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Abstract 

The etiology of the autoimmune disease rheumatoid arthritis (RA) is unknown, 

but the role of cytokines, including IFN- , as effectors of immune cell function has been 

established by the examination of cytokine production in RA patients and through the use 

of animal models.  C57BL/6 (B6) mice that express MHC class II molecules of the b 

haplotype (I-A
b
) are not typically susceptible to collagen-induced arthritis (CIA), the 

most widely studied animal model of RA.  When the gene encoding IFN-  is removed by 

genetic deletion, however, susceptibility to CIA is conferred.  In addition, T cell 

responses against the immunogen that stimulates CIA, type II collagen (CII), are reduced 

in the B6 strain when compared to susceptible mouse strains that express differing MHC 

haplotypes such as the I-A
q
-expressing DBA mouse.  These observations led to the 

development of the following hypothesis.  IFN-  functions as a regulator of T cell 

responses to weak determinants, and I-A
b
 MHC class II molecules have low affinity for 

collagen autoantigen determinants.  In the IFN-
-/-

 B6 mouse, the absence of IFN-  alters 

T cell function and cytokine production following immunization with CII, disrupting 

normal immune function and allowing the development of CIA. 

To reveal the pathogenic mechanisms that mediate susceptibility to arthritis in the 

B6 IFN-
-/-

 mouse we examined several aspects of the immune response that follows 

immunization with CII.  Firstly, alterations in cellular immune responses between wild 

type and B6 IFN-
-/-

mice were examined following immunization with CII.  Secondly, an 

antigenic determinant present in bovine CII that stimulates T cell response in mice 

expressing I-A
b
 was identified.  This determinant was identified by the use of direct 

binding assays between I-A
b
 and CII derived peptides as well as by the generation of T 

hybridomas generated in I-A
b
-expressing mice that respond to CII.  In a second series of 

experiments, the role of IFN-  in modulating disease progression was examined by the 

use of microarray analysis to identify genes that are altered between wild type and 

IFN-
-/-

 B6 mice immunized with CII in CFA emulsion.  This allowed the identification 

of IL-17 and IL-18 Binding Protein (IL-18 BP) as differentially expressed between the 

two strains.  When IL-18 BP was given exogenously to IFN-
-/-

 B6 mice immunized with 

CII, the mice were protected from the development of CIA. 

These results indicate that a CII determinant is present in bovine CII and the low 

immunogenic properties of this determinant may be responsible for the lack of arthritis 

development in wild type B6 mice.  In the absence of IFN- , there is disregulation of 

immune function exhibited as decreased expression of IL-18 BP and increased expression 

of IL-17.  This disregulation allows T cell responses to weakly antigenic CII determinants 

to progress, thus promoting the development of autoimmune arthritis. 
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Chapter 1.   Introduction 

The Immune System and the Origins of Autoimmunity 

Protection from invading pathogenic microorganisms, and from the development 

of cancer is critical to homeostasis in vertebrate organisms.  In order to combat these 

potentially deadly threats, a complex adaptive immune system has evolved that is capable 

of recognizing and neutralizing an enormous variety of foreign invaders.  An important 

function of the adaptive immune system is the distinction of foreign and self, in other 

words, the distinction of pathogenic organisms from cells and tissue native to a healthy 

organism.  It does this by a mechanism that can distinguish subtle chemical differences 

between molecules, known as antigens, that are produced by foreign pathogens and 

native cells produced by the host organism.  Once a foreign pathogen is recognized, the 

immune system responds with an interconnected network of cellular and chemical 

mediators that conjunctively work to eliminate or neutralize the threat.  However, the 

potency of the immune system is a double-edged sword.  The same mechanisms that have 

evolved to protect against invasion of pathogenic microorganisms can become 

disregulated, turn against host tissues, and cause disease in a process known as 

autoimmunity.  Autoimmunity occurs when immune cells incorrectly recognize self-

antigens (autoantigens) as foreign and mount an immune response against host tissue.  

The initiating causes of autoimmunity remain elusive to scientific inquiry, but a number 

of factors are believed to contribute to disease susceptibility and pathogenesis.  These can 

include genetic predisposition, environmental factors such as infectious agents, diet, 

exercise, and even cigarette smoking (1). 

The process by which autoimmunity develops has been an ongoing focus of 

research since Paul Ehrlich first postulated the concept of horror autotoxicus in the early 

1900’s (2).  Since that time, a number of advances in genetics and biological methods 

have allowed the identification of risk factors for the development of autoimmunity.  

Many mechanisms of autoimmunity have also been discovered, though much work 

remains to completely understand the pathogenesis of autoimmune diseases, especially 

the initiating events.  It is likely that autoimmunity stems from a combination of both 

genetic and environmental factors.  Probably the most important factor in the 

predisposition to autoimmune disease is genetic background.  The influence of genetics 

on the development of autoimmunity can be simple in the case of single gene mutations 

that cause increased risk to specific autoimmune diseases, or complex as in the case of 

multiple susceptibility alleles that interact with environmental factors to confer increased 

risk of disease (3).  One of the most important genetic factors linked to autoimmune 

susceptibility is the expression of specific class II major histocompatibility complex 

(MHC) alleles that are associated at high levels to various autoimmune diseases.  For 

example, susceptibility to the autoimmune disease rheumatoid arthritis is strongly linked 

to the expression of specific HLA-DR1 and DR4 alleles (4).  To understand how these 

DR alleles mediate this susceptibility, a considerable effort has been made to understand 

how immune cells recognize and respond to antigen presented by these molecules, and to 

identify the control mechanisms that regulate these immune responses. 



2 

One of the first steps in an adaptive immune response is the activation of T cells 

to antigens that have been processed and displayed on the surface of antigen presenting 

cells.  The molecules that mediate this process are the aforementioned MHC molecules 

and the T cell receptor (TCR).  Each TCR contains a variable region that during T cell 

maturation is altered by genetic recombination.  This process produces a multitude of T 

cell clones that each express a unique TCR with a different specificity for antigen.  

Structurally, MHC molecules contain an open groove that binds peptide fragments of 

proteins generated in endosomic vesicles.  This peptide/MHC complex is then transported 

to the surface of the cell where it is made available to binding by the TCR.  If the TCR 

expressed by a T cell matches the unique structure of the peptide/MHC complex, it binds 

and forms a supramolecular structure known as a T cell receptor complex.  The formation 

of the TCR complex initiates signaling cascades within the T cell that leads to its 

activation and development as an effector T cell. 

There are two predominant types of classical MHC molecules, MHC class I and 

MHC class II, and each has a distinct role in the presentation of antigen to a T cell.  Class 

I molecules bind peptide antigens that are derived predominantly from intracellular 

proteins, such as would be produced by intracellular pathogens like viruses or in cancer 

cells.  MHC class I is expressed on all cells and binds to TCR present on CD8-expressing 

T cells known as cytotoxic T cells (Tc) (5).  These cells have the ability to either kill 

infected target cells or to cause the release of substances in the target cell that is harmful 

to an infectious agent.  In contrast, MHC class II binds peptides predominantly derived 

from proteins produced outside of the antigen presenting cell and presents them to CD4-

expressing T cells (6).  MHC class II, unlike MHC class I, is expressed on only a limited 

set of cells including those known as professional antigen presenting cells (APC).  These 

cells include macrophages, dendritic cells, and Langerhans cells (7).  Also, B cells, in a 

mechanism related to their immune effector function of antibody production, express 

MHC class II and present antigens to CD4
+
 T cells (8).  CD4

+
 T cells do not act directly 

on infected target cells like Tc cells.  Rather they serve to promote activation of other 

immune cells like antibody producing B cells or to stimulate antigen presenting cells to 

alter their function.  They perform this either by direct cell to cell contact or by the 

production of small intercellular signaling molecules called cytokines.  Since CD4
+
 T 

cells promote the effector function of other immune cells they are referred to as T helper 

cells (Th). 

CD4-expressing Th cells can be further characterized by their division into subsets 

based on the types of cytokines they produce and the nature of the immune response that 

follows their activation.  The production of cytokines is crucial to regulation of the 

immune response and can have major effects on the activation, proliferation, and 

response of both immune and accessory cells.  Subsets of Th cells include Th1, Th2, and 

Th17 cells.  Th1 cells are identified by the production of the cytokine IFN-  following 

antigen stimulation and they promote inflammatory immune responses (9, 10).  In 

contrast, Th2 cells express IL-4, IL-5, and IL-13 following antigen stimulation and 

promote humoral immune responses (9, 11).  Th17 cells are a recently described subclass 

of Th cells that produce IL-17 upon activation (12, 13).  IL-17 was previously known as a 

proinflammatory cytokine (14), and the identification of an IL-17 producing cell subset 

helps to explain some contradictory findings about the role of Th1 cells in chronic 
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autoimmune and inflammatory disease.  For example, administration of exogenous IFN-  

can assuage some autoimmune diseases, while its removal can exacerbate it.  This 

phenomenon can be observed in the autoimmune diseases multiple sclerosis (MS) (8), 

and RA (15) and rodent models of these diseases including experimental autoimmune 

encephalomyelitis (EAE) (16) and CIA (17).  The use of rodent models in the study of 

RA identified the overexpression of proinflammatory cytokines including TNF- , IL-1 , 

lymphotoxin- , and IFN- , whose expression is mediated by Th1 cells (9, 18, 19).  

Initially, this gave rise to the theory that RA was a Th1 mediated disease.  However, there 

is mounting evidence that Th17 cells play a crucial role in the development of RA as well 

as many other autoimmune diseases.  When genes encoding IFN- , its receptor, or IL-12 

are removed, the incidence of disease is exacerbated (17, 20, 21).  Since these genes are 

associated with Th1 cell function, the increase in arthritis activity indicated a role for 

other cells in the pathogenesis of immune arthritis.  Several lines of evidence support 

Th17 cells as mediators of autoimmune arthritis.  IL-17 expression is increased in the 

joint synovium of RA patients and stimulates production of IL-6, IL-8, IL-1 , and TNF-  

(22). In animal models, blockage of IL-17 by genetic deletion or anti-IL-17 antibodies 

inhibits arthritis development (23, 24).  One explanation for this observation is that 

autoimmune disorders previously thought meditated by Th1 cells may in fact be 

dependent on Th17 cell function.  For this reason, the identification of Th17 as a 

proinflammatory subset of Th cells has caused a re-examination of the role of Th1 cells in 

chronic inflammatory disease (25). 

While the TCR/MHC interaction is the mechanism by which T cells recognize 

antigens, the mechanisms of self-tolerance regulate the development of self-reactive T 

cell responses.  Self-tolerance can be thought of as a balance between functional 

immunocompetence and prevention of autoimmunity.  It is the process by which immune 

cells “learn” what antigens are native to the host and therefore not appropriate targets of 

immune response.  For T cells, there are two mechanisms of self-tolerance, central 

tolerance and peripheral tolerance.  In the process of central tolerance, T cells are 

positively and negatively selected to produce cells that interact with self-MHC molecules, 

but not to self-antigen presented by these MHC molecules.  This process is largely 

mediated by the affinity between the MHC, the peptide ligand, and the TCR.  During 

maturation in the thymus T cells are first positively selected, they are presented with 

peptides, of poorly defined origin, bound to the MHC molecules of cortical thymic 

epithelium.  The T cells must bind to these MHC/peptide complexes, indicating that they 

express functional TCR, to be “positively” selected for survival (26, 27).  Those cells that 

survive positive selection are next presented with self-antigen/MHC and the 

costimulatory molecules CD80 and CD86 by medullary thymic epithelium and dendritic 

cells, and if they have high binding affinities for self-peptide/MHC complexes, they are 

deleted by apoptosis.  It is at this stage that T cells with specificity to autoantigens can 

escape self-tolerance and leave the thymus as mature self-reactive cells (28).  One can 

imagine a scenario where T cells with intermediate to low affinity for self-peptide/MHC 

do not have a high enough affinity to be deleted during negative selection and escape to 

the periphery (29-31).  To minimize these self-reactive T cells as a source of autoimmune 

reactions, mechanisms of peripheral tolerance have evolved.  These mechanisms include 

anergy, deletion, and suppression by regulatory T cells (Treg) (32).  Although peripheral 
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tolerance can in part be antigen mediated, these processes are largely dependent on 

cytokine signaling and costimulation between the APC or Treg cells and the self-reactive 

Th cell.  Ultimately, the loss of self-tolerance by these self-reactive T cells is one 

potential mechanism of autoimmunity.  The mechanism by which this loss of tolerance 

occurs is not entirely understood, but due to the major role of binding affinity in T cell 

development and the role of cytokines in the mechanisms of tolerance, it is likely that 

both the affinity of the TCR for peptide/MHC and cytokine signaling is involved in this 

process. 

Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that serves as an 

example of how the development of autoimmunity is dependent both on the activation of 

CD4
+
 T cells and by cytokine signaling.  RA affects over 2 million people in the United 

States, and about 1-2% (33) of the population worldwide.  A primary effect of the disease 

is the destruction of articular cartilage and ankylosis of diarthroidal joints by a 

progressive proliferative synovitis.  The inflammation of RA is not limited to the joint 

however, and can affect the skin, vasculature, heart, lung, and muscle (34).  Destruction 

of synovial joints is marked by radical changes in joint morphology.  These changes 

include edema, loss of cartilage and bone, and hyperplasia of the synovium.  The 

synovial membrane becomes infiltrated with lymphoid cells, plasma cells, and 

macrophages, and exhibits increased vascularity.  Neutrophils are also present in the 

normally acellular synovial fluid.  Bone resorption by osteoclast activity is increased 

causing articular erosions and osteoporosis, and allowing the synovium to enter the bone 

and form subchondral cysts.  Ultimately, the joint structure is destroyed by the formation 

of a pannus.  Inflammatory cells, fibroblasts, and granulomatous tissue produce a 

fibrocellular mass of tissue that gradually degrades the cartilage lining the bone surfaces 

and bridges the joint space resulting in ankylosis (34). 

Though the etiology of RA remains unknown, there are a number of factors that 

contribute to its development.  The incidence of RA is more prevalent in women than in 

men.  The exact figures vary from population to population worldwide, but in women RA 

occurs 2 to 3 times more often (35-37).  A number of other genetic factors are also linked 

to the development of RA.  There is evidence that the risk of RA is increased along 

familial lines.  In one study in the UK, it was found that if an individual in a pair of 

identical twins develops RA, the chance of the other twin also developing RA is 15% 

(38), a nearly 20 fold increase from the 0.8% (36) risk in the general population.  In 

addition to the familial link to RA susceptibility, the most significant genetic factor that 

correlates with the advent of RA is human MHC lymphocyte antigen (HLA) genotype.  

The discovery that expression of HLA-DR4 (39) and HLA-DRB1 (40-42) is linked to RA 

has an important implication in the pathogenesis of RA.  HLA-DR4 and HLA-DRB1 are 

MHC class II molecules that present peptide antigens to CD4
+
 T cells.  Therefore, RA 

pathogenesis is likely mediated by Th subsets of CD4
+
 T cells. 

Functional and structural studies of the HLA alleles that are genetically linked to 

RA enabled the development of the “shared epitope hypothesis” (43).  This hypothesis 
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provides a potential framework for understanding how RA arises as an autoimmune 

disease.  It is based on the assumption that, initiation of the immune response in RA 

requires T cell activation via engagement of the T cell receptor with antigen presented by 

MHC class II molecules.  Due to this requirement, alterations in MHC class II structure 

can influence antigen presentation that ultimately affects how T cells differentiate and 

activate in response to antigen.  A number of HLA-DR alleles are linked to RA including 

*0101, *0102, *0401, *0404, *0405, *0408, *1001, and *1402 (44).  The structure of 

MHC class II molecules is such that in the DR 1 molecule the point of contact with 

antigen contains three regions in which the amino acid sequence is hypervariable 

(polymorphic) among different alleles.  This is an evolutionary mechanism for increasing 

the diversity of peptide determinants that can bind MHC molecules.  Among the HLA-

DRB alleles that are linked to RA, the third hypervariable region is highly conserved 

(43).  As a result, the surface of the binding groove in the MHC that carries the antigen is 

similar in that region.  This may affect RA pathogenesis either by limiting the MHC to 

selectively bind autoantigen determinants, or by influencing the presentation of antigen to 

potentially self-reactive T cells. 

Cytokines in the Pathogenesis of Rheumatoid Arthritis 

One of the hallmarks of RA is an abundance of cytokine expression.  The 

pathogenesis of RA involves immune processes that are closely regulated by cytokine 

signaling between immune cells, accessory cells, and the cells of the joint synovium.  The 

pathogenesis of RA requires the development of autoimmunity in which T and B cell 

tolerance is broken, allowing them to respond to self-antigens.  Chronic inflammation of 

the joint synovium that leads to destruction of articular tissue requires maintenance of 

proinflammatory signals.  The onset of clinical disease in RA, coincides with the 

infiltration of immune cells into the normally hypocellular joint synovium.  A broad 

selection of immune cells including CD4
+
 and CD8

+
 T cells, B and plasma cells, 

macrophages, mast cells, NK cells, and NKT cells invade the joint synovium and 

promote articular destruction via the stimulation of tissue modeling cells, including 

osteoclasts, chondrocytes, and synovial fibroblasts.  The pathogenic mechanisms of RA, 

autoimmunity, chronic inflammation, and joint destruction are all regulated by cytokine 

signaling (45). 

One mechanism by which autoimmunity may arise is when there is an imbalance 

between proinflammatory and anti-inflammatory cytokines.  The cytokine milieu present 

in the synovium of RA contains proinflammatory IL-1 , IL-6, IL-7, IL-12, IL-15, IL-18, 

IL-23p19, and TGF  produced by macrophage cells and synovial fibroblasts (45).  These 

cytokines promote the proliferation and differentiation of IFN-  producing Th1 and IL-17 

producing Th17 T cell subsets.  Conversely, there is decreased expression of the anti-

inflammatory cytokines IL-4 and IL-13 in established RA.  However, the expression of 

these cytokines is biphasic, in very early RA synovial expression of IL-4 and IL-13 is 

increased (46).  This is perhaps a self-regulatory mechanism in which the immune system 

attempts to neutralize the development of an autoimmune response.  Nonetheless, 

effector T cells are produced in RA, though whether Th1 or Th17 predominate has not 

been definitively concluded.  Similarly, the role of IFN-  remains controversial.  IFN-  
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promotes production of complement fixing IgG subclasses (47), causes increased MHC 

class II expression in APC (48), and induces production of IL-1  in macrophages and 

cytokine production by synovial fibroblasts.  By its support of Th1 differentiation it 

contributes to the production of the proinflammatory cytokines TNF-  and GM-CSF.  

Th17 derived IL-17 has potent effects on inflammatory mechanisms present in RA.  

Neutrophil, monocyte, and fibroblast activation and cytokine production are stimulated 

by IL-17 (49).  The proinflammatory properties of IL-17 are amplified when coexpressed 

with other inflammatory cytokines such as IL-1  and TNF initiating signaling cascades 

that promote destructive inflammation in the joint synovium (50). 

In addition to the production of complement activating autoantibodies, B cells are 

regulated by and can contribute to the pathogenesis of RA through the production of 

cytokines in the joint synovium.  In culture, exposure of synovial fibroblasts to TNF and 

IFN-  induced production of B cell activating factor (BAFF) which supports B cell 

survival and differentiation (51).  Activated B cells produce IL-6, IL-10, and 

lymphotoxin-  (LT ) as well as chemokines including CXCL13 and CCL21.  The 

chemokines and LT  promote the formation of germinal centers within the synovium 

(52, 53).  LT  also promotes the production of IL-1, IL-6, GM-CSF, CCL2, CCL5 and 

matrix metalloproteinases by synovial fibroblasts (54).  The formation of germinal 

centers and the production of inflammatory cytokines by synovial tissues can support T 

cell activation and effector function within the joint, demonstrating a role for cytokine 

regulation in the pathogenesis of RA. 

Collagen-Induced Arthritis, an Animal Model of Rheumatoid Arthritis 

As discussed above, both antigen stimulation of T cells and cytokine signaling are 

strong candidates as mediators of the autoimmune pathogenesis in RA.  Therefore, in 

order to determine pathogenic mechanisms of RA we sought to identify how the cytokine 

milieu at the time of antigen exposure affects the activation of T cells to drive an 

autoimmune response.  In order to do this, a mouse model of RA was used.  

Immunization with type II collagen (CII) in an emulsion of complete Freund’s adjuvant 

(CFA) results in the development of an autoimmune arthritis in genetically susceptible 

mouse strains.  This model is known as Collagen-Induced Arthritis (CIA) and is the most 

widely studied model of RA.  CIA mirrors RA in many aspects and the use of this model 

allows insight into the pathogenic mechanisms of RA.  As in RA, susceptibility to CIA is 

strongly linked to MHC class II molecule haplotype.  DBA/1 and B10.Q strains (I-A
q
) as 

well as B10.RIII (I-A
r
) are susceptible to CIA, developing autoimmune disease at a high 

incidence (55, 56).  In contrast, strains of mice expressing other MHC class II alleles are 

resistant to CIA such as the Balb/c (I-A
d
) and C57BL/6 (I-A

b
) strains.  These mouse 

susceptibility markers mirror the genetic susceptibility of RA in humans where the 

incidence of RA is linked to the expression of certain HLA-DR alleles.  In fact, when the 

human class II molecules HLA-DRB1*0101 or HLA-DRB1*0404, both linked to the 

development of RA, are expressed in a CIA non-susceptible mouse strain, B10.M (I-A
f
), 

susceptibility to CIA is conferred (57). 
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An additional model of RA that is a derivative of CIA is the IFN-
-/-

 C57BL/6 

model.  C57BL/6 mice express MHC of the I-A
b
 haplotype and are normally resistant to 

CIA, developing arthritis only rarely and exhibiting low severity.  However, when the 

gene encoding the cytokine IFN-  is removed by genetic ablation the strain becomes fully 

susceptible to CIA and exhibits arthritis at high incidence and severity (17).  This model 

provides a unique opportunity to study the role of the cytokine milieu on autoimmune 

pathogenesis.  In mouse strains susceptible to CIA, the linkage of arthritis susceptibility 

to specific class II MHC genes indicates a role for CD4
+
 CII-specific Th cells.  These CII-

specific T cells are identified as predominantly of the Th1 subset by their production of 

IL-2 and IFN- .  One important consequence of IFN-  production in the pathogenesis of 

CIA is the IFN-  mediated class switching of Ig to the complement-fixing IgG2a subtype 

(58-60).  In addition, in CIA, inflammation is largely mediated by the cytokines TNF- , 

IL-1 , and IL-6 (60, 61).  Despite a need for complement-fixing CII-specific antibodies 

and the production of proinflammatory cytokines driven by a strong Th1 response, the 

absence of IFN-  is able to convert the non-susceptible C57BL/6 strain of mouse to full 

susceptibility.  Explanation of how this conversion occurs is needed and could provide 

insight into mechanisms of autoimmune pathogenesis.  Some of the mechanisms of CIA 

pathogenesis in the B6 IFN-
-/-

 model may include disregulation of immune regulatory 

mechanisms dependent on IFN- , increased influence of Th17 or Th2 cell subsets due to 

reduced Th1 cell numbers or effector function, or altered antigen presentation by APC 

due to IFN- ’s regulatory effects on class II MHC expression. 

The chapters that follow relate how the absence of IFN-  results in immune 

disregulation and promotes the development of autoimmunity.  By using CIA in the B6 

IFN-
-/- 

mouse as a model of RA, experimental systems were designed to determine how 

the absence of IFN-  affects such immune processes immune cell activation, 

proliferation, and effector function.  Also, since T cell activation is dependent on the 

interaction of the TCR with antigen presented by MHC, the effects of IFN-  on T cell 

activation to autoimmune CII determinants was examined.  Since an I-A
b
 CII determinant 

was not previously known, the first step in this process was to identify amino acid 

sequences present in CII to which auto-reactive T cells activate to cause an autoimmune 

response.  Finally, an IFN-  mediated regulatory cytokine network was identified that in 

the absence of IFN-  is disregulated and promotes the development of autoimmunity. 
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Chapter 2.   Materials and Methods 

Mice 

The following mice were obtained from The Jackson Laboratory, Bar Harbor, 

ME: 

C57BL/6J (B6) (I-A
b
) stock # 000664 

B6.129S7-Ifng
tm1Ts

/J (B6 IFN-
-/-

) (I-A
b
) stock # 002287 

CXB2/ByJ (CXB2) (I-A
b
) stock # 000352 

D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J (qCII24) (I-A
q
) stock # 005694 

B6.129S2-H2
dlAb1-Ea

/J (I-A
-/-

) stock # 003584 

B10.M I-A
-/-

 DR1 mice were produced by crossing I-A null B6.129S2-H2
dlAb1-Ea

/J 

with DR1*0101-expressing B10.M/J-TgN-DR1 (57) and backcrossed with B10.M/J-

TgN-DR1 mice for 5 generations to produce DR1*0101-expressing mice without 

endogenous MHC class II expression.  For all experiments, mice were bred and 

maintained at the Veterans Affairs Medical Center of Memphis in Memphis, TN 

(VAMC) in a specific pathogen free environment, and sentinel mice were routinely tested 

for the presence of mouse hepatitis and Sendai viruses. 

Cell Culture 

HL-1 Media: (Lonza, Walkersville, MD) was supplemented with 50 units/ml 

penicillin (Invitrogen, Grand Island, NY) 50 mg/ml streptomycin (Invitrogen, Grand 

Island, NY), 4 M L-glutamine (Invitrogen, Grand Island, NY), 50 M 2-

mercaptoethanol (Sigma, Saint Louis, MO), and 0.1% electrophoresis grade BSA 

minimum 96% (Sigma, Saint Louis, MO) to make complete HL-1 Media. 

DMEM: (Lonza, Walkersville, MD) was supplemented with 100 units/ml 

penicillin (Invitrogen, Grand Island, NY) 100 mg/ml streptomycin (Invitrogen, Grand 

Island, NY), 2 mM L-glutamine (Invitrogen, Grand Island, NY), 50 M 

2-mercaptoethanol (Sigma, Saint Louis, MO), and 10% fetal bovine serum (Hyclone, 

Logan, UT) to make complete DMEM media. 

