAM-1 is expressed in both the epithelial and 
endothelial tight junctions and is supposed to help the monocyte migration. JAM-2 is 
found in endothelial cells and JAM-3 on T cells. JAM-4 is expressed in renal glomeruli 
and intestinal epithelial cells. Evidence suggests that JAM-1 is associated to claudins 
indirectly through ZO-1. JAM-1 also recruits PAR-3/aPKC/Par-6 complex to the tight 
junction complex.31,53 
 
 
1.3.3.2 Claudins 
 
 Claudins were characterized by the Tsukita group.54 Over the years, the number of 
members of claudin superfamily has kept on increasing and now it is suggested to have 
24 members. Claudins are tetraspan molecules with two extracellular loops, one 
intracellular loop and cytosolic C- and N- terminus. They also have a PDZ bindng motif 
at the C-terminus. They interact with matrix proteins like ZO-1 through this motif. 
Claudins form heteromeric complexes within the same cell and also at the intercellular 
junction.55-58 They show a great deal of variability in their sequence, and based on their 
sequence analyses, Claudins are classified into two groups. They are classic claudins 
(1-10, 14, 15, 17 and 19) and non-classic claudins (11-13, 16, 18 and 20-24). Even 
though claudins form an integral part of the tight junction, their expression can vary in 
different tissues and organs. Claudin-1 is expressed ubiquitously in the cells. Claudin-5 
has predominant expression in tight junctions of endothelial cells, claudin 11 in sertoli 
cells and claudin-16 in the thick ascending loop of henle in the kidney.4,59 Not all 
claudins have a ‘sealing’ function. Claudin-2 and claudin-10A are examples of pore 
forming claudins. Examples of sealing claudins are claudin-1, 4, 5, 8, 11, 14 and 19. 
Moreover, each claudin has its unique expression pattern between the crypts and the villi 
of the mucosa.4,60 Claudins are believed to be playing a significant role in the 
maintenance of the structural integrity of tight junctions in the absence of occludin.61 

 
 
1.3.3.3 Occludin 
  
 Occludin was also identified and characterized by the Tsukita group.62 Human 
occludin has been characterized as a 65 kDa protein with two extracellular loops and two  
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Figure 1.4: The proteins forming the tight junction complex.  
JAM, Junctional Adhesion Molecule. Reprinted with permission. Schneeberger EE, 
Lynch RD. The tight junction: a multifunctional complex. Am J Physiol 2004;286:1213-
1228.149 
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cytosolic amino and carboxy termini. The extracellular loops have 46 and 48 amino acids 
and are separated by a 10 amino acid cytosolic loop. The first extracellular loop has a 
high number of conserved glycine and tyrosine residues. The N terminus and the C 
terminus have 65 and 255 amino acids respectively. Both the N and C terminal domains 
have a number of serine and threonine residues. The C terminal tail of occudin interacts 
with the plaque proteins ZO-1, ZO-2 and ZO-3. There is a highly conserved 150 amino 
acid domain at the C terminus that interacts with these proteins.40,63 Occludin expression 
can be correlated with the barrier function in various tissues and organs.64 In studies with  
occludin homozygous null mice it has been shown that occludin is not essential to form 
the tight junctions and the mice were viable. However, these mice exhibited 
abnormalities in the salivary gland, testis, bone and stomach lining.65 Growth retardation 
was observed in occludin deficient mice, the males showed sterility and the females could 
not suckle their offspring. It has been suggested that other tight junction proteins 
compensate for the lack of occludin expression and yet it is indispensable for a number of 
functions.61,66 
 

Occludin interacts with ZO-1, ZO-2 and ZO-3 at the C terminus, which are 
further coupled to the actin cytoskeleton. Occludin also interacts with the connexin-32, 
which is a gap junction protein.67 Occludin also forms a coiled-coil domain by 
homodimerizing with itself.67 It has been suggested that this domain interacts with ZO-1 
and also a number of regulatory proteins. It has been shown that the extracellular loops of 
occludin are involved in the formation of cell-cell contacts and thus creating the 
paracellular barrier.68 Occludin has also been shown to be involved in regulation of cell 
polarity. Occludin overexpression has been shown to increase TER and also decrease 
paracellular flux in some cell lines, which points to a role of occludin in the formation of 
paracellular channels.69,70 
 
 
1.3.3.4 Tricellulin 
 
 This 70 kDa novel, integral membrane protein is unique in the fact that it is 
present at tricellular tight junctions where three cells are joined together.  Tricellulin is 
composed of four transmembrane domains and is a component of bicellular and 
tricellular tight junctions.71 
 
 

1.4 Function of Tight Junctions 
 
 Other than forming a barrier20,72 and regulating the transport of transport of fluids 
and solutes across the epithelial monolayer,73,74 tight junctions also have a ‘fence 
function’ in biological membranes where they determine cell polarity as apical or 
basolateral.75,76 Tight junctions are now known to be involved in regulation of 
transcription,77 cell proliferation78 and differentiation.78  
 
 Cellular transport consists of transcellular and paracellular pathways2 (Figure 
1.5). Transcellular transport is mediated by ion channels and pumps distributed 
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Figure 1.5: Cellular transport.  
Schematic drawing of cellular transport showing trans and para cellular routes. Barrier 
Forming Tissue. Retrieved from http://www.nanoanalytics.de/en/hardwareproducts/ 
cellzscope/howitworks/chapter01/index.php. Accessed on 06 May 2011.150 

 
 
throughout the membrane. It is dependent on availability of energy rich molecules e.g. 
Adenosine tri-phosphate (active transport). This further gives rise to electric and osmotic 
gradients across the monolayers. The paracellular pathway is responsible for the passive 
transport of ions and solutes through the intercellular junctions. The epithelial junction 
complex is responsible for regulating the paracellular transport.79 Usually both 
transcellular and paracellular pathways are present across biological membranes. 
Transcellular transport occurs as a result of a tightly regulated movement of water and 
solutes across the epithelial cells and is an active process dependent on the presence of 
specific channels and transporters. Transcellular transport is therefore very specific and 
tightly regulated by the physiological state of the cell. The paracellular transport happens 
as a result of the osmotic gradient generated by the transcellular pathway. The two basic 
characteristics shown by the paracellular transport are permeability, governed by the 
magnitude of the barrier function and selectivity, which determines its ability to 
discriminate solutes or solvents on the basis of ionic charge or molecular size. These two 
characteristics are determined by tight junctions, which are points of circumferential 
contacts between adjacent epithelial cells. The tight junction dynamics govern the 
physiological characteristics of the paracellular pathway.79 
 
 

1.5 Disruption of Barrier Function 
 
 Tight junctions are the major determinants of barrier function and loss of tight 
junction function leads to disruption of barrier function.5,80 This disruption leads to 
disease pathogenesis due to loss of homeostasis and exposure of internal body 
compartments to external environment. Loss of barrier function leads to pathogenesis of 
various diseases like diarrhea, inflammatory bowel disease (Crohn’s disease and 

http://www.nanoanalytics.de/en/hardwareproducts/cellzscope/howitworks/chapter01/index.php�
http://www.nanoanalytics.de/en/hardwareproducts/cellzscope/howitworks/chapter01/index.php�
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Ulcerative colitis), primary biliary cirrhosis, malabsorption, primary sclerosing 
cholangitis, celiac disease, endotoxemia and multiple sclerosis  etc.81,84 Loss of the ‘fence 
function’ can lead to tumorigenesis and metastasis of cancer cells.5 Due to the critical 
role of tight junctions in cell growth and differentiation, and thus regulation of cell 
proliferation and migration, disruption of tight junctions can cause epithelial-
mesenchymal transformation and development of cancers. This latter effect can be 
produced by both down-regulation and over-expression of the tight junction 
proteins.5,36,80-82 
 
 

1.6 Tight Junction Regulation 
 
 Earlier it was thought that TJ permeability was static but now we know that TJ 
permeability is affected by extracellular stimuli. This ‘plasticity’ of tight junctions gives 
them a more dynamic function where they can be regulated by different signaling 
mechanisms.14,74,85 A number of regulatory proteins have been implicated in TJ 
regulation e.g. G-proteins, Rho GTPases, Cingulin, PTEN, PKCs and protein 
phosphatases.2,51 Protein kinases and phosphatases are known to regulate a number of cell 
functions. The protein kinases act by phosphorylating the substrates and phosphatases by 
dephophosphorylating the substrates. Thus a balance between phosphorylated and 
dephosphorylated states of various proteins is maintained and can be shifted either way 
depending on the state of cellular homeostasis.86 Protein kinases and phosphatases are 
also implicated in regulation of TJ permeability. Thus the TJs form a dynamic barrier 
with inputs from the actin cytoskeleton and regulatory proteins. Tight junction assembly 
is initiated by the E-cadherin mediated cell-cell adhesion.4 A number of proteins have 
been suggested to be involved in the signaling from the E-cadherin mediated cell-cell 
adhesion to the assembly site for the tight junction e.g. protein kinase A(PKA), 
monomeric and heterotrimeric G proteins and protein kinase Cs(PKCs).87 Signals also 
originate at the tight junctions and are involved in regulation of gene expression, cell 
proliferation and differentiation.30,77,88,89 Various regulatory proteins involved in TJ 
regulation are listed with a brief description below. 
 
 
1.6.1 Protein Kinase A 
 

PKA has been shown to inhibit denovo assembly of tight junctions in a calcium 
switch model.88 But it has also been shown that this effect can be modified in response to 
other signaling pathways. However the PKA is generally considered to inhibit TJ 
assembly.90 
 
 
1.6.2 Heterotrimeric G Proteins 
 

G-proteins are present near the inter-cellular junctional complex, in association 
with tight junction proteins.91 Tight junction assembly is seen in experiments where 
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inhibitory G-proteins are blocked. However, as with PKA this has been contradicted and 
overexpression of G-proteins has been shown to stimulate tight junction assembly.88,91,92 
 
 
1.6.3 Cyclic-AMP and Calcium 
 

These second messenger molecules play a significant role in influencing the tight 
junction structure and function.  Myosin light chain kinase (MLCK) is believed to 
phosphorylate the regulatory light chains of myosin, and thus bring about its contraction. 
These contractions of myosin and thus the actomyosin cytoskeleton, by virtue of its 
interaction with tight junction proteins help regulate the permeability of tight junctions.93 
This phosphorylation is in turn regulated by a calcium and ATP dependent mechanism. 
 
 c-AMP also affects the permeability of tight junctions by several mechanisms. In 
the blood-testis barrier in the sertoli cells, it causes proteasome-sensitive ubiquitination of 
occludin, whereas it interacts with the cytoskeletal system in gallbladder epithelium.  
c-AMP also regulates microvascular permeability. 
 
 
1.6.4 Rho Family GTPases 
 
 Ras, Rabs and Rho-GTPases have been thought to be involved in tight junction 
regulation. Rho family of GTPases have been thought to be involved in the regulation of 
junction assembly as well as paracellular permeability.35,49,94,95 Ras effectors have been 
shown to affect tight junction assembly.96,97 Raf kinases and AF-6 have been shown to be 
involved in cell differentiation and biogenesis of epithelial tight junctions.98 They are also 
involved in phosphorylation of Myosin light chain (MLC) phosphatase, thus leading to its 
inactivation. 
 
 
1.6.5 Rho Effector Proteins 
 
 Rho associated kinase (ROCK) mediates regulation of paracellular permeability 
probably though the actin cytoskeleton or directly by acting on tight junction 
proteins.99,100 
 
 
1.6.6 Crumbs 
 
 Crumbs which is an apical membrane protein in Drosophila has been localized 
close to epithelial tight junctions. Crumbs associated proteins have been shown to be 
further associated with ZO-1 and ZO-3 proteins and PAR3-PAR6-aPKC complex.101 
 
 



14 
 

1.6.7 Protein Phosphatases 
 
 Protein phosphatases dephosphorylate the protein residues and, thus result in 
enhanced paracellular permeability.102 Assembly of tight junctions is prevented by 
overexpression of the catalytic unit of PP2A, whereas its inhibition by various inhibitors 
like okadaic acid results in increased phosphorylation and translocation of occludin, 
claudin-1 and ZO-1 to tight junctions.103,104 While protein phosphatases have not been 
demonstrated to have any significant influence on actin cytoskeleton and adherens 
junctions, they very certainly have a disruptive effect on tight junction integrity and 
assembly.103-105 Protein phosphatases have been grouped into three families:  
 

a) PPP (Phosphoprotein phosphatases) family and the PPM (metallo-dependent 
protein phosphatase) which are the major serine/threonine dephosphorylators.  

 
b) PPP includes PP1, PP2A, PP2B etc.  

 
c) Protein tyrosine phosphatase (PTP).  

 
In tandem, protein phosphorylation and dephosphorylation help maintain a 

balance in the cell and switch the proteins from phosphorylated to dephosphorylated state 
and vice versa as required. Disruption in these states can lead to a number of diseases 
including but not limited to cancer, genetic abnormalities, diabetes and hypertension.86 
 
 
1.6.8 Protein Kinases 
 
 Protein kinases transfer the gamma phosphate from ATP to a serine, threonine or 
tyrosine residue in protein substrates. In humans, serine, threonine and tyrosine 
phosphorylation is 86.4, 11.8 and 1.8% respectively.86 Like protein phosphatases, protein 
kinases too are very important components of tight junction regulatory mechanism.  Their 
specific actions of phosphorylating serine, threonine or tyrosine residues influence the 
integrity and assembly of tight junctions.34,89,106,107 Their role on tight junction regulation 
is intertwined with that of protein phosphatases thus making the regulation of tight 
junctions a dynamic process. 
 
 
1.6.8.1 Tyrosine kinases 
 

Tyrosine kinases, as the name indicates, phosphorylate the tyrosine residues in the 
target proteins. Several of such kinases are located in the vicinity of intercellular 
junctional complex. C-Src and c-Yes are two such protein tyrosine kinases that contribute 
to the regulation of tight junctions.108-110 The importance of tyrosine kinases in tight 
junction regulation stems from the fact that occludin is known to be phosphorylated on 
tyrosine residues when tight junctions are disrupted.111 Occludin, when phosphorylated 
on Tyrosine residues is no longer able to maintain its interaction with ZO-1 and 
ZO-3.112,113 There is quite a significant amount of evidence to point towards the role of 



15 
 

c-Src in regulation of tight junctions. A study has indicated that activation of c-Src 
mediates the disruption of tight junctions caused by oxidative stress.112 It has also been 
shown that tyrosine kinase inhibitors protect the tight junctions against the oxidative 
stress-induced disruption in Caco-2 cells. Further studies have shown that over-
expression of dominant-negative c-Src delays the disruption of tight junctions when 
subjected to oxidative stress.  This over-expression of kinase-inactive c-Src also 
accelerates the calcium-induced assembly of tight junctions in Caco-2 cells.110,114,115 In all 
these studies, it was observed that phosphorylation of tight junction proteins occludin and 
ZO-1, and adherens junction proteins β-catenin and E-cadherin on tyrosine residues 
resulted in their dissociation from the actin cytoskeleton and thus disruption of tight 
junctions. 

 
 

1.6.8.2 Serine threonine kinases 
 

These kinases specifically phosphorylate the serine and threonine residues. 
Protein kinase C activation has been shown to decrease34,107,116 or increase106,117,118 
paracellular permeability. This suggests a complex signaling pathway at the junctional 
complex. Protein kinase C(PKC)η107, PI 3-kinase119 and MAP kinases120 are the few 
prominent serine threonine kinases known to regulate the tight junction structure and 
function. Several studies have demonstrated the involvement of serine threonine kinases 
in tight junction regulation. One study has proven that Calphostin C- a specific inhibitor 
of protein kinase C inhibits the biogenesis of tight junctions.34 Another study has 
implicated PI 3-kinase in disruption of tight junctions produced by oxidative stress. It has 
also been shown that oxidative stress leads to increased association of occludin with 
PI 3-kinase.119 
 
 

1.7 Role of Protein Phopshorylation/Dephosphorylation in Maintenance 
 of Tight Junctions 

 
 Protein phosphorylation/dephosphorylation plays a vital role in all cellular 
mechanisms. Signaling pathways regulating metabolism, transcription, cell-cycle 
progression, differentiation, cytoskeletal regulation, apoptosis and intercellular 
communications are affected by protein phosphorylation/dephosphorylation. A 
complimentary interplay between various protein kinases and phosphatases is responsible 
for these functions. Several signaling proteins and molecules modulate the activity of 
these kinases and phosphatases.86 
 

Any interference in this delicate balance between these two groups of enzymes 
can significantly and adversely affect the cellular processes of cell growth, development, 
differentiation and migration, and the overall health of the cells. Any interruption in the 
function of these regulatory enzymes can lead to various diseases and abnormalities like 
cancer, hypertension, diabetes, cardiac hypertrophy and genetic defects etc. Although our 
knowledge about the kinases and phosphatases involved in the regulation of 
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Thr-phosphorylation of occludin is incomplete, PKC, MAPK, PP2A and PP1 are known 
to be associated with TJ protein complex and regulate the integrity of TJs.34,107,114 

 
Occludin is a major component of the tight junction proteins. It is also found in 

both the detergent-soluble (cytoplasmic) and detergent-insoluble (actin cytoskeleton-
associated) fractions of cellular proteins.121 On SDS-PAGE analysis, in addition to the 
regular occludin bands, presence of some higher molecular weight bands points towards 
the possibility that these higher molecular weight bands corresponding to the 
phosphorylated form of occludin.111,121,122 Disappearance of these bands when the 
samples were treated with phosphatases has helped confirm this belief. Further studies 
have also demonstrated that the sites of phosphorylation in the phosphorylated form of 
occludin were serine and threonine residues.123 

 
Occludin phosphorylation on serine, threonine or tyrosine residues significantly 

alters the dynamics of the tight junction structure and function. Several studies have 
drawn a connection between the phosphorylation state of occludin and the integrity of the 
tight junctions. One study has demonstrated that compared to the cells grown in regular 
calcium containing medium, those cultured in a low-calcium medium exhibited 
disruption and disassembly of tight junctions. Further analysis revealed that in the cells 
incubated in low-calcium medium, occludin was present predominantly in its 
unphosphorylated form and was localized in the detergent-soluble fraction. These 
changes were, interestingly, reversed when the regular calcium containing medium was 
added to the cells, i.e. the junctional integrity and assembly was restored, occludin was 
seen to be present in its phosphorylated form and redistributed to the detergent insoluble 
fraction. Immunofluorescence studies have also substantiated this evidence.111,121 This 
data indicated that occludin is phosphorylated on serine and threonine residues in intact 
tight junctions, whereas the disrupted tight junctions are associated with 
dephosphorylation of occludin on serine and threonine residues.  

 
Phosphorylation of occludin is now a widely known and well established process 

involved in regulation of tight junction integrity. There is some evidence that points to 
the role of PKC and ERK in the phosphorylation of occludin on serine and threonine. It is 
also known that the phosphorylation sites of occludin are located in the ZO-1 binding 
domain, and some others are present in domains that help target occludin to the tight 
junction complex.63 

 
These studies have established beyond doubt that phosphorylation of occludin on 

serine and threonine plays a vital role in the regulation of tight junctions. In the present 
study, we have endeavored to understand the role of this process during TJ assembly and 
disruption. PKC and MAPK are among the several serine threonine kinases catalyzing 
this process and regulating the dynamics of the tight junction integrity. Our concentration 
is to look at the role of PKCζ in the regulation of tight junctions. 
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1.8 Protein Kinase C in Cell Functions 
 

The protein kinase C (PKC) family consists of 10 serine/threonine kinases. These 
enzymes are important in regulation of cell proliferation, survival and cell death. PKCs 
have been classified into three categories: 
 

1. Classical PKCs: The classical PKCs include α, β and γ, and are characterized 
by activation with diacylglycerol (DAG), phosphoserine and phorbol esters. 
But classical PKCs require calcium for activation. 

 
2. Novel PKCs: The novel PKCs include δ, ε, η and θ.  These too are activated 

by diacylglycerol (DAG), phosphoserine and phorbol esters and they do not 
require calcium for activation. 

 
3. Atypical PKCs: They include PKCζ and λ/ι. Like the novel PKCs, atypical 

PKCs also do not require calcium for activation. Their uniqueness lies in the 
fact they are not activated by phorbol esters either.124 

 
Phorbol esters have been shown to disrupt tight junctions.106,117,125 However, 

inhibition of PKCs blocks both tight junction formation and disruption. Transient 
activation of PKCs is seemingly required for tight junction regulation. Different PKCs 
have been localized close to tight junctions but other than atypical PKCs nothing much is 
known about the role of classical and novel PKCs.34 The atypical PKCs form a complex 
with PAR3-PAR6 and are important in tight junction regulation and establishment of cell 
polarity.126 The PKCs have been thought to be able to affect cell regulation based on 
environmental stimuli. A change in PKC expression/activity therefore can disrupt the 
regular homeostatic state of the body and lead to a number of diseases. 

 
 

1.9 Involvement of an Atypical PKC in Regulation of  
Occludin Phosphorylation 

 
 Calphostin C (PKC inhibitor) has been shown to delay the tight junction assembly 
in a dose dependent manner. Also, the membrane associated PKC activity has been 
shown to increase significantly during tight junction assembly. These studies point to the 
role of PKC in the formation of tight junctions.34 
  

During tight junction assembly occludin has been shown to be translocated from 
the cytoplasm to the region of cell-cell contacts. Treatment with PKC activators has been 
shown to increase this redistribution of occludin in a dose and time dependent manner. 
When cells that were undergoing reassembly were lysed and triton soluble and insoluble 
fractions were made, it was observed that the amount of triton insoluble fraction of 
occludin increased as the reassembly progressed.62 This increase was seen to be even 
more when the assembling cells were treated with a PKC activator. Also, it was shown 
that this occludin fraction was phosphorylated and the soluble fraction was 
dephosphorylated. PKCζ, which is an atypical PKC has been shown to colocalize with 



18 
 

ZO-1 at the tight junction.103,107,116 So it can be suggested that PKCζ might be involved in 
the phosphorylation of occludin and its localization at tight junctions. In the following 
chapters, we shall try to find out more about the role of PKCζ in regulation of tight 
junctions. 



19 
 

CHAPTER 2: MATERIALS AND METHODS 
 
 

2.1 Cell Culture 
 

Caco-2 and MDCK cell monolayes were used as models of epithelial lining in our 
studies to define the role of PKCζ in regulation of epithelial tight junctions. 
 
 
2.1.1 Caco-2 Cell Line 
 

We used Caco-2 cells in several of other studies in our laboratory. This cell line is 
derived from human epithelial colorectal adenocarcinoma cells.127 However in culture, 
they differentiate spontaneously into polarized intestinal columnar cells (enetroctytes) 
forming a monolayer morphologically and functionally similar to enterocytes in small 
intestine. The cells forming this cultured monolayer possess an apical brush border and 
tight junctions between adjacent cells similar to intestinal enterocytes.128,129 Hidalgo et al 
showed that Caco-2 cells underwent the above mentioned process of enterocytic 
differentiation even when they were cultured on polycarbonate transwell inserts. They 
also found that these monolayers form a polarized epithelial cell monolayer and exhibited 
uptake and permeability properties similar to small intestine, thus confirming their 
suitability as a candidate for intestinal epithelial model.127 It has since been established 
that Caco-2 cell line is an excellent model for studying intestinal absorption. Artursson et 
al have demonstrated a correlation between in vitro (Caco-2 cell monolayers) apparent 
permeability and in vivo (small intestine) absorption of drugs, thus indicating suitability 
of Caco-2 cell monolayers as model for studying absorption from the intestine.130 

 
Caco-2 cells were grown in 100 mm petri dishes or 75 cm2 flasks. Dulbelco’s 

modified DMEM containing 10% (v/v) fetal bovine serum plus L-glutamine, penicillin, 
streptomycin and gentamicin was used for cell culture. Cells were kept at 37°C in cell 
culture incubators with 5% CO2. Medium was changed every other day. Once confluent,  
the cells were passaged 1:3 into new dishes and flasks using 0.05% Trypsin/0.53 mM 
EDTA in HBSS. To maintain sterility, the medium was filtered through 0.22 micron 
filters and all procedures were done in laminar flow hood. 

 
 

2.1.2 MDCK Cell Line 
 

MDCK (Madin-Darby Canine Kidney) cell line is developed from normal canine 
kidney. Earlier used for viral expression studies, it was characterized as a high throughput 
model for membrane permeability by Grove et al.131 They showed that permeability 
characteristics of MDCK cell monolayers grown on polycarbonate transwell inserts 
mimic those of Caco-2 cells. It gave us a chance to compare our findings over different 
cell lines from two organ systems (intestine, kidney) and two species (human, dog).  
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MDCK cell were cultured following the same cell culture protocol as Caco-2 cells 
mentioned above. However, the fetal bovine serum in growth medium was replaced with 
serum supreme. 

 
 

2.2 Transwell Inserts 
 

In order to study the tight junctions, the cells in epithelial monolayers have to be 
differentiated and polarized with a distinctive apical and basal side.  As stated earlier, 
cells grown on transwell inserts provide an excellent model of a polarized cell monolayer 
for epithelial transport studies. The transwell inserts (Figure 2.1) consist of a porous 
polycarbonate membrane which is anchored on the base of a cylindrical well. These 
inserts have a pore size of 0.4 micron and membrane diameter of 6.5 mm, 12 mm and 24 
mm. Transwell inserts were purchased from Corning Costar, MA.  

 
 

2.3 Inhibition of PKCζ by PKCζ-Pseudosubstrate (PS) 
 
 
2.3.1 Mechanism of Action 

 
PKCζ consists of four functional domains, one of which is the pseudosubstrate 

domain (Figure 2.2). The pseudosubstrate domain blocks the substrate binding cavity of 
the kinase domain. We purchased myristoylated PKCζ-PS from Genscript corporation 
with the sequence- Myr-SIYRRGARRWRKL. This was used to inhibit the PKCζ activity 
in the MDCK and Caco-2 cell monolayers. Activation of PKCζ is dependent upon release 
 

Figure 2.1: A schematic representation of a transwell insert. 

Cell Culture 
Medium 

Cell Monolayer  

Transwell Insert Electrodes 



21 
 

 
 
 
Figure 2.2: Schematic representation of the domain structure of PKCζ.  
Reprinted with permission. Chida K, Hirai T. Protein kinase C zeta (PKCζ): activation 
mechanisms and cellular functions. J Biochem (Tokyo) 2003;133(3):395.151 
 
 
of kinase domain via phosphorylation of Thr-410, which further autophosphorylates 
Thr-560124 (Figure 2.3). 
 
 
2.3.2 Stock Preparation 
 

PKCζ PS (MW 1428) comes in powder form. This was reconstituted into a 5mM 
stock solution in 1% DMSO in distilled water. To preserve the activity it was stored in 
silicon coated microtubes at -20oC.  

 
 

2.3.3 Dilution 
 

For use in our experiments, we diluted the stock solution of PKCζ-PS with 
DMEM 100x to achieve a concentration of 50 µM. Further dilution was done to get lower 
concentrations, when required. 
 