Schneider’s Drosophila Medium, Modified: (Cambrex Bio Science, Walkersville, 

MD) supplemented with 10% fetal bovine serum (Hyclone, Logan, UT) and 50 units/ml 

penicillin (Invitrogen, Grand Island, NY) 50 mg/ml streptomycin (Invitrogen, Grand 

Island, NY). 

TNM-FH insect media: (#554760, BD biosciences, San Diego, CA). 

SF-900 II: (#10902, Gibco, Grand Island, NY) supplemented with 5% fetal 

bovine serum (FBS) (Hyclone, Logan, UT), 50 units/ml penicillin (Invitrogen, Grand 

Island, NY), and 50 mg/ml streptomycin (Invitrogen, Grand Island, NY) 
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Mammalian cell lines were cultured in supplemented DMEM at 37º C and 10% 

CO2.  Ex vivo lymphocyte cell cultures were cultured in supplemented HL-1 media at 37º 

C and 5% CO2.  S2 drosophila cells were cultured in supplemented Schneider’s 

Drosophila Medium, Modified at 25º C.  SF9 cells were cultured in either TNM-FH 

insect media or SF-900 II supplemented with 5% FBS at 27º C. 

Type II Collagen 

The amino acid sequence of type II collagen from chicken, mouse, cow, and 

human were obtained from the National Centers for Biotechnology Information (NCBI) 

database and are as follows: chicken CII accession # NM 204426, bovine CII accession # 

NP 001001135, human CII accession # NM 001844, and mouse CII accession # NM 

031163 

Bovine and chicken type II collagen (CII) was prepared locally by the VAMC 

Collagen Core laboratory.  Bovine 1(II) was prepared from native bovine type II 

collagen by heat denaturation at 45  C and purification of monomeric 1 subunits by 

separation on a carboxymethylcellulose column (62).  Human type II collagen was a kind 

gift of Dr. Andrew Kang (VAMC, Memphis, TN) 

Peptides 

Both biotinylated and unmodified peptides with free end groups were synthesized 

by Sigma-Genosys (The Woodlands, TX).  Biotinylated analogs consist of the peptide 

plus biotin covalently attached to the N terminus.  Peptide sequences are as follows: 

CII(512-526)  H-AQGLQGPRGL(Hyp)GT(Hyp)G-OH 

CII(512-528)  H-AQGLQGPRGL(Hyp)GT(Hyp)GTD-OH 

CytC(43-58)  H-AEGFSYTDANKNKGIT-OH 

Mog(35-55)  H-MEVGWYRSPFSRVVHLYRNGK-OH 

CII(257-274)  H-E(Hyp)GIAGFKGEQGPKGE(Hyp)G-OH. 

The mature form of human CII (GenBank accession # NM 001844) minus the 

globular terminal ends found in procollagen, amino acids 1-185 at the amino terminal end 

and amino acids 1230-1487 at the carboxyl terminus, was used as a template to produce a 

library of 344 15-mer peptides that progressively overlap by 12 amino acids (Mimotopes, 

Clayton Victoria, Australia).  The sequence in the peptides is numbered according to 

convention with the first amino acid in the peptide library numbered as -15, which 

corresponds to amino acid 186 of the procollagen sequence.  Peptides contain a free 

amino group at the N-terminus and a diketopiperazine group at the C-terminus. 

The amino acid sequence of the I-A
b
 collagen determinant representing amino 

acids (512-526) of mature CII was used to produce a substituted library of 15 peptides 

with each position of the sequence AQGLQGPRGL(Hyp)GT(Hyp)G substituted with 
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alanine.  Peptides were synthesized with free N- and C-termini (Mimotopes, Clayton 

Victoria, Australia). 

Antigen Emulsions 

Mice were immunized with emulsions of antigen in CFA.  To produce CFA, heat 

killed Mycobacterium tuberculosis (Mtb), strain H37RA, (Difco Laboratories, Detroit, 

MI) was ground to a fine powder with a mortar and pestle and added to incomplete 

Freund’s adjuvant (IFA) consisting of 15% Arlacel A in heavy paraffin oil (David Brand, 

VAMC Memphis, TN) at a concentration of 4 mg/ml.  Equal volumes of CFA and 

antigen solution, 4 mg/ml CII in 10 mM acetic acid or 2 mg/ml peptide in PBS, were 

placed in a 3 ml syringe (BD, Franklin Lakes, NJ) with the end sealed using Dura Seal 

(Diversified Biotech, Boston, MA) and a plastic cap.  Emulsion was created by mixing at 

high speed with a tissue homogenizer (IKA, Wilmington, NC) on ice for 2-3 min then 

centrifuging at low speed for 1 min to remove air bubbles.  The quality of the emulsion 

was then determined by placing a drop of emulsion in a beaker of water.  If the emulsion 

held together for at least 3 min it was considered stable.  The emulsion was then 

transferred into a 1 ml syringe and capped with a 0.5 inch 26 gauge needle and stored on 

ice until immunizations were performed.  Mice anesthetized with isofluorane were 

immunized in one of two locations.  For experiments requiring the induction of CIA, 100 

µl of emulsion was injected subdermally at a location 2-3 cm from the base of the tail.  

For experiments requiring the later removal of draining lymph nodes mice were 

immunized subdermally with 50 µl emulsion into both rear footpads. 

Collagen-Induced Arthritis 

For the induction of CIA, mice aged 8-16 weeks were immunized subdermally in 

the tail with 100 µl of CFA emulsion containing 2 mg/ml CII and 2 mg/ml Mtb. The 

development of arthritis was monitored visually 2-3 times per week.  The severity of 

arthritis was determined by noting the swelling and joint involvement of each paw using 

the following scoring system: 0 no erythema and swelling; 1 erythema and swelling 

confined to mid foot or ankle joint; 2 erythema and moderate swelling extending from the 

ankle to the metatarsal joints; 3 erythema and severe swelling that encompasses the ankle, 

foot, and digits; 4 extreme erythema and swelling encompassing all joints of the foot.  

Mice were monitored until maximal scores were achieved or past 65 days.  Data is 

expressed as the severity and incidence of arthritis exhibited.  The nature of the scoring 

system results in a severity score that ranges from 0 to 16 with 4 points contributed by 

each paw.  0 represents no arthritis development and 16 represents maximum edema and 

erythema in all joints of all limbs.  To obtain an overall severity score in a particular 

experimental group the highest severity scores of arthritic mice only were averaged.  

Incidence is expressed as the percentage of mice in each group that received a severity 

score of 1 or higher. 
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FACS Analysis 

Wild type or IFN-
-/-

 B6 mice were immunized with bovine CII/CFA emulsion 

and lymphocytes were recovered from the draining popliteal lymph nodes ten days later 

by mechanical disruption with forceps.  The lymphocytes were then washed two times in 

PBS 0.1% NaAzide and resuspended at 5x10
6
 cells in PBS 0.1% NaAzide.  The cells 

were then stained with the following fluorescently labeled monoclonal antibodies: anti-

TCR FITC (#553171, BD Biosciences, San Diego, CA), anti-CD8a PerCP (#551162, BD 

Biosciences, San Diego, CA), anti-CD19 APC (#550992, BD Biosciences, San Diego, 

CA), and anti-CD4 Pacific Blue (#558116, BD Biosciences, San Diego, CA).  Staining of 

cells was performed by adding 0.5 µl of monoclonal antibody conjugated to a fluorescent 

label to 5x10
5
 cells in 100 µl PBS 0.1% NaAzide and incubating at 4º C for 20 min.  The 

cells were then washed three times with PBS 0.1% NaAzide to remove unbound antibody 

and resuspended in 300 µl PBS 0.1% NaAzide.  The cells were then analyzed with an 

LSR II flow cytometer (BD Biosciences, San Diego, CA). 

Quantification and Isotyping of Anti-CII Antibodies 

Blood samples were collected from immunized mice via the retro orbital plexus.  

The blood was allowed to clot by incubation at room temperature for 6 hours and sera 

were obtained by centrifugation at 300 g for 10 min.  A CII ELISA was performed by 

coating 96 well vinyl plates (#2797, Costar, Cambridge, MA) with 100 l of 5 mg/ml 

bovine CII in Jerry Gross buffer (127 mM Na2HPO4, 3.4 mM KH2PO4, pH 7.6) overnight 

at 4  C.  The plates were then washed three times with wash buffer (154 mM NaCl, 

0.05% Tween-20), and blocked with 2% BSA in ELISA buffer (PBS, 1% Tween-20, pH 

7.4) for 30 minutes at 4  C.  The plates were then washed three times with wash buffer.  

Mouse sera was then diluted 1:2000 with ELISA buffer supplemented with 2% normal 

goat serum (NGS) (#32128-5, Pel-Freez, Rogers, AR) and 100 l was two-fold serially 

diluted over 8 wells in the CII coated plates.  Anti-CII antibody standards previously 

purified from mouse sera by CII conjugated column chromatography were also serially 

diluted in CII coated plates as a positive control.  The plates were then incubated 

overnight at 4  C.  The plates were washed three times with wash buffer and followed by 

the addition of a 1:2000 dilution of goat anti-mouse polyvalent immunoglobulins (IgG, 

IgA, IgM) peroxidase conjugate (#A 0412, Sigma, Saint Louis, MO) as 2  antibody in 

ELISA buffer supplemented with 2% NGS.  The 2  antibody was incubated for 2 hours at 

4  C and washed three times with wash buffer.  100 l of HRP substrate was then added.  

Substrate consists of substrate buffer (25 mM citric acid, 50 mM Na2HPO4, 0.018% 

H2O2) containing 0.5 mg/ml o-phenylenediamine dihydrochloride (OPD) (#P-8287, 

Sigma, Saint Louis, MO).  The reaction progressed for 30 minutes at which point 50 l of 

stopping buffer (2.5 N H2SO4) was added.  The absorbance at 490-650 nm was then 

measured using a Spectramax 340PC spectrophotometer (Molecular Devices, Sunnyvale, 

CA). 

ELISA to determine CII-specific IgG subclass was performed as above with the 

following differences.  To blocked CII coated plates, mouse sera diluted 1:1000 in 
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ELISA buffer supplemented with 2% NGS were added and two-fold serially diluted over 

8 wells. Following incubation and wash steps, HRP conjugated 2  antibodies with 

specificity for mouse IgG1, IgG2a, IgG2c, and IgG3 from a IgG subclass isotyping kit 

(#5300-05, Southern Biotech, Birmingham, AL) were diluted 1:500 in ELISA buffer 

supplemented with 2% NGS, and incubated 2 hours at room temp.  Following incubation 

the plates were washed, developed, and absorbance measured by spectrophotometry as 

above. 

Proliferation Assays 

Lymphocytes were isolated from the draining lymph nodes 10 days after 

immunization by disrupting excised lymph nodes with forceps, and washing two times in 

HL-1 media.  Antigenic stimulation of lymphocytes was performed by culturing the cells 

in 96 well culture plates (#92096, TPP, Switzerland) at 5x10
5
 cells/well in 300 l 

complete HL-1 media at 37  C and 5% CO2 with or without antigen stimulation.  After 

three days of stimulation 1 Ci of 
3
H-thymidine (#NET027A001MC, Perkin Elmer, 

Boston, MA) was added to each well and allowed to incubate for an additional 18 hours.  

The cells were then collected onto a glass fiber membrane via aspiration and allowed to 

dry.  The activity of each culture was then measured with a Matrix 96 Direct Beta 

Counter (Packard, Meriden, CT). 

Prior to in vitro stimulation, some lymphocytes were enriched for CD4 expression 

by magnetic bead cell sorting (MACS).  CD4 (L3T4) Microbeads (#130-049-201, 

Miltenyi Biotec, Auburn, CA) were used to magnetically label lymphocytes obtained 

from immunized mice.  10 l of CD4 Microbeads were added to 1x10
7
 lymphocytes in 

90 ml of autoMACS Rinsing Solution (#130-091-376) supplemented with 2% BSA, and 

incubated at 4  C for 15 minutes.  The cells were then washed with 2 ml of buffer and 

peleted by centrifugation at 300 g for 10 minutes, and resuspended in 500 l of buffer.  

The labeled cells were then positively selected using the “Possel” program of an 

autoMACS Separator (Miltenyi Biotec, Auburn, CA).  This program operates the 

autoMACS Separator to retain (positively select) magnetically labeled cells while 

washing out the unlabeled cells.  Following separation, the CD4 enriched lymphocytes 

were washed two times in complete HL-1 media and stimulated for proliferation as 

above.  Analysis of sorting efficiency was performed by FACS analysis as above using a 

fluorescently labeled anti-CD4 monoclonal antibody. 

Lymphocytes prepared as above from immunized wild type B6, IFN-
-/-

 B6, 

CXB2, and B10.M I-A
-/-

 DR1 *0101 or splenocytes from naïve qCII24 mice were 

prepared by mincing spleens and treating with GEY’S solution for 5 min at 4  C to lyse 

red blood cells (RBC).  Gey’s Solution was prepared in three parts; Part A: 654 mM 

NH4Cl, 24.7 mM KCl, 7.6 mM Na2HPO4 7H2O, 1.0 mM KH2PO4, 27.7 mM Glucose in 

H2O; Part B: 20.6 mM MgCl2 6H2O, 5.7 mM MgSO4 7H2O, 30.6 mM CaCl2 2H2O; Part 

C: 267.8 mM NaHCO3.  Just prior to use, 1.0 ml of Part A, 250 µl Part B, and 250 µl Part 

C was added to 3.5 ml of H2O and added to the splenocytes in 1 ml HL-1 media.  

Following incubation the cells were then washed three times with HL-1 media.  5x10
4
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splenocytes/well were then stimulated for proliferation with 75 g of each peptide in the 

CII peptide library in 300 l of complete HL-1 media for three days followed by the 

addition of 
3
H-thymidine as above. 

Production of T Cell Hybridomas 

To produce T cell hybridomas, mice were immunized with 50 l of bovine CII in 

CFA emulsion.  Ten days post immunization, mice were euthanized and the draining 

popliteal lymph nodes were removed.  Lymph nodes were disrupted with forceps and the 

released lymphocytes were collected and washed two times in HL-1 media.  

Lymphocytes were then cultured at 37  C at 5% CO2 in 96 well culture plates for four 

days at a concentration of 5x10
4
 cells/well in 300 l of complete HL-1 medium 

containing 100 g of the purified 1(II) chain of bovine CII.  Following antigen selective 

expansion, the lymphocytes in 800 l HL-1 media were added to 300 l Lympholyte-M 

(#CL5030, Cedarlane Laboratories, Burlington, NC) for purification by density gradient 

centrifugation.  The cells were washed three times in HL-1 media, and expanded in 

culture for three days at 5x10
4
 cells/well in 300 l complete HL-1 media containing 5 

ng/ml IL-2 (#200-02, PeproTech, Rocky Hill, NJ). 

Following IL-2 expansion, T cells were washed in serum free media and mixed 

with BW5147 cells at a ratio of 2:1.  Fusion of cells was induced by the addition of 1.5 

ml PEG 1500 (Roche; Indianapolis, IN) warmed to 37  C dropwise over 30 seconds, and 

followed by the addition of 50 ml warm serum free DMEM.  After 30 minutes, the cells 

were pelleted by centrifugation and the serum free DMEM was replaced with complete 

DMEM containing 10% FBS, and the cells were distributed in 96 well plates.  Two days 

later, DMEM supplemented with HAT selection media (Sigma, Saint Louis, MO) was 

added to fused T cell/BW5147 hybrid cultures and cultured at 37  C in 10% CO2 until 

cells reached 50% confluence.  At this point the T cell hybridomas were tested for 

responsiveness to antigen stimulation and weaned off of the HAT selection media by the 

gradual replacement with complete DMEM supplemented with HT (Sigma, Saint Louis, 

MO) and then complete DMEM over several weeks as the cells were passed. 

Antigen Presentation to T Cell Hybridomas 

Antigen was presented to T cell hybridomas using splenocytes from CXB2 mice 

as APC.  To prepare splenocytes, the spleen was removed, placed in 1 ml of HL-1 media, 

and then disrupted mechanically with forceps.  To remove RBC, the cells were incubated 

for 4 min at 4º C in Gey’s solution as above.  Following incubation with Gey’s solution, 

the cells were washed three times and resuspended in complete HL-1 media.  100 g 

1(II), 100 g bovine CII, 75 g CII-library peptides, or a titration of alanine substituted 

CII(512-526) peptides ranging from 50 g to 0.188 g were used to stimulate T cell 

hybridoma cells.  In 96 well culture plates, 4x10
5
 splenocytes and 1x10

5
 T hybridoma 

cells were added to antigen in 300 l complete DMEM media, and cultured for 24 hours 
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at 37  C in 10% CO2.  The supernatants from the cultures were then assayed for IL-2 as 

follows. 

Culture supernatants from stimulated T cell hybridoma cultures were two-fold 

serially diluted in 80 l complete DMEM down 8 wells in a 96 well culture plate.  In 

addition, 50 ng IL-2 was also titrated as a positive control.  HT-2 cells, which require 

IL-2 for survival, were then added to the diluted culture supernatants at a concentration of 

5x10
3
 cells/well and incubated at 37  C for 18 hours in 10% CO2.  Survival of HT-2 cells 

was then assayed by the addition of 10 l of 5 mg/ml thiazolyl blue tetrazolium bromide 

(#M5655, Sigma, Saint Louis, MO) in PBS, which is converted to MTT by living cells, 

and further incubation at 37  C for 3 hours.  Supernatants were then removed and MTT 

was solubilized by the addition of 200 l 2-propanol containing 0.02 N HCl.  Once the 

MTT was dissolved, absorbance at 570 nm minus 690 nm was quantitated using a 

Spectramax spectrophotometer.  Wells that exhibited absorbance values twice that of 

negative control wells were considered positive for HT-2 cell survival and therefore 

indicated the presence of IL-2 produced by the T cell hybridomas in response to antigen. 

Induction of Tolerance in CXB2 Mice with Determinant Peptides 

CXB2 mice were injected in the orbital plexus with 100 l of 1 mg/ml CII(512-

528) in PBS, or PBS alone.  Three days later, the tolerized mice were immunized in the 

tail with 100 l of 2 mg/ml bovine CII/CFA emulsion to induce CIA.  The mice were 

then monitored for development of CIA as described above. 

Production of Soluble MHC Class II Molecules 

Soluble I-A
b
 and DR1 were purified from supernatants of S2 drosophila cells 

transfected with recombinant I-A
b
 or DR1 in which the cytoplasmic and transmembrane 

portions had been removed by PCR, replaced with a leucine zipper, and cloned into the 

Drosophila expression vector pRmHA-3.  S2 cells were transfected with the cDNA 

encoding the  and  subunits of I-A
b
 or DR1 at a 10:1 ratio of each to the neomycin 

resistance vector, pUChsNeo, via calcium phosphate precipitation.  Soluble MHC class II 

production was induced by addition of 1% CuSO4 and five days later culture supernatants 

were collected, and modified to contain 1% octyl b-D-gluco-pyranoside (OcG) (#O8001, 

Sigma, Saint Louis, MO) and 0.1% NaAzide at pH 8.0. 

Soluble MHC class II was purified by passing the supernatant over an affinity 

column coupled with the DR1-binding monoclonal antibody LB3.1 or I-A
b
-binding 

monoclonal antibody M5/114.5.2.  The column was then washed with PBS containing 

0.05% OcG, pH 7.5, followed by PBS plus 0.5 M NaCl and 0.05% OcG, pH 7.5, and then 

10 mM TRIS in 0.5 M NaCl, pH 7.5.  Soluble MHC was then eluted from the column 

with 100 mM tris in 0.5 M NaCl, pH 11.2 and immediately neutralized with acetic acid.  

Soluble MHC class II molecules recovered were quantitated by OD 280 absorption and 

concentrated using an Amicon Stirred Cell (Amicon; Beverly, MA).  The quality of the 
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concentrated soluble class II was monitored by SDS-PAGE containing 12.5% 

polyacrylamide. 

Soluble I-A
b
 was also produced in SF9 cells using a baculovirus expression 

system (#552846, BD Biosciences, San Diego, CA).  A gene encoding soluble I-A
b
 was 

cloned into the transfer vector pVL1392 (BD Biosciences; San Diego, CA).  This I-A
b
 

gene was previously modified by the replacement of the transmembrane and cytoplasmic 

domains with a leucine zipper.  SF9 cells were then co-transfected with I-A
b

 or I-A
b

 in 

the transfer vector plus BD BaculoGold Bright DNA (#51-552846, BD Biosciences, San 

Diego, CA) via calcium phosphate precipitation and cultured in TNM-FH insect medium 

(#554760, BD Biosciences, San Diego, CA) at 27  C.  After five days, supernatants were 

collected and virus titers were determined by plaque assay.  To perform the plaque assay, 

9x10
5
 SF9 cells in 2 ml TMN-FH media were adhered to 12 well plates and inoculated 

with 20 µl of virus containing culture supernatants and incubated for 4 hours.  Following 

incubation, supernatants were removed by aspiration and 2 ml of TMN-FH media 

containing 1% plaque assay agarose (#554766, BD Biosciences, San Diego, CA).  Plates 

were then cultured 4-5 days at 27º C after which 200 µl of 5 mg/ml thiazolyl blue 

tetrazolium bromide was added to the wells and allowed to react for 6 hours.  Plaques 

were then visually counted.  Virus titer was repeatedly amplified via infection of fresh 

SF9 cells with virus laden culture supernatants at a multiplicity of infection (MOI) less 

than one.  When virus titers reached 1x10
8
/ml, SF9 cells cultured in supplemented SF-

900 II were infected with both I-A
b
 chains at a MOI of five.  After five days, virus 

supernatants were collected and soluble I-A
b
 was purified via column chromatography as 

in the S2 derived I-A
b
. 

Binding Assays 

I-A
b
 Binding of CytC(43-58), Mog(35-55), and CII(257-274) 

Capture plates were prepared by coating Immulon 2 flat bottom microtiter plates 

(Dynex Technologies INC. Chantilly, VA) with 100 l of 5 g/ml I-A
b
-binding 

monoclonal antibody, M5/114.5.2, in PBS overnight at 4  C and then blocked for 1 hour 

at room temperature with 1% BSA.  Capture plates were then washed three times with 

150 l PBS containing 0.05% Tween-20 and buffered with 50 l of 50 mM TRIS 

containing 1% OcG at pH 8.0. 

Biotinylated peptides CytC(43-58), Mog(35-55), or CII(257-274) peptides were 

titrated from 30 M to 0.1 nM in binding buffer (PBS containing 1% OcG and adjusted 

to pH 6.5 with 0.1 M potassium phosphate).  100 l of the titrated peptides was added to 

50 µl of 15 nM soluble I-A
b
 produced by S2 or SF9 insect cells, and incubated overnight 

at 37  C in 96 well round bottom polypropylene plates (#3365, Corning, Corning, NY).  

50 l of the binding reaction was then added to the buffered capture plates for 2 hours at 

4  C. 
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Following binding to the capture plate, I-A
b
 peptide complexes were washed three 

times with PBS containing 0.05% Tween-20 and the biotin groups on bound peptide were 

labeled with 100 ng/ml europium conjugated streptavidin (Perkin Elmer #1224-360) in 

125 m DELPHIA Assay Buffer (Perkin Elmer #1244-111) by incubation at room 

temperature for 2 hours.  Plates were then washed with 100 l DELPHIA wash buffer 

(Perkin Elmer #1244-114) and 150 l of DELPHIA Enhancement Solution (Perkin Elmer 

#1244-105) was added.  Time delayed fluorescence (excitation/emission 315/615 nm) 

was then quantified using a microplate flurometer (Fluromark, BioRad, Hercules, CA). 

Binding of CII Peptide Array to I-A
b
 and DR1 

Capture plates were prepared by adding 100 l 5 g/ml I-A
b
-specific M5/114.5.2 

or DR1-specific LB3.1 monoclonal antibody in PBS containing 0.05% NaAzide to 

Immulon 2 flat bottom microtiter plates (Dynex Technologies INC., Chantilly, VA) 

overnight at 4  C.  The plates were them blocked with 250 l 1% BSA in PBS containing 

0.05% NaAzide for 2 hours at room temperature.  The plates were then washed three 

times with wash buffer (150 l PBS containing 0.05% Tween-20), and buffered with 50 

l of 50 mM TRIS pH 8.0 containing 1% OcG. 

Soluble I-A
b
 or DR1 was prepared at 15 nM and 10 nM respectively in binding 

buffer (PBS containing 1% OcG adjusted to pH 6.5 with 0.1 M KH2PO4).  I-A
b
 or DR1 

was then incubated with 30 nM biotinylated peptides Mog(43-58) or CII(257-274) and 5 

m of each peptide in the CII peptide array overnight at 37  C in 96 well polypropylene 

round bottom plates (Corning, NY).  Following incubation, 50 l of the binding reaction 

was added to the capture plates and incubated at 4  C for 2 hours, washed three times 

with wash buffer, and developed using DELPHIA reagents. 

Biotin groups on peptides bound to I-A
b
 or DR1 were labeled with 100 ng/ml 

europium conjugated streptavidin (Perkin Elmer #1224-360) in 125 m DELPHIA Assay 

Buffer (Perkin Elmer #1244-111) by incubation at room temperature for 2 hours.  Plates 

were then washed three times with 100 l DELPHIA wash buffer (Perkin Elmer #1244-

114) and 150 l of DELPHIA Enhancement Solution (Perkin Elmer #1244-105) was 

added.  Time delayed fluorescence (excitation/emission 315/615 nm) was then quantified 

using a microplate flurometer (Fluromark, BioRad, Hercules, CA). 

Microarray Analysis 

Female B6 and B6 IFN-
-/-

 mice between the ages of three and four months were 

immunized in the footpads of each hind limb with 50 µl of bovine CII/CFA emulsion.  10 

days post immunization, mice were euthanized and the draining popliteal lymph nodes 

were collected.  The lymph nodes were minced with forceps to release lymphocytes and 

washed in ice cold PBS.  An RNeasy kit (#74124, Qiagen, Valencia, CA) was used to 

prepare mRNA according to the manufacturer’s protocol from the total cells recovered 

from the nodes.  Quantity and purity of the recovered RNA was analyzed by absorbance 
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at 260 nm and the 260/280 nm absorbance ratio with an acceptable range of 1.8 to 2.0.  