 
2.3.4 Inhibition of PKCζ in Caco-2/MDCK Cell Monolayers Grown in Transwell 
Inserts 

 
The cell monolayers grown on transwell plates were brought to room temperature 

and baseline Transepithelial Electrical Resistance (TER) was measured to assess the 
health/viability of cell monolayers.  The cell monolayers were washed with serum and 
glutamine free  DMEM 1x and incubated with the same for 1 hour for equilibration. 10 
µM, 25 µM or 50 µM PKCζ-PS was added to the apical compartments of transwell 
inserts. The plates were incubated at 37oC for a maximum of three hours. 
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Figure 2.3: Schematic representation of PIP3 and PDK1 in PKCζ activation. 
Reprinted with permission. Chida K, Hirai T. Protein kinase C zeta (PKCζ): activation 
mechanisms and cellular functions. J Biochem (Tokyo) 2003;133(3):395.151  
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2.4 Measurement of Barrier Function 
 
 We evaluated the barrier function by measuring TER (Transepithelial electrical 
resistance) and paracellular flux of FITC-inulin. 
 
 
2.4.1 Transepithelial Electrical Resistance (TER) Measurement  
 

The paracellular and transcellular pathways across a cell monolayer are in a 
parallel circuit. Even though TER is a measure of resistance across both transcellular and 
paracellular pathways, variations in TER reflect paracellular permeability or more 
specifically tight junction permeability since tight junctions are the major barrier at the 
paracellular pathway.4,6,127,132 
 

TER measurement was done using an electric voltohmmeter (Millicell-ERS 2 
epithelial volt-ohm meter- Figure 2.4). It is a battery operated portable apparatus 
consisting of main unit and a set of electrodes that are connected to the main unit. The 
main unit has a display which can show either the resistance or potential difference across 
the membrane. A push button acts as the switch to turn on the apparatus. The ‘chopstick’ 
electrodes consist of silver/silver chloride pellet and one electrode is longer than the other 
so that they can be placed at right angles to the membrane in the apical and basal 
compartments of the transwell system. (Figure 2.5) When the current is passed through 
the transwell membrane, the meter measures the electric resistance and/or potential 
difference across the membrane.  
 

To measure the TER, electrodes were sterilized by soaking them in 70% ethanol 
for 15 min. Then to equilibrate the electrodes they were soaked in DMEM (medium used 
for experiment) for 15 min. Blank resistance readings were taken using transwell inserts 
without cultured cells. Since the reading is done with incubating medium and no cell 
monolayers, it gives us the resistance values of polycarbonate membranes. The transwell 
plates intended for measurement of TER were allowed to reach room temperature and 
then resistance was measured by using the apparatus. The measurements were obtained in 
ohms. Blank TER values for membranes were subtracted from recorded TER values to 
obtain the actual TER of the cell monolayers. TER readings were converted to ‘resistance 
per unit area’ by dividing the actual resistance values by surface area of the membrane 
(0.33 cm2, 1.13 cm2 and 4.52 cm2 for 6.5 mm, 12 mm and 24 mm transwells 
respectively). The unit area resistance provides a better comparison between different 
plate sizes. 
 
 
2.4.2 FITC-Inulin Flux Measurement 
 

TER is a quick and easy way to measure the epithelial permeability and barrier 
function in cell monolayers. However, it is not a dynamic measure of the permeability 
changes. Transepithelial inulin flux is a more dynamic indicator of the permeability 
changes. To measure the inulin flux across the membrane FITC (Fluorescein 
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Figure 2.4: Millicell-ERS electrical resistance system.  
Millicell is a trademark of Millipore Corporation. The illustration is courtesy of Millipore 
Corporation. Reprinted with permission. Millicell®–ERS User Guide P17304, Rev. C, 2 
(2007). Millipore Corporation Billerica, MA.152   
 
  
 
  

 
 
Figure 2.5: Measurement of transepithelial electrical resistance.  
Millicell is a trademark of Millipore Corporation. The illustration is courtesy of Millipore 
Corporation. Reprinted with permission. Millicell®–ERS User Guide P17304, Rev. C, 7 
(2007). Millipore Corporation Billerica, MA.153 
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isothiocyanate)-inulin was used.133 It has been shown that tight junctions have pores that 
allow for passage of ions and solutes across the epithelium. The pore sizes have been 
estimated to be in the order of 3.5-4 Ao.72 Inulin with a radius of 10 Ao thus is a suitable 
marker to study epithelial permeability. FITC is used as a fluorescent tracer that is tagged 
to inulin so that it can be read on a fluorescence reader. 
 

50 mg/ml solution of FITC-inulin was placed in the apical compartment to obtain 
a final dilution of 1:100, and the plates were incubated at 37oC. 100 µl of medium was 
taken from the apical as well as basal compartments and transferred to a 96 well 
fluorescence reader plate. 100 µl incubating medium was used as blank control. The 
fluorescence was read at excitation of 485 nm and emission of 538 nm using FLx800 
microplate fluorescence reader (BioTEK instruments , Winooski, VT) with KC junior 
software. Net flux as a result of inulin diffusion from the apical to basal compartment was 
calculated as follows: 

 
Basal reading   x V2 x 100 x 1 = % flux/hr/cm2 

Apical reading x V1      T      A 
 

where 
V1 = Volume of medium in the apical compartment 
V2 = Volume of medium in the basal compartment 
  T = Time duration of experiment (in hours) 
  A = Area of cell monolayer (in cm2) 
 
 

2.5 Determination of Cell Viability 
 

To rule out cell damage/apoptosis by PKCζ-PS viability studies- Lactate 
dehydrogenase (LDH) assay and WST assay were done on Caco-2/MDCK cell 
monolayers in transwells after treatment with PKCζ-PS. 

 
 

2.5.1 Lactate Dehydrogenase (LDH) Assay 
 
LDH assay is based on the fact that LDH (a cytoplasmic enzyme) is released from 

cells when the membrane is damaged. It is to be noted that though there are other 
enzymes such as phospahtases released upon cell injury, LDH is a stable enzyme and 
quantification of LDH release has been widely used as a marker of cell injury. LDH is an 
oxidoreducatse which causes a coupling reaction with the substrate present in the reagent. 
Upon addition of the reagent, LDH oxidizes lactate to pyruvate which then reacts with 
tetrazolium salt INT to form formazan. (Figure 2.6) The formazan dye is water soluble 
and can be read in spectrophotometer at 490nm. The amount of formazan formed is 
proportional to the number of dead/damaged cells.134,135 
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Figure 2.6: The LDH Assay.  
Reprinted with permission.The LDH Assay. Retrieved from 
http://www.gbiosciences.com/CytoscanLDHCytotoxicityAssayKit.aspx. Accessed on 06 
May 2011.154 
 
 
2.5.2 WST Assay 

 
Unlike LDH assay which measures cell death/damage, the WST assay measures 

the metabolic activity of cells. The stable tetrazolium salt WST-1 is cleaved to a soluble 
formazan dye by a complex cellular mechanism at the cell surface. This reaction is 
dependent on the production of NAD(P)H by glycolysis in viable cells. Therefore, the  
amount of formazan dye formed is proportional to the number of metabolically active 
(viable) cells in the culture.136 
 

 
2.6 Tight Junction Assembly by Calcium Switch 

 
Calcium is known to be involved in the assembly of adherens junctions.137 

Calcium depletion has been shown to break the adherens as well as the tight junctions in 
cell monolayers. The breakdown of tight junctions is not a direct result of calcium 
depletion. It is rather a consequence of adherens junction breakdown. This is a reversible 
process upto a point and calcium replenishment can lead to denovo assembly of tight 
junctions in cell monolayers.138 This knowledge gave researchers a great tool to study the 
reassembly process and signaling mechanisms associated with it. This is known as the 
‘calcium switch’ model. For our study, we looked at TJ reassembly after calcium 
replenishment with and without inhibiting PKCζ.  
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2.6.1 TJ Reassembly in Caco-2 Cells Using a Calcium Chelator (EGTA) 
 
 Caco-2 cells were grown on transwell inserts until confluent i.e. 10, 12 or 14 days 
for 6.5 mm, 12 mm or 24 mm transwell inserts respectively. Basal TER measurement 
was done to assess the health of monolayers and the cells were washed 1X with serum 
and glutamine free medium. The cells were incubated at 37oC for 1 hour with 
serum/glutamine free medium for equilibration. The plates were then allowed to come to 
room temperature by keeping them outside for 5 min. TER measurement was done and 
then calcium depletion was caused using 4 mM EGTA. Tight junction integrity was 
monitored by measuring TER and observing the cell monolayers under microscope. A 
decline in TER and cell rounding indicated the disruption of junctions. When the TER 
values reached 30% of basal TER (usually 25-30 min), the process is stopped by washing 
the cells twice with regular medium containing calcium to completely remove EGTA. 
Regular medium with calcium was added to the transwells, and monolayers were 
incubated at 37oC. The denovo assembly of tight junctions in the monolayer was 
monitored by TER and inulin flux measurements every 30 minutes.  
 
 
2.6.2 Calcium Switch with Low Calcium Medium in MDCK Cells 
 

Low calcium medium (LCM) was used to induce TJ breakdown in MDCK cells. 
LCM was constituted by adding calcium to commercially available calcium free DMEM 
so as to attain a final concentration of 2 µM. Similar protocol as for Caco-2 cells was 
followed for calcium switch except that the cells were incubated with LCM for 14-16 hr. 
Also the cells are not washed with regular medium to stop the process, the LCM is just 
replaced with regular medium. 

 
 
2.7 Immunofluorescence Staining and Confocal Microscopy of Tight  

Junction Proteins 
 

Caco-2/MDCK cells were grown to confluence on polycarbonate membranes in 
transwell inserts and after the required treatment(s), cells were fixed and stained for tight 
junction proteins.  

 
 

2.7.1 Fixing the Cells 
 

Fixation immobilizes antigens while retaining cellular architecture. Caco-
2/MDCK cells were fixed at scheduled time points or at the end of the experiment, using 
either acetone-methanol or paraformaldehyde. The cell monolayers were washed twice 
using ice cold  Phosphate buffered saline (PBS) containing NaCl, KCl, Na2HPO4, 
KH2PO4 in distilled water at pH 7.2 to stop the reaction. 
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2.7.1.1 Fixing with acetone-methanol 
 

Cold acetone-methanol in 1:1 concentration was prepared a day before and stored 
in a glass bottle at -70ºC. While the cells were being washed with PBS the 
acetone-methanol is brought to the experiment hood using temperature resistant gloves. 
After washing with ice cold PBS, the cells were bathed in cold acetone: methanol for 5 
minutes, air dried for 5 minutes at room temperature and then stored at -20°C. 

 
 
2.7.1.2 Fixing with 3% paraformaldehyde 
 

Fresh 3% paraformaldehyde in PBS was prepared on the day of the experiment. 
After washing with cold PBS, cells were treated with 3% paraformaldehyde for 15 
minutes at room temperature. Then, paraformaldehyde was removed by washing with 
cold PBS 3 times for 10 minutes each and fixed cell monolayers were stored at 4ºC in 
PBS containing 0.05% sodium azide.  

 
 

2.7.2  Cutting and Trimming of the Membrane 
 

A small piece of membrane is cut from the stored membrane and immediately 
immersed in 1X PBS in a 24 well plate. Any rough edges were trimmed with fine scissors 
as these would cause problems during mounting stage. 
 
 
2.7.3 Washing of the Membrane 
 

Paraformaldehyde fixed membranes were washed with PBS 3 times for 10 
minutes each. Acetone-methanol fixed cells were rehydrated twice with PBS for 10 
minutes each. 
 
 
2.7.4 Permeabilization of the Membrane 
 

Membrane permeabilization allows for better penetration of antibodies into the 
cells. The cells were permeablilized by treating with 1 ml of 0.2% TritonX-100 (prepared 
in PBS) for 5 minutes. After permeabilization membranes are washed three times for 10 
minutes each with cold PBS. Care has to be taken though that there is not 
overpermeabilization as that leads to protein disruption and affect staining.   
 
 
2.7.5 Blocking  
 

Blocking of cell monolayers prevents non specific binding of IgG. The cell 
monolayer was blocked with 4% milk in TBST (20mM Tris, pH 7.2, 150mM NaCl, 
Tween20) for 30 minutes at room temperature.  
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2.7.6 Incubation with Primary Antibodies 
 

The cell monolayers were incubated with the primary antibodies in 150µl of 4% 
milk containing Mouse anti-occludin monoclonal antibody (3µg/ml) and Rabbit 
anti-ZO-1 polyclonal antibody (4µg/ml), or Mouse anti-E-cadherin monoclonal antibody 
(3µg/ml)  and Rabbit anti-β-catenin polyclonal antibody. (4µg/ml). The cell monolayers 
were treated with primary antibodies in a humidifying chamber in the dark for one hour.  

 
 

2.7.7 Incubation with Secondary Antibodies 
 

The membranes were washed three times with 1% milk for 10 minutes each. They 
were then incubated with the secondary antibody depending on the primary antibodies 
used in the previous step. We used anti-mouse IgG conjugated with Alexafluor 488 
(1:100) and anti-rabbit IgG conjugated with Cy3 (1:100) in 4% milk. The cells were 
incubated with the secondary antibody in a humidifying chamber in the dark for one hour 
and then washed with 1x PBS three times for 10 minutes each. 
 
 
2.7.8 Mounting of Membranes on Slides 
 

The membranes were mounted on glass slides by placing a small drop of the 
mounting fluid (DABCO + glycerol) on the slide and placing the membrane on the slide 
with the apical surface facing up. Cover slips (size zero) were carefully placed on the 
membrane and then sealed using nail paint on the edges of the cover slip. The slides were 
labeled and kept in the dark at 4ºC for imaging later on.  

 
 

2.7.9 Observation and Processing  
 

The fluorescence was examined using a confocal laser-scanning microscope 
(Zeiss LSM510 PASCAL) as a series of images from 1µm XY sections. Iris and gain 
were adjusted according to the intensity of the stain but same settings were used to 
compare all samples in each experiment. Images were stacked using the Image J software 
(National Institute of Health) and processed by Adobe Photoshop (Adobe Systems, San 
Jose, CA). 
 
 

2.8 Preparation of Whole Cell Extracts 
 

After the stipulated treatments, cell monolayers were washed twice with cold PBS 
(NaCl 137mM, KCl 2.7 mM, Na2HPO4 10mM, KH2PO4 1.76 mM at pH7.4) and lysates 
were prepared using heated lysis buffer-D (SDS 0.3% v/w, Tris 10 mM at pH 7.4 with 
sodium vanadate 10 µM, sodium fluoride 100 µM and protease inhibitor cocktail 
10µl/ml). After extraction the samples were homogenized by sonication. Protein 
estimation was done as mentioned below and 3x Laemmli’s sample buffer equal to half 
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the volume of the sample was added. The mixture was heated at 100oC for 10 minutes 
and stored at -20oC. 

 
 

2.9 Preparation of Detergent-Soluble and Detergent-Insoluble Cell Fractions 
 

Actin cytoskeletal fraction is known to be associated with plasma membrane. The 
transmembrane proteins are anchored by the actin cytoskeletal fraction and on lysis with 
detergent remain in the insoluble fraction.122 After completion of treatment of cell 
monolayers with different reagents as required by the study, monolayers were washed 
twice with cold 1x PBS. Lysis buffer-CS (20mM Tris buffer containing 1.0% Triton 
X-100, 2 µg/ml leupeptin, 10 µg/ml aprotinin, 10 µg/ml bestatin, 10 µg/ml pepstatin-A, 
2 mM vanadate, and 1 mM PMSF) was used to lyse cells. The lysate was centrifuged at 
15,600 g for 5 min at 4°C and the supernatant was transferred to labeled tubes. The 
resultant, detergent insoluble, pellet contains the actin cytoskeletal fraction and the 
supernatant contains the detergent soluble fraction of cell proteins. The pellet was 
suspended in 200 µl of  Lysis buffer CS and homogenized with sonicator.  Aliquots were 
taken from both fractions for protein assay.  The protein samples were mixed with half 
the volume of 3x Laemmli’s sample buffer and heated at 100°C for 10 minutes and stored 
at -20°C. 
 
 

2.10 Protein Estimation 
 

Protein concentration in the lysates was estimated using BCA protein estimation 
method. The protein estimation kit has two reagents A and B; these were mixed in a ratio 
of 1:40 to get the reagent mix. 5µl samples of cell extracts were taken in triplicates and 
put in a 96 well plate. BSA protein standards (100-1000 µg/ml) were used in duplicates 
to obtain a reference protein value curve. 200 µl of reagent mix was added to the samples 
and standards. The plate was incubated at 37oC for 10 minutes and then read at 562 nm 
using SPECTRAMAX 190 plate reader (Molecular devices, CA). The values obtained 
were put in Microsoft Excel software and using the standard concentration curve plotted, 
protein concentrations were calculated. 
 
 

2.11 Immunoprecipitation of Tight Junction Proteins 
 

Caco-2 or MDCK cell monolayers were washed with cold 1x PBS and the 
proteins were extracted in Lysis buffer-CS or Lysis buffer-D as mentioned above. After 
protein estimation, 300 µg of protein was aliquoted and mixed with equal volume of 2x 
immunoprecipitation buffer in 1.5 ml microfuge tubes. The samples were incubated for 
16-18 hours on a rocker at 4oC with 2 µg rabbit polyclonal anti-occludin, mouse 
monoclonal anti-PP2A, rabbit polyclonal anti-PP1 or rabbit polyclonal anti-
phosphoserine or anti-phosphothreonine antibody. 25 µl washed protein-A sepharose 
beads were added and samples were put back on the rocker for one hour. The supernatant 
was discarded and beads were washed with 1x immunoprecipitation buffer three times. 
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25 µl of 2x Laemmli’s sample buffer was added and the samples heated at 100°C for 
10 min. Tubes were spun down at 10,000 rpm and the supernatant was used for 
immunoblot analysis. 

 
 

2.12 Immunoblotting 
 

The previously prepared samples of whole cell extract or detergent soluble and 
insoluble fractions or immunoprecipitated proteins stored in Laemmli’s sample buffer 
were heated at 100°C for 10min. 30 µg of protein/sample was loaded on Nupage-novex 
7% tris acetate pre-cast gels (Invitrogen, Carlsbad, CA) and run in MOPS-SDS gel 
running buffer at 120 V for about 90 minutes till the dye migrated to the lower end of the 
gel. This leads to elecrophoretic separation of proteins based on their molecular weight. 
The smaller proteins move faster than bigger proteins and thus can be identified on a 
film. A colorimetric molecular weight marker is also run with the samples.  

 
PVDF membranes were charged with methanol for 45 sec and the gels were then 

transferred to PVDF membranes. The transfer was done at 4°C at 100V for 90 minutes 
using transfer buffer. To ensure there is no overheating of the transfer buffer, the transfer 
apparatus was kept in an ice chamber. The membranes were taken out of the transfer 
chamber and blocked with 5% milk (or 5% BSA for phospho-antibodies) in TBST (Tris 
base, NaCl and TWEEN 20 dissolved in distilled water, pH adjusted to 8.0) for 1 hour at 
room temperature. The membrane was probed with various primary antibodies in 3% 
milk (or 3% BSA for phopsho-antibodies) in TBST - rabbit anti-phosphoserine (1:3000), 
rabbit anti-phosphothreonine (1:3000), mouse anti-occludin (1:3000), rabbit anti-ZO-1 
(1:3000), rabbit anti-PKCζ (1:3000), mouse anti-claudin-4 (1:2000) and rabbit anti-
claudin-3 (1:2000) antibodies for 12-16 hours at 4oC on a rocker.  The membrane was 
washed 5 times with 1x TBST on the rocker at room temperature for 5 minutes each. 
After that, the membrane was probed with HRP-conjugated anti-mouse or anti-rabbit 
secondary antibodies (1:10,000) prepared in 3% milk or 3% BSA in TBST for 1 hour  at 
room temperature on a rocker. The membrane was washed again 5 times with 1x TBST.  
 

The blot was developed using the ECL chemiluminescence method using ECL 
solutions 1 and 2 (Amersham, Arlington Heights, IL). ECL reagents are added to each 
other just before developing and spread as thin uniform film on the membrane. The 
secondary antibody binds with the primary antibody and the ECL (containing peroxide) 
acts as a substrate for the horse-radish peroxidase which catalyses the oxidation of 
luminol in the presence of peroxide. This oxidation-reduction reaction oxidizes luminal to 
an oxidized product which is in an excited state and leads to emission of light as it decays 
back to the ground state over time. Radiography films can record this emitted light and on 
developing show us the various proteins detected depending on their molecular weight. 
For re-probing when needed, the membranes were incubated with 1x stripping buffer 
(Thermo scientific 21059) for 30 min. on a rocker. After washing off the stripping buffer 
twice with TBST they were blocked and re-probed as described above. 
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2.13 Recombinant Proteins 
 

Recombinant C terminal domain of human occludin (C-terminal 150 amino acids) 
was produced as GST fusion protein (GST-Ocl-C) in E. coli BL21DE cells and purified 
using GSH-agarose. cDNA for the C-terminal tail of human occludin (amino acids 
378-522) was amplified using the cDNA clone for human occludin (kind gift from Dr. 
Van Italie, University of North Carolina, Chapell Hill, NC) and inserted into pGEX2T 
vector. The sequence of interest inserted into pGEX2T vector was transformed in highly 
competent DH5α cells. The transformed cells were grown in Lurea Broth medium and 
purified using GSH-agarose. Point mutations of T400, T403, T404, T424,and T438 to 
Ala were introduced in wild-type GST-Occludin-C nucleotide sequence, using Stratagene 
Quik Change II Site Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA) 
as per manufacturer suggested protocol, and they were expressed as above.  
 
 

2.14 Pairwise Binding Assay 
 

To determine the direct interaction between occludin and PKCζ, GST-Ocl-C (10 
μg) was incubated with recombinant, purified PKCζ.  GST (10 µg) was used as control. 
Both GST and GST-Ocl-C were incubated with 30, 100, 300 and 500 ng of  pure 
recombinant PKCζ in binding buffer (PBS containing 0.2% Triton X100, 1 mM vanadate, 
and 10 mM sodium fluoride) for 3 hours at 37°C on an inverter. GSH agarose beads were 
washed with binding buffer three times. GST/GST-Ocl-C was pulled down by binding to 
30 μl of 50% GSH-agarose slurry at 37°C for 1 hour. The amounts of PKCζ bound to 
GSH-agarose pull down were determined by immunoblot analysis. The blots were probed 
for PKCζ as well as GST for control. 

 
  

2.15 Occludin Phosphorylation In Vitro 
 

To look at role of PKCζ in occludin phosphorylation, in vitro phosphorylation of 
occludin C-terminus by PKCζ was examined. GST-Occludin-C (10 μg) was incubated 
with 500 ng of active PKCζ in 20 mM MOPS, pH 7.2, containing 25 mM 
β-glycerophosphate, 2.25 mM MgCl2, 0.2 mM ATP and 1 mM dithiothreitol. Following 
3 hour incubation at 30°C reaction mixture was immunoblotted for p-Thr, PKCζ and 
GST. 

 
 

2.16 Design and Synthesis of Antisense Oligos 
 

For designing antisense oligonucleotides, sequence of PKCζ (Genbank accession 
number NM_002744) was obtained from the NCBI human database in the Pubmed 
archives using a BLAST search program. The sequence obtained from the database was 
double-checked and another BLAST search was performed to rule out any similar 
sequences in the human genome in the NCBI human database. The search yielded no 
similar results, which confirmed the unique sequence of PKCζ. We designed two 
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antisense oligonucleotides using the PKCζ sequence. The nucleotide sequences of PKCζ 
were then compared to other PKC isoforms, using the CLUSTAL W program, which 
aligned the nucleotide sequences of PKCs to enable us to pinpoint areas in the nucleotide 
sequences of the enzyme, which were unique and did not match the sequences in the 
other isoforms. To double check these chosen nucleotide sequence areas, we ran a 
thorough blast search of the known human genome databases and found no matches other 
than PKCζ from which these sequences had been chosen, and thus, confirmed the 
uniqueness of these nucleotide sequences. We then went about designing the reverse 
complement or the antisense strands to the sequences that we had isolated and so came up 
with the following antisense oligonucleotides for PKCζ. We also designed a scrambled 
antisense to serve as an adequate control for our experimental setup. 
 

Sense PKCζ 1          1331-1350    CAAGCTCACAGACTACGGCA 
Antisense PKCζ 1                         TGCCGTAGTCTGTGAGCTTG 

 
Sense PKCζ 2           1641-1660    AATAAGGACCCCAAAGAGAG 
Antisense PKCζ 2                          CTCTCTTTGGGGTCCTTATT  

 
 

2.17 Transfection of Caco-2 and MDCK Cells with Antisense Oligos 
 

Caco-2 or MDCK cells were seeded on 6 well cluster plates. Cells were grown 
until 60-70% confluent. Transfection solutions A and B were made. Solution A was made 
by incubating 3µl of Oligofectamine with 15µl of Optimem for 10 min at room 
temperature. Solution B was made by adding 1 µg scrambled or antisense oligonucleotide 
specific for PKCζ in 4 µl Plus Reagent and 175 µl Optimem. Solution B was added to 
solution A and incubated for 20 min at room temperature. The cells in cluster plate were 
washed twice with Hank’s balanced salt solution (HBSS), and transfection mix was 
added to the wells. The plates were incubated at 37oC for 4-6 hrs and after this time, 1 ml 
of cell culture medium containing fetal bovine serum was added to each well followed by 
overnight incubation at 37oC. Next morning, the cell monolayers were trypsinized and 
seeded in 6.5 mm transwell plates. Experiments were conducted starting 3 days after 
transfection.  Reduction in the expression of PKCζ was verified by immunoblot analysis 
of whole cell lysates prepared from transfected cells.  
 
 

2.18 Construction of Expression Vector for PKCζ shRNA 
 

A vector-based short hairpin RNA (shRNA) method was used to silence gene 
expression of human PKCζ. Two targeting sequences were chosen against the nucleotide 
sequence of human PKCζ gene (GenBank No. NM_002477) using the Dharmacon web 
site [Target1: GAATCGTGAGGATCGTATA (nucleotide position, 498-516), Target2: 
AGAAGTTCCTTCAGTACAA (2993-3011)].  

 
The sequences were further verified by BLAST search on the known human 

genome databases, and no matches were found other than PKCζ, confirming the 
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uniqueness of these sequences. To construct the shRNA vectors, two pairs of 
oligonucleotides containing the antisense sequence, a hairpin loop region 
(TTGATATCCG) and the sense sequence with cohesive BamHI and HindIII sites were 
synthesized (Sigma Genosys, St Louis, MO) as follows: 

 
Top strand1: 
5’GATCCCGTATACGATCCTCACGATTCTTGATATCCGGAATCGTGAGGATCGT
ATATTTTTTCCAAA-3’ 
and bottom strand1: 
5’-AGCTTTTGGAAAAAATATACGATCCTCAGATTCCGGATATCAAGAATCGTG 
AGGATCGTATACGG-3’;  
top strand2:  
5’-GATCCCGTTGTACTGAAGGAACTTCTTTGATATCCGAGAAGTTCCTTCAGT 
ACAATTTTTTCCAAA-3’  
and bottom strand2: 
5’-GCTTTTGGAAAAAATTGTACTGAAGGAACTTCTCGGATATCAAAGAAGTTC 
CTTCAGTACAACGG-3’.  
 