RNA was then concentrated by ethanol/sodium acetate precipitation and dissolved in 

RNase free water at 2 g/µl.  Potential degradation of RNA was monitored by analysis of 

the ratio of 28S/18S rRNA subunits via electrophoresis using an Agilent 2100 

Bioanalyser (Agilent, Santa Clara, CA).  mRNA was then submitted to the microarray 

core facility at VAMC Memphis for expression analysis using an Affymetrix GeneChip 

Mouse Genome 430 2.0 Array on a Affymetrix 7G Plus GeneChip Scanner.  The data 

was then analyzed for statistical significance and cluster analysis via the use of 

Genespring software produced by Agilent Technologies. 

Real Time PCR 

RNA was isolated from lymph node derived lymphocytes recovered from 

immunized mice using an RNeasy kit (Qiagen, Valencia, CA) according to the 

manufacturer’s protocol.  MultiScribe reverse transcriptase (Applied Biosystems, Foster 

City, CA) was then used to convert 1 g of mRNA to cDNA according to the 

manufacturer’s protocol, and used for real time PCR analysis by the VAMC molecular 

core facility.  Amplitaq Gold (Applied Biosystems), 50 ng of cDNA, and Taqman probes 

(Applied Biosystems) specific for the transcripts of mouse IL-17A, IL-5, IL-1 , IL-6, IL-

4, GM-CSF, TGF 1, IL-18, TNF- , IL-15, IL-10, IL-12 , IL-18 BP, were then used to 

quantify gene expression using an ABI Prism 7900HT Sequence Detection System 

(Applied Biosystems) to perform the real time PCR.  Ct values were obtained by 

measuring the cycle times required to reach a threshold value of fluorescence for each 

probe.  These ct values were then normalized to the expression of  actin to compare the 

relative expression of each gene.  Data are expressed as the ct.  This value represents 

the difference in cycle times required for each reaction to reach the threshold value and is 

calculated by subtracting the housekeeping  actin ct value from the experimental ct 

value to obtain the ct, and then subtracting the ct value of the IFN-
-/-

 real time PCR 

from the wild type.  This value represents the difference in cycle times between the two 

groups required to reach the threshold fluorescence value. 

For microfluidics based real time PCR, RNA was isolated from the lymphocytes 

recovered from immunized mice using an RNeasy kit (Qiagen, Valencia, CA) according 

to the manufacturer’s protocol.  The RNA was converted to cDNA as described above 

and used for real time PCR analysis by the VAMC molecular core facility using 200 ng 

cDNA, Amplitaq Gold, a Taqman Gene Signature Array, Mouse Immune Panel (Applied 

Biosystems) and an ABI Prism 7900HT Sequence Detection System (Applied 

Biosystems, Foster City, CA).  Ct values of each gene in the array were normalized to the 

expression of the housekeeping gene GAPDH.  Data is expressed as the ct value, 

calculated as above. 
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Treatment of Mice with IL-18 BP 

Recombinant IL-18 BPd (#122-BP, R&D Systems, Minneapolis, MN) was 

dissolved in PBS at a concentration of 1 mg/ml.  10 IFN-
-/-

 B6 mice were then injected 

intraperitoneally with 200 l of IL-18 BPd solution or PBS every 24 hours for 10 days.  

On the second day of this regimen, the mice were immunized with 100 l of CII/CFA 

emulsion containing 2 mg/ml bovine CII and 2 mg/ml Mtb subdermally at the base of the 

tail.  Mice were then monitored for the development of CIA. 

Anti-CD3/CD28 Stimulation Assay 

Splenocytes from naïve wild type or IFN-
-/-

 B6 mice were cultured in 300 µl 

complete HL-1 media at 1x10
5
 cells per well in 96 well plates previously coated with 

anti-CD3 and anti-CD28 monoclonal antibodies.  To prepare antibody coated plates, anti-

CD3 and anti-CD28 monoclonal antibodies produced from B cell hybridoma clones 145-

2C11 and HB-12352 (ATCC, Manassas, VA) by the VAMC RDRCC Collagen Core 

were dissolved in PBS 0.1% NaAzide at a concentration of 5 µg/ml.  100 µl of antibody 

solution was incubated in 96 well culture plates overnight at 4º C.  Following incubation 

the plates were washed two times with PBS.  Splenocytes were cultured at 1x10
5
 cells per 

well in the antibody coated plates in 300 l of complete HL-1 media containing 5 g/ml 

IL-18 BPd (#122-BP, R&D Systems, Minneapolis, MN), 6 ng/ml IFN-  (#485-MI, R&D 

Systems, Minneapolis, MN), 240 ng/ml IL-18 (#B004-2, R&D Systems, Minneapolis, 

MN), 8 ng/ml IL-17 (# 421-ML, R&D Systems, Minneapolis, MN), or media only.  Cells 

were cultured for three days at 37 C in 5% CO2 at which point 1 Cu of 
3
H-thymidine 

was added to each well and incubated for 18 hours at 37 C in 5% CO2.  Following 

incubation the cells were collected onto a glass fiber membrane and activity was read 

using a Matrix 96 Direct Beta Counter (Packard, Meriden, CT).  Some cells were 

cultured for four days at which point supernatants were collected for cytokine 

quantification. 

BioPlex Cytokine Assay 

Cytokines produced by splenocytes in culture were measured using a 13-plex 

multiplex bead based cytokine assay kit (BioRad, Hercules, CA) containing development 

reagents, cytokine standards, and beads conjugated with antibodies specific for IL-1 , IL-

2, IL-4, IL-5, IL-6, IL-13, IL-17, GM-CSF, IFN- , TNF- , IL-15, IL-18, and M-CSF.  50 

l of multiplex beads containing 2 l of conjugated beads and 48 l of BioPlex assay 

buffer was added to each well of a pre-wetted Multiscreen HTS 96 well filter plate 

(#MSBVN1210, Millipore, Bedford, MA).  The buffer was removed by vacuum filtration 

and washed two times with 100 l BioPlex wash buffer.  50 l of the cell culture 

supernatants was added to the plates in addition to 50 l of the cytokine standards titrated 

1:4 in complete HL-1 media over 8 wells.  The plate was incubated at room temperature 

on a plate shaker set to 1,100 RPM (IKA-MTS 4 S2, Staufen, Germany) for 30 minutes.  

The buffer was removed by vacuum filtration and washed three times with 100 l 
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BioPlex wash buffer.  25 l of multiplex detection antibody containing biotin conjugated 

2  antibodies diluted in detection antibody diluent was added, and incubated at room 

temperature for 30 minutes with agitation at 1,100 rpm.  The buffer was removed by 

vacuum filtration and the plate was washed three times with BioPlex wash buffer.  50 l 

of streptavidin-PE diluted 1:100 in BioPlex assay buffer was added and incubated for 10 

minutes at room temperature while agitated at 1,100 rpm on the plate shaker.  The plate 

was washed three times with BioPlex wash buffer followed by resuspension of the beads 

in 125 l BioPlex assay buffer.  The samples were analyzed using a Luminex 100 

BioPlex System (Luminex, Austin, TX).  To determine concentration of experimental 

cytokines in pg/ml, a standard curve was created using the fluorescence data obtained 

from the cytokine standards. 
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Chapter 3.   Modulation of Arthritis Pathogenesis by Variable 

T Cell Receptor Complex Interaction with Type II Collagen 

Determinants 

Introduction 

The initial events that trigger the development of autoimmunity remain 

incompletely understood.  IFN- , a proinflammatory cytokine produced by cells of both 

the innate and acquired immune system, has been implicated in the pathogenesis of a 

number of inflammatory autoimmune diseases including rheumatoid arthritis, multiple 

sclerosis, uveitis (63), and type 1 diabetes .  However, contrary to a proinflammatory role 

for IFN- , in animal models of autoimmune diseases targeting IFN-  with neutralizing 

antibodies or genetic ablation of IFN-  or its receptor, IFN- R, has been shown to 

exacerbate disease incidence and severity (17, 20). 

This paradoxical role of IFN-  as a Th1 cytokine has also been observed in a 

mouse model of rheumatoid arthritis, CIA.  In this model, IFN-  regulates susceptibility 

to arthritis.  For example, B6 mice are resistant to CIA.  However, when expression of 

IFN-  or its receptor is removed by genetic ablation, these mice become fully susceptible 

to CIA (17, 20, 64).  Prior to the discovery that B6 mice lacking IFN-  were susceptible 

to CIA, a prevailing hypothesis was that among various mouse strains susceptibility to 

CIA was largely dependent on the expression of MHC class II susceptibility alleles.  The 

hypothesis for MHC-based susceptibility to autoimmune disease was that the susceptible 

alleles bound and presented the autoantigens that drove the autoimmune T cell response.  

In contrast, non-susceptible alleles are incapable of binding these autoantigenic peptides, 

thus conferring resistance.  For example, in the CIA model, mouse strains that express 

I-A
q
 or I-A

r
 bind CII determinants with sufficient affinity to stimulate T cell activation 

and drive the development of CIA at high incidence.  Mice expressing other MHC class 

II haplotypes, such as I-A
b
 in the B6 mouse strain, either fail to bind or bind CII peptides 

at a very low affinity and therefore fail to stimulate T cell activation and thus are resistant 

to CIA. 

Recently, it has become clear that the immunological basis for resistance or 

susceptibility to autoimmunity is much more complex than the ability of an antigenic 

peptide to bind to an MHC molecule.  In a number of mouse models of autoimmunity, it 

has been demonstrated that resistant mouse strains can be converted to susceptible by 

altering the cytokine environment of the mouse during disease initiation.  For example, 

B6 mice genetically deficient for the production of IFN-  are fully susceptible to CIA, 

whereas wild type B6 mice are resistant (17).  These data indicate that both T cell and B 

cell responses to CII autoantigens develop in B6 mice, thus the “resistant” I-A
b
 molecule 

binds and presents the CII autoantigen peptides. 

One explanation for the altered immune response of B6 IFN-
-/-

 mice is that IFN-  

has a regulatory role for T cell responses, and that this regulation is most apparent for low 
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affinity T cell determinants.  In this model, T cell activation against CII in B6 mice is 

weak and suppressed by IFN- , however, in the absence of IFN- , disregulation of the 

immune response occurs allowing T cell activation against weak CII antigens and 

autoimmunity develops.  Therefore, to explain the differential susceptibility to CIA 

observed in the B6 IFN-
-/-

 mouse we developed the following hypothesis.  If IFN-  

functions as a regulator of T cell responses to weakly immunogenic, low affinity 

determinants, and I-A
b
 MHC class II molecules have low affinity for collagen 

autoantigen determinants, then in the IFN-
-/-

 B6 mouse, the absence of IFN-  alters T 

cell function and the cytokine response following immunization with CII, disrupting 

normal immune regulation and allowing the development of CIA. 

To address IFN- ’s role in regulating T cell responses to collagen and ultimately 

the development of autoimmunity a set of specific aims were developed. 

1. Identify the alterations in the immune response of B6 IFN-
-/-

 mice in 

response to immunization with CII, including alterations in the differentiation, 

proliferation, and cytokine production of CII-specific T cells and accessory 

cells. 

2. Identify the CII determinants to which I-A
b
-expressing mice mount an 

immune response. 

3. Determine the significance of CII determinants in the development of arthritis 

in the B6 IFN-
-/-

 mouse. 

4. Determine the affinity of CII determinants for I-A
b
. 

These aims address both the mechanism of T cell activation in response to 

stimulation with CII and how IFN-  potentially mediates susceptibility to autoimmunity.  

IFN-  has broad regulatory control of immune function.  Therefore, its absence has the 

potential to alter immune functions including cellular differentiation, proliferation of CII-

specific T cells, and cytokine production by immune and accessory cells.  Skewed 

numbers of immune cell populations as a result of disregulation due to the absence of 

IFN-  could alter the course of the autoimmune response and thus affect pathogenesis.  

Previous data indicates that IFN-  deficient mice have increased T cell proliferative 

response to antigen (65).  Increased numbers of CII-reactive T cells may contribute to 

arthritis susceptibility.  Another aspect of immune cell function that may be altered by the 

absence of IFN-  is the production of cytokines in response to CII immunization.  

Cytokines are key mediators of immune response development, and the intercellular 

communication between T cells, B cells, APC, and accessory cells directs the immune 

response in terms of cellular differentiation, activation, and function.  All of these 

immune processes can potentially contribute to the pathogenesis of CIA, so 

understanding how the immune response in the IFN-
-/-

 mouse is altered in response to 

antigen stimulation broadens our understanding of the immune mechanisms by which 

autoimmunity develops. 

A stipulation of the hypothesis that IFN-  regulates activation of T cells against 

weak antigens is that CII contains autoantigen determinants to which T cells recognize 

and respond when disregulation of the immune response is induced by the absence of 
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IFN- .  The nature of the immune system is such that the potential for the development of 

autoimmunity is tightly controlled at many levels.  For example, mechanisms of self-

tolerance have evolved that protect the immune system from mounting a response to self-

antigens (27).  Clonal selection of T cells in the thymus and peripheral mechanisms, such 

as anergy or Treg cell suppression of effector T cell activation, minimize T cell activation 

to self-antigens (32).  Both the maturation of T cells in the thymus and activation of 

effector T cells in the periphery is largely dependent on the affinity and interaction of the 

TCR with determinants presented by MHC.  There is evidence that subsets of Treg cells 

also exhibit antigen specificity (66-68), indicating that there may be a role for CII 

determinants in Treg cell differentiation.  Therefore, to understand how autoantigen 

determinants present in CII contribute to T cell activation and subsequently autoimmune 

development, we sought to identify CII determinants in I-A
b
-expressing mice, determine 

the affinity of those determinants for the components of the TCR complex, and assess the 

contribution of those determinants to the pathogenesis of CIA. 

Results 

IFN-  Regulates Susceptibility to Autoimmune Arthritis in C57BL/6 Mice 

It has been shown previously that mice of different genetic backgrounds exhibit 

differential susceptibility to CIA (17, 69, 70).  The development of CIA requires an 

autoimmune T cell response directed against a processed antigen associated with MHC 

on the surface of an antigen presenting cell (71).  The structure of a given MHC allele 

limits the diversity of peptide antigens available to bind and be presented by that MHC 

molecule.  MHC haplotype strongly associates with susceptibility to CIA.  I-A
q 
(69) or 

I-A
r 
-expressing (70, 72) mice such as DBA1/J or B.10RIII are fully susceptible to CIA 

whereas mice expressing other I-A haplotypes, such as I-A
b
 in the C57BL/6 mouse, are 

resistant to CIA.  However, in the B6 background, the deletion of a single gene, IFN- , 

confers susceptibility to CIA.  The wild type B6 mouse is considered non-susceptible to 

CIA as following immunization with CII these mice develop arthritis only rarely, with 

less than 10% incidence (73).  In addition, the arthritis exhibited in those mice that do 

develop disease is of low severity.  In contrast, B6 IFN-
-/-

 mice are highly susceptible 

developing arthritis at a high incidence and severity in comparison to the wild type mice 

(17).  B6 IFN-
-/-

 mice develop arthritis at an 80-100% incidence within 3-4 weeks 

following immunization with CII.  The first mice develop arthritis two to three weeks 

after immunization with CII/CFA emulsion, and all affected mice developing arthritis 

after one month.  Multiple limbs of the IFN-
-/-

 B6 mice are affected, exhibiting high 

severity as measured by the extent of inflammation and the number of joints involved.  

B6 and B6 IFN-
-/-

 mouse strains were immunized with CII for the development of CIA 

(Fig 3.1, 3.2).  Maximum severity scores for each arthritic mouse ranged from 8 to 12 

and averaged 9.0 ± 1.41 with an average of 2.43 ± 0.49 limbs affected.  Only 10% of the 

B6 wild type group developed arthritis with the affected mouse developing a single 

arthritic limb on day 52 while greater than 80% of IFN-
-/-

 mice developed arthritis in  
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Figure 3.1 IFN-
-/-

 Mice Exhibit Increased Susceptibility to CIA. 

B6 IFN-
-/-

 mice are highly susceptible to CIA, and develop arthritis at an earlier time 

point exhibiting high incidence and severity compared to wild type B6 mice following 

immunization with CII/CFA emulsion.  A.  87.5% (N = 8) of B6 IFN-
-/-

 developed 

arthritis between days 14-22 versus 10% (N = 10) incidence in B6 wild type mice on day 

52.  B.  Severity score of arthritis per arthritic mouse. Arthritic B6 IFN-
-/-

 mice 

developed arthritis with a mean severity score of 8 out of a maximum 16 possible, while 

the B6 wild type mouse developed arthritis with a score of 4. 
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Figure 3.2 Severity of Arthritis in B6 and B6 IFN-
-/-

 Mice. 

B6 IFN-
-/-

 mice exhibit a severe arthritis with multiple affected limbs when immunized 

with CII/CFA.  Rare arthritis occurrence in B6 wild type is of low severity and limb 

involvement.  A.  Average highest severity reached in B6 wild type and B6 IFN-
-/-

 mice 

that developed arthritis following immunization with CII/CFA.  The average maximum 

severity was determined by averaging the highest severity reached in arthritic mice only.  

B6 IFN-
-/-

 averaged a maximum score of 9.0 ± 1.41 among 7 arthritic mice while the 

lone arthritic B6 wild type mouse achieved a maximum score of 4.  B.  Average number 

of inflamed limbs per arthritic mouse in B6 and B6 IFN-
-/-

 mice.  Arthritic B6 IFN-
-/-

 

mice averaged 2.43 ± 0.49 arthritic limbs while the arthritic B6 wild type mouse had one 

arthritic limb. 
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multiple affected limbs.  Thus, these data imply that IFN-  acts as a regulator of 

autoimmune response in B6 mice. 

Regulation of Immune Cell Function by IFN-   

Immune Cell Subset Analysis 

To determine if the absence of IFN-  was altering the cellular immune responses 

to CII in mice expressing I-A
b
, the production of anti-CII immunoglobulins, the 

proliferative response of T cells to CII determinants, and their production of cytokines 

was examined.  IFN-  is predominantly a cytokine produced by T cells of the Th1 

phenotype, and has regulatory effects on immune cells such as macrophages, B cells, Th1, 

Th2, and Th17 T cells (74, 75).  One major role of IFN-  is the promotion of Th1 

differentiation and the inhibition of Th2 or Th17 cells.  As a cell mediated inflammatory 

disease, the pathogenesis of CIA could be affected by alterations in the numbers of B 

cells or Th1 and Th2 T cells present following immunization with CII.  Since the absence 

of IFN-  in the B6 IFN-
-/-

 mouse may alter the differentiation of T cells into the various 

T cell subtypes, we investigated the autoimmune response of B6 and B6 IFN-
-/-

 mice 

that were immunized with CII. 

Wild type or IFN-
-/-

 B6 mice were immunized with CII/CFA emulsion and 

lymphocytes were collected from the draining popliteal lymph nodes 10 days later.  

These lymphocytes were stained with fluorescently labeled antibodies to identify immune 

cell subpopulations via FACS analysis.  The  TCR was used to identify T cells, CD19 

expression to identify B cells, CD4 expression to identify Th cells, and CD8a to identify 

Tc cells.  Similar percentages of T and B cells were found to be present in the two mouse 

strains.  In the B6 WT mice, 47.2 ± 8.2% of lymphocytes were found to be B cells as 

indicated by positive CD19 staining compared to 43.9 ± 14.9% in the B6 IFN-
-/-

 group 

(p = 0.57).  Similar percentages of T cells were also found between the two strains as 

indicated by positive staining for  TCR.  48.8 ± 8.4% of lymphocytes were observed 

to be T cells in the B6 group compared to 53.3 ± 15.2% in the B6 IFN-
-/-

 group (p = 

0.55) (Fig 3.3ABE).  Th or Tc subsets were then measured by examining the percentage 

of lymphocytes that stained positive for both  TCR and CD4 or CD8a.  The B6 group 

was found to have a higher percentage of CD8
+
 Tc cells than the B6 IFN-

-/-
 group (p < 

0.0001), while the B6 IFN-
-/-

 group was found to have a higher percentage of Th cells (p 

< 0.0002).  In the B6 group, 53.3 ± 3.1% of T cells were positive for CD8a compared to 

42.7 ± 0.7% in the B6 IFN-
-/-

 group.  Conversely, 54.6 ± 1.1% of T cells stained positive 

for CD4 in the B6 IFN-
-/-

 group compared to 44 ± 3.7% in the B6 group (Fig 3.3CDF).  

As noted earlier, IFN-  has potent regulatory effects on cellular differentiation, however 

these data indicate that there are only minor alterations in the cellular makeup of the 

immune response in B6 IFN-
-/-

 mice following immunization with CII.  The number of 

B cells versus T cells is unaffected.  However, the number of CD4
+
 or CD8

+
 cells is 

slightly altered in the B6 IFN-
-/-

 mouse with 10% increase in CD4
+
 and a 10% decrease 

in CD8
+
 cells.  These data indicate that the absence of IFN-  does not abrogate CD4

+
 T  
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Figure 3.3 Lymphocyte Compartment of CII-Immunized B6 and B6 IFN-
-/-

 

Mice. 

The absence of IFN-  in B6 IFN-
-/-

 mice does not alter the percentage of B or T cells in 

draining lymph nodes following immunization with CII/CFA.  However, the percentage 

of CD8a
+
 Tc cells are slightly reduced with a concurrent increase in CD4

+
 Th cells.  

Lymphocytes were recovered from the draining lymph nodes of B6 IFN-
-/-

 or B6 wild 

type mice immunized with CII/CFA and stained with anti-CD19, anti-TCR, anti-CD4, 

and anti-CD8a.  ABE.  The numbers of B and T cells were not significantly different (p = 

0.65, p = 0.63) between lymphocytes from B6 wild type (N = 5) and B6 IFN-
-/-

 (N = 4) 

mice.  B6 mice had 47.2 ± 8.2% CD19
+
 B cells while B6 IFN-

-/-
 mice had 43 ± 14.9% 

CD19
+
 B cells.  B6 mice had 48.8 ± 8.4% TCR

+
 T cells while B6 IFN-

-/-
 mice had 53.3 

± 15.2% TCR
+
 T cells.  CDF.  When lymphocytes were gated on TCR

+
 T cells and 

examined for expression of CD8a
+
 Tc cells or CD4

+
 Th cells a significant decrease in 

CD8a
+
 Tc cells (p < 0.001) and increase in CD4

+
 Th cells (p < 0.002) was observed.  B6 

mice had 53.3 ± 3.1% CD8a
+
 Tc cells while B6 IFN-

-/-
 mice had 42.7 ± 0.7% CD8a

+
 Tc 

cells.  When Th cells were examined, B6 mice had 44.0 ± 3.7% CD4
+
 Th cells while B6 

IFN-
-/-

 mice had 54.6 ± 1.1% CD4
+
 Th cells. 
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cell development, rather, the CD4
+
 complement of T cells in the B6 IFN-

-/-
 cells 

increases without IFN- .  Though Th1 differentiation may be inhibited by the absence of 

IFN- , Th2 or Th17 differentiation is negatively regulated by IFN-  and the increases in 

CD4
+
 cells in the IFN-

-/-
 mouse may be in these subsets (74, 76).  However, these 

changes are small and may not be biologically significant.  In both wild type and IFN-
-/-

 

B6 mice, nearly half of the TCR
+
 T cell population is CD4

+
 while the remaining TCR

+
 T 

cells express CD8
+
.  This data indicates that the major mechanisms of immune 

disregulation in the absence of IFN-  are likely due to alterations in cellular function such 

as cytokine production, rather than by altered cellular differentiation between T cells B 

cells and the Tc or Th subtypes. 

Anti-CII Immunoglobulin Production 

Even though the pathogenesis of RA is considered to be primarily CD4
+
 T cell 

mediated, one of the hallmarks of the disease is the generation of autoantibodies.  In RA, 

Ig directed against determinants in the Fc region of IgG is produced and is known as 

rheumatoid factor (77).  Other autoantibodies produced in RA include antibodies directed 

against citrullinated proteins, CII, and glucose-6-phosphoisomerase (78, 79).  

Complement activating IgM-IgG immune complexes form and are deposited in the joints 

and likely contribute to the chronic inflammation that is characteristic of RA.  In the CIA 

model, the generation of autoantibodies with specificity for CII has been implicated as an 

important mechanism in the pathogenesis of CIA (80-84).  CIA can be induced in mice 

when polyclonal antibodies purified from arthritic mice are passively transferred, or when 

mice are injected with anti-CII monoclonal antibodies (80, 81, 85-88).  In addition, 

complement fixing antibodies have been shown to localize to the surface of articular 

cartilage in a rat model of CIA (89).  IFN-  regulates production of antibodies by B cells 

via several mechanisms.  IFN-  acts directly on proliferating B cells to induce Ig class 

switching to IgG2a and by blocking IL-4 induced class switching to IgE and IgG1 (90-

92).  IFN-  also indirectly regulates antibody production by B cells via its regulation of 

Th cell differentiation (93).  Given the importance of immunoglobulins in the 

pathogenesis of CIA and the contribution of IFN-  in promoting of antibody production, 

serum concentration of anti-CII Ig was examined in B6 and B6 IFN-
-/-

 mice following 

immunization with CII/CFA. 

Sera were collected from B6 and B6 IFN-
-/-

 mice 36 days following 

immunization with CII in CFA emulsion, and the quantity of CII-specific Ig present in 

the serum was measured by ELISA.  Quantification of CII-specific antibody was 

determined using an anti-CII antibody standard previously purified from mouse sera.  

The concentration of CII-specific Ig was found to be higher in the serum obtained from 

CII-immunized B6 IFN-
-/-

 mice as compared to the CII-immunized B6 mice (p = 0.024).  

B6 IFN-
-/-

 serum contained anti-CII Ig at a concentration of 144 ± 88.9 µg/ml while the 

B6 serum contained anti-CII Ig at a concentration of 33.3 ± 14.9 µg/ml (Fig 3.4).  IgG 

subclass potentially mediates joint destruction by two mechanisms, either by complement 

activation or by activation of monocytes/macrophages via binding to Fc receptors present 

on these cells.  The different subclasses of IgG have differing ability to effect these two 
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Figure 3.4 Increased Anti-CII Ig Production in B6 IFN-
-/-

 Mice Immunized with 

CII Compared to Wild Type. 