The top and bottom strands were annealed and cloned into BamHI and HindIII 
sites of the pRNAtin-H1.2 vector (Figure 2.7, GenScript Corp., Piscataway, NJ) (pR 
vector), which induces expression of shRNA by H1.2 promoter and cGFP protein by 
CMV promoter. Successful insertion of the shRNA constructs into the vector was 
confirmed by releasing the oligonucleotides by digesting with BamHI and HindIII and 
sequencing. 
 
 

2.19 Statistical Analyses 
 

Student's t-test was used to compare the observed data in the two different groups. 
Significance in all tests was set at 95% or greater confidence level. 
 

 
2.20 Transfection of Caco-2 and MDCK Cells with Expression Vectors 

 
MDCK cells were seeded on 6 well plates a day before transfection. The cells 

were transfected, using 1 ml antibiotics-free DMEM containing 10% FBS, 1 µg DNA 
plasmid (Empty vector, AS1 or AS2), 1 µl Plus reagent, and 3 µl Lipofectamine-LTX for 
each well. After 20 hours, the cell monolayers were trypsinized and seeded in 6.5mm 
transwell plates. Reduction in PKCzeta  protein expression was verified by immunoblot 
analysis. 
 
 

2.21 Ex Vivo Studies 
 

To make this study more physiologically relevant the effects of PKCζ inhibition 
on mouse ileum were studied. Ileal sections extracted from adult mice were used to study  
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Figure 2.7: pRNATin-H1.2/Neo vector.  
Reprinted with permission from Genscript Corporation. pRNATin-H1.2/Neo vector. 
Retrieved from http://www.genscript.com/product_001/marker/code/SD1223/ 
siRNA%20Expression%20Vector/pRNATin_H1_2_Neo/SD1223.html. Accessed on 06 
May 2011.155 

 
 

http://www.genscript.com/product_001/marker/code/SD1223/siRNA%20Expression%20Vector/pRNATin_H1_2_Neo/SD1223.html�
http://www.genscript.com/product_001/marker/code/SD1223/siRNA%20Expression%20Vector/pRNATin_H1_2_Neo/SD1223.html�
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the effects of PKCζ inhibition on the TJ structure ex-vivo. The experimental protocol was 
approved by Institutional animal care and use committee (IACUC) and department of  
comparative medicine (DCM). C57BL/6J mice (Mus musculus) were ordered from The 
Jackson Laboratory, Bar Harbor, Maine. Fig.  After the required quarantine, they were 
transferred to the main animal house facility. Here, they were bred (following IACUC 
guidelines) and after a stable colony was obtained, 8-12 weeks old adult mice were used 
for experiments. C57BL/6J mice were used as they are easy to breed and robust. 
 

The mice were transferred to new clean cages (one each) in the morning and 
transferred from animal facility to the experiment room.  Here they were weighed and 
one mouse at a time was anesthetized using isoflurane obtained from the department of 
comparative medicine following IACUC guidelines. The mice were dissected to remove 
the intestine by laparotomy. Extracted intestines were placed in isotonic saline solution.  
Mice were euthanized by cervical dislocation and the cadaver was placed in biohazard 
bags. The ileum was flushed with saline to remove undigested food and it was cut open 
longitudinally. 

 
Thereafter, 1 cm long ileal segments were cut out using a pair of sharp scissors 

and incubated with varying concentrations of PKCζ pseudosubstrate for 3 hours. Post-
treatment, Ileal sections were washed with saline and mucosa was scraped using a glass 
slide and glass plate. The mucosal scrapings were transferred to cold lysis buffer CS at 
4oC and kept on ice. Detergent insoluble and soluble fractions were prepared as described 
above.  Protein estimation was done on the resulting protein fractions, and gel 
electrophoresis was done. Immunoblotting was done for TJ proteins (Occludin, ZO-1, 
E-Cadherin and β-catenin) as described above. 
 

Another set of ileal sections, after treatment with PKCζ pseudosubstrate were 
placed in OCT and frozen with liquid nitrogen for cryosectioning. 10 µ thick sections 
were prepared on labeled glass slides (Department of Pathology, U.T.H.S.C.). Slides 
were stored at -70oC until staining. 
 

The slides were fixed in 35 ml of acetone-methanol solution and immunostained 
for various TJ proteins as mentioned above.  
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CHAPTER 3: RESULTS 
 
 

3.1 Inhibition of  PKCζ Activity Disrupts TJs in Caco-2 Cell Monolayers 
 
 
3.1.1 Rationale 
 

Previous studies have indicated the involvement of a PKC in the maintenance of 
tight junctions via occludin phosphorylation. It is also known that PKCζ (an atypical 
PKC) is localized at the junctions and was thought to be one of the possible candidates 
for occludin phosphorylation. Our goal was to check if PKCζ was the PKC involved in 
tight junction regulation. To study this, we inhibited PKCζ in the cells by using PKCζ 
pseudosubstrate which is a myristolyated short peptide with the sequence Myr-
SIYRRGARRWRKL. 
 
 
3.1.2 Inhibition of PKCζ by PKCζ Pseudosubstrate 
 

As mentioned before, PKCζ activation depends upon the release of substrate 
binding site by autophosphorylation. The pseudosubstrate binds to the substrate binding 
site on PKCζ and prevents its activation. Caco-2 cells were grown in transwell inserts as 
described in ‘Materials and Methods’. PKCζ-PS was used to inhibit PKCζ activity in cell 
monolayers as mentioned before. Barrier function was evaluated by measuring TER and 
Inulin flux every hour for three hours. The dose response of PKCζ-PS was assessed by 
treating the cell monolayers with varying concentrations (10, 25, 50 and 100 µM) of 
PKCζ-PS and measuring TER and Inulin flux 3 hours after incubation. To rule out if the 
inhibition of PKCζ causes cell death/damage, we performed LDH assay and WST assay 
in cell monolayers before and after treatment with PKCζ-PS for three hours. 
 
 
3.1.3 Inhibition of PKCζ Leads to Time-Dependent Disruption of TJ Barrier 
Function in Caco-2 Cell Monolayers 
 

We observed that compared to controls, cell monolayers treated with PKCζ-PS 
exhibited a progressive and significant decline in TER over a three hour time period 
(Figure 3.1A). The cell monolayers treated with PKCζ-PS also demonstrated a similar 
time-dependent and significant increase in paracellular flux of FITC-inulin, as compared 
to control monolayers (Figure 3.1B). 

 
 

3.1.4 PKCζ-PS Produces a Dose-Dependent Disruption of Barrier Function in 
Caco-2 Cell Monolayers 
 

Upon treating the cell monolayers with varying concentrations of PKCζ-PS, we 
observed that as compared to control monolayers, inhibition of PKCζ produced a  
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Figure 3.1: Inhibition of PKCζ activity disrupts TJs in Caco-2 cell monolayers. 
A-D: Caco-2 cell monolayers were incubated with or without different doses for 3 hours 
(C, D) of PKCζ-PS or for varying times at 50 μM PKCζ-PS (A, B). Barrier function was 
evaluated by measuring TER (A, C) and unidirectional flux of FITC-inulin (B, D). 
Values are mean ± s.e.m. (n = 6). Asterisks indicate the values that are significantly 
(P < 0.05) different from corresponding control values. E, F: The cell viability was 
assessed by measuring LDH activity in the incubation medium (E) or mitochondrial 
activity in the cell by WST assay (F) at 3 hour after PKCζ-PS administration. 
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disruption of barrier function as evidenced by a decrease in TER (Figure 3.1C) and 
increase in paracellular flux of FITC-inulin (Figure 3.1D).  This disruptive effect of 
PKCζ inhibition on barrier function in Caco-2 cell monolayers was found to be directly 
proportional to dose of the PKCζ-PS administered. 
 
 
3.1.5 PKCζ-PS Treatment Does Not Affect the Cell Viability 
 

In order to make sure that these changes in functional integrity of tight junctions 
as described above were not due to cell death, we performed cell viability assays i.e. 
LDH assay and WST assay on the cell monolayers before and after subjecting them to 
treatment with 50 µM PKCζ-PS. We observed that PKCζ-PS treated cell monolayers  did 
not show any significant change in LDH activity as compared to control monolayers 
(Figure 3.1E). Similarly, WST assay also did not demonstrate any significant difference 
in mitochondrial activity between the control cell monolayers and those treated with 
PKCζ-PS (Figure 3.1F). 
 
 

3.2 Inhibition of PKCζ Activity Leads to Redistribution of TJs in Caco-2 Cell 
Monolayers 

 
 
3.2.1 Rationale 
 

After demonstrating the effect of inhibition of PKCζ on the functional integrity of 
tight junctions in Caco-2 cell monolayers, we wanted to look at the effect of inhibition of 
PKCζ on localization and distribution of TJ proteins.  
 
 
3.2.2 Inhibition of PKCζ By PKCζ-PS Adversely Affects the Tight Junction 
Integrity in Caco-2 Cell Monolayers 
 

To determine the effect of inhibition of PKCζ on localization of TJ proteins, cell 
monolayers treated with PKCζ-PS were fixed and stained for Occludin and ZO-1. 
Immunostaining of cell monolayers and confocal microscopy showed that compared with 
controls, the cell monolayers treated with PKCζ-PS had a reduced junctional localization 
of TJ proteins Occludin and ZO-1, which were found to be translocated to the 
intracellular compartment in response to inhibition of PKCζ (Figure 3.2). 
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Figure 3.2: Inhibition of PKCζ activity leads to redistribution of TJs in Caco-2 cell 
monolayers.  
Caco-2 cell monolayers incubated with or without 50 μM PKCζ-PS for 2 hr were fixed 
and stained for occludin and ZO-1 by immunofluorescence method. Images were 
collected by confocal microscopy. 
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3.3 PKCζ -PS Disrupts the Adherens Junction in Caco-2 Cell Monolayers 
 
 
3.3.1 Rationale 

 
Previous studies have shown that inhibition of PKCη causes TJ disruption while 

sparing adherens junctions. Since PKCη is a novel PKC whereas PKCζ is an atypical 
PKC, we were interested in seeing whether PKCζ had any effect on adherens junctions in 
Caco-2 cell monolayers. This study was aimed at studying the role of PKCζ in the 
regulation of adherens junctions. 
 
 
3.3.2 Inhibition of PKCζ Leads to Adherens Junction Disruption in Caco-2 Cells 
 

Confluent Caco-2 cell monolayers grown in transwell inserts were incubated with 
25 or 50 µM of PKCζ-PS for 3 hours. The monolayers were fixed in acetone-methanol 
and stained for E-cadherin and β-catenin by immunofluorescense technique. Confocal 
microscopy of the stained slides demonstrated that treatment of cell monolayers with 
PKCζ-PS resulted in redistribution adherens junction proteins E-cadherin and β-catenin 
from the intercellular junctions into the intracellular compartment. We further observed 
that this redistribution of E-cadherin and β-catenin was much stronger in cell monolayers 
treated with 50 µM of PKCζ-PS compared with those treated with 25 µM of PKCζ-PS 
(Figure 3.3). 

 
 

3.4 Inhibition of PKCζ Activity Disrupts TJs in MDCK Cells 
 
 
3.4.1 Rationale 
 

To determine the general role of PKCζ in TJ regulation in different epithelia, we 
also evaluated the effect of PKCζ-PS on the maintenance of TJ integrity and the de novo 
assembly of TJs in MDCK cell monolayers. Caco-2 cells being a model of intestinal 
epithelial cells and MDCK cells representing renal epithelium, their use in our studies 
could give us an idea regarding the function of PKCζ in different organ systems. 
 
 
3.4.2 Inhibition of PKCζ Activity by PKCζ-PS 
 

MDCK cell monolayers were grown in transwell inserts and were used for 
experiments after reaching confluence. In order to study the time-response of PKCζ-PS 
in MDCK cell monolayers, cells were treated with 50 µM PKCζ-PS, and its effect was 
studied on paracellular permeability of FITC-inulin at hourly intervals over a three-hour 
time period. We also studied the dose-response PKCζ-PS, MDCK cell monolayers were 
treated with 10, 25, 50 or 100 µM of PKCζ-PS. Inulin flux was measured at the end of 
three hours. The cell monolayers were fixed and stained for TJ proteins as mentioned 
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Figure 3.3: Inhibition of PKCζ activity disrupts adherens junctions in Caco-2 cell 
monolayers.  
Caco-2 cell monolayers were incubated with or without PKCζ-PS for 2 hours. Cell 
monolayers were fixed and stained for E-cadherin and β-catenin by immunofluorescence 
method. Images collected by confocal microscopy. 
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before. Viability studies were done to rule out cell death/damage due to treatment with 
PKCζ-PS. 
 
 
3.4.3 PKCζ Inhibition Leads to Time-Dependent and Dose-Dependent Increase in 
Inulin Flux in MDCK Cell Monolayers 
 
 Administration of 50 µM PKCζ-PS increased inulin permeability in MDCK cell 
monolayers. This increase in permeability was observed to increase with time over a 
three-hour period. (Figure 3.4A). We also observed that after 3 hours of PKCζ-PS 
treatment, treatment with 50 µM PKCζ-PS resulted in greater increase in 
inulinpermeability compared with the use of 25 µM PKCζ-PS, thus indicating a dose 
dependent effect of PKCζ-PS on tight junction integrity (Figure 3.4B). 
 
 
3.4.4 Determination of Cell Viability 
 

PKCζ-PS treated cell monolayers did not show a significant difference in LDH 
release (Figure 3.4C) or mitochondrial activity (Figure 3.4D) as compared to control 
monolayers over a 5 hour period. 

 
 
3.4.5 PKCζ-PS Caused TJ Disruption and Internalization of TJ Proteins in MDCK 
Cell Monolayers 
 

Inhibition of PKCζ by PKCζ-PS led to loss of junctional structure and 
internalization of tight junction proteins occludin and ZO-1 away from the junction into 
the intracellular compartment compared to control cell monolayers (Figure 3.4E). 

 
 

3.5 Inhibition of PKCζ Activity Delays Calcium-Induced Assembly of TJs in 
 Caco-2 and Cell Monolayers 

 
 
3.5.1 Rationale 
 
 Having established the role of PKCζ in the maintenance of tight junctions, we 
now wanted to study the role of PKCζ in the de novo assembly of tight junctions. So we 
evaluated the effect of inhibition of PKCζ on the assembly of tight junctions using the 
calcium switch model. 
 
 
3.5.2 Calcium Switch Experiment 
 
 Fully confluent Caco-2 and MDCK cell monolayers grown on transwell inserts 
were used for this set of experiments.  EGTA (to attain a final concentration of 4 mM) 
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Figure 3.4: Inhibition of PKCζ activity disrupts barrier function and delays TJ 
assembly in MDCK cell monolayers.  
A, B: MDCK cell monolayers were incubated with or without different doses for 3 hours 
(B) of PKCζ-PS for varying times 50 μM PKCζ-PS (A). Barrier function was evaluated 
by measuring unidirectional flux of FITC-inulin. Values are mean ± s.e.m. (n = 6). 
Asterisks indicate the values that are significantly (P < 0.05) different from 
corresponding control values. C, D: The cell viability assessed by measuring LDH 
activity in the incubation medium (C) or mitochondrial activity in the cell by WST assay 
(D) at 3 hour after PKCζ-PS administration. Values are mean ± sem (n = 6). E: Caco-2 
cell monolayers incubated with or without 50 μM PKCζ-PS for 2 hr were fixed and 
stained for occludin and ZO-1 by immunofluorescence method. Images collected by 
confocal microscopy. 
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was used to disrupt junctions in Caco-2 cells and the reassembly was initiated by adding 
regular calcium-containing medium into the transwells. For MDCK cells low calcium 
medium was used.  We monitored the functional integrity of cell monolayers during 
disruption as well as the reassembly process by measuring TER and inulin flux  
every hour. The monolayers were fixed in either acetone-methanol or paraformaldehyde 
after four hours and used for immunostaining.  
 
 
3.5.3 PKCζ-PS Inhibits the Calcium-Induced Recovery in TER and Inulin Flux in 
Caco-2 Cell Monolayers 
 

Treatment of cell monolayers with EGTA led to a rapid decline of TER (Figure 
3.5A) and the increase of inulin flux within 30 minutes (Figure 3.5B). Replacement of 
calcium gradually increased TER and decreased inulin permeability.  However, calcium- 
induced increase in TER and decrease in inulin flux were significantly attenuated in the 
presence of PKCζ-PS. 
 
 
3.5.4 PKCζ-PS Attenuates Calcium-Induced Reassembly of TJ in MDCK Cells 
 

During the calcium switch experiment, cells incubated with PKCζ-PS showed a 
consistently high inulin flux even after calcium-induced reassembly as compared to 
control monolayers which exhibited a consistent and significant decrease in inulin 
permeability over a three hour period of reassembly (Figure 3.5C). 
 
 

3.6  PKCζ-PS Inhibits the Calcium Induced Relocation of Occludin and  
ZO-1 to Junctions in Caco-2 Cell Monolayers 

 
 EGTA treatment induced redistribution of occludin and ZO-1 from the 
intercellular junctions into the intracellular compartment (Figure 3.6), which were 
reassembled back at the intercellular junctions by calcium replacement. The presence of 
PKCζ-PS prevented this calcium-induced reassembly of occludin and ZO-1 at the 
junctions (Figure 3.6). 
 
 

3.7 Inhibition of PKCζ Disrupts TJs in Mouse Ileum 
 
 
3.7.1 Rationale 
 
 All our studies done so far used either the cell culture model or the recombinant 
pure proteins.  Even though there exists a considerable body of evidence that the results 
obtained by using cell studies or in vitro studies are very reliable and similar to those seen 
with in vivo models, we still tried to confirm the physiological relevance of our specific 
observations using an ex vivo model involving isolated mouse intestinal epithelial tissue. 
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Figure 3.5: PKCζ-PS prevents calcium-induced assembly of TJs in Caco-2 and 
MDCK cells.  
A, B: Caco-2 cell monolayers were treated with 3 mM EGTA for 30 min to deplete 
extracellular calcium. Regular medium with calcium and with or without PKCζ-PS (10 
μM) was then replaced. TER (A) and inulin permeability (B) were measured at varying 
times. C: MDCK Cell monolayers were incubated in low calcium medium (LCM) for 16 
hours to deplete extracellular calcium. Regular medium with high calcium and with or 
without PKCζ-PS (3 μM) was then replaced. Inulin permeability (C) was measured at 
varying times after calcium replacement.  Values are mean ± sem (n = 6). Asterisks 
indicate the values that are significantly (P < 0.05) different from corresponding control 
values.  
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Figure 3.6: PKCζ-PS inhibits the calcium induced relocation of Occludin and ZO-1 
to junctions in Caco-2 cell monolayers.  
Caco-2 cell monolayers were treated with 3 mM EGTA for 30 min to deplete 
extracellular calcium. Regular medium with calcium and with or without PKCζ-PS (10 
μM) was then replaced. Cell monolayers at various stages of tight junction assembly were 
fixed and stained for occludin and ZO-1 by immunofluorescence method. Images 
collected by confocal microscopy. 
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3.7.2 Inhibition of PKCζ Activity with PKCζ-PS 
 

Short mouse ileal segments were obtained as described in ‘Materials and 
methods’.  These segments were incubated with or without varying concentrations (10, 
25 or 50 µM)  of PKCζ-PS at 37oC for one hour.  Mucosa from these ileal segments was 
scraped and lysed with lysis buffer ‘CS’.  Detergent-insoluble and soluble fractions of 
epithelial proteins were prepared as described earlier.  These protein fractions were 
analyzed by SDS-PAGE and immunoblotted for TJ proteins occludin and ZO-1.  Another 
set of ileum segments were preserved in OCT for preparation of frozen sections.  The 
frozen sections were then stained for tight junction proteins occludin and ZO-1, and 
adherens junction proteins E-cadherin and β-catenin.The immunoblot analysis revealed 
that compared to control ileum segments, not treated with PKCζ-PS, inhibition of PKCζ 
by PKCζ-PS resulted in decrease in the levels of Triton-insoluble fractions (Figure 3.7 
A) of occludin and ZO-1 with a concomitant increase in the levels of Triton soluble 
fractions (Figure 3.7 B) of these proteins suggesting a redistribution of these proteins 
from the intercellular junctions into the intracellular compartment of the cells.  We 
further noticed that this redistribution increased with the increasing dose of PKCζ-PS 
used.  

  
Immunostaining and confocal microscopy showed that occludin and ZO-1 are 

co-localized at the intercellular junctions of ileal epithelium  not treated with PKCζ-PS. 
Treatment with 10 or 25 µM PKCζ-PS  resulted in disruption of the junctional 
organization of occludin and ZO-1 in a dose-dependent manner (Figure 3.8). Similar 
breakdown of junctional organization of E-cadherin and β-catenin was also seen in 
response to treatment with PKCζ-PS (Figure 3.9).  

 
 

3.8 Reduced Expression of PKCζ with Antisense Oligos Attenuates  
TJ Integrity in Caco-2 Cell Monolayers 

 
 
3.8.1 Rationale 
 

In the studies described so far, we have used a pharmacological inhibitor in order 
to inhibit the effect of PKCζ.   While pharmacological agents constitute an important and 
reliable tool to study the effect of an enzyme, we employed molecular techniques of 
knockdown of PKCζ using antisense oligos, to corroborate our findings with PKCζ-PS.  
Reducing the expression of a protein of interest in cell signaling pathway is a more 
specific and reliable technique than using pharmacological inhibitors.  

 
 

3.8.2 Transfection of Caco-2 Cells with Antisense Oligonucleotides  
 

We designed two antisense oligos (AS-1 and AS-2) specific to the sequence of 
human PKCζ as described under ‘Materials and Methods’.  Caco-2  cells were transfected 
with antisense oligos specific for PKCζ or missense oligo (MS).  We prepared whole cell  
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Figure 3.7: Inhibition of PKCζ leads to translocation of TJ proteins from the 
junction to cytoplasm.  
Mouse ileal strips were incubated with or without varying doses of PKCζ-PS for one 
hour. Triton-insoluble (A) and Triton-soluble (B) fractions were prepared from mucosal 
scrapings of ileum and immunoblotted for different TJ proteins. 
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Figure 3.8: PKCζ-PS attenuates TJ integrity in mouse ileum.  
Mouse ileal strips were incubated with or without varying doses of PKCζ-PS for one 
hour. Tissues were cryo-fixed and sections were stained for occludin and ZO-1 by 
immunofluorescence method.  
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Figure 3.9: PKCζ-PS attenuates AJ integrity in mouse ileum.  
Mouse ileal strips were incubated with or without varying doses of PKCζ-PS for one 
hour. Tissues were cryo-fixed and sections were stained for E-cadherin and β-catenin by 
immunofluorescence method.  
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extracts from transfected cells and immunoblotted them for PKCζ in order to confirm the 
reduction in expression of PKCζ. The extracts were also blotted for PKCλ to rule out the 
reduction of PKCλ expression by using antisense nucleotide for PKCζ. 
 
 
3.8.3 Transfection of PKCζ with Antisense Nucleotides Leads to Reduced 
Expression of PKCζ while PKCλ Expression Is Unaffected 
  

Transfection with AS-1 and AS-2 showed a significant reduction in the levels of 
PKCζ in Caco-2 cells (Figure 3.10A). We found that transfection with AS-2 resulted in 
much greater reduction in PKCζ expression in Caco-2 cells compared with AS-1.  
However, PKCλ expression was not affected (Figure 3.10A). This was confirmed by 
densitometric analysis which showed a significant decline in expression levels of 
PKCζ by both AS-1 and AS-2 whereas PKCλ expression was not significantly affected.  
 
 
3.8.4 PKCζ Κnockdown Leads to TJ Disruption in Caco-2 Cell Monolayers 
 
 Transfection with either AS-1 or AS-2 significantly reduced TER (Figure 3.10C) 
and enhanced inulin permeability (Figure 3.10D) in Caco-2 cell monolayers. We also 
observed that this disruption in barrier function was more marked in Caco-2 cell 
monolayers transfected with AS-2 compared to cells transfected with AS-1.  This 
difference in the barrier function disruption between the two groups of cells was in line 
with the levels of reduction in expression of PKCζ caused by AS-1 and AS-2. 
 

Immunostaining and confocal microscopy for tight junction proteins Occludin and 
ZO-1 revealed that knockdown of PKCζ by AS-2 in Caco-2 cells (Figure 3.10E) induced 
redistribution of these proteins from the intercellular junctions into the intracellular 
compartments, indicating a delayed assembly of TJs with reduced PKCζ expression. 
 

 
3.9 Reduced Expression of PKCζ with Antisense Oligos Attenuates  

TJ Integrity in MDCK Cell Monolayers 
 
 
3.9.1 Rationale 
 

In the studies described so far, we have used a pharmacological inhibitor in order 
to inhibit the effect of PKCζ.  While pharmacological agents constitute an important and 
reliable tool to study the effect of an enzyme, we employed molecular techniques of 
knockdown of PKCζ using antisense oligos, to corroborate our findings with PKCζ-PS.  
Reducing the expression of a protein of interest in cell signaling pathway is a more 
specific and reliable technique than using pharmacological inhibitors.  
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Figure 3.10: Reduced expression of PKCζ by antisense oligos attenuates TJ integrity 
in Caco-2 cells.  
A & B: Caco-2 cells were transfected with missense oligo (MS) or two different antisense 
oligos (AS-1, AS-2), and the levels of PKCζ and PKCλ were measured by immunoblot 
analysis. Band densities evaluated by densitometric analysis (B). Values are mean ± sem 
(n = 6). Asterisks indicate the values that are significantly (P < 0.05) different from 
corresponding values. 
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3.9.2 Transfection of Caco-2 Cells with Antisense Oligonucleotides  
 

We designed two antisense oligos (AS-1 and AS-2) specific to the sequence of 
human PKCζ as described under ‘Materials and Methods’. MDCK cells were transfected 
with antisense oligos specific for PKCζ or missense oligo (MS).  We prepared whole cell 
extracts from transfected cells and immunoblotted them for PKCζ in order to confirm the 
reduction in expression of PKCζ.  

 
 

3.9.3 Transfection of PKCζ with Antisense Nucleotides Leads to Reduced 
Expression of PKCζ while PKCl Expression is Unaffected 
 
 Transfection with AS-1 and AS-2 showed a significant reduction in the levels of 
PKCζ in MDCK cells (Figure 3.11A). We found that transfection with AS-1 resulted in 
much greater reduction in PKCζ expression in Caco-2 cells compared with AS-2.  
 
 
3.9.4 PKCζ Knockdown Leads to TJ Disruption in Caco-2 and MDCK Cell 
Monolayers 
 

  Transfection with either AS-1 or AS-2 significantly reduced TER (Figure 
3.11B) and enhanced inulin permeability (Figure 3.11C) in MDCK cell monolayers. We 
also observed that this disruption in barrier function was more marked in MDCK cell 
monolayers transfected with AS-1 compared to cells transfected with AS-2.  This  
difference in the barrier function disruption between the two groups of cells was in line 
with the levels of reduction in expression of PKCζ caused by AS-1 and AS-2.   
 