Production of anti-CII Ig is elevated in B6 IFN-
-/-

 mice compared to B6 WT mice.  B6 or 

B6 IFN-
-/-

 mice were immunized with CII in CFA emulsion, and sera was collected 36 

days later.  CII-specific Ig previously prepared from mouse sera was used to quantify the 

concentration of CII-specific Ig present in serum via ELISA.  B6 IFN-
-/-

 mice exhibit 

significantly elevated levels of CII-specific Ig compared to wild type B6 mice (p = 

0.024).  B6 IFN-
-/-

 serum contained anti CII Ig at a concentration of 144 ± 88.9 µg/ml 

while the B6 serum contained anti-CII Ig at a concentration of 33.3 ± 14.9 µg/ml. 
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processes.  IgG2a, IgG2b, IgG2c all have complement activating ability while IgG1 and 

IgG3 do not.  The same variation is seen in the ability of the IgG subclasses to bind and 

activate Fc receptors.  In I-A
b
-expressing mice the gene for IgG2a is absent, rather, IgG2c 

replaces its functional activity (94, 95).  Since the subclass of IgG expressed may effect 

the development of arthritis in CIA, the subclasses of IgG present in sera from CII-

immunized wild type B6 and B6 IFN-
-/-

 were measured by ELISA.  When the subtypes 

of IgG present in I-A
b
-expressing mice, IgG1, IgG2b, IgG2c, and IgG3, were quantified, 

increased levels of IgG2b were observed in the B6 IFN-
-/-

 compared to the B6 wild type 

(Fig 3.5).  The ELISA resulted in an absorbance 3.30 ± 0.09 from the IFN-
-/-

 sera 

compared to the wild type absorbance of 0.23 ± 0.24 (p < 0.001).  The other subclasses 

were present at low levels and were not statistically different between groups.  Arthritis 

development in CIA is dependent on both the complement-fixing and Fc R binding 

capability of antibodies.  Mice lacking C5, Fc RI, or Fc RIII are resistant to CIA (96-98).  

Despite the absence of IFN- , high levels of complement fixing CII-specific antibodies 

are produced in B6 IFN-
-/-

 mice.  CII-specific antibodies of the IgG2b subclass have 

been shown to be highly arthritogenic in a mechanism dependent on the high affinity 

Fc RIII when used to induce arthritis in DBA/1 mice (99).  Therefore, the increased 

production of CII-specific IgG2b as a result of IFN-  deficiency in B6 mice may be a 

mechanism of increased susceptibility to CIA. 

Proliferative Response 

Previous work has indicated that IFN-
-/-

 mice exhibit increased proliferative 

response to antigen (65).  Therefore, in order to determine if the absence of IFN-  causes 

a disregulated T cell proliferative response following immunization with CII, the I-A
b
-

restricted T cell response against bovine CII was examined.  10 days following 

immunization with CII, lymphocytes were removed from the draining lymph nodes of B6 

or B6 IFN-
-/-

 mice and re-stimulated in vitro with bovine CII for four days.  The 

proliferative response of the CII-specific T cells was measured using 
3
H-thymidine 

incorporation.  In both the B6 WT and IFN-
-/-

 no statistically significant increases in T 

cell proliferation were observed above the media control (Fig 3.6), although the 

background level of proliferation appeared to be higher for the IFN-
-/-

 T cells.  This may 

be indicative of the low antigenicity of CII in the I-A
b
 background, and CII-specific T 

cells may be produced at levels too low to detect by this assay. 

The CXB2 inbred mouse strain is an I-A
b
-expressing strain of mice that is derived 

from F1 crosses between C57BL/6 mice and the CIA-susceptible BALB/c mouse strains.  

These mice are significant in that despite expression of I-A
b
 MHC class II they exhibit an 

intermediate susceptibility to CIA, an example of how genetic background can affect 

disease susceptibility.  These mice develop a moderate to severe arthritis at around 60% 

incidence.  Since these I-A
b
-expressing mice develop CIA at an incidence higher than 

wild type B6 mice it was possible that these mice also would exhibit increased 

proliferative response against CII, and this would allow the comparison of an CII 

proliferative response in a CIA-susceptible I-A
b
-expressing mouse strain with the 

response in the IFN-
-/-

 or wild type mice.  I-A
b
-expressing B6 and CXB2 mice were  
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Figure 3.5 Increased Expression of IgG2b in B6 IFN-
-/-

 Mice Immunized with 

CII. 

Expression of IgG subclass was measured in sera collected from wild type and IFN-
-/-

 

B6 mice ten days following immunization with CII/CFA.  The relative concentration of 

each subclass was measured by HRP ELISA and quantified by absorbance at 490-650 

nm.  In the IFN-
-/-

 B6 serum, the concentration of IgG2b was increased compared to the 

wild type exhibiting an absorbance of 3.30 ± 0.09 compared to 0.23 ± 0.24 in the wild 

type (p < 0.001).  The other IgG subclasses did not exhibit statistically significant 

differences in concentration.  The background absorbance in serum free wells measured 

less than 0.01 for all subtypes.
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Figure 3.6 Proliferative Response to Type II Collagen in Wild Type and IFN-
-/-

 

B6 Mice. 

Bovine CII does not induce proliferative responses in wild type or IFN-
-/-

 B6 mice.  

When stimulated with the 1(II) chain of CII for proliferation in culture, lymphocytes 

recovered from the draining lymph nodes 10 days following immunization with native 

bovine CII/CFA do not proliferate above media control.  Proliferation was measured by 
3
H-thymidine incorporation.  Lymphocytes from B6 IFN-

-/-
 mice exhibited an activity of 

9117 ± 3816 DPM when stimulated with 1(II) compared to 7098 ± 1367 DPM when 

cultured in media only.  This is an insignificant difference (p = 0.42).  Results were 

similar in lymphocytes recovered from wild type B6 mice.  Stimulation with 1(II) 

resulted in an activity of 4289 ± 1613 DPM, while the media control had an activity of 

4478 ± 557 DPM (p = 0.83).  These results indicate that native bovine collagen is not 

strongly immunogenic in I-A
b
-expressing mice. 
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immunized with native CII in an emulsion of CFA and lymphocytes were recovered from 

the draining lymph nodes ten days later.  These cells were stimulated with CII, the 1(II) 

chain of CII, and pepsin, and proliferation was measured by 
3
H-thymidine incorporation.  

Lymphocytes from the B6 mouse proliferated in response to CII and pepsin but not to 

1(II) (Fig 3.7A).  In the CXB2 mouse recall proliferative response occurred following 

stimulation with pepsin, but not against the native CII or 1(II) (Fig 3.7B).  The 

proliferation data do not indicate that the absence of IFN-  is causing increased in vivo 

expansion of CII-reactive cells in the IFN-
-/-

 B6 mouse.  In all three strains of I-A
b
-

expressing mice strong proliferation in response to CII stimulation was not observed.  

Though CII-reactive T cells are being produced, which can be inferred due to the 

production of CII-specific IgG, subclasses of which are dependent on T cell help.  

Reduced proliferation of T cells in response to stimulation with CII may indicate that CII-

reactive Th cells are not being produced at high levels or that activation of these cells is 

negatively regulated by tolerance mechanisms including anergy or suppression by Treg 

cells.  An additional cause of low in vitro T cell proliferative response may be altered 

antigen presentation by APC in culture.  The absence of strong proliferation in response 

to CII stimulation may indicate that functional mechanisms such as cytokine production 

may play a larger role in CIA pathogenesis than proliferative responses to CII.  In 

addition, these results may indicate, as stipulated by the hypothesis that CII is a weak 

antigen, that CII has low intrinsic ability to stimulate I-A
b
-restricted T cells.  Also, a 

confounding result was also observed.  This is the strong proliferative response seen 

against pepsin.  The purification of CII from tissue sources requires the use of pepsin.  A 

result of this is that pepsin contamination is present in the final CII product.  In mice 

expressing I-A
b
, but not other CIA-susceptible strains that express I-A

q
 or I-A

r
, the slight 

pepsin contamination is antigenic and results in strong T cell responses that mask the 

presence of weaker T cell responses against CII that may be present.  This is evident in 

the responses seen in the B6 mice in that when immunized with native CII strong recall 

proliferative responses are seen against pepsin and not against the 1(II).  The observed 

proliferative response against native CII is likely directed against pepsin.  During the 

production of 1(II), native CII is heat denatured and protein monomers are separated by 

column chromatography.  This step reduces the levels of pepsin contamination to a 

concentration below that which T cells respond.  For this reason, in subsequent assays 

requiring in culture stimulation of lymphocytes with CII, 1(II) was used. 

Cytokine Production B6 versus B6 IFN-
-/-

 

The expression of proinflammatory cytokines by immune cells in response to 

stimulation with antigen or bacterial products often has powerful biologic effects owing 

to both redundant activities among cytokine family members and because of signaling 

cascades that amplify the effects of small amounts of locally produced cytokines (100).  

Due to the role of cytokine signaling in the differentiation and function of T cell subsets 

early in the developmental stages of an immune response, cytokines likely are key 

mediators of autoimmune pathogenesis.  Th1, Th2, and Th17 differentiation and function 

is influenced and mediated by cytokine production (74).  Cytokines produced by these 

cells potentially direct the function of macrophages, monocytes, synovial fibroblasts, and  
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Figure 3.7 Proliferative Response to CII in Mice Expressing MHC Class II of the 

I-A
b
 Haplotype. 

Lymphocytes obtained from CII-immunized B6 or CXB2 mice do not proliferate when 

stimulated in culture with CII antigens.  A.  Lymphocytes were obtained from the 

draining lymph nodes of B6 mice were immunized with bovine CII/CFA.  In culture, 

proliferation was observed in response to stimulation with bovine CII (bCII), and pepsin, 

but not to 1(II).  B.  Lymphocytes obtained from CXB2 mice proliferated in response to 

stimulation with pepsin, but not 1(II) or bCII.  The proliferation of the B6 cells in 

response to bCII and pepsin, but not 1(II) indicates that low proliferative responses in 

B6 mice to bCII are due to trace amounts of pepsin present in the CII rather than to CII 

determinants.  The CXB2 mice tended to have a higher threshold of reactivity against 

pepsin so trace amounts in the bCII prep did not stimulate T cell proliferation while a 

higher concentration of pepsin did. 
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osteoclasts to disease promoting state (45).  The production of IFN-  is a major effector 

function of Th1 cells, therefore absence of the IFN-  gene clearly alters Th1 immune 

responses.  This may disrupt regulation of the immune response causing aberrant 

production of other inflammatory cytokines and promoting disease progression.  For this 

reason, the cytokines produced by B6 IFN-
-/-

 lymphocytes were examined.  A panel of 

13 cytokines was selected based on their association with Th subtype or known influence 

on CIA pathogenesis.  Measurement of cytokines produced by lymphocytes from B6 and 

B6 IFN-
-/-

 mice was performed using a multiplexed bead assay.  To measure IFN- ’s 

influence on the production of cytokines during the activation of T cells, lymphocytes 

were obtained from the spleens of naïve B6 and B6 IFN-
-/-

 mice and then stimulated in 

culture for three days with anti-CD3 and anti-CD28 monoclonal antibodies.  Following 

stimulation, the concentration of cytokines present in the supernatant was measured.  A 

number of cytokines expressed by lymphocytes from B6 IFN-
-/-

 T cells following 

stimulation in culture was significantly altered from wild type (p < 0.05) (Fig 3.8).  In the 

IFN-
-/-

 derived cells, cytokines produced by all three Th subsets were increased.  Levels 

of the Th1 cytokine, IL-2, were elevated, as were the Th2 cytokines, IL-4, IL-5, and IL-13 

and the Th17 cytokine IL-17.  In addition, the proinflammatory cytokines IL-1 , IL-6, 

TNF- , M-CSF, and GM-CSF were elevated in the IFN-
-/-

 cultures.  Two cytokines, 

IL-15 and IL-18, were not differentially expressed between the two cultures.  This 

cytokine expression profile indicates that in the absence of IFN-  there is a significant 

change in the expression of proinflammatory cytokines by T cells.  IFN-  is known to 

negatively regulate the function of Th2 and Th17 subsets (12, 13).  The increases in Th2 

and Th17 derived cytokines indicates that in the absence of Th1 produced IFN-  those 

subsets are more active, and indeed, if these in vitro effects on cytokine production 

mediated by the absence of IFN-  correlate with in vivo effects, they may represent 

mechanistic aspects of arthritis pathogenesis in the B6 IFN-
-/-

 CIA model. 

I-A
b
 CII-Determinant Studies 

One of the mechanisms of IFN- ’s regulation of immune response may lie in the 

regulation of weak T cell stimulation, such as those that may be involved in the 

generation of autoimmunity (29).  In CIA, the antigen that promotes T cell activation and 

the subsequent development of arthritis is CII.  It is the nature of the immune system that 

T cell antigens are presented to T cells by MHC molecules.  Evolutionary mechanisms 

have produced various MHC alleles that by their possession of structurally different 

antigen binding sites increase the diversity of antigenic determinants presented to T cells 

for immune surveillance.  However, this also means that for a given protein antigen 

different antigenic determinants may be presented by different MHC alleles.  This means 

that MHC alleles such as I-A
q
 and I-A

r
 present in CIA-susceptible mouse strains likely 

present distinct CII determinants from those presented by MHC alleles present in CIA 

non-susceptible strains such as I-A
b
 in the B6 mouse.  Additionally, if the CII 

determinant presented by I-A
b
 is of low affinity for the MHC or the TCR, it may be 

weakly stimulatory to T cell activation, and therefore conferring resistance to CIA in 

I-A
b
-expressing mice such as in the B6 strain.  IFN-  may regulate T cell activation to 

weakly stimulating determinants by creating conditions that inhibit T cell activation in  
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Figure 3.8 The Absence of IFN-  Significantly Alters Cytokine Production in 

Culture Following Stimulation of T Cells with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve wild type or IFN-
-/-

 B6 mice were stimulated in culture with 

anti-CD3 and anti-CD28 antibody.  Cytokine concentration in culture supernatants was 

then measured by multiplexed bead assay.  Cells from IFN-
-/-

 mice produced higher 

levels of the cytokines IL-1 , IL-4, IL-5, IL-6, IL-17, TNF- , IL-15, M-CSF, IL-2, IL-

13, and GM-CSF (*p < 0.01, **p < 0.05). 
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response to weak antigens or, IFN- ’s absence may create conditions that are permissive 

to T cell activation.  Therefore, to determine if an I-A
b
-restricted CII determinant was 

weakly antigenic, and to determine if IFN- ’s role in regulating T cell responses to an I-

A
b
-restricted determinant mediates the pathogenesis of CIA, we sought to identify an I-

A
b
-restricted CII determinant, and investigate its interaction with MHC, TCR, and its role 

in stimulating immune responses in I-A
b
-expressing mice. 

To identify CII determinants, a set of peptides that duplicated the amino acid 

sequence of human CII was created.  These peptides are 15-mer sequences that 

progressively overlap by 12 amino acids.  This CII peptide library was then used to 

stimulate proliferation of lymphocytes obtained from I-A
b
-expressing mice immunized 

with CII.  Though stimulation with native CII did not induce proliferative response it was 

thought that due to the simplified processing by antigen presenting cells and the relatively 

higher molar concentration of antigen compared to the concentration of antigen that 

would be present with the use of native CII, unmeasurable T cell proliferative responses 

against native CII or 1(II) chain would be amplified by the use of peptide. 

Mice expressing I-A
b
 or HLA-DR1 (as a control for proliferation) were 

immunized with bovine CII/CFA and lymphocytes from the draining lymph nodes were 

used in a proliferation assay against the CII peptide library.  Naïve splenocytes from a 

TCR transgenic mouse (qCII24) were also used as a positive control.  T cells from 

qCII24 mice express a T cell receptor that is specific for a previously defined CII 

determinant.  The lymphocytes obtained from DR1 mice strongly proliferated when 

stimulated in culture with the three peptides 91,92, and 93 which contain the core DR1 

binding determinant FKGEQGPKG (101), while lymphocytes from qCII24 mice, which 

respond to the determinant IAGFKGEQG (102), proliferate in response to the peptides 

90, 91, and 92 as expected.  The three I-A
b
-expressing strains of mice, the B6, B6  

IFN-
-/-

, and CXB2, exhibit differential susceptibility to CIA.  However, T cells from the 

three I-A
b
-expressing strains did not proliferate when stimulated with any of the peptides 

from the CII library (Fig 3.9). 

The bovine CII sequence is 98% homologous with human CII when the leader 

sequence is removed with only 18 mismatches over 1029 amino acid residues.  However, 

the lack of a detectable proliferative response in lymphocytes derived from the B6, B6 

IFN-
-/-

, or CXB2 mice immunized with bovine CII and stimulated in vitro with the 

human CII derived peptide library raised the possibility that an I-A
b
-restricted CII 

determinant lies in an area of non-homologous sequence.  To address this issue, B6 or 

CXB2 mice were immunized with human CII and stimulated in vitro with the CII peptide 

library.  As in mice immunized with bovine CII, increased proliferation to a specific 

peptide determinant was not observed when human CII was used as the immunogen (Fig 

3.10).  This indicates that the lack of proliferation observed when the mice were 

immunized with bovine CII was not due to sequence differences between the bovine and 

human CII. 
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Figure 3.9 Proliferative Response to CII-Library Peptides by T Cells from Mice 

of Various MHC Class II Background. 

ABC.  When immunized with bovine CII in CFA emulsion mice expressing MHC of the 

haplotype I-A
b
 do not exhibit proliferative response when stimulated for proliferation by 

peptides from the CII peptide library.  DE.  I-A
q
- or DR1-expressing mice immunized 

with CII in CFA emulsion respond to determinant peptides present in the CII peptide 

library with large proliferative responses as measured by 
3
H-thymidine incorporation. 



38 

 

0

5

10

15

20

0

5

10

15

20

3
H

-T
h

ym
id

in
e
 (

D
P

M
/1

0
0

0
)

CII Peptide # 1-344

1 25 50 75 100 125 150 175 200 225 250 275 300 325 344
0

5

10

15

20

A  B6

B  CXB2

 

Figure 3.10 Proliferative Response to Human Type II Collagen by T Cells from 

Mice Expressing I-A
b
. 

Lymphocytes were obtained from the draining lymph nodes of mice 10 days following 

immunization with human CII/CFA.  B6 and CXB2 lymphocytes were stimulated in 

culture for proliferation with peptides from a CII peptide library.  Proliferative response 

above background was not observed in response to CII peptides in lymphocyte cultures 

from either mouse strain. 
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Development of CII-Specific T Hybridomas 

The absence of proliferative response in both the susceptible and non-susceptible 

mouse strains expressing I-A
b
 prevented identification of an I-A

b
-restricted CII 

determinant by this method.  The difficulty in identification of CII determinants by this 

method may be an indication of the low immunogenicity of CII, and is consistent with the 

hypothesis that CII contains low affinity determinants to which T cell responses are 

regulated by IFN- .  The possibility that CII contains no T cell determinants is not likely 

due to the fact CIA susceptibility occurs in mice expressing the I-A
b
 haplotype, and these 

mice generate anti-CII antibodies of the IgG class ((69) and Fig 3.4, 3.5).  Without the 

presentation of CII derived peptides by I-A
b
-expressing APC to CD4

+
 T cells, it is highly 

unlikely that CII-specific IgG antibody response would develop. 

As a second approach to identifying CII determinants presented by I-A
b
, T cell 

hybridomas were produced from I-A
b
-expressing mice immunized with CII.  This method 

increases the sensitivity of identifying T cells specific for CII by immortalizing rare T 

cells that respond to CII in vivo, and allows large numbers of cells to be screened for 

antigenic specificity.  The minimal in vitro proliferation in response to CII made the 

production of T cell hybridomas difficult since only small numbers of proliferating cells 

were available for fusion.  Strategies were developed to optimize the proliferative 

response to CII in order to increase the chances for development of T cell hybridoma 

lines for determinant analysis.  Both CIA-susceptible, B6 IFN-
-/-

 CXB2, and non-

susceptible, B6, I-A
b
-expressing strains of mice were immunized with CII as a source of 

CII-specific T cells.  The pro-proliferative cytokines IL-2 and IL-12 were used in culture 

or given to mice prior to immunization with CII.  CD4
+
 T cells were sorted by magnetic 

bead to increase the numbers of CII-specific cells available for recall responses.  Finally, 

highly stimulatory CD11c
+
 activated dendritic cells were purified via magnetic bead from 

spleens and used as APC to present CII.  However, none of these strategies proved 

successful in producing T cell hybridomas from I-A
b
-expressing mice that produced IL-2 

in response to stimulation with CII. 

CXB2, B6, and B6 IFN-
-/-

 mice were immunized with bovine CII and 

lymphocytes were recovered from the draining lymph nodes and re-stimulated for 

proliferation in vitro with the 1(II) chain of CII.  After three days, the proliferating cells 

were expanded with IL-2 and fused to 
-
/

-
 BW5147 cells.  After selection with G418 a 

total of 400 clones were produced.  The T cell hybridomas were then screened for CII 

specificity by stimulation with 1(II) to induce IL-2 production.  Of the 400 T cell 

hybridomas produced, a total of ten were found to produce IL-2 in response to 

stimulation with 1(II) (Fig 3.11), and all of these came from the CXB2 mice.  The 

production of IL-2 in response to stimulation with 1(II) indicates that these T cell 

hybridomas have specificity for CII.  This made possible the identification of specific CII 

determinants by the use of the CII peptide library. 
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Figure 3.11 IL-2 Production by H2-IA
b
-Restricted T Cell Hybridomas. 

Ten T cell hybridoma clones were produced that possess T Cell Receptors with 

specificity for CII determinants.  T cell hybridoma cell lines were produced by the fusion 

of BW5146 cells with T cells obtained from CXB2 mice immunized with native bovine 

CII.  To identify T cell hybridoma cell lines with TCR specificity against CII 

determinants, IL-2 production by the T cell hybridomas in response to stimulation with 

1(II) was measured by HT-2 cell survival.  T cell hybridoma cultures were stimulated 

with APC plus 1(II) or media only.  After three days, culture supernatants were added to 

HT-2 cell cultures, and the survival of HT-2 cells as measured by the production of MTT 

was assayed by absorbance at 570 minus 690 nm the following day.  Clones AC3, AE10, 

AF3, AH9, CD5, CD7, CG9, DD12, EB1, and EB7 produced IL-2 in response to 

stimulation with 1(II) but not media.  This result indicates that these T cell hybridoma 

clones possess TCR specific for CII determinants. 
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Identification of Determinant 

Production of I-A
b
-restricted T cell hybridomas specific for CII allowed the use of 

the CII peptide library to identify CII antigenic determinants.  Since the library peptides 

progressively overlap, the production of IL-2 by the T cell hybridomas stimulated by 

sequential library peptides also enable identification of the core amino acid sequence of 

the determinant.  The CII-specific T cell hybridomas were subcloned from single cell 

cultures to produce monoclonal population, and stimulated for IL-2 production with the 

CII peptide library to identify CII determinants.  To do this, the T cell hybridoma clones 

were mixed together in equal proportions and splenocytes from CXB2 mice were used as 

APC to present library peptides to the CII responsive T hybridoma cells as shown in Fig 

3.12A.  IL-2 production by the T cell hybridomas was detected when they were 

stimulated by peptides 176 and 177, CII(511-526) and CII(514-529), corresponding to 

the sequences GAQGLQGPRGL(Hyp)GT(Hyp)G and GLQGPRGL(Hyp)GT(Hyp)GTD.  

These CII peptides were subsequently tested for their ability to stimulate each of the T 

hybridoma clones (Fig 3.12B).  Four of the 10 clones were found to respond to the 

CII(511-526) and CII(514-529) peptides (Fig 3.12B).  The remaining clones were then 

retested against the CII-library as before, yet none produced IL-2 in response to any of 

the peptides.  The production of IL-2 by the T cell hybridomas in response to peptides 

covering the CII sequence from amino acid 511-529 indicates that an I-A
b
-restricted CII 

determinant lies in this region.  The T cell hybridomas that responded to tissue derived 

1(II) but not synthesized peptides may be due to the absence of posttranslational 

modifications, such as glycosylation, on the synthesized peptides. 

The Core Binding Determinant for the I-A
b
 T Hybridomas Is CII(517-525) GPRGLPGTP 

The first domains of the two subunits of the MHC class II molecule form an open 

ended groove in which peptides bind and are presented to T cells.  The nature of this 

peptide MHC interaction is such that a core nine amino acid sequence binds within the 

groove with the remaining amino acid residues extending out the open ends of the 

binding groove.  Analysis of the structure of the MHC class II molecules and the peptides 

that bind to them has led to the conventional identification of 4 to 5 binding pockets 

referred to as p1, p4, p6, p7, and p9.  The number of the pocket corresponds to the amino 

acid residue of the core determinant that fits into the respective pocket.  Correspondingly, 

there are several amino acid residue side chains that are oriented toward the interface 

with the TCR - residues 2, 3, 5, and 8.  Analysis of different epitopes that can bind the 

I-A
b
 molecule has resulted in the identification of a binding motif for this class II 

molecule.  For the I-A
b
 molecule, large hydrophobic, aromatic, or aliphatic side chains 

usually fill the p1 pocket.  Pockets p4, p6, and p9 bind neutral to hydrophobic residues 

with small side chains preferred.  Pockets p4 and p6 exclude aromatic and charged side 

chains.  Finally, I-A
b
 can accommodate the lack of side chains in the p1, p4, p6, and p9 

pockets due to strong N terminal and p7 interactions (103, 104). 

The response of the T cell hybridomas to only peptides 176 and 177 indicates that 

the core CII sequence that binds I-A
b
 is located within the 12 amino acid overlap of these 

two peptides, corresponding to CII(514-525) (Fig 3.13).  However, the size of the  
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Figure 3.12 IL-2 Production by I-A
b
-Restricted T Cell Hybridoma Clones in 

Response to Stimulation with CII-Library Peptides. 