 

3.10 PKCζ Knockdown by shRNA Leads to TJ Disruption and Attenuation  
of TJ Assembly in MDCK Cells 

 
 
3.10.1 Rationale 
 

The studies done so far using the PKCζ-PS and antisense oligonucleotides have 
clearly indicated that PKCζ plays an important role in regulation of tight junction 
integrity and the barrier function in both Caco-2 and MDCK cells.  In order to further 
establish the role of PKCζ in regulation of tight junctions in the MDCK cells, we used 
the shRNA to reduce the expression of PKCζ in these cells.  Use of shRNA has some 
distinct advantages over antisense oligos in that shRNA is a more stable and more 
specific technique as compared to antisense oligos.  
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Figure 3.11: Reduced expression of PKCζ by antisense oligos attenuates TJ integrity 
in MDCK cells.  
A: MDCK cells were transfected with missense oligo (MS) or two different antisense 
oligos (AS-1, AS-2), and the levels of PKCζ measured by immunoblot analysis. B& C: 
After 3 days TER(B) and Inulin flux (C) were  measured and plotted. Values are mean ± 
sem (n = 6).Asterisks indicate the values that are significantly (P < 0.05) different from 
corresponding values. D: The cell monolayers were fixed and stained for Occludin and 
ZO-1 and observed under confocal microscope. 
 
  



56 
 

3.10.2 Transfection of MDCK Cells with shRNA to PKCζ 
 

PKCζ-specific shRNA was designed and inserted into GFP-tagged pRNATin-
H1.2/Neo vector as described in ‘Materials and Methods’.  MDCK cells were transfected 
with this shRNA construct using lipofectamine.  Cells transfected with the empty vector 
were used as control.  The transfection was confirmed by observing the cells for green 
fluorescence under fluorescence microscope, as wells as by immunoblotting the cell 
extracts for PKCζ. 

 
 

3.10.3 Knockdown of PKCζ by shRNA Leads to TJ Disruption and Attenuation of 
Calcium Induced Reassembly in MDCK Cells 

 
Immunoblotting of extracts from cells transfected with shRNA showed reduced 

expression of PKCζ as compared to control cells transfected with the empty vector 
(Figure 3.12A). The shRNA-transfected cell monolayers demonstrated a significantly 
lower TER compared to vector-transfected cell monolayers (Figure 3.12B) indicating 
that reduced expression of PKCζ leads to delayed development of barrier function in 
these cells.  Similarly, the paracellular permeability of FITC-inulin in cell monolayers 
with reduced PKCζ expression was significantly greater compared to cells with normal 
PKCζ expression (Figure 3.12C). 

 
Immunofluorescence microscopy showed the presence of GFP in about 35% of 

cells in both vector and shRNA-transfected cells (Figure 3.12D). Co-immunostaining for 
GFP and ZO-1 showed that ZO-1 was localized at the intercellular junctions in 
vector-transfected cells, in both GFP-positive and GFP-negative cells. On the other hand, 
in shRNA-transfected cells, GFP-positive cells showed intracellular localization of ZO-1 
(Figure 3.12D), whereas in GFP-negative cells ZO-1 was localized predominantly at the 
intercellular junctions. 
 

We also studied the impact of reduced expression of PKCζ by shRNA on 
calcium-induced development of barrier function in MDCK cells.  We observed that the 
calcium-induced re-assembly of tight junctions over a three-hour period was significantly 
delayed in shRNA-transfected MDCK cell monolayers compared to that in 
vector-transfected cell monolayers (Figure 3.12E). 
 

 
3.11 Inhibition of PKCζ Activity Reduces Detergent Insoluble Fractions  

of TJ Proteins 
 
 
3.11.1 Rationale 
 

TJ proteins Occludin and ZO-1 are anchored to the actin cytoskeleton in the intact 
epithelial monolayer and therefore,  these proteins are pulled down along with the actin  
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Figure 3.12: Reduced expression of PKCζ by shRNA attenuates TJ integrity in 
MDCK cell monolayers.  
A: shRNA specific for PKCζ in pRNAtinH1.2 vector or the empty vector was transfected 
into MDCK cells. PKCζ expression was determined by immunoblot analysis. B, C: 
Barrier function was evaluated by measuring TER (B) and inulin permeability (C) on day 
3 after seeding. D: Fixed cell monolayers were stained for GFP and ZO-1 (D). Tight 
junction assembly in transfected cells was evaluated by calcium switch method. E: Inulin 
permeability measured during calcium-induced reassembly in vector transfected and 
shRNA-transfected cell monolayers . Values are mean ± sem (n = 6). Asterisks indicate 
the values that are significantly (P < 0.05) different from corresponding values for vector 
transfected cells. 
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cytoskeleton (detergent-insoluble fraction) during immunoprecipitation. Previous studies  
have showed that disruption of TJs is associated with loss of TJ proteins. 

 
  
3.11.2 PKCζ Inhibition Reduced Detergent Insoluble Fractions of TJ Proteins  
 
 Caco-2 cell monolayers were treated with or without with different concentrations  
(10, 25 or 50 µM)of PKCζ-PS for 30, 60 or 120 minutes.  Detergent-insoluble fractions 
of cellular proteins were prepared in lysis buffer CS, from these cell monolayers at the 
end of each time point.  These detergent-insoluble protein fractions were then subjected 
to electrophoresis using SDS-PAGE and then immunoblotted for various TJ proteins like 
ZO-1, ZO-3, Occludin, Claudin-1 and Claudin-3.  Immunoblotting was also done for 
p-PKCζ.   We observed that treatment with PKCζ-PS reduced the amounts of ZO-1, 
ZO-3, occludin and Claudin-1 in the detergent-insoluble fraction of cell proteins in a time 
and dose-dependent manner (Figure 3.13A). We also noticed that the effect of inhibition 
of PKCζ on Claudin-1 levels was delayed compared to that on ZO-1, ZO-3 and occludin. 
Interestingly. the level of detergent-insoluble fraction of Claudin-3 was unaffected by 
PKCζ-PS treatment.  Analysis of the active PKCζ (phospho-PKCζ) indicated that 
PKCζ-PS inactivated PKCζ in a dose-dependent manner.  Co-immunoprecipitation 
studies involving Occludin and ZO-1 in Caco-2 cell monolayers treated with or without 
PKCζ-PS showed that PKCζ-PS treatment did not alter the co-immunoprecipitation of 
occludin and ZO-1 (Figure 3.13B). 
 
 

3.12 PKCζ Directly Interacts with the C-Terminal Domain of Occludin 
 
 
3.12.1 Rationale 
 

Previous study indicated that PKCζ is localized at the vicinity of TJs in MDCK 
cell monolayers (24). However, the direct interaction of PKCζ with TJ proteins and its 
involvement in the phosphorylation of TJ proteins is unknown.  We conducted the 
following study to assess if there is a direct interaction of PKCζ with occludin.  
 
 
3.12.2 PKCζ Directly Interacts with and Binds to Occludin (C-Terminus) 
 

We prepared the C-terminal domain of human occludin as a GST-fusion protein 
(GST-Ocl- C) and incubated it with varying concentrations (30, 100, 300 and 500 ng) of 
recombinant PKCζ for 3 hours.  Direct binding between GST-Ocl-C and PKCζ was 
evaluated by GST pull down assay.  
 

We observed a definite interaction between PKCζ and GST-Ocl-C.  It was also 
observed that binding of PKCζ with GST-Ocl-C increased with the increasing 
concentrations of PKCζ used in the study, thus pointing towards a dose-response 
relationship (Figure 3.14).  However, no significant difference was noticed between the  
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Figure 3.13: PKCζ-PS reduces the levels of detergent-insoluble TJ proteins.  
A: Caco-2 cell monolayers were incubated with or without different doses of  
PKCζ-PS for varying times. Triton-insoluble fractions were prepared and immunoblotted 
for different TJ proteins. B: Occludin was immunoprecipitated from the native protein 
extracts from Caco-2 cell monolayers incubated with or without PKCζ-PS for varying 
times. Immunocomplexes were then immunoblotted for occludin and ZO-1. 
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Figure 3.14: PKCζ directly binds to the C-terminal domain of occludin.  
Recombinant GST-Ocl-C was incubated with varying amount s of recombinant PKCζ. 
The GSH-agarose pull down from these samples was then immunoblotted for PKCζ and 
GST. Values on the left margin of the blots represent the molecular weights of marker 
proteins. 
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binding of GST-Ocl-C and 300 ng or 500 ng of PKCζ.  We noticed only a negligible and 
insignificant binding of PKCζ to GST which was used as control in this study. This 
suggests that PKCζ binds directly to C-terminal tail of occludin, and excludes GST as a 
binding target for PKCζ. 
 
 

3.13 PKCζ Activity Is Involved in Ser/Thr phosphorylation of  
Occludin and ZO-1 

 
 
3.13.1 Rationale 
 

Occludin is known to be highly phosphorylated on Ser/Thr residues in the intact 
epithelia, while the disruption of TJ is associated with rapid dephosphorylation of 
occludin . Since we have established the role of PKCζ in regulation of tight junctions, we 
now wanted to understand the mechanism behind this regulation.  One of the putative 
mechanisms was that PKCζ influences the tight junction integrity and barrier function by 
modulating the phosphorylation of occludin on Serine and Threonine residues.  So, the 
following studies were aimed at evaluating the role of PKCζ in the phosphorylation of 
Serine and/or Threonine residues in tight junction proteins. 
 
 
3.13.2 Purified Recombinant PKCζ Phosphorylates GST-Ocl-C In Vitro on Serine 
and Threonine Residues and This Phosphorylation Is Inhibited by PKCζ-PS 
 

GST-Ocl-C was incubated with 500 ng of recombinant PKCζ or PKCη in the 
presence of ATP for 1 hour.   PKCζ-PS in varying concentrations (1, 3 or 10 µM) was 
also added to the reaction mix.  The resulting protein mixtures were analyzed by gel 
electrophoresis using SDS-PAGE and immunoblotted for p-Thr and p-Ser.  We observed 
that PKCζ induced phosphorylation of GST-Ocl-C on both Thr and Ser residues (Figure 
3.15). Presence of PKCζ-PS in the assay mixture reduced PKCζ-mediated 
phosphorylation of GST-Ocl-C in a dose dependent manner.  We also noticed that 
incubation with PKCη also induces Ser/Thr phosphorylation of GST-Ocl-C . However, 
PKCζ-PS failed to affect this phosphorylation by PKCη, indicating the specificity of 
PKCζ-PS.  Further, PKCζ-PS inhibits autophosphorylation of PKCζ in a dose dependent 
manner making it a possible mechanism of occludin dephosphorylation.  

 
 
3.13.3 Inhibition of PKCζ Leads to Reduced Ser/Thr Phosphorylation of Occludin 
in Caco-2 Cell Monolayers 

 
Caco-2 cell monolayers were grown and incubated with or without 50 µM 

PKCζ-PS for 30, 60, 120 and 180 minutes.   Cell were lysed in lysis buffer ‘CS’ at the 
end of each time point and detergent-insoluble and soluble fractions prepared.  The 
detergent-insoluble fraction was immunoprecipitated for p-Ser and p-Thr and 
immunoblotted for occludin, ZO-1 and Claudin-1.  The results indicate that Thr- and 
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Figure 3.15: In vitro Thr/Ser phosphorylation of GST-OCL-C by recombinant 
PKCζ is inhibited by PKCζ-PS.  
GST-Ocl-C was incubated with PKCζ (500 ng) or PKCη (500 ng) in the presence of 
varying concentrations of PKCζ-PS and 0.5 mM ATP. Samples were then immunoblotted 
for p-Thr (A), p-Ser (B) and p-PKC (C).  
 
 
Ser-phosphorylation of occludin remained unaffected during the incubation time in the 
absence of PKCζ-PS (Figure 3.16). The presence of PKCζ-PS caused a rapid reduction 
in the phosphorylation of occludin on both Thr and Ser residues. The Ser/Thr 
phosphorylation of Claudin-1 was, however, unaffected by PKCζ-PS. 
 
 

3.14 PKCζ Phosphorylates the C-Terminal Tail of Occludin on Specific  
Thr Residues 

 
 
3.14.1 Rationale 
 

Once the role of PKCζ in Ser/Thr phosphorylation of occludin was established, 
our next step was to identify the specific Thr residues that were being phosphorylated by 
PKCζ.  Our analysis of the occludin sequence among various species namely human, 
dog, mouse, chicken and frog revealed that Thr residues 400, 403, 404, 424 and 438 are 
conserved residues in occludin C-terminus across these species. In a previous study, 
PKCη has been shown to phosphorylate occludin C-terminus at Thr 403 and 404. So, we 
wanted to study which specific Threonine residues are phosphorylated by PKCζ.  
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Figure 3.16: PKCζ-PS attenuates Ser/Thr phosphorylation of occludin and ZO-1. 
Caco-2 cell monolayers were incubated with or without different doses of PKCζ-PS for 
varying time periods. p-Thr or p-Ser was immunoprecipitated from the denatured protein 
extracts. Immunocomplexes were then immunoblotted for different TJ proteins. 
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3.14.2 Thr Residues 403, 424 and 438 on C-Terminus Occludin Are Phosphorylated 
by PKCζ  
 
 Occludin C-terminus mutants were generated by point mutation and combined 
with GST to obtain GST-tagged mutant proteins as described in ‘Materials and Methods’. 
10 µg of each of these Threonine-mutants of GST-tagged C-terminus occludin or wild 
type GST-Ocl-C were incubated with 500 ng of recombinant PKCζ in the presence of 
ATP for 1 hour. 
 