Stimulation of CII-specific T cell hybridomas with an overlapping CII peptide library 

allowed the identification of an I-A
b
-restricted CII determinant.  A.  The ten T cell 

hybridomas that produced IL-2 in response to CII were mixed together and stimulated 

with a CII peptide library.  IL-2 production by the T cell hybridomas was then assayed by 

HT-2 cell survival as determined by the production of MTT.  Data is expressed as the 

absorbance at 570 minus 690 nm of experimental wells compared to positive control 

containing 62 ng/ml IL-2.  Two peptides promoted the production of IL-2 by those cells, 

peptides 176 and 177 corresponding to the CII sequence from 511-528.  B.  Each T cell 

hybrid was then tested individually to the stimulatory peptides.  Of the ten T cell 

hybridoma cell lines, four produced IL-2 in response to the two peptides.  Six of the 

hybrids respond to native CII, but not to peptide.  To find units/ml of IL-2 supernatants 

from T cell hybridoma cultures were serially diluted in cultures of HT-2 cells.  The 

dilution of T cell hybridoma supernatants that supported HT-2 cell survival is the 

units/ml of IL-2. 



43 

 

173 174 175 176 177 178 179 180
0

20

40

60

80

100

120

140

A
b

so
rb

a
n
c
e
 %

 P
o

si
ti

v
e
 C

o
n
tr

o
l

CII Peptide Number
 

 

Figure 3.13 The I-A
b
-Restricted CII Determinant. 

Stimulation of T cell hybridomas with the CII-library peptides 176 and 177 induces IL-2 

production as measured by HT-2 cell survival, highlighted in red.  These peptides 

correspond to CII(511-528).  Due to the overlapping progression of amino acid residues 

among the library peptides, there is a 12 amino acid stretch that is common to both of the 

stimulatory peptides 176 and 177, CII(514-525).  Since these two peptides stimulate the 

T cell hybridomas and peptides 175 and 178 do not, it can be inferred that within these 12 

amino acid residues a determinant capable of binding I-A
b
 and stimulating the T cell 

hybridomas is present.  The nonstandard amino acid residue hydroxyproline is converted 

from proline residues by the enzyme prolyl hydroxylase whenever the motif GXP occurs 

in collagen.  In this figure, hydroxyproline is represented with the letter B. 
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binding groove within the MHC class II molecule is only large enough to contact directly 

with a nine amino acid long determinant, which is referred to as the “core”.  To determine 

the core residues that bind the MHC class II molecule and to further characterize the 

interaction of the peptide in the T cell receptor complex, a set of 15 analog peptides 

covering the CII sequence present in the two stimulatory peptides was produced with an 

alanine residue substituted at each position.  This set of peptides was then used to 

stimulate the CII-reactive T cell hybridoma cells.  When stimulated with alanine 

substituted peptides, IL-2 production by the four T cell hybridoma clones was reduced in 

two distinct clonotypic patterns.  In clones AF3 and AE10 T cell hybridoma stimulation 

as measured by IL-2 production was reduced, starting with the Gln at position 516 and 

extending to the Thr at position 524 excluding the two Gly at 517 and 523 (Fig 3.14AB).  

In clones AH9 and DD12 the pattern is similar but extends from the Pro at position 518 

to the Thr at position 524 (Fig 3.14CD).  This reduction in stimulation indicates that the 

residues located from 516 to 524 are required for stimulation of the T cell hybridomas 

and likely represent the core of the determinant that interacts with the binding groove of 

the I-A
b
 molecule.  These data also imply that these I-A

b
-restricted T cell hybridomas 

utilize at least two clonally different TCR in their recognition of the CII peptide. 

To find the relative contribution of each residue in stimulating the T cell 

hybridomas, titration experiments were performed (Fig 3.15).  In all four clones, 

stimulation of the T cell hybridomas was highly dependent on the 5 residues from 518 to 

522, PRGLHyp.  When these residues were individually substituted with Ala there was 

no measurable IL-2 production even at the highest concentration of peptide.  These data 

indicate that these residues are required for formation of the I-A
b
/peptide/TCR complex, 

and these are likely part of the determinant core.  The Gln at position 516 and the Thr at 

position 524 when substituted with Ala resulted in decreased stimulation of the T 

hybridomas upon titration at a rate that exceeded the control, and therefore indicates that 

these two residues also play a prominent role in the stimulation of these T cell 

hybridomas.  Ala substitutions of the remaining residues had little effect on antigen 

presentation indicating that these amino acid residues are likely not key contact points 

within the ternary complex.  When the sequence of this core determinant of CII(517-

525), GPRGLHypGTHyp, is compared to the published motif for I-A
b
 it is observed that 

only one frame of the amino acid sequence fits well with the binding pockets located at 

p1, p4, p6, p7, and p9.  This frame includes the Gly at positions 517 and 520 filling 

pockets p1 and p4, and the Hyp at positions 522 and 525 filling the p4 and p9 pockets.  

The two Gly have small side chains and one would not expect them to make large 

contributions to the overall binding of the determinant, although side chains from the I-A
b
 

molecule may make contact with the backbone of the peptide at these locations, thus 

helping to stabilize the binding.  This may be why the Gln at position 516 is required for 

stimulation of the T cell hybridoma clones even though it lies outside of the core 

determinant.  Since MHC class II contains an open ended binding groove amino acids 

outside of the core region can contribute to binding stability or TCR interaction.  In 

addition the sensitivity of T hybridoma stimulation to Ala substitution is potentially an 

indication of low stability of the CII determinants interaction with the I-A
b
 molecule, as 

individual Ala substitution at six of the nine core residues strongly reduces T cell 

hybridoma stimulation. 
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Figure 3.14 IL-2 Production by CII-Reactive T Cell Hybridomas in Response to 

Stimulation with Alanine Substituted CII(512-526). 

CII-reactive clones were stimulated for IL-2 production using alanine substituted peptides 

covering the CII(512-526) determinant previously shown to stimulate these CII-specific 

clones.  AB.  Clones AF3 and AE10 show reduced IL-2 production when stimulated with 

APC and 50 g peptides with substitutions Q515A, P517A, R518A, G519A, L520A, 

Hyp521A, and T523A.  CD.  Clones AH9 and DD12 show reduced IL-2 production 

when stimulated with APC and 50 g peptides with alanine substituted at P517A, 

R518A, G519A, L520A, Hyp521A, and T523A.  The failure to promote IL-2 production 

when these residues are substituted with alanine, which has no significant side chain, 

shows the relative importance of these residues in the TCR complex.  The core 

determinant for these clones and H2-IA
b
 binding lies in this region, highlighted in red. 
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Figure 3.15 Stimulation of CII-Specific I-A
b
-Restricted T Cell Hybridomas by 

Titrated Alanine Substituted Determinant Peptides. 

Substitution with alanine affects the concentration at which the CII(512-526) determinant 

is capable of stimulating IL-2 production in the CII-specific T hybridomas.  Production of 

IL-2 by alanine substituted peptides was measured by HT-2 cell survival in wells titrated 

with the supernatants of co-cultures of CII-specific T cell hybridomas, I-A
b
-expressing 

APC, and alanine substituted peptides of various concentrations.  The ability of each 

peptide to promote IL-2 production by the T cell hybridoma was compared to the native 

sequence A512.  Q513, G514, L515, G517, G523, P525, and G526 (blue) all resulted in 

titration curves that were similar to the control (purple).  P518, R519, G520, L521, and 

P522 (red) did not stimulate IL-2 production at any measured concentration.  Two 

peptides, Q516 and T524 (green), required higher concentrations than the control to 

stimulate IL-2 production.  This indicates that these two peptides bind the TCR complex 

at lower affinity than the control bovine CII peptide, indicating that these residues are key 

contact points within the TCR complex. 
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I-A
b
-Restricted Cellular Responses to CII Determinant 

Proliferative Response 

Having identified an I-A
b
-restricted determinant present in CII, the ability of this 

determinant to stimulate T cell proliferative responses was examined.  This is especially 

significant given that the previous measurements of proliferative response against 

nativeCII and 1(II) failed to exhibit measurable responses.  For these experiments, two 

peptides were synthesized that covered the core binding region of the determinant 

peptide, CII(512-526) and CII(512-528).  These two peptides were chosen based on the 

core determinant identified by the T cell hybridomas.  Often, peptides that contain only 

the core determinant exhibit reduced immunogenicity, and in the CII(512-526) peptide, 

the core CII determinant is only one residue removed from the end of the peptide.  

Therefore to increase the immunogenicity of the peptide, two residues were added to the 

C terminus to make the CII(512-528) peptide.  CXB2 mice were immunized with 

CII/CFA and lymphocytes were recovered from the draining lymph nodes ten days later.  

These lymphocytes were then stimulated for four days and proliferation was measured by 
3
H-thymidine incorporation.  Following immunization with CII, neither peptide elicited 

an in vitro proliferative response by the T cells from the CXB2 mouse (Fig 3.16A).  

While these data are similar to the lack of proliferative responses we observed in our 

earlier studies (Fig 3.7), we had hoped that the longer version of this CII peptide would 

enhance its ability to re-stimulate T cells in vitro.  As a second approach to demonstrating 

the immunogenicity of this peptide, mice were immunized with the peptides and their T 

cells were tested for their ability to proliferate in vitro.  To increase the concentration of 

CII-specific T cells in the recall assay, enrichment of CD4
+
 cells was performed via 

magnetic bead separation.  Cells were obtained from the draining lymph nodes and 

stimulated in culture with either CII(512-526) or CII(512-528).  As shown in Fig 3.16B, 

proliferation was not stimulated by the shorter CII(512-526) peptide in either mouse, but 

in the B6 mouse significant proliferation was induced by the longer CII(512-528) peptide 

(Fig 3.16CD). 

The advent of recall proliferation against the longer CII(512-528) peptide in the 

B6 mouse, and in both the B6 and CXB2 mouse following enrichment of CD4
+
 T cells 

indicates that the determinant sequence identified by the T cell hybridomas was capable 

of stimulating T cell proliferation in vivo.  The absence of proliferative responses against 

native CII may be a consequence of the determinant acting as a weak antigen requiring 

the use of enrichment steps to detect low in vivo responses of effector T cells.  In 

addition, the differential response of the CII(512-526) peptide versus the CII(512-528) 

peptide highlights the contribution of amino acids beyond the core determinant to I-A
b
 

binding or TCR binding of the I-A
b
/peptide complex.  In the shorter peptide the sequence 

extends only one amino acid beyond the core, whereas in the longer peptide there are 

three amino acids beyond the core determinant.  It appears that the addition of these 

amino acids increased the potency of this peptide, raising T cell immune response to 

detectable levels. 
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Figure 3.16 Proliferative Response of Lymphocytes from I-A
b
-Expressing Mice 

Stimulated with CII Determinants. 

When I-A
b
-expressing mice were immunized with native bovine CII, CII(512-526), or 

CII(512-528) in CFA emulsion and the draining lymph nodes were recovered ten days 

later.  These cells were then stimulated in culture for proliferation with the CII 

determinants CII(512-526) and CII(512-528) with or without enrichment of CD4
+
 by 

magnetic bead cell sorting.  A.  When native CII is used as the immunogen, lymphocytes 

from CXB2 mice do not proliferate as measured by 
3
H-thymidine incorporation when 

stimulated with CII(512-526) or CII(512-528).  B.  When CII(512-526) is used as both 

the immunogen and the stimulating antigen, lymphocytes from B6 mice do not 

proliferate.  C.  When CXB2 mice were immunized with CII(512-528) proliferation in 

response to stimulation with CII(512-528) was not observed.  However, when these cells 

were enriched for CD4
+
 cells proliferation in response to stimulation with CII(512-528) 

was induced.  D.  When B6 mice were immunized with the longer CII(512-528) 

determinant stimulation with CII(512-528) induced proliferation.  Proliferation was 

increased three fold when the lymphocytes were enriched for CD4
+
 cells by magnetic 

bead cell sorting.  The control shown represents lymphocytes that were sorted for CD4
+
 

cells but not stimulated with CII(512-528).  (*p < 0.01) 
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Recently, chicken derived CII has been identified as arthritogenic in B6 mice 

when used in place of bovine CII to immunize mice for induction of CIA (105, 106).  

Examination of the CII sequences for mouse, bovine, human, and chicken CII indicated 

that the bovine sequence differs in two places from the human, mouse, and chicken 

sequences in the 512-528 peptide.  In the bovine sequence, position 512 is serine 

compared to alanine in the other three species.  At position 518 the bovine sequence is an 

alanine compared to proline in the human, mouse, and chicken sequences (Fig 3.17).  

Based on our current model, the alanine at position 518 is the p2 residue of the 

determinant, a position that likely serves as a TCR interaction site (Fig 3.14).  The 

alanine in the bovine sequence may explain the low proliferative response when native 

bovine CII is used as the immunogen for in vitro proliferation assays (Fig 3.6, 3.7, 

3.16AB). 

To test the immunogenicity of native chicken CII versus native bovine CII in 

I-A
b
-expressing mice, CXB2 mice were immunized with chicken or bovine CII in CFA 

and proliferative responses against the two synthetic peptides and bovine 1(II) were 

measured by 
3
H-thymidine incorporation using cells obtained from the draining lymph 

nodes of the immunization site.  When immunized with chicken CII, recall proliferative 

responses were observed against both synthetic peptides CII(512-526) and CII(512-528).  

No proliferation was seen in response to recall with bovine 1(II).  When bovine CII was 

used as the primary antigen no proliferation was observed upon recall with either CII 

peptides, CII(512-526) and CII(512-528), or against the bovine 1(II) (Fig 3.18).  These 

results may explain the differential susceptibility to CIA when CII produced from 

different sources, chicken or bovine, is used as the immunogen to induce CIA.  Bovine 

CII contains an alanine at a key binding location, p2 of the core determinant, and this 

apparently reduces the immunogenicity of CII in the I-A
b
 background as evidenced by 

the reduction in stimulation of the T cell hybridomas using the alanine analog.  In 

contrast, the chicken CII at that location contains a proline, which appears to increase the 

immunogenicity of the I-A
b
-restricted CII determinant (Fig 3.15).  This may explain why 

wild type B6 mice develop CIA when immunized with chicken CII and not with bovine 

CII.  However, in B6 IFN-
-/-

 mice, bovine CII, of low antigenic potential, is capable of 

inducing CIA due to disregulation of immune function as a result of the absence of 

IFN- .  In contrast, in the wild type mouse chicken derived CII, a stronger antigen than 

bovine CII, is capable of stimulating a pathogenic immune response in a normal immune 

background. 

Induction of Tolerance by CII Determinant 

In order to demonstrate the significance of the I-A
b
-restricted peptide in driving 

the development of autoimmunity, we used the 512-528 peptide to induce tolerance in B6 

mice and protect them from arthritis.  This protection occurs via active suppression or via 

clonal deletion of CII-reactive CD4
+
 T cells (107-110).  If the CII(512-528) determinant 

is the sequence to which self-reactive T cells respond during the pathogenesis of CIA 

then pre-administration of CII(512-528) to CXB2 mice should inhibit T cell responses in 

these mice and therefore protect from CIA.  To induce tolerance, 200 g of CII(512-528) 

dissolved in PBS or PBS alone was injected into the orbital plexus of CXB2 mice.  Three  
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Figure 3.17 CII-Determinant Sequence Homology. 

Human, mouse, and chicken CII have identical sequence from amino acid number 512 to 

528 in contrast to the bovine sequence which contains two mutations: A512S and P518A. 
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Figure 3.18 Proliferation in Response to Stimulation with CII Antigens in 

Lymphocytes from I-A
b
-Expressing Mice Immunized with Native Chicken or 

Bovine CII. 

Following immunization with CII lymphocytes obtained from CXB2 mice do not 

proliferate when stimulated in culture with CII(512-526), CII(512-528), or bovine 1(II).  

When the immunizing antigen is chicken derived CII, proliferative responses are 

observed following stimulation both CII(512-526) and CII(512-528) but not bovine 

1(II). 
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days later the mice were immunized with CII/CFA emulsion and monitored for 

development of arthritis.  The PBS control group developed arthritis at 50% incidence 

and achieved a maximum severity score of 4.3.  The mice tolerized with CII(512-528) 

developed arthritis at 29% incidence and achieved a maximum severity score of 3.0.  In 

addition, arthritis in these mice developed at a later time point compared to the PBS 

control mice developing arthritis on days 45 and 38, respectively (Fig 3.19).  The 

inhibitory effect of CII(512-528) on the development of CIA indicates that this CII 

determinant is an important component in the T cell autoimmune response that drives 

CIA pathogenesis in I-A
b
-expressing mice. 

Measurement of Binding Affinity of CII Determinants for I-A
b
 

In order to test the hypothesis that IFN-  regulates weak T cell responses, the 

affinity of CII determinants for the I-A
b
 molecule was measured.  Two experimental 

systems were used to identify the affinity of CII determinants for I-A
b
.  The first was a 

bioinformatic approach that used an algorithm based peptides known to bind I-A
b
 to 

calculate the binding affinity for I-A
b
 of discrete peptides present in the CII molecule.  In 

the second approach, CII-library peptides and known I-A
b
 binding peptides were used to 

competitively bind a recombinant soluble form of I-A
b
.  However, for various reasons 

these experiments were not entirely successful and yielded inconclusive data about the 

nature of CII binding to I-A
b
.  A complete description of this data is located in the 

Appendix. 

Discussion 

Examination of immune function in IFN-  B6 mice did not reveal major defects in 

the immune function in response to immunization with CII/CFA emulsion.  When cell 

subset analysis was performed, large alterations in B cell and T cell numbers were not 

observed.  Th and Tc populations were also similar between CII-immunized wild type and 

IFN-
-/-

 mice, as there were only minor differences in CD8
+
 and CD4

+
 T cell percentages.  

Despite previous indications that IFN-  deficient mice have increased T cell proliferative 

responses (65), increases in T cell proliferation in response to stimulation with native CII 

were not observed.  This may be due to CII being a low affinity antigen for I-A
b
, thus 

stimulating a weak T cell response that is below our method of detection.  The major 

differences in immune function following immunization with CII/CFA in the IFN-
-/-

 

mouse appear to be changes in anti-CII antibody and cytokine production.  When serum 

concentrations of anti-CII antibodies were measured, the levels in IFN-
-/-

 B6 mice were 

increased in comparison to the wild type B6 response.  There were also changes in the 

anti-CII IgG subtype in the IFN-
-/-

 mouse.  While IFN-  is known to induce Ig class 

switching to the IgG2a subclass B6 mice do not express IgG2a, instead, they express 

IgG2c.  When anti-CII Ig subclasses were measured by ELISA there was no significant 

decrease in anti-CII IgG2c production compared to the wild type B6 mice as might be 

expected due to the absence of IFN- .  However, there was a large increase in the 

production of anti-CII IgG2b.  This subclass of Ig has both complement fixing activity  
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Figure 3.19 Tolerization of CIA-Susceptible CXB2 Mice with CII-Determinant 

Peptide. 

Prior to immunization with bovine CII in CFA emulsion CXB2 mice were injected 

intravenously with CII(512-528) or PBS to induce tolerance.  A.  Mice tolerized with 

CII(512-528) develop arthritis at lower instance and on a delayed schedule than control 

mice injected with PBS.  B.  Mice tolerized with CII(512-528) develop arthritis at a lower 

severity than control. 
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and binds to the high affinity Fc RIII, promoting activation of immune cells.  In addition 

anti-CII antibodies of the IgG2b subclass are capable of inducing arthritis when used in 

antibody induced arthritis models (99). 

The major change in immune response of IFN-
-/-

 B6 mice that occurs following 

immunization with CII/CFA that potentially promotes the development of autoimmunity 

appears to be disregulated cytokine production.  This is consistent with the hypothesis 

that as a regulatory cytokine, IFN-  directs the nature of the immune response and in its 

absence disregulation occurs that is permissive to the development of autoimmunity.  The 

cytokine milieu is of paramount importance during the initial stages of an immune 

response.  The cytokines present during this stage can direct the type of T cell immune 

response that occurs.  This is due in part to the self-reinforcing nature of immune 

responses.  For example, T cells of the Th1 phenotype proliferate and produce the 

proinflammatory cytokines IL-2 and IFN- .  These cytokines feed back to both drive 

expansion of Th1 response and inhibit Th2 response.  This is also true of Th2 responses 

where the production of IL-4 and IL-10 feed back to reinforce Th2 responses and inhibit 

Th1 responses.  Though in some aspects an immune response is self-reinforcing, it is also 

true that normal immune responses are self-limiting.  As the immune response 

progresses, immune mechanisms such as anergy and the activation of Treg cells can come 

into play to halt the unrestricted development of an immune response.  It is in this self-

limiting process that the absence of IFN-  may result in the progression of autoimmunity 

in the IFN-
-/-

 B6 mouse.  We propose that the absence of IFN-  has altered the immune 

response to such an extent that self-limiting mechanisms are impaired and autoimmunity 

develops.  We see an indication that this disregulation occurs when the cytokines 

produced in response to T cell stimulation in cells from IFN-
-/-

 B6 mice were 

quantitated.  In cultures of these cells there is greatly increased production of cytokines 

associated with all three effector T cell subsets, Th1, Th2, and Th17.  Cytokines such as 

IL-2, IL-4, IL-5, IL-13, and IL-17, as well as proinflammatory cytokines downstream of 

these cytokines IL-1 , TNF- , M-CSF, and GM-CSF, are all overproduced in 

comparison to the T cells from B6 mice.  It is interesting to note that cytokines associated 

with all three Th subclasses of T cells are upregulated.  In the absence of IFN-  one would 

expect increases in Th2 and Th17 responses, however, the production of IL-2, IL-1 , 

TNF- , M-CSF, and GM-CSF following stimulation of T cells indicates that even Th1 

responses are upregulated in the absence of IFN- . 

One of the mechanisms of IFN- ’s regulation of immune response may lie in the 

regulation of weak T cell responses.  In CIA, the antigen that promotes T cell activation 

and the subsequent development of arthritis is CII.  It is the nature of the immune system 

that T cell antigens are presented to T cells by MHC molecules.  Evolutionary 

mechanisms have produced various MHC alleles that by their possession of structurally 

different antigen binding sites increase the diversity of antigenic determinants presented 

to T cells for immune surveillance within a mammalian species.  However, this also 

means that for a given protein antigen different antigenic determinants may be presented 

by different MHC alleles.  This means that MHC alleles such as I-A
q
 and I-A

r
 present in 

CIA-susceptible mouse strains can present physically distinct CII determinants from 

those presented by MHC alleles present in CIA non-susceptible strains such as I-A
b
 in the 
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B6 mouse.  If the CII determinant presented by I-A
b
 is of low affinity for the MHC or the 

TCR it may be weakly stimulatory to T cell activation, and therefore conferring 

resistance to CIA in I-A
b
-expressing mice such as in the B6 strain.  One mechanism of 

IFN- ’s regulation of T cell activation likely is mediated by the promotion of 

proinflammatory cytokine expression.  Signaling by these cytokines at the time of antigen 

exposure may potentiate T cell activation when they are stimulated with weakly 

immunogenic determinants.  Therefore, to determine if an I-A
b
-restricted CII determinant 

was weakly antigenic, and to determine if IFN- ’s role in regulating T cell responses to 

an I-A
b
-restricted determinant mediates the pathogenesis of CIA, we identified an I-A

b
-

restricted CII determinant, and investigated its role in stimulating immune responses in 

I-A
b
-expressing mice. 

Initial assays that measured T cell responses to bovine CII indicated that there 

were minimal T cell responses to CII in several strains of I-A
b
-expressing mice that were 

either susceptible or non-susceptible to CIA.  Immunization with bovine CII did not 

result in measurable T cell proliferative responses in wild type B6, IFN-
-/-

 B6, or CXB2 

mice when lymphocytes from these mice were stimulated in culture with either native CII 

or a peptide library derived from CII sequence.  This indicated that I-A
b
 CII determinants 

were weakly antigenic as hypothesized.  While this supports the concept that I-A
b
-

restricted CII determinants in B6 mice are not conducive to autoimmunity except in the 

case of disregulation mediated by IFN- , it made difficult the identification of an I-A
b
-

restricted CII determinant for detailed analysis.  To solve this problem, T cell hybridomas 

were produced from lymphocytes obtained from I-A
b
-expressing mice previously 

immunized with CII.  This allowed the immortalization and expansion of low frequency 

I-A
b
-restricted T cells with specificity to CII determinants.  Stimulation of these T cell 

hybridomas with a CII peptide library resulted in one CII determinant identified, located 

at position 514-525 of the CII molecule (amino acid sequence GLQGPRGLHypGTHyp).  

Once identified, we further characterized the binding characteristics of the determinant 

for the components of the TCR complex, and the ability of the determinant to stimulate 

immune responses in I-A
b
-expressing mice. 

The structure of MHC class II molecules is such that there are 4 to 5 binding 

pockets in an open ended binding groove to which specific amino acids within the 

antigenic peptide orient.  The size of the binding groove dictates that there is a 9 amino 

acid core sequence within the determinant that closely associates with the MHC to 

stabilize binding via hydrogen bonding, hydrophobic interactions, ionic binding, and van 

der walls forces with hydrophobic interactions at the binding pockets usually providing 

the greatest contribution to overall stability of the MHC/peptide complex.  The open 

ended nature of MHC class II molecules, however, results in amino acids that extend 

beyond the core also contributing to MHC/peptide stability.  Once bound to the MHC the 

peptide is made available for binding of the TCR.  Binding of the TCR to the 

MHC/peptide forms the TCR complex which initiates signaling within the T cell that 

causes its activation.  In order to identify the core determinant and to assess the 

contribution of each amino acid to the formation of the TCR complex, an alanine 

substituted panel of analog peptides with individual substitutions at each position from 

CII(512-526) was created and used to stimulate the CII-reactive T cell hybridomas.  
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When the T cell stimulatory characteristics of the alanine panel were examined the core 

determinant was identified as CII(514-528) or GPRGLHypGTHyp.  Furthermore, within 

the core determinant the amino acids from CII(518-522), PRGLHyp, are required for T 

cell stimulation, while the Q and T at positions 516 and 524 also contribute to stability of 

the TCR/Peptide/MHC complex. 

While stimulation of T hybridoma cells with the CII determinant and the alanine 

substituted peptide shows the contribution of the amino acids within the determinant to 

formation of the TCR complex and T cell stimulation, the affinity of the determinant for 

I-A
b
 can only be inferred by this method.  Therefore to directly measure the affinity of 

the determinant for I-A
b
 we used both a bioinformatic approach and direct binding assays 

between the CII determinant and a soluble recombinant form of I-A
b
.  When binding 

affinity of CII for I-A
b
 was calculated using the MHC class II binding algorithm SMM-

align, there were no sequences present in CII that were shown to bind at high affinity, 

including the CII determinant that was identified by the use of the T cell hybridomas.  

We next used a binding assay to experimentally measure the binding affinity of CII 

sequence for I-A
b
.  To do this, we generated a soluble form of I-A

b
 to be produced in 

insect cells.  However, multiple attempts to produce soluble I-A
b
 failed to generate a 

recombinant form of I-A
b
 that would bind CII peptides in vitro.  This prevented the direct 

measurement of the binding affinity of CII determinants. 

Therefore, we sought to measure the ability of the identified CII determinant to 

stimulate T cell responses in I-A
b
-expressing mice and to determine its contribution to the 

pathogenesis of CIA in susceptible strains.  CII(512-526) and CII(512-528), CII peptides 

that correspond to the I-A
b
 CII determinant and native CII were used to immunize B6 and 

CXB2 mice so the T cell responses to the determinant could be measured.  When the CII 

peptides were used to stimulate proliferation in lymphocytes recovered from these mice it 

was found that the shorter CII(512-526) peptide was not strongly immunogenic failing to 

stimulate proliferation in either mouse strain.  However, the longer CII(512-528) peptide, 

when used at the primary antigen was able to stimulate proliferative response in the B6 

cells when stimulated in culture, and in both mice when enrichment of CD4
+
 was 

performed prior to stimulation in culture.  These results indicated that the CII determinant 

identified here is capable of stimulating in vivo T cell responses in I-A
b
-expressing mice, 

and these CII-restricted T cells responses to this CII determinant may promote the 

development of autoimmune arthritis.  To test this concept, CIA-susceptible CXB2 mice 

were tolerized with CII(512-528) and immunized with CII to induce CIA.  When arthritis 

developed in these mice, it was observed that prior tolerization with CII(512-528) 

reduced both the incidence and severity of inflammation indicating that the CII(512-528).  

Therefore, the CII(512-528) peptide does indeed mediate autoimmune arthritis in the I-A
b
 

background. 

These data indicate that IFN-  regulates immune function in response to 

immunization with CII.  In the absence of IFN- , alterations in immune function occur 

including increases in the expression of proinflammatory cytokines and production of 

complement-fixing anti-CII antibodies that promote autoimmune arthritis.  A weakly 

immunogenic I-A
b
-restricted determinant present in CII was also identified and 

characterized.  This determinant is capable of stimulating T cell responses in I-A
b
-
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expressing mice, and is implicated in the pathogenesis of CIA.  In IFN-
-/-

 B6 mice 

disregulation of immune function mediated by the absence of IFN-  likely increases T 

cell responses to this CII determinant and allows the development of autoimmunity to 

progress. 
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Chapter 4.   Interferon  and the Pathogenesis of Inflammatory 

Arthritis 

Introduction 

IFN-  is a pluripotent mediator of immune function, regulating cytokine 

production and subsequently the cellular communication of immune and accessory cells 

responsible for disease progression in autoimmune arthritis.  The absence of this cytokine 

has the potential to fundamentally change the cellular communication that occurs as the 

immune response initiates and progresses. 

We have previously shown that the lack of IFN-  in a CIA non-susceptible strain, 

B6, converts this strain to one that is highly susceptible.  This conversion is likely 

mediated by alterations in immune function due to the absence of IFN-  signaling, 

changes including inflammatory cytokine production, autoantibody generation, and 

increased T cell activation to weakly antigenic CII determinants.  Ultimately, 

disregulated activation of CII-specific T cells mediated by these processes results in the 

development of autoimmunity.  In light of IFN- ’s emerging role as a master regulator of 

cellular differentiation and cytokine production, we have developed the following 

hypothesis.  If IFN-  acts as a key regulator of immune function, directing the activation, 

differentiation, and cytokine production of both immune and accessory cells during the 

development of an inflammatory response, then removal of IFN-  by genetic ablation, 

such as in the B6 IFN-
-/-

 mouse, causes disregulation of normal immune regulatory 

processes, resulting in aberrant cytokine production and immune cell activation.  As a 

result of this disregulation, in the B6 IFN-
-/-

 mouse, the absence of IFN-  allows 

progression to autoimmunity.  Therefore, to investigate how immune function is 

perturbed in the absence of IFN- , and how that disregulation results in the progression of 

a pathogenic autoimmune response, we examined how gene expression, cytokine 

production, cellular response, and disease progression is altered in the absence of IFN- . 

The first step in identifying the mechanism by which absence of IFN-  promotes 

progression to disease was to obtain data that describes the changes in cytokine 

production and cellular function that occur when immune cells encounter antigen in the 

absence of IFN- .  The CIA-susceptible B6 IFN-
-/-

 mouse model provides an ideal 

system to compare the cellular responses of a non-pathogenic immune response, as seen 

in the resistant B6 mouse strain, to one that does progress to autoimmune disease.  The 

CIA model has been widely studied as a model of RA, and has been instrumental in 

identifying mechanisms of pathogenesis as well as developing new therapeutics.  CII 

dependent immune cell activation, the production and involvement of anti-CII antibodies, 

and proinflammatory cytokines produced in the joint synovium that mediate pathogenesis 

have all been characterized to some extent in this model.  Since the two mouse strains are 

congenic and immunization with CII is pathogenic in the IFN-
-/-

 and not the wild type, 

the immune response in the both strains following CII immunization can be examined in 

detail and compared to one another.  Alterations in the immune response in terms of 
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immune cell function and cytokine production of the B6 IFN-
-/-

 mouse from that of the 

wild type are likely to be mediated either directly or indirectly by the absence of IFN- .  

If these alterations direct the pathogenic mechanisms of CIA, it is highly probable that 

those mechanisms are responsible for conferring susceptibility to CIA in the B6 IFN-
-/-

 

mouse. 

Cytokines are local mediators of cellular activity, whose numerous effects include 

cell growth and activation, inflammation, immunity, and differentiation (45).  In RA, 

there is an abundance of cytokines at the site of inflammation, including TNF- , IL-1 , 

IL-6, GM-CSF, IL-8, IL-10, IFN-  IL-2, and TGF  (111).  Activated immune cells and 

synoviocytes such as fibroblasts or epithelial cells produce these cytokines.  Often 

cytokines form interconnected regulatory networks where the expression of one cytokine 

either promotes or inhibits the expression of others by either an autocrine or paracrine 

mechanism.  For example IFN-  promotes its own expression by supporting the 

differentiation of Th1 cells, and inhibits the production of IL-4 or IL-17 by inhibiting the 

differentiation of Th2 or Th17 cells.  Also, in many cases expression of proinflammatory 

cytokines is required for disease activity as is shown by knock out mouse models.  For 

example, the proinflammatory cytokines GM-CSF, TNF- , and TGF  activate cells that 

effect joint destruction including monocytes, macrophages, fibroblasts, and osteoclasts 

within the joint synovium.  In the following studies, we examine the relationship between 

IFN-  and the expression of proinflammatory cytokines in order to identify the 

mechanism by which CIA susceptibility is conferred in the B6 IFN-
-/-

 mouse.  Using a 

combined molecular and cellular approach, our data indicate that IFN- ’s regulation of 

the expression of IL-18 BP plays a prominent role in this CIA model. 

Results 

The Role of IFN-  in Regulating Gene Expression 

Expression Array of Wild Type versus IFN-
-/-

 B6 Mice 

The types and quantity of cytokines expressed in the immune system milieu both 

during and immediately following antigen stimulation can play a significant role in T cell 

and accessory cell differentiation and function.  The ultimate outcome of a T cell immune 

response in terms of which subtype of CD4
+
 T cells is activated is tightly controlled by 

the interplay of signaling in Th1, Th2, Th17, and T regulatory cells.  IL-12 and IFN-
 

promote Th1 development while antagonizing Th2 development; the opposite is true for 

the cytokine IL-4 which antagonizes Th1 cell differentiation and promotes Th2 responses.  

A similar reciprocal agonist-antagonist arrangement exists between Th1 and Th17 cells.  

Whereas IFN-  inhibits Th17 function, IL-17 inhibits Th1 function.  Since a key effector 

function of Th1 cells is the production of IFN- , in the B6 IFN-
-/-

 mouse, the lack of 

IFN-  expression must alter Th1 cell function by either preventing the differentiation of 
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competent Th1 cells, by severely limiting their effector function, or by the lack of 

feedback inhibition of a pathogenic Th17 response. 

We propose that reduced Th1 mediated effector function results in a perturbation 

of the function of immune cells throughout the immune system resulting in a 

disregulation phenotype.  This potential disregulation would explain the differential 

susceptibility to disease in the B6 IFN-
-/-

 model.  In order to determine which genes are 

regulated by IFN-  in the context of CIA, a gene expression array was performed using 

mRNA from lymphocytes obtained from the draining lymph nodes of wild type and 

IFN-
-/-

 B6 mice immunized with bovine CII in an emulsion of CFA.  Three female B6 or 

B6 IFN-
-/-

 age matched between three and four months were immunized with a total of 

100 l of 2 mg/ml CII in CFA emulsion.  The draining lymph nodes were excised ten 

days later and the total RNA was recovered from lymphocytes.  This RNA was checked 

for quality with an Agilent Technologies 2100 bioanalyzer to test the quality of the RNA 

and determine its concentration.  Following quality assurance, the mRNA was analyzed 

by microarray using an Affymetrix GeneChip Mouse Genome 430 2.0 Array. 

After the expression chip data were analyzed, one set of data from a B6 IFN-
-/-

 

mouse was found to be of poor quality and these data were excluded from subsequent 

analysis.  Among the remaining three wild type chips and the two IFN-
-/-

 chips, 1612 

genes were shown to be significantly differentially expressed (p ≤ 0.05) among the 

45,101, probe sets present on the chip representing 34,000 mouse genes (Fig. 4.1).  This 

list of genes was then analyzed using Ingenuity Pathways Analysis software.  This 

software is a research tool that identifies networks of genes based on known signaling 

connections.  This tool allowed the identification of those genes among the 1612 

differentially expressed that are present in signaling networks or those related to 

immunological function.  This analysis revealed 41 signaling networks with 10 or more 

genes present among the differentially expressed genes.  As a final step, genes were then 

examined manually for differentially expressed immune regulatory genes, especially 

those associated with rheumatoid arthritis or autoimmunity. 

A select group of differentially expressed genes between the wild type and 

IFN-
-/-

 groups were identified as likely to be involved in the pathogenesis of CIA due to 

their roles as immune signaling molecules, immune effector molecules, and mediators or 

indicators of inflammation (Fig 4.2, 4.3).  The data are represented as fold difference in 

expression.  To obtain these values, the average of the normalized fluorescence for each 

group was converted to a ratio by dividing the value obtained from the wild type cells by 

the value obtained from the IFN-
-/-

 derived cells.  These values were then converted to 

the fold difference between the two groups by subtracting the inverse of the WT/IFN-
-/-

 

ratio from zero.  The result of this calculation is that a gene expressed more highly in the 

wild type cells will have a positive value while a gene with higher expression in the 

IFN-
-/-

 cells will have a negative value. 

Genes encoding immune signaling molecules that include immune modulating 

cell surface receptors and soluble cell signaling molecules such as cytokines and 

chemokines were found to be differentially expressed (Fig 4.2A).  In the wild type  
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Figure 4.1 Genes Differentially Expressed between Wild Type and IFN-
-/-

 B6 

Mice in Response to Immunization with CII/CFA. 

Wild type and IFN-
-/-

 mice were immunized with CII/CFA.  Ten days later, mRNA was 

isolated from lymphocytes recovered from draining popliteal lymph nodes and examined 

for gene expression with an Affymetrix GeneChip Mouse Genome 430 2.0 Array.  

45,101 probe sets representing 34,000 mouse genes were examined for differential 

expression.  Of these, 1612 genes were observed to be differentially expressed with a 

significance greater than p ≥ 0.05.  Blue represents higher expression, and red represents 

lower expression. 

1612 Genes 

p ≤ 0.05 

IFN-
-/-

 Wild Type 
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Figure 4.2 Intercellular Signaling Molecules Differentially Expressed between 

Wild Type and IFN-
-/-

 B6 Mice. 

Wild type and IFN-
-/-

 B6 mice were immunized with CII/CFA, and ten days later 

lymphocytes were recovered from draining lymph nodes.  These cells were used to 

produce mRNA for use in a gene expression array.  Selected differentially expressed 

genes with immunological relevance to arthritis pathogenesis are shown.  Data is 

represented as the fold difference in gene expression between cells from wild type and 

IFN-
-/-

 B6 mice.  A.  Cytokine and chemokine signaling molecules that are differentially 

expressed between the two groups.  B.  Membrane bound receptors and ligands with 

immunomodulatory effects on immune cell function.  For all genes shown, p ≤ 0.05. 
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Figure 4.3 Markers of Inflammation and Joint Remodeling Genes Differentially 

Expressed between Wild Type and IFN-
-/-

 B6 Mice. 

Wild type and IFN-
-/-

 B6 mice were immunized with CII/CFA, and ten days later 

lymphocytes were recovered from draining lymph nodes.  These cells were used to 

produce mRNA for use in a gene expression array.  Selected differentially expressed 

genes with immunological relevance to arthritis pathogenesis are shown.  Data is 

represented as the fold difference in gene expression of between cells from wild type and 

IFN-
-/-

 B6 mice.  A.  Markers of inflammation.  B.  Immune effector proteins.  C.  Joint 

structural and remodeling enzymes.  For all genes shown, p ≤ 0.05. 
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mouse, chemokine (C-X-C motif) ligand 14 (CXCL14), IL-5, IL-12 , IL-12 , IL-15, 

IL-18, and IL-18 binding protein (IL-18 BP) are all up regulated compared to the IFN-
-/-

 

mouse.  In the IFN-
-/-

 mouse, the expression of chemokine like factor super family 3 

(Cklfsf3), IL-17D, and interleukin 1 receptor accessory protein (IL-1RAP) are 

upregulated in comparison to expression in the wild type mouse.  Cell surface molecules 

and receptors were also identified as differentially expressed between the two mouse 

groups (Fig 4.2B).  In the wild type mouse, TLR-3, TLR-7, Fc receptor high affinity 1 

alpha polypeptide (Fc R1 ), interleukin 2 receptor alpha chain (IL-2R ), CD86 antigen, 

and integrin alpha 4 were all upregulated in comparison to expression in the B6 IFN-
-/-

 

cells. 

A third set of genes that were differentially expressed between the two mouse 

groups include markers of inflammation such as heat shock proteins (Fig. 4.3A), immune 

effector molecules such as immunoglobulins (Fig 4.3B), or joint structural proteins or 

remodeling enzymes (Fig 4.3C).  In the wild type mouse, heat shock protein 8, cartilage 

oligomeric matrix protein, chitinase 3 like 4, and mast cell protease 4 and 5 are 

overexpressed compared to the IFN-
-/-

 mouse.  In the IFN-
-/-

 mouse, heat shock protein 

1A, Ig heavy chain, defensin beta 9, chondroitan sulfate proteoglycan 2, phospholipase 

A2 group VI, and the matrix metalloproteinases 15 and 19 are overexpressed over the 

wild type mouse.  These genes encode proteins that could affect arthritis pathogenesis at 

several different levels including 1.  The level of immune cell activation through altered 

cytokine and regulatory molecule expression.  2.  The level of immune effector function 

via altered Ig expression.  3.  The level of joint inflammation by disregulated joint 

remodeling.  Together, these changes could result in the disregulation of the immune 

response that leads to development of autoimmune arthritis.  One important consideration 

in the analysis of these data is that both groups of mice were immunized with bovine CII 

in Mtb containing CFA emulsion.  So the wild type mouse is undergoing a normal 

inflammatory response to the CFA, and one would expect to see inflammatory mediators 

expressed in this mouse.  In the wild type mouse, normal regulatory processes limit the 

progression of the immune response so autoimmunity does not develop.  In the IFN-
-/-

 

mouse however, immune regulation is altered allowing the progression to the 

autoimmune inflammatory disease, CIA. 

Many of the genes identified by the expression array have been linked to the 

development of RA or CIA (Table 4.1).  When one examines the genes that are 

overexpressed in the IFN-
-/-

 mouse a pro-arthritogenic pattern emerges.  In addition to 

evidence of joint remodeling by the overexpression of such genes as chondroitan sulfate 

proteoglycan 2, and the matrix metalloproteinases 15, and 19, two key cytokines with 

immunomodulatory functions are identified as differentially expressed between the wild 

type and IFN-
-/-

 mouse.  These include increased expression of the proinflammatory 

cytokine IL-17 and the reduced expression of IL-18 and IL-18 BP in the IFN-
-/-

 mouse. 
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Table 4.1 The Role of Differentially Expressed Genes between Wild Type and 

IFN-
-/-

 B6 Mice Immunized with CII/CFA in the Pathogenesis of RA and CIA. 

Gene Function Arthritis Pathogenesis 

Chemokine (C-X-C) Ligand 14 Cellular recruitment of 

lymphocytes via CCR5 

Expression upregulated in 

spontaneous arthritis 

models
1
 

Chemokine like factor super 

family 3 

Cellular recruitment of 

lymphocytes via CCR5 

Increased gene copy 

number increases risk of 

RA development
2 

Interleukin 5 B cell growth and 

differentiation
3 

Influences production of 

autoantibodies via effects 

on B cells 

Interleukin 12  Promotes IFN-  and Th1 

cellular responses 

Blockade inhibits severity 

of CIA
4 

Interleukin 12  Promotes IFN-  and Th1 

cellular responses 

Blockade inhibits severity 

of CIA
4 

Interleukin 15 T cell proliferation and 

homing, promotes 

production of TNF-  

Present in RA synovial 

fluid
5 

Overexpression 

exacerbates CIA
6 

Interleukin 17 D Proinflammatory cytokine 

promotes expression of 

IL-6, IL-8, GM-CSF, IL-

1 , TGF , TNF- , and 

PGE2 

IL-17 family members 

linked to synovial 

destruction in RA
7, 8 

Interleukin 18 Proinflammatory cytokine 

induces production of 

TNF- , GM-CSF, IFN-  

by synovial membrane 

Induces expression of 

proinflammatory 

cytokines in RA 

synovium
9 

Interleukin 1 receptor accessory 

protein 

Stabilizes binding of IL-1 

to its receptor 

Inhibits CIA by 

scavenging IL-1
10 

Interleukin 18 binding protein Binds and inhibits activity 

of IL-18 

Binds and inhibits activity 

of IL-18
11, 12 
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Table 4.1 (continued). 

Gene Function Arthritis Pathogenesis 

TLR 3 Pattern recognition 

receptor for dsRNA 

induces NF- B and Type 

1 Interferons 

Immune signaling and 

activation, may promote 

expression of 

proinflammatory 

cytokines in RA
11, 13 

TLR 7 Pattern recognition 

receptor for ssRNA 

Immune signaling and 

activation, may promote 

expression of 

proinflammatory 

cytokines in RA
13 

Fc Receptor, IgE high affinity 1, 

alpha peptide 

Mast cell activation Immune cell activation 

and inflammation 

Fc Receptor, IgE high affinity 1, 

alpha peptide 

Mast cell activation Immune cell activation 

and inflammation 

Interleukin 2 receptor alpha 

chain 

Cellular receptor for IL-2 

T cell growth, 

differentiation, survival 

T cell function 

CD86 Antigen CTLA4 ligand, dendritic 

cell maturation marker 

Upregulated in RA 

synovium
14

 

Blockade inhibits CIA
15 

Integrin alpha 4 Subunit of VLA-4 

(VCAM-1 Receptor), 

cellular localization 

VCAM expression in RA 

synovium is elevated 

compared to normal
16 

Heat shock protein 1A, and 8 Indicators of cell stress 

and inflammation 

Marker of inflammation 

Ig Heavy Chain (J558) Immune effector 

molecule 

Autoantibody 

Defensin beta 9 Cytotoxic and 

microbiocidal peptide 

produced by neutrophils 

Defensin beta family 

members mediate 

articular cartilage 

remodeling
17 
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Table 4.1 (continued). 

Gene Function Arthritis Pathogenesis 

Cartilage oligomeric matrix 

protein 

Cartilage Structural 

protein 

Marker of joint 

remodeling 

Chondroitin sulfate 

proteoglycan 2 

Cartilage Structural 

protein 

Marker of joint 

remodeling 

Mast Cell Protease 4 Chymase produced by 

mast cells 

Connective tissue 

remodeling
18 

Mast Cell Protease 5 Chymase produced by 

mast cells 

Connective tissue 

remodeling
18, 19 

Matrix Metalloproteinase 15 Remodeling enzyme Synovial remodeling
20 

Matrix Metalloproteinase 19 Remodeling enzyme Synovial remodeling
20 

Sources: 

1. Fujikado, N., S. Saijo, and Y. Iwakura. 2006. Identification of arthritis-related 

gene clusters by microarray analysis of two independent mouse models for 

rheumatoid arthritis. Arthritis Res Ther 8:R100. (112) 

2. McKinney, C., M. E. Merriman, P. T. Chapman, P. J. Gow, A. A. Harrison, J. 

Highton, P. B. Jones, L. McLean, J. L. O'Donnell, V. Pokorny, M. Spellerberg, L. 

K. Stamp, J. Willis, S. Steer, and T. R. Merriman. 2008. Evidence for an influence 

of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to 

rheumatoid arthritis. Ann Rheum Dis 67:409-413. (113) 

3. Randall, T. D., F. E. Lund, J. W. Brewer, C. Aldridge, R. Wall, and R. B. Corley. 

1993. Interleukin-5 (IL-5) and IL-6 define two molecularly distinct pathways of 

B-cell differentiation. Mol Cell Biol 13:3929-3936. (114) 

4. Malfait, A. M., D. M. Butler, D. H. Presky, R. N. Maini, F. M. Brennan, and M. 

Feldmann. 1998. Blockade of IL-12 during the induction of collagen-induced 

arthritis (CIA) markedly attenuates the severity of the arthritis. Clin Exp Immunol 

111:377-383. (115) 

5. Liew, F. Y., and I. B. McInnes. 2002. Role of interleukin 15 and interleukin 18 in 

inflammatory response. Ann Rheum Dis 61 Suppl 2:ii100-102. (116) 
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6. Yoshihara, K., H. Yamada, A. Hori, T. Yajima, C. Kubo, and Y. Yoshikai. 2007. 

IL-15 exacerbates collagen-induced arthritis with an enhanced CD4+ T cell 

response to produce IL-17. Eur J Immunol 37:2744-2752. (117) 

7. Kotake, S., N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, S. 

Saito, K. Inoue, N. Kamatani, M. T. Gillespie, T. J. Martin, and T. Suda. 1999. 

IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent 

stimulator of osteoclastogenesis. J Clin Invest 103:1345-1352. (118) 

8. Chabaud, M., P. Garnero, J. M. Dayer, P. A. Guerne, F. Fossiez, and P. Miossec. 

2000. Contribution of interleukin 17 to synovium matrix destruction in 

rheumatoid arthritis. Cytokine 12:1092-1099. (119) 

9. Gracie, J. A., R. J. Forsey, W. L. Chan, A. Gilmour, B. P. Leung, M. R. Greer, K. 

Kennedy, R. Carter, X. Q. Wei, D. Xu, M. Field, A. Foulis, F. Y. Liew, and I. B. 

McInnes. 1999. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin 

Invest 104:1393-1401. (120) 

10. Smeets, R. L., L. A. Joosten, O. J. Arntz, M. B. Bennink, N. Takahashi, H. 

Carlsen, M. U. Martin, W. B. van den Berg, and F. A. van de Loo. 2005. Soluble 

interleukin-1 receptor accessory protein ameliorates collagen-induced arthritis by 

a different mode of action from that of interleukin-1 receptor antagonist. Arthritis 

Rheum 52:2202-2211. (121) 

11. Roelofs, M. F., L. A. Joosten, S. Abdollahi-Roodsaz, A. W. van Lieshout, T. 

Sprong, F. H. van den Hoogen, W. B. van den Berg, and T. R. Radstake. 2005. 

The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is 

increased and costimulation of toll-like receptors 3, 4, and 7/8 results in 

synergistic cytokine production by dendritic cells. Arthritis Rheum 52:2313-2322. 

(122) 

12. Novick, D., S. H. Kim, G. Fantuzzi, L. L. Reznikov, C. A. Dinarello, and M. 

Rubinstein. 1999. Interleukin-18 binding protein: a novel modulator of the Th1 

cytokine response. Immunity 10:127-136. (123) 

13. Roelofs, M. F., M. H. Wenink, F. Brentano, S. Abdollahi-Roodsaz, B. Oppers-

Walgreen, P. Barrera, P. L. van Riel, L. A. Joosten, D. Kyburz, W. B. van den 

Berg, and T. R. Radstake. 2008. Type I interferons might form the link between 

Toll-like receptor (TLR) 3/7 and TLR4 mediated synovial inflammation in 

rheumatoid arthritis (RA). Ann Rheum Dis doi:10.1136. (124) 

14. Thomas, R., and C. Quinn. 1996. Functional differentiation of dendritic cells in 

rheumatoid arthritis: role of CD86 in the synovium. J Immunol 156:3074-3086. 

(125) 



69 

Table 4.1 (continued). 

15. Tellander, A. C., U. Pettersson, A. Runstrom, M. Andersson, and E. Michaelsson. 

2001. Interference with CD28, CD80, CD86 or CD152 in collagen-induced 

arthritis. Limited role of IFN-gamma in anti-B7-mediated suppression of disease. 