 Our results indicate that mutation of T438 almost completely attenuated Thr-
phosphorylation of GST-Ocl-C whereas mutation of T400 did not significantly influence 
PKCζ-mediated Thr- phosphorylation of GST-Ocl-C.  Mutation of T403, T404 and T424 
resulted in partial reduction in theThr-phosphorylation of GST-Ocl-C (Figure 3.17). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: C-terminal occludin is phosphorylated on Thr 403, 404 and 438 
residues by PKCζ.  
Wild type and Thr-mutants of GST-Ocl-C were produced and incubated with PKCζ in the 
presence of ATP for 3 hours. Phosphorylation was assessed by immunoblot analysis.  
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CHAPTER 4. DISCUSSION 
 

 
Epithelial barrier function is an important characteristic that defines multicellular 

life. The development of barrier function has been deemed an important and necessary 
evolutionary step in the development of metazoa from single celled organisms.1 
Breakdown of barrier function results in disease pathogenesis.139,140 Four different types 
of intercellular junctions are found in vertebrates- tight junctions, desmosomes, gap 
junctions and adherens junctions.4 Our focus is to study intestinal barrier function; thus 
TJs which are the major contributors to barrier function automatically gained importance 
in our studies. Over the past 30 years major insights have been achieved into the 
morphology, structure and function of tight junctions. However, TJ regulation is yet to be 
deciphered fully.7 
 

A significant body of evidence indicates that epithelial TJs are regulated by 
intracellular signaling elements including protein kinases.87 Protein kinase C has been 
identified as a possible regulator of barrier function through TJ regulation.34 Stuart et al 
have shown that PKC inhibition led to attenuation of TJ assembly and also that PKC 
activity is increased during TJ assembly. They also showed that an atypical isotype of 
PKC, the PKCζ localizes at the junctions.34 The present study provides evidence to the 
role of PKCζ in the assembly and maintenance of TJs in Caco-2 and MDCK cell 
monolayers. We showed that PKCζ inhibition led to disruption of barrier function and 
attenuation of calcium induced reassembly. This study also indicates that PKCζ directly 
interacts with occludin and induces phosphorylation of occludin on Thr residues. 
 

PKCζ-PS (a cell permeable peptide) has been previously shown to selectively 
inhibit PKCζ activity in various types of cells. A scrambled peptide was used as control 
to rule out peptide induced damage to cell monolayers. Measurement of TER 
(Transepithelial electrical resistance) and FITC-Inulin flux have been shown to be a 
reliable and convenient method of measuring barrier function of cell monolayers grown 
on transwell inserts.127,132 Caco-2 and MDCK cell monolayers have been used as a cheap 
and easy model to study epithelial permeability. It has been shown that Caco-2 and 
MDCK cell monolayers grown on transwell inserts mimic intestinal and renal epithelium 
respectively 
 

The present study showed that administration of PKCζ-PS to Caco-2 and MDCK 
cell monolayers rapidly disrupted the barrier function as shown by the decrease in TER 
and increase in inulin permeability in cells treated with PKCζ-PS as compared to control 
cells. This disruption was shown to be time and dose dependent. Whereas there is a 
gradual and steady decrease in TER and corresponding increase in Inulin flux in the time 
course experiment, there is a sharp fall in TER at 25µM of PKCζ-PS in the concentration 
curve. However, this sharp fall is not mirrored by a corresponding spike in Inulin flux 
which shows a gradual increase. This can be due to TER being a static indicator of TJ 
function whereas Inulin flux is a dynamic indicator.  

 

B 

A 
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This barrier disruption was not associated with any loss of cell viability as 
evidenced by no change in LDH release or mitochondrial activity (WST assay) in the cell 
monolayers after 3 hr incubation with PKCζ-PS. LDH release measures cell 
death/damage while WST measures the number of viable cells. We do see a change in 
LDH release after 3 hrs for both PKCζ-PS treated as well as untreated cells but this 
change can be attributed to cell death damage that occurs due to handling of cells during 
the experiment. 
 

PKCζ-PS mediated barrier dysfunction was associated with a redistribution of 
occludin and ZO-1 from the intercellular junctions into the intracellular compartments, 
indicating that inhibition of PKCζ leads to disruption of TJs. Therefore, inhibition of 
PKCζ activity in both Caco-2 and MDCK cell monolayers results in disruption of TJs 
without affecting the cell viability. These results indicate that PKCζ activity is required 
for the maintenance of TJ integrity once the epithelium is formed. However it has been 
shown that PKCζ-PS treatment also inhibits PKCλ activity in cells which is another 
closely related atypical PKC. PKCζ and PKCλ have been shown to have upto 72% 
similar amino acid sequence identity.141 Since they both share the conserved PS domain 
which is the target for PKCζ-PS both are inhibited by treatment with the inhibitor. So 
maybe both the atypical PKCs are involved in TJ regulation. 

 
This study also looked at the effect of PKCζ-PS treatment on calcium induced 

reassembly of TJ in Caco-2 and MDCK cell monolayers. The calcium switch model has 
been used extensively to study the denovo assembly of TJ in cell monolayers. The basic 
principle as mentioned before is the breakdown of adherens junctions on depletion of 
calcium. This calcium depletion is attained by either using calcium chelators or low 
calcium medium. AJ breakdown leads to disruption of TJ  which can be reversed by 
calcium replenishment. This recovery of TJ function can be assessed by measuring TER 
and Inulin flux. Our results showed that inhibition of PKCζ results in attenuation of the 
reassembly process in PKCζ-PS treated cell monolayers as compared to control 
monolayers.  
 

Our study also shows that PKCζ-PS treatment induces redistribution of E-
cadherin and β-catenin from the intercellular junctions into the intracellular 
compartments, indicating that the AJs are disrupted by the inhibition of PKCζ activity. 
Although AJs do not form a physical barrier to the diffusion of macromolecules across 
the epithelium, they indirectly regulate the integrity of TJs. Disruption of AJs by calcium 
depletion is well established to result in disruption of TJs.142 A recent study has 
demonstrated that inhibition of PKCη by a specific pseudosubstrate disrupts TJ structure 
without affecting the AJs.107 Therefore, PKCζ may regulate the integrity of both TJs and 
AJs, while PKCη may influence only TJs. Whether the PKCζ-PS mediated disruption of 
TJs and AJs is sequential or simultaneous is not known. 
 

The role of PKCζ in TJ regulation was further confirmed by the specific 
knockdown of PKCζ by antisense oligonucleotides, which effectively reduced the level 
of PKCζ in both Caco-2 and MDCK cell monolayers. To rule out the involvement of 
PKCλ in the regulation of TJ we designed antisense oligonucleotides that were specific to 
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human PKCζ (AS-1 and AS-2). Both AS-1 and AS-2 were a 100% match to human 
PKCζ sequence  while AS-1 when run against canine PKCζ  had a 94% match while 
AS-2 only 40%. 

 
Antisense oligonucleotides (Both AS-1 and AS-2) to PKCζ reduced TER and 

elevated inulin permeability in Caco-2 cells, thus demonstrating the disruption of barrier 
function, which was associated with a redistribution of TJ proteins from the intercellular 
junctions indicating a delayed assembly of TJ proteins. However, in MDCK cells only 
AS-1 was effective. This was substantiated by the sequence homology mentioned above.  

 
To confirm the reduced expression of PKCζ, a PKCζ immunoblot was performed 

which showed a decline in PKCζ expression while PKCλ expression was unchanged. 
This could be explained by the fact that even though the antisense nucleotides had a 
100% sequence homology with PKCζ, it was only 40% with PKCλ. Antisense 
oligonucleotides to PKCζ  reduced TER and elevated inulin permeability, thus 
demonstrating the disruption of barrier function, which was associated with a 
redistribution of TJ proteins from the intercellular junctions indicating a delayed 
assembly of TJ proteins. The advantages of using PKCζ knockdown studies over 
PKCζ-PS are that it is more specific and also preempts the possibility of PKCζ activation 
by another mechanism. However it is to be noted  that this is transient transfection and 
thus the studies have to be performed 3 days after transfection which might affect the 
basal TER and Inulin flux values. 
 

PKCζ-specific shRNA transformed in pRNATin-H1.2/Neo vector, which also 
contains GFP gene was transfected to MDCK cells. Similar to antisense oligos, shRNA 
also reduced the barrier function. The expression of GFP allowed us to compare the 
GFP-positive, transfected cells with the GFP-negative, non-transfected cells in the same 
monolayer. The results of this study confirmed that junctional distribution of ZO-1 was 
disrupted only in GFP-positive or shRNA transfected cells, while the junctional 
distribution of ZO-1 in GFP-negative cells were intact. 
 

A previous study showed that TJ proteins in the intact epithelium are associated 
with the detergent-insoluble fraction of cells, implicating their tight interaction with the 
actin cytoskeleton.51 It was consistently demonstrated that disruption of TJs is associated 
with a loss of detergent-insoluble fractions of TJ proteins. The present study showed that 
the PKCζ-PS treatment induces a loss of detergent-insoluble fraction of occludin, ZO-1, 
ZO-3 and Claudin-1 in a time and dose-dependent manner. The decrease in the level of 
detergent insoluble ZO-1, ZO-3 and occludin occurred as early as 30 min after PKCζ-PS 
administration, whereas decrease in detergent-insoluble Claudin-1 was evident only at 
120 min of treatment. This indicates that the effect of Claudin-1 may be secondary due to 
the disruption of TJs by disassembly of occludin, ZO-1, ZO-3 complex. 
 

The level of detergent-insoluble Claudin-3 was unaffected even at 120 min. 
Interestingly enough, PKCζ-PS did not influence the coimmunoprecipitation of occludin 
and ZO-1,  suggesting that the PKCζ may not influence the occludin-ZO-1 interaction. 
Loss of TJ integrity in epithelial monolayers by calcium depletion, oxidative 
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stress , acetaldehyde , phorbol esters and pathogen is known to be associated with 
dephosphorylation of occludin on Ser/Thr residues. However, the precise mechanism 
involved in this process is unclear. The present study shows that disruption of TJs by the 
inhibition of PKCζ is also associated with a rapid dephosphorylation of occludin on Ser 
and Thr residues. Therefore, PKCζ may maintain the TJ integrity by preserving the 
phosphorylation state of occludin. The present study also shows that PKCζ-PS 
dephosphorylates ZO-1 on Ser and Thr residues. Altered ZO-1 phosphorylation could 
also contribute to the disruption of TJs. However, the role of ZO-1 phosphorylation in TJ 
regulation is not well characterized. Additionally, Ser phosphorylation of occludin and 
other proteins may also be involved in TJ disruption. Farshori and Kachar have also 
shown that high concentration of TPA led to decreased phosphorylation of occludin on 
threonine residues but did not prevent its colocalization with ZO-1.143 PKC activation by 
using TPA has been shown to increase paracellular permeability but dephosphorylation 
of occludin. This led to the hypothesis that there is an intermediary serine/threonine 
phosphatase  that is activated by PKC. Our lab has shown the involvement of PP2A in 
occludin phosphorylation.104 PP2A has been shown to be associate with and regulate 
PKCζ. Therefore, multiple mechanisms may be associated with TJ disruption. Also TPA 
treatment has been shown to decrease barrier function and increase occludin and ZO-1 
transcription. It is to be noted though that the transcription change precedes permeability 
change.144 This would suggest that gene expression of tight junction proteins and 
regulation of tight junction function do not necessarily overlap. Increased expression of 
PKCα and PKCδ have been correlated with increased paracellular permeability after 
treatment with phorbol esters. PKCα  translocation from the cytosol to the cytoskeleton 
fraction has been correlated with phorbol ester induced increase in paracellular 
permeability.118 
 

In the present study, we focused our effort on the Thr-phosphorylation of 
occludin. In order to detect the PKCζ-mediated phosphorylation sites we induced point 
mutation to T400, T403, T404, T424 and T438, the highly conserved Thr residues in the 
C-terminal domain of occludin, and prepared the recombinant occludin C-terminal 
domain as GST-fusion proteins. In vitro phosphorylation by PKCζ showed that PKCζ 
predominantly phosphorylates T438, T403, T404 and T424. This is somewhat different 
from the role of PKCη, which phosphorylates T403, T404 and T438, but not T424.107 
 

PKCζ has been mainly shown to be regulated by PDK-1in PI 3-kinase signaling 
by phosphorylation and activation of PKCζ. PDK-1 has been shown to be associated with 
PKCζ in vivo. Mutation of Thr 410 site on PKCζ has been shown to block PKCζ 
phosphorylation by PDK-1. Membrane targeting of PKCζ has been shown to render it 
constitutively active.145 Previous study in our lab has shown that MAPK indirectly 
phosphorylates occludin by phosphorylating PKCζ.120 That may be one of the putative 
upstream signals to phosphorylate PKCζ. A previous study in our lab has shown that 
membrane translocation of PKCε and PKCβ1 is required for EGF mediated protection of 
TJ from acetaldehyde.146 However, it was also shown that neither PKCε nor PKCβ1 
directly interacts with occludin.146 Binding of atypical PKC i.e. ζ or λ to Par 3 and Par 6 
has been reported in epidermal barrier. Par proteins belong to PDZ family of adaptor 
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proteins. However PKCλ and not PKCζ is the dominant atypical PKC in epidermal tight 
junctions.126 
 

Caco-2 and MDCK cell monolayers have been extensively used to understand the 
structure and regulation of epithelial TJs, and the information derived from such studies 
have been extended to animal tissue. The present study shows that incubation with 
PKCζ-PS disrupts TJs in mouse ileum. PKCζ-PS induces a redistribution of occludin and 
ZO-1 from the intercellular junctions and reduced the levels of detergent insoluble 
fractions of occludin and ZO-1. These results demonstrate that PKCζ activity is required 
for the maintenance of TJ integrity in mouse ileum and confirm the physiologic relevance 
of the observation made in Caco-2 and MDCK cell monolayers. 
 

This study therefore, demonstrates that PKCζ activity is required for the 
maintenance of epithelial tight junction. The mechanism of this TJ integrity may involve 
PKCζ-mediated phosphorylation of occludin and possible other TJ proteins on specific 
Thr residues. 
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