J Autoimmun 17:39-50. (126) 

16. Morales-Ducret, J., E. Wayner, M. J. Elices, J. M. Alvaro-Gracia, N. J. Zvaifler, 

and G. S. Firestein. 1992. Alpha 4/beta 1 integrin (VLA-4) ligands in arthritis. 

Vascular cell adhesion molecule-1 expression in synovium and on fibroblast-like 

synoviocytes. J Immunol 149:1424-1431. (127) 

17. Varoga, D., T. Pufe, J. Harder, J. M. Schroder, R. Mentlein, U. Meyer-Hoffert, M. 

B. Goldring, B. Tillmann, J. Hassenpflug, and F. Paulsen. 2005. Human beta-

defensin 3 mediates tissue remodeling processes in articular cartilage by 

increasing levels of metalloproteinases and reducing levels of their endogenous 

inhibitors. Arthritis Rheum 52:1736-1745. (128) 

18. Tchougounova, E., G. Pejler, and M. Abrink. 2003. The chymase, mouse mast 

cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and 

ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and 

fibronectin turnover. J Exp Med 198:423-431. (129) 

19. Nigrovic, P. A., and D. M. Lee. 2005. Mast cells in inflammatory arthritis. 

Arthritis Res Ther 7:1-11. (130) 

20. Murphy, G., V. Knauper, S. Atkinson, G. Butler, W. English, M. Hutton, J. 

Stracke, and I. Clark. 2002. Matrix metalloproteinases in arthritic disease. 

Arthritis Res 4 Suppl 3:S39-49. (131) 
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The Role of IL-18 and IL-18 BP  

There is growing evidence that the interactions of IL-18 and IL-18 BP may play a 

role in regulating the immune response that leads to the development of RA.  IL-18 is a 

proinflammatory cytokine that is in the IL-1 superfamily.  Its expression is widespread, 

being produced by monocytes, macrophages, articular chondrocytes, synovial fibroblasts, 

and osteoblasts (132).  Once activated by caspase-1 dependent cleavage from its 

precursor form, it functions to promote the production of proinflammatory cytokines in 

the joint synovium including IFN- , GM-CSF, IL-1  and TNF- .  The production of 

these cytokines is potentiated by the coexpression of IL-12 and IL-15 (120, 133).  In RA, 

IL-18 expression has been detected in the synovial compartment and tissues of patients 

afflicted with RA (132, 134).  In CIA-susceptible mouse strains such as DBA1, 

neutralization of IL-18 by the use of anti-IL-18 monoclonal antibodies, or through the use 

of IL-18 BP reduces the clinical scores of arthritis severity (135). 

IL-18 BP is a soluble glycoprotein produced largely by monocytes that forms part 

of a feedback regulatory circuit that modulates the activity of IL-18.  Two biologically 

active isoforms of IL-18 BP, IL-18 BPc and IL-18 BPd, are produced in mouse with IL-

18 BPd having the most potent activity.  In culture, when IL-18 BP is present at an 

equimolar concentration with IL-18, the IFN-  inducing activity of IL-18 on NKO cells 

(an NK cell line) stimulated with IL-12 and IL-18 is reduced by 95 percent (136).  IL-18 

has also been shown to promote the production of IFN-  by Th1 cells (137).  Since IL-18 

BP inhibits IL-18 signaling, this results in feedback inhibition of IL-18 activity.  

Increased IL-18 signaling causes increased IFN-  production, which then causes 

increased IL-18 BP production.  IL-18 BP then “feeds back” to reduce IL-18 activity.  In 

the IFN-
-/-

 mouse, there is no production of IFN- .  The result of this is reduced 

production of IL-18 BP and therefore increased levels of free IL-18 available for binding 

to its receptor.  Reduction of IL-18 BP production in the absence of IFN-  was 

experimentally observed in the gene expression array of wild type B6 versus IFN-
-/-

 

mice.  Expression of IL-18 BP is reduced in the IFN-
-/-

 mouse.  Its expression is over 

seven fold lower in the IFN-
-/-

 mouse than in the wild type.  Since IL-18 BP expression 

is induced by IFN- , and IL-18 is known to contribute to or modulate the pathogenesis of 

RA and CIA, decreased expression of IL-18 BP due the absence of IFN-  in the IFN-
-/-

 

mouse results in increased levels of free IL-18 available for signaling, and thus increasing 

its activity.  Increased activity of IL-18 would increase expression of proinflammatory 

cytokines such as TNF-  and GM-CSF following immunization with CII, and potentially 

contributing to CIA susceptibility in the IFN-
-/-

 mouse. 

IFN-  and IL-17 Activity 

A strongly proinflammatory family of cytokines has been identified as a critical 

pathway in the development of chronic autoimmune arthritis.  These cytokines include 

the six IL-17 family members, IL-17 A-F.  IL-17A and IL-17F are produced by Th17 

cells.  Th17 response is distinguished from proinflammatory Th1 response by the absence 

of production of IFN- , T-bet, or GATA-3.  Th17 cell differentiation can be induced in 
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culture by the addition of the cytokines IL-6, and TGF  when naïve T cells are stimulated 

with LPS, and in addition to the production of IL-17, Th17 cells also produce the 

proinflammatory cytokines IL-6, TNF- , and GM-CSF.  IL-17 family members exhibit 

multiple immune regulatory functions via induction of cytokine production in multiple 

cell types including fibroblasts, endothelial cells, epithelial cells, keratinocytes, and 

macrophages.  These cells produce the cytokines IL-6, IL-8, G-CSF, GM-CSF, IL-1 , 

TGF  and TNF-  and the inflammatory mediator PGE2 in response to IL-17 ligation.  

All of which have been implicated in the pathogenesis of RA.  IL-17D was identified as 

overexpressed in the IFN-
-/-

 B6 mouse by the gene expression array (Fig 4.2A).  

Interestingly, though IL-17 family members are known to be associated with RA, IL-17D 

is preferentially expressed in skeletal muscle and nervous tissue and not previously 

associated with arthritis (138). 

Expression of IL-18 and IL-17 Regulated Genes 

Based on their known proinflammatory function, increases in the expression of 

IL-18 and IL-17 are likely linked to the increased susceptibility of CIA in the IFN-
-/-

 

mouse.  To reinforce the expression array data and to further examine the functional 

changes that occur in the autoimmune response due to the absence of IFN- , the 

expression of specific immune related genes was measured via real time PCR using two 

approaches.  First, a traditional real time PCR using probes selected on their basis of IL-

18 and IL-17 signaling or arthritis relevance was used to confirm the expression level of 

select genes identified from the microarray data.  Second, a real time PCR array focused 

on a panel of immune response genes was used to quantify the expression of 90 genes 

that effect or regulate immune function.  These assays serve a two-fold purpose.  They 

double check the expression data of the expression array, and also measure the expression 

of cytokines downstream of IL-18 and IL-17 signaling. 

Real Time PCR 

Four wild type or IFN-
-/-

 B6 mice were immunized with CII in an emulsion of 

CFA and ten days later mRNA was isolated from cells from the draining lymph nodes.  

Taqman real time PCR probes were used to measure the expression of IL-17A, IL-5, 

IL-1 , IL-6, IL-4, GM-CSF, TGF 1, IL-18, TNF- , IL-15, IL-10, IL-12 , and IL-18 BP.  

The difference in expression of the two mouse strains is reported as ct to indicate the 

relative expression of mRNA between the two groups.  To derive this value, the number 

of cycles (ct) required for fluorescence to reach a predetermined threshold value is 

normalized to the expression of a “housekeeping” gene that is assumed to be expressed 

equally in all conditions.  The mRNA expression level of structural proteins is often used 

for this purpose, and the structural protein  actin was used in these assays.  Subtraction 

of the housekeeping gene ct value from the ct value of the experimental is known as the 

ct and represents a normalized expression value for the experimental gene.  The ct 

value from one experimental group is then subtracted from the ct of the other group 

( ct).  This value can be either positive or negative and represents the difference in 
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cycle number between the two groups for a PCR reaction to reach the threshold 

fluorescence value.  Based on the design of the data analysis, a negative ct value 

indicates higher expression in the IFN-
-/-

 while a positive value indicates higher 

expression in the wild type.  The ct value grows exponentially, doubling with each cycle 

of the PCR reaction.  For this reason, 2 raised to the power of - ct is the fold difference 

in expression between the two groups for a given gene.  In this assay, IL-17A, IL-5, 

IL-1 , IL-6, IL-4, and GM-CSF were all expressed higher in the IFN-
-/-

 than in the wild 

type (Fig 4.4).  Conversely, in the wild type, IL-15, IL-10, IL-12 , and IL-18 BP were 

overexpressed compared to the IFN-
-/-

 B6 group.  TGF , IL-18, and TNF-  were 

expressed at similar levels in both mouse groups.  These data indicate that in the IFN-
-/-

 

there is an increase in proinflammatory cytokines, IL-17, IL-6, and IL-1 , were expressed 

at high levels in the IFN-
-/-

 mice.  In addition, IL-18 BP, which negatively regulates the 

proinflammatory cytokine IL-18, has reduced expression in the IFN-
-/-

 mice.  Therefore, 

the absence of IFN-  potentially mediates CIA susceptibility in IFN-
-/-

 mice by 

promoting proinflammatory cytokine expression, an effect that may in part be a result of 

decreased production of IL-18 BP. 

Microfluidics Real Time PCR 

A real time PCR array was used to analyze the difference in expression of a 

focused set of immune response genes in lymphocytes from CII-immunized wild type 

and IFN-
-/-

 mice.  In this assay, a microfluidics plate that measures the expression of 90 

immune related genes that include cytokines, chemokines, immune regulators, growth 

factors, and inflammatory markers was used.  This approach expands the analysis of 

immune response gene expression in a quantitative manner.  As in the gene expression 

array and the previous real time PCR assay, mRNA was purified from lymphocytes 

obtained from wild type or IFN-
-/-

 B6 mice 10 days following immunization with 

CII/CFA.  This mRNA was then examined for quality and them converted to cDNA for 

use in the real time PCR assay.  While the expression of most of the genes were not 

statistically different between the two groups of cells, several proinflammatory cytokines 

were found to be expressed at a significantly higher level in lymphocytes derived from 

the B6 IFN-
-/-

 mice.  IL-15, IL-17A, IL-18, IL-1 , and TGF  were all found to be 

upregulated in the B6 IFN-
-/-

 mice (Fig 4.5).  In addition, two genes, CXCR3 and Gzmb, 

were differentially expressed between wild type and IFN-
-/-

 B6 mice with a statistical 

significance of p < 0.05.  CXCR3 is a chemokine receptor that binds, interferon inducible 

T cell-  chemoattractant (CXCL11), interferon-inducible protein 10 (CXCL10), and 

monokine induced by -interferon (CXCL9) (139).  This receptor mediates lymphocyte 

migration and is preferentially expressed on Th1 cells and NK cells (140, 141).  Gzmb is 

a serine protease expressed by Tc cells and NK cells and is part of their complement of 

effector proteins that mediate targeted cell death (142, 143). 

The two real time PCR assays reinforce the concept developed from the gene 

expression array that in the absence of IFN-  a proinflammatory state is induced.  This 

state appears to be largely mediated by the upregulated expression of proinflammatory 

cytokines.  In the IFN-
-/-

 mice there is increased production of IL-17, IL-1 , IL-6,  



73 

 

Figure 4.4 Differential Expression of Cytokine Genes between Wild Type and 

IFN-
-/-

 B6 Mice Immunized with CII/CFA. 

Wild type or IFN-
-/-

 B6 mice were immunized with CII/CFA emulsion and lymphocytes 

were recovered from the draining popliteal lymph nodes ten days later.  mRNA was 

isolated from these cells and used to perform Real Time PCR analysis of cytokine gene 

expression.  Data is represented as the ct of IFN-
-/-

 minus wild type, and represents 

the difference in cycle times between the wild type and IFN-
-/-

 required to reach a 

threshold value of PCR amplification.  Positive values indicate higher gene expression in 

the wild type cells while negative values indicate higher expression in the IFN-
-/-

 derived 

cells.  In the IFN-
-/-

 derived lymphocytes, expression of IL-17A, IL-5, IL-1 , IL-6, IL-4, 

and GM-CSF mRNA was higher than in the wild type cells.  TNF- , IL-15, IL-10, IL-

12  and IL-18 BP mRNA expression was higher in the wild type B6 cells.  (*p < 0.05) 
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Figure 4.5 Differential Expression between Wild Type and IFN-
-/-

 B6 Mice 

Immunized with CII/CFA Measured by Immune Panel Real Time PCR Array. 

mRNA was prepared from lymphocytes recovered from the draining lymph nodes of wild 

type or IFN-
-/-

 B6 mice 10 days following immunization with CII/CFA.  This mRNA 

was converted to cDNA for use in a microfluidics based real time PCR assay of immune 

related genes.  Most genes were not significantly differentially expressed between the 

wild type and IFN-
-/-

 derived cells, but increased expression of several proinflammatory 

cytokines occurred in IFN-
-/-

 derived cells.  These cytokines include: IL-15, IL-17A, IL-

1 , IL-1 , and TGF .  (*p ≤ 0.05) 
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GM-CSF, and TGF .  Each of these cytokines has been linked to arthritis development in 

CIA, and their upregulation in the absence of IFN-  likely contributes to arthritis 

susceptibility in the IFN-
-/-

 B6 mice.  Of specific interest, the real time PCR data also 

supports a role for IFN- ’s regulation of IL-18 and IL-18 BP signaling in the 

pathogenesis of CIA.  The gene expression array, and the real time PCR indicated that 

IL-18 expression was slightly higher in wild type compared to IFN-
-/-

 cells, and these 

data were supported by the microfluidics real time PCR data but that difference was not 

statistically significant.  Similarly, the production of IL-18 in stimulated wild type and 

IFN-
-/-

 cells in culture was found to be similar when measured by ELISA (Fig 3.8).  In 

contrast, the expression of IL-18 BP was significantly higher in wild type B6 mice (Fig 

4.4).  In the gene expression array and the real time PCR analysis, the expression of 

IL-18 BP was found to be significantly upregulated in the wild type cells as compared to 

the B6 IFN-
-/-

.  Thus, one of the roles of IFN-  appears to be regulation of IL-18 BP 

expression.  The net effect in the B6 IFN-
-/-

 model appears to be that in the absence of 

IFN- , the function of IL-18 is left unregulated due to the absence of IL-18 BP, 

conferring susceptibility to CIA.

Modification of Disease Activity by Exogenous IL-18 Binding Protein 

The expression data obtained via the real time PCR supports the concept that 

IL-18 BP is playing a protective role in the development of arthritis in the wild type B6 

mouse.  In the wild type mouse, expression of IL-18 BP was elevated over that of the 

IFN-
-/-

 mouse, and several cytokines downstream of IL-18 signaling were seen to be 

elevated in the IFN-
-/-

 mice including IL-1 , GM-CSF, and TGF 1.  If the low 

expression of IL-18 BP in the IFN-
-/-

 is permissive to the development of CIA and 

negative regulation of IL-18 in the wild type mediated by IL-18 BP protects from the 

development of CIA, then exogenous administration of IL-18 BP to the IFN-
-/-

 strain 

should reduce the incidence or severity of CIA in the IFN-
-/-

. 

To test this concept, IFN-
-/-

 B6 mice were injected intraperitoneally with either 1 

mg of recombinant murine IL-18 BPd in 200 l PBS or with 200 l PBS every 24 hours 

for 10 days.  On the second day of this regimen, all mice were immunized with CII/CFA 

to induce CIA.  The development of arthritis in each group was monitored and scored for 

disease incidence and severity.  In the IFN-
-/-

 B6 mice treated with IL-18 BPd, only 13% 

of the mice developed arthritis (Fig 4.6A).  The development of arthritis in the treatment 

group was also delayed until day 40 following immunization with CII.  In the control 

mice, treated with PBS, arthritis incidence was significantly higher (p < 0.01), occurring 

in 63% of the mice, and developed 22 days earlier (day 18) than in the IL-18 BPd treated 

mice (Fig 4.6AB).  There was also a marked difference in the severity of arthritis 

observed in the PBS control mice in comparison to the mice treated with IL-18 BPd.  In 

the PBS treated mice the highest severity score observed was 15 out of a possible 16, and 

for all mice averaged 8.8 out of 16.  In the group treated with IL-18 BPd, arthritis severity 

was significantly lower than in the PBS control group, with the highest severity score 

reached being 4 out of 16, and the inflammation was short lived (Fig 4.6C, 4.7A).  

Arthritis severity as judged by the number of arthritic limbs was also significantly lower  
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Figure 4.6 Administration of IL-18 BP to B6 IFN-
-/-

 Mice Protects against CIA. 

B6 IFN-
-/-

 mice were injected intraperitoneally with 200 µg of recombinant IL-18 BPd 

or PBS as a negative control daily for 10 days.  On the second day of this regimen the 

mice were immunized with CII/CFA emulsion in the tail to induce CIA.  The mice were 

then observed for arthritis development and severity.  A.  Total incidence of arthritis in 

control PBS (n = 10) treated B6 IFN-
-/-

 (n = 9) mice is 63% compared to 13% in IL-18 

BP treated mice.  In the IL-18 BP treated mice, arthritis arises at a delayed time point 

following immunization with CII/CFA starting on day 40 compared to day 18 in control 

mice.  B.  In IL-18 BP treated mice severity per arthritic mouse is approximately half that 

of the control mice, 8 in IL-18 BP treated mice versus 4 in control mice.  C.  The 

dynamics of arthritis were also altered.  The PBS control mice exhibited a prolonged 

active disease period while IL-18 BP treated mice only exhibiting a brief flare of 

inflammation that quickly subsided over 2-3 days.  (*p < 0.01) 
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Figure 4.7 In IFN-
-/-

 B6 Mice, Severity and Limb Involvement of CIA Are 

Reduced Following Treatment with IL-18 BP. 

10 B6 IFN-
-/-

 mice were injected intraperitoneally with 200 µg of recombinant IL-18 

BPd or PBS as a negative control daily for 10 days.  On the second day of this regimen 

the mice were immunized with CII/CFA emulsion in the tail to induce CIA.  A.  The 

average highest severity was 8.8 out of a maximum 16 in the PBS control mice while in 

the IL-18 BP treated mice the lone arthritic mouse developed arthritis with a severity of 

4.  B.  The number of limbs affected with arthritis among arthritic mice averaged 2.6 in 

the PBS group and 1 in the IL-18 BPd treated mice. 
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in the IL-18 BPd treated group.  The number of limbs in each group that were affected 

with arthritis averaged 2.6 in the PBS control group and 1.0 in the IL-18 BPd treated 

group (Fig 4.7B).  Thus, treatment with IL-18 BPd protects IFN-
-/-

 B6 mice from the 

development of CIA, delays the onset, and reduces the severity. 

To more clearly understand the pro-arthritogenic effects of IL-18 in the 

development of CIA, wild type B6 mice were treated with exogenous IL-18 and 

immunized with CII in CFA emulsion.  In an experiment similar to the administration of 

IL-18 BPd, wild type B6 mice were injected intraperitoneally with either 200 g 

recombinant murine IL-18 in 200 l PBS or with PBS alone every 24 hours for 10 days.  

On day two following the first injection with IL-18 or PBS, the mice were immunized 

with CII/CFA emulsion and monitored for the development of arthritis.  When treated 

with IL-18 or PBS, none of the wild type B6 mice developed arthritis (data not shown).  

While it is difficult to make a conclusion from these negative results, two likely 

explanations seem plausible.  First, IL-18 alone may not be sufficient to confer 

susceptibility in the B6 mouse.  Other factors upstream of IL-18 upregulation may be 

required.  Second, production of IFN-  is not impaired in the B6 mouse, and the gene 

expression data indicates that IL-18 BP is produced at high levels compared to the 

IFN-
-/-

 B6 mouse.  The negative feedback pathway that regulates IL-18 activity (IL-18 

promotes IFN-  production, which in turn promotes IL-18 BP production) may increase 

levels of IL-18 BP in order to neutralize the extra, exogenously administered IL-18.  The 

self-regulating nature of the normal immune system in the wild type B6 mouse may be 

capable of mitigating the effects of the extra proinflammatory signal and thus avoids 

autoimmunity. 

Alterations in Function Due to Cytokine Regulation by IL-18, IL-17, and 

IFN-   

Alterations in Proliferative Response 

The gene expression data and the protection from arthritis by IL-18 BPd, indicates 

a role for IL-18, IL-18 BP, and IL-17 downstream of IFN-  regulation of CIA 

pathogenesis.  Studies by others have indicated a T cell proliferative defect in IFN-
-/-

 

mice (65).  Disregulated proliferation of T cells in the absence of IFN-
-/-

 has been 

implicated as a potential pathogenic mechanism in autoimmune models of CIA and EAE.  

Baseline proliferation of lymph node cells either in the absence of antigen stimulation or 

T cell proliferation following immunization with antigen and stimulation in culture with 

either CII, Mog(35-55) or microbial antigens is increased in cells from IFN-
-/-

 B6 

compared to wild type cells (65, 144-146).  Both IL-18 and IL-17 have proinflammatory 

functions that support the differentiation and expansion of many immune cell types 

including T cells, NK cell, and monocytes/macrophages, either by acting directly on 

target cells, or through induction of other proinflammatory cytokines (120, 137, 147, 

148).  Since the actions of these cytokines are regulated by IFN- , increased proliferation 

observed in cells from IFN-
-/-

 mice may be due to the activity of IL-18 or IL-17. 
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To test this concept, exogenous IL-18, IL-18 BPd, IFN- , and IL-17 was added to 

cultures of splenocytes from either naive wild type or IFN-
-/-

 B6 mice, and proliferation 

in response to anti-CD3 and anti-CD28 stimulation was measured by 
3
H-thymidine 

incorporation.  In control cultures without exogenous cytokine, the proliferation in 

response to anti-CD3 and anti-CD28 stimulation was greatly increased in the IFN-
-/-

 

cells compared to the wild type (Fig 4.8A).  Proliferation in the IFN-
-/-

 cells was 122,000 

± 3000 DPM versus 31,000 ± 5,000 DPM in the wild type, clearly indicating an enhanced 

proliferative state in the IFN-
-/-

 cells (p < 0.05).  The cells were then stimulated with 

anti-CD3 and anti-CD28 antibodies in the presence of 5 g/ml IL-18 BPd, 6 ng/ml IFN- , 

240 ng/ml IL-18, or 8 ng/ml IL-17 (Fig 4.8B).  To illustrate the differential effect of these 

cytokines on the proliferative response of cells from wild type or IFN-
-/-

 B6 mice, the 

proliferation in each culture condition was normalized to the proliferation observed in the 

control cultures, and is displayed as the percentage of the control.  The addition of 

exogenous cytokines affected the proliferation of wild type cells to a greater extent than 

the IFN-
-/-

 derived cells.  In the wild type, the addition of IL-18 enhanced the 

proliferative response to 284 ± 41% of the control cell response (p < 0.05).  In the IFN-
-/-

 

cells, proliferation was 120 ± 1% of the control (p < 0.05).  When IL-18 BPd was added 

to the cell cultures, there was a large suppressive effect on proliferation in the wild type 

cells, but not in the IFN-
-/-

 derived cells.  The wild type cells proliferated at only 50 ± 

5% of the control.  The wild type cells stimulated with IL-17 did not proliferate more 

than control cells while in the IFN-
-/-

 derived cells proliferation was slightly higher, 110 

± 5% of the control (p < 0.05).  The addition of IFN-  significantly suppressed IFN-
-/-

 

derived cell proliferation (p < 0.05), but not wild type cells.  While statistically 

significant, the small changes in proliferation observed in the IFN-
-/-

 derived cells when 

co-cultured with IFN-  or IL-17 may not be biologically significant given the greatly 

increased proliferative response observed when these cells were stimulated with anti-CD3 

and anti-CD28 alone.  These data indicate that IL-18 has strong pro-proliferative effects 

on T cells, with IL-18 strongly supporting proliferation of T cells from wild type B6 mice 

and to a lesser extent in IFN-
-/-

 cells.  In wild type cells, this pro-proliferative effect of 

IL-18 is regulated by IL-18 BP, indicated by the suppression of proliferation when extra 

exogenous IL-18 BPd is added.  In IFN-
-/-

 derived cells, addition of IL-18 BPd is less 

effective in inhibition of proliferative response to anti-CD3 and anti-CD28 stimulation.  

This is perhaps due to reduced endogenous IL-18 BP production, or is an indication that 

proliferation on these cells is supported by the action of other proinflammatory cytokines 

in addition to IL-18 such as IL-17, TNF- , IL-1 , or GM-CSF, all of which have been 

shown to be increased in IFN-
-/-

 cells following stimulation (Fig. 3.8).  Since expression 

of IL-18 BP is mediated by IFN-  and as indicated here, IL-18 BP regulates T cell 

proliferative responses in wild type mice, this data reinforces the concept that IFN-  is a 

regulator of autoimmune development, and one mechanism of this regulation may be by 

the inhibition of T cell proliferation. 
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Figure 4.8 Exogenous Administration of Proinflammatory Cytokines or IL-18 

BP Alters the Proliferative Response of Splenocytes from Both Wild Type and IFN-
-/-

 B6 Mice When Stimulated in Culture with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve B6 or B6 IFN-
-/-

 mice were stimulated in culture with anti-CD3 

and anti-CD28 monoclonal antibodies in the presence of exogenous IL-18 BPd (5 µg/ml), 

IFN-  (6 ng/ml), IL-18 (240 ng/ml), and IL-17 (8 ng/ml).  Proliferation was measured by 
3
H-thymidine incorporation.  A.  When stimulated with anti-CD3 and anti-CD28 

splenocytes from B6 IFN-
-/-

 mice proliferated to a greater extent than wild type B6 

derived cells.  B6 IFN-
-/-

 splenocytes proliferated four fold more than the B6 wild type 

derived cells.  B.  In order to measure the effect of exogenously added IL-18 BPd, IFN- , 

IL-18, and IL-17 on the proliferative response of splenocytes from wild type IFN-
-/-

 B6 

mice, proliferation in the presence of each cytokine and IL-18 BPd was normalized to the 

proliferation observed without exogenous cytokine or IL-18 BPd.  This allows 

comparison of alterations in proliferative response in each culture condition, and 

comparison of the relative effect on proliferation between the wild type and IFN-
-/-

 B6 

derived splenocytes.  In the wild type B6 derived cells addition of IL-18 or IL-18 BP, 

increased or decreased proliferative response, respectively.  In the IFN-
-/-

 B6 derived 

cells, there were minor alterations in proliferative response when IL-18, IL-18 BP, IFN- , 

or IL-17 were added.  IL-18, and IL-17 significantly promoted increased proliferation in 

the IFN-
-/-

derived cells while IFN-  significantly reduced proliferative response.  

However, these changes are small compared to the high proliferation observed without 

exogenous addition of cytokines and may not be biologically relevant.  (*p < 0.05) 
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Alterations in Cytokine Production 

One key concept in understanding cytokine regulation of immune function is that 

cytokines do not operate independently, but in cytokine networks that consist of both 

stimulatory and inhibitory signals, the balance of which determines the ultimate outcome 

in terms of cell differentiation, function, and immune response.  To better understand 

how cytokine networks that are permissive to autoimmunity develop in the IFN-
-/-

 mice 

cytokine production by T cells from wild type and IFN-
-/-

 B6 mice were measured.  

Splenocytes from naïve wild type or IFN-
-/-

 B6 mice were stimulated in culture for three 

days with anti-CD3 and anti-CD28 and supernatants were analyzed for cytokine 

expression using a multiplexed ELISA.  Cytokines that were shown to have differential 

expression between wild type and IFN-
-/-

 B6 mice in the above gene expression and 

cellular assays were selected based on whether or not their expression is stimulated by 

IFN- , IL-18, or IL-17, and their relevance to CIA pathogenesis.  To assess the role of 

IFN- , IL-18, and IL-17 on the production of these cytokines in the stimulated 

splenocytes from wild type and IFN-
-/-

 B6, exogenous recombinant IFN- , IL-18, IL-17 

and IL-18 BPd was titrated at concentrations spanning their effective dose in culture.  

When the concentration of cytokines produced by the stimulated cells was examined it 

was noted that in the wild type cells there was a dearth of cytokine production following 

stimulation.  Only IFN-  was produced at high levels (Fig 4.9AC).  This was in contrast 

to the production of cytokines in the stimulated IFN-
-/-

 cells.  In these cells there was 

increased production of IL-2, GM-CSF, IL-13, IL-4, IL-17, IL-5, TNF- , M-CSF, IL-6, 

and IL-1  with anti-CD3 and anti-CD28 stimulation only (Fig 4.9BD).  When exogenous 

cytokines were added to the cell cultures many modulating effects on cytokine production 

were noted.  The addition of IL-18 BPd had contradictory effects on cytokine production 

in both wild type and IFN-
-/-

 cells.  In the wild type T cells, both IFN-  and IL-17 

expression increased with the addition of IL-18 BPd (Fig 4.9AC).  In the IFN-
-/-

 cell 

cultures, titration with IL-18 BP promoted increased production of IL-2, GM-CSF, IL-13, 

IL-4, IL-17, TNF- , IL-5, IL-6, and IL-1  (Fig 4.9BD).  IL-18 had potent effects on 

cytokine production in both wild type and IFN-
-/-

 derived cells.  Treatment of wild type 

derived cells in culture with IL-18 promoted increased production of IFN- , GM-CSF, 

IL-13, IL-4, IL-2, IL-17, TNF- , IL-6, IL-1 , IL-5, and M-CSF (Fig 4.10AC).  In the 

IFN-
-/-

 derived cells, stimulation with IL-18 promoted increased production of IL-13, 

GM-CSF, IL-17, and IL-5  (Fig 4.10BD).  The addition of IL-17 to wild type cell 

promoted increased TNF-  production (Fig 4.11AC).  In the IFN-
-/-

 culture, addition of 

IL-17 caused increases in the expression of IL-13, IL-4, and TNF-  (Fig 4.11CD).  

Addition of IFN-  had minimal effects on the wild type cultures causing increased 

expression of only IL-17 (Fig 4.12AC), but in the IFN-
-/-

 derived cell cultures, there was 

a dampening effect on cytokine production inhibiting the production of all cytokines 

measured (Fig 4.12BD).  These data illustrate the complex effects of IL-18, IL-17, and 

IFN-  on the development of cytokine networks.  IL-18 has potent effects on the 

production of proinflammatory cytokines in both the wild type and IFN-
-/-

 cultures 

which is consistent with a role for IL-18 and IL-18 BP in the regulation of CIA 

pathogenesis.  IL-17 has less of a role in the stimulation of cytokines and seemed to 

potentiate cytokine production in the IFN-
-/-

 rather than have strong inductive effects.   
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Figure 4.9 Modification of Lymphocyte Cytokine Expression by IL-18 BPd in 

Lymphocyte Cultures Stimulated with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve B6 and B6 IFN-
-/-

 mice were stimulated in culture with anti-

CD3 and anti-CD28 monoclonal antibodies in the presence of IL-18 BPd titrated over its 

effective dose.  AC.  There was decreased production of cytokines in stimulated wild 

type derived cells compared to IFN-
-/-

 derived cells with only IFN-  produced at high 

levels in the wild type cells.  When stimulated with anti-CD3/CD28 in the presence of IL-

18 BPd increased production of IFN-  and IL-17 was observed.  BD.  Conversely, anti-

CD3/CD28 stimulation of IFN-
-/-

 derived cells resulted in increased production of IL-2, 

GM-CSF, IL-13, IL-4, IL-17, TNF- , IL-5, M-CSF, IL-6, and IL-1  when compared to 

the wild type cells.  Titration with IL-18 BP promoted increased production of IL-2, GM-

CSF, IL-13, IL-4, IL-17, TNF- , IL-5, IL-6, and IL-1 . 
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Figure 4.10 Modification of Lymphocyte Cytokine Expression by IL-18 in 

Lymphocyte Cultures Stimulated with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve B6 and B6 IFN-
-/-

 mice were stimulated in culture with anti-

CD3 and anti-CD28 monoclonal antibodies in the presence of IL-18 titrated over its 

effective dose.  AC.  Treatment of wild type derived cells in culture with IL-18 promoted 

increased production of IFN- , GM-CSF, IL-13, IL-4, IL-2, IL-17, TNF- , IL-6, IL-1 , 

IL-5, and M-CSF.  BD.  In the IFN-
-/-

 derived cells, stimulation with IL-18 promoted 

increased production of IL-13, GM-CSF, IL-17, and IL-5.  The expression of IL-4, M-

CSF, TNF- , IL-6, and IL-1  were unaffected, yet were produced at high levels when 

compared to the wild type derived cells. 
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Figure 4.11 Modification of Lymphocyte Cytokine Expression by IL-17 in 

Lymphocyte Cultures Stimulated with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve B6 and B6 IFN-
-/-

 mice were stimulated in culture with anti-

CD3 and anti-CD28 monoclonal antibodies in the presence of IL-17 titrated over its 

effective dose.  AC.  When wild type derived cells were stimulated with anti-CD3/CD28 

in the presence of IL-17, only increased production of TNF-  was observed.  BD.  

Addition of IL-17 to IFN-  derived cells promoted increased production of IL-13, IL-4, 

and TNF- . 
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Figure 4.12 Modification of Lymphocyte Cytokine Expression by IFN-  in 

Lymphocyte Cultures Stimulated with Anti-CD3 and Anti-CD28. 

Splenocytes from naïve B6 and B6 IFN-
-/-

 mice were stimulated in culture with anti-

CD3 and anti-CD28 monoclonal antibodies in the presence of IFN-  titrated over its 

effective dose.  AC.  In wild type derived cells, most cytokines were unaffected by the 

addition of IFN- , however, decreased production of TNF- , and increased production of 

IL-17 was observed.  BD.  Addition of IFN-  to stimulated cells derived from IFN-
-/-

 

mice had inhibitory effects on cytokine production.  Production of all cytokines measured 

decreased as IFN-  was added to the cultures. 
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These data also illustrate the role of IFN-  as a regulatory cytokine.  This suppressive 

effect of IFN-  on the production of proinflammatory cytokines in the IFN-
-/-

 culture 

indicates that suppression of proinflammatory cytokine production may be one 

mechanism by which IFN-  protects against the development of CIA in wild type B6 

mice. 

Discussion 

In these studies we sought to identify a mechanism for alterations in the cytokine 

milieu mediated by IFN-  that regulate a pathogenic immune response that leads to 

autoimmunity.  To identify this mechanism, alterations in the gene expression and 

functional markers of immune response between wild type and IFN-
-/-

 B6 mice 

immunized with CII were investigated in order to identify potential autoimmune 

mediators that develop as a result of IFN-  deficiency.  These studies identified a number 

of genes whose expression was altered by the absence of IFN- .  Among these genes, a 

specific cytokine signaling pathway, IFN- ’s regulation of IL-18 BP expression, was 

identified as an important mediator of the pathogenesis of autoimmune arthritis.  IL-18 

BP expression was reduced in the IFN-
-/-

 mouse and was shown to protect from the 

development of CIA.  In addition, the production of proinflammatory cytokines is 

increased in the absence of IFN- , resulting in altered T cell effector function that 

potentially promotes susceptibility to autoimmune arthritis in IFN-
-/-

 B6 mice. 

The expression of genes that are regulated by IFN- , and that contribute to 

arthritis pathogenesis during the development of CIA, were identified by comparing 

mRNA expression in lymphocytes obtained from wild type and IFN-
-/-

 B6 mice 

immunized with CII/CFA.  The use of a gene expression array identified 1612 genes 

expressed at statistically significant distinct levels between the two strains of mice.  This 

is nearly 5% of the 34,000 genes measured, and indicates that IFN-  plays a major role in 

regulating gene expression during the initial immune response to CII.  The gene 

expression array provided a starting point to uncover the pathogenic mechanisms that 

lead to autoimmunity in the IFN-
-/-

 B6 mouse.  A number of genes that are directly 

related to immune function were differentially expressed between the wild type and 

IFN-
-/-

 mice, including cytokines and chemokines, immune cell receptors, and tissue 

remodeling genes that possibly contribute to joint destruction during active inflammation.  

However, while only IFN-
-/-

 B6 mice are susceptible to CIA, it is important to note that 

the wild type mouse was also immunized with CII/CFA.  Even without the CII 

component, CFA is strongly immunogenic.  The Mtb present in CFA stimulates Th1 

responses, while the paraffin oil stimulates innate immune mechanisms (149).  The strong 

IFN-  response to the Mtb in the wild type mouse may explain the increased expression 

in these mice of several cytokines including IL-5, IL-12, and the immune receptors TLR 

3 and TLR 7.  However, when one examines the genes that are differentially expressed in 

the IFN-
-/-

 mouse, a pro-arthritogenic pattern of gene expression emerges, and many of 

the genes identified by the expression array have been linked to the development of RA 

or CIA.  In the IFN-
-/-

 mice, these differentially expressed genes include increased 

expression of the cell trafficking molecule Clfsf3 whose expression has been linked to 
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increased risk of RA (113).  In addition, evidence of increased joint remodeling in 

IFN-
-/-

 mice is observed in the overexpression of genes including chondroitan sulfate 

proteoglycan 2, and the matrix metalloproteinases 15, and 19.  Additionally, two 

cytokines with immunomodulatory functions are identified as differentially expressed 

between the wild type and IFN-
-/-

 mouse.  These include increased expression of the 

proinflammatory cytokine IL-17 and the reduced expression of IL-18 BP in the IFN-
-/-

 

mouse.   

The expression of both IL-18 and IL-17 has been linked to the development of 

autoimmunity in both human and rodent models (22, 120, 150).  Based on their known 

proinflammatory function, increases in the expression of IL-18 and IL-17 are likely 

linked to the increased susceptibility of CIA in the IFN-
-/-

 mouse.  Therefore, to further 

examine the functional changes that occur in the autoimmune response due to the absence 

of IFN- , the expression of specific immune related genes was quantitated using real time 

PCR.  These data indicated that in the absence of IFN-  there is upregulated expression of 

the proinflammatory cytokines IL-17, IL-1 , IL-6, GM-CSF, and TGF .  Each of these 

cytokines had been linked to arthritis development in CIA, and their upregulation is 

consistent with the concept that the absence of IFN- , a proinflammatory phenotype is 

created that mediates arthritis susceptibility in the IFN-
-/-

 B6 mice.  The real time PCR 

data also supports a role for IFN-  regulation of IL-18 and IL-18 BP signaling in the 

pathogenesis of CIA, as the expression of IL-18 BP was significantly higher in wild type 

B6 mice that are resistant to CIA.  IL-18 BP forms part of a feedback regulatory circuit 

that modulates the activity of IL-18 (151).  Increased IL-18 signaling causes increased 

IFN-  production, which then promotes increased IL-18 BP production.  IL-18 BP then 

binds to IL-18 and prevents its signaling through the IL-18 receptor.  IFN-  regulation of 

IL-18 BP makes sense as a regulator of autoimmune pathogenesis in CIA.  Since in the 

IFN-
-/-

 mouse there is no production of IFN- , the result of this is reduced production of 

IL-18 BP and therefore increased levels of free IL-18 available for binding to its receptor.  

IL-18 BP expression is induced by IFN- , and IL-18 is known to contribute to or 

modulate the pathogenesis of RA and CIA, decreased expression of IL-18 BP due to the 

absence of IFN-  in the IFN-
-/-

 mouse results in increased levels of free IL-18 available 

for signaling, thus increasing its activity and promoting the development of autoimmunity 

in IFN-
-/-

 B6 mice.  In order to test this concept that IFN- ’s regulation of IL-18 BP 

mediates arthritis pathogenesis, the development of CIA was monitored in wild type or 

IFN-
-/-

 B6 mice immunized with CII and treated with exogenous IL-18 BP.  When 

treated with exogenous IL-18 BP, IFN-
-/-

 B6 mice were protected from the development 

of CIA with reduction in both the incidence and severity of arthritis.  These results 

confirm that IL-18 BP plays a significant role in promoting the development of CIA in 

IFN-
-/-

 B6 mice. 

Having identified IL-18 BP and implicating the expression of proinflammatory 

cytokines including IL-17 as mediators of autoimmune arthritis in the IFN-
-/-

 mouse, we 

next sought to identify functional mechanisms by which IL-18/IL-18 BP and IL-17 alter 

immune response to promote autoimmunity.  To do this, we examined the functional 

responses of stimulated T cells from wild type and IFN-
-/-

 B6 mice in terms of altered 
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proliferative and cytokine production of T cells when stimulated with anti-CD3 and anti-

CD28 in culture and supplied with exogenous IL-17, IL-18, IFN- , and IL-18 BP.  

Proliferation of T cells in response to stimulation with anti-CD3/CD28 was significantly 

increased in the IFN-
-/-

 cells when compared to the wild type and is consistent with 

published data that the absence of IFN-  expression induces a pro-proliferative state.  The 

most significant alteration in proliferation occurred when IL-18 or IL-18 BP was added to 

the cultures of wild type cells.  In these cultures addition of IL-18 significantly increased 

proliferation in response to CD3/CD28 stimulation while the addition of IL-18 BP 

inhibited proliferation in response to CD3/CD28 stimulation of wild type cells.  In 

IFN-
-/-

 cells, proliferative responses to CD3/CD28 stimulation were also altered when 

exogenous cytokine was added.  When IFN-  was added to the cultures, proliferative 

responses were slightly inhibited, while IL-17 or IL-18 slightly enhanced the proliferative 

response.  However, though statistically significant, these small alterations may not be 

biologically significant given the magnitude of proliferation observed in IFN-
-/-

 cells in 

response to CD3/CD28 stimulation.  The alterations observed in the wild type cells when 

co-cultured with IL-18 or IL-18 BP and the high proliferative response observed in the 

IFN-
-/-

 cells supports a role for proliferative defects mediated by IFN-  and IL-18 as a 

potential mechanism of arthritis susceptibility in IFN-
-/-

 B6 mice.  We propose that in 

the IFN-
-/-

 B6 mice, proliferation of T cells is disregulated, while in the wild type mice 

proliferation is controlled, in part by the negative regulation of IL-18 signaling mediated 

by IL-18 BP.  Evidence of this regulation is the increased or reduced proliferation 

observed when IL-18 or IL-18 BP, respectively, is added to T cell cultures.  In the 

IFN-
-/-

 B6 there is reduced production of IL-18 BP that allows increased signaling of 

IL-18 resulting in increased T cell proliferative responses. 

One aspect of our hypothesis that IFN-  regulates autoimmune susceptibility is 

that in the absence of IFN-  global alterations occur in the immune system milieu that 

cause a pro-inflammatory phenotype mediated by cytokine signaling that regulates 

susceptibility to autoimmunity.  The previous studies described here have indicated that 

proinflammatory cytokines are expressed at high levels in IFN-
-/-

 mice and that IL-17 

and IL-18 have particular importance in the regulation of autoimmunity.  However, to 

understand autoimmune pathogenesis it is important to consider that cytokines do not 

operate independently of one another.  Instead, immune and accessory cells produce 

networks of cytokines that provide both stimulatory and inhibitory signals to immune 

cells.  The balance of these signals ultimately directs the final outcome of an immune 

response.  In order to identify how the absence of IFN-  regulates these networks and to 

characterize the role of IL-17 and IL-18 in this regulation, cytokine production by 

lymphocytes from wild type or IFN-
-/-

 B6 mice was measured in culture supernatants 

following stimulation in culture with anti-CD3 and anti-CD28 antibodies.  When 

cytokine levels were measured in these cultures it was observed that the IFN-
-/-

 derived 

cells produced an abundance of cytokines when compared to the wild type derived cells 

including those associated with both an inflammatory Th1 or Th17 response and those 

associated with a Th2 response.  This is consistent with our earlier observations that 

cytokine production is upregulated in the IFN-
-/-

 B6 mice following immunization with 

CII/CFA.  The most significant regulatory mechanism identified by this assay is the 



89 

influence of IL-18 on cytokine expression when added to wild type cell cultures 

stimulated with anti-CD3/CD28 and the influence of exogenous IFN-  when titrated in 

cultures of IFN-
-/-

 derived cells.  IL-18 induces production of cytokines in the wild type 

derived cells in a pattern that closely resembles the expression pattern of cytokines 

produced by IFN-
-/-

 derived cells, either with or without exogenous cytokine 

administration.  In addition, when IFN-  is titrated in cultures of stimulated IFN-
-/-

 cells 

there is a inhibition of cytokine production.  This result supports the concept that in the 

IFN-
-/-

 the development of a pro-arthritogenic cytokine network is mediated by 

increased IL-18 signaling likely due to decreased production of IL-18 BP in the absence 

of IFN- .  Surprisingly, the addition of IL-17 did not seem to greatly alter cytokine 

production.  IL-17 induced only minor increases in cytokine production in IFN-
-/-

 

derived cells, and had little or no effect on wild type derived T cells. 

These studies have identified mechanisms by which IFN-  mediates arthritis 

susceptibility.  Consistent with our hypothesis that IFN-  acts as a regulator of immune 

function, alterations in immune function were identified as a result of IFN-  deficiency 

that likely mediate susceptibility to autoimmunity and CIA in IFN-
-/-

 B6 mice.  Among 

these changes, alterations in cytokine production, proliferative response, and gene 

expression were observed.  A key pathway of IFN- ’s regulation of autoimmune 

susceptibility was identified as IFN- ’s regulation of IL-18 signaling via its influence on 

the production of IL-18 BP.  This pathway was shown to directly regulate CIA 

susceptibility as exogenous IL-18 BP protected against the development of CIA when 

administered to IFN-
-/-

 mice at the time of antigen exposure.  These observations about 

the nature of immune function during an autoimmune response increases our 

understanding of the regulatory processes that protect from autoimmune development and 

may potentially serve as models in the design of therapeutic treatments for autoimmune 

disease. 
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Chapter 5.   Conclusion 

In the autoimmune disease, RA, the initial events of the autoimmune response are 

poorly defined.  However, several aspects of RA pathogenesis have been identified.  For 

example, CD4
+
 Th cells have been implicated in RA pathogenesis due to linkage of HLA-

DR to increased susceptibility to RA (152).  Proinflammatory cytokines have also been 

implicated in driving the pathogenic immune response in RA.  The expression of T cell 

derived cytokines including IL-2, IFN- , and IL-17, has been observed in the synovial 

fluid of arthritic joints during RA (21, 22, 153, 154).  These T cell derived cytokines 

promote the production, in the RA joint synovium, of a number of inflammatory 

macrophage and fibroblast derived cytokines including IL-1, IL-6, IL-15, IL-18, TNF- , 

and GM-CSF.  Though inflammatory cytokine-producing CD4
+
 Th cells, stimulated by 

autoantigens presented by MHC class II molecules have been implicated in the 

pathogenesis of RA, the exact mechanisms by which autoantigen stimulation and 

cytokine signaling interact to activate T cells and cause autoimmunity remains elusive, 

and many questions remain about how Th derived cytokines promote autoimmunity.  For 

this reason, the use of mouse models in the study of RA has the potential to provide 

needed insight into the mechanisms of autoimmune development that lead to autoimmune 

disease.  CIA is a mouse model of RA that mimics the human disease in many aspects.  

The histopathology of CIA resembles RA with similar cartilage and bone erosions and 

cellular infiltrate into the joint synovium (155).  In addition, the pathogenesis of CIA 

appears to be similar to RA.  As in RA, CIA susceptibility among mouse strains is 

strongly linked to MHC class II haplotype, implicating CD4
+
 Th cells in the pathogenesis 

of CIA (69).  Finally, the expression of proinflammatory cytokines is similar in RA and 

CIA.  The T cell derived cytokines IL-2, IFN- , and IL-17 as well as downstream 

proinflammatory cytokines IL-1, IL-6, IL-15, IL-18, TNF- , and GM-CSF are all 

produced in the joint synovium during CIA (21, 156, 157).  For these reasons, the mouse 

model of CIA provides an ideal system in which to examine autoimmune mechanisms 

that may provide insight to the pathogenesis of the human autoimmune disease RA. 

In mice, susceptibility to CIA is strongly linked to expression of the MHC class II 

alleles I-A
q
 and I-A

r
 (55, 56, 69).  Mice that express other MHC class II alleles such as I-

A
b
 in the B6 mouse are non-susceptible to CIA.  Consistent with previous theory of MHC 

based susceptibility to autoimmunity we hypothesized that CII, the inducing antigen for 

CIA, contains determinants that bind I-A
b
 only with low affinity and reduces the 

immunogenicity of CII in I-A
b
-expressing mice, and therefore confers resistance to I-A

b
-

expressing mice such as the B6 strain.  Recently, a CIA model was described in which 

the removal of the gene expressing the cytokine IFN-  results in the conversion of CIA 

non-susceptible B6 mice to full CIA susceptibility (17).  The discovery that susceptibility 

to autoimmunity was solely mediated by the absence of the Th1 produced 

proinflammatory cytokine, IFN- , was paradoxical to conventional dogma that 

autoimmune pathogenesis was mediated by CD4
+
 Th1 T cells, and has caused a 

reexamination of the role of these cells and the role of cytokines in autoimmune 

development.  In light of the discovery that IFN-  mediates autoimmune susceptibility, 

that CII likely contains weakly antigenic I-A
b
 determinants, and that the cytokine milieu 
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is of paramount importance in autoimmune development, we hypothesized that in the 

IFN-
-/-

 B6 mouse, the absence of IFN-  alters immune function in terms of T cell 

activation, proliferation, and cytokine production.  We propose that as a result of these 

alterations in immune function, a disregulated proinflammatory phenotype develops in 

which a pro-autoimmune cytokine milieu is created that supports the activation of CII-

specific T cells by weakly antigenic CII determinants and allows the progression to 

autoimmunity.  Therefore, in order to test this hypothesis, we examined functional 

alterations that occur in IFN-
-/-

 B6 mice following immunization with CII and sought to 

characterize I-A
b
-restricted determinants present in CII that support T cell activation and 

the progression to autoimmunity. 

Since we believed that CII contains I-A
b
-restricted determinants of low 

immunogenic potential, and that the T cell response to these determinants was mediated 

by IFN- , we examined the immunogenicity of CII in both CIA-susceptible and non-

susceptible mouse strains that express I-A
b
.  To do this, we immunized wild type B6 

mice, which are non-susceptible to CIA, and IFN-
-/-

 B6 or CXB2 mice, which are 

susceptible to CIA, with CII and examined the proliferative responses of T cells from 

these mice when stimulated with CII or a library of peptides derived from CII sequence 

in culture.  When proliferative responses to CII were examined in these three strains of 

mice it was found that there were minimal T cell responses to CII.  This indicated that 

I-A
b
 CII determinants were weakly antigenic as hypothesized.  However, other 

explanations of the weak proliferative response observed in these cells following 

stimulation are possible.  For example, regulatory T cells may be present that inhibit 

proliferation in response to stimulation with CII.  Also, the absence of IFN-  may reduce 

proliferative response in vitro by altering the expression of costimulatory molecules on 

the surface of APC.  IFN-  is known to promote the activation of macrophages and 

dendritic cells (158), and promotes the expression of both MHC class II and 

costimulatory molecules including CD80/CD86 (159).  If T cell costimulation is altered 

in the absence of IFN- , weak proliferative responses may be observed in response to 

antigen presented by APC that have not been activated.  Several experiments are possible 

to test this possibility.  One method to test this possibility would be to use a control 

antigen other than CII such as Mog or CytC that is known induce proliferation of I-A
b
-

restricted T cells (160, 161).  In vitro proliferation of I-A
b
-restricted T cells obtained from 

immunized IFN-
-/-

 B6 mice would rule out ineffectual antigen presentation by APC as a 

mechanism of reduced proliferative response in the IFN-
-/-

 background. 

While there appeared to be minimal T cell proliferative response to CII 

determinants in I-A
b
-expressing mice, we believed that CII-reactive T cells were being 

produced.  Evidence for this was that anti-CII IgG subclasses are produced in these mice 

following immunization with CII (69).  Since the switch from IgM to IgG production by 

B cells is driven by T cells, this evidence of CII-specific IgG strongly indicated a CII-

specific T cell response was occurring in vivo.  We sought to identify these T cells and 

the CII determinants they recognize by producing I-A
b
-restricted T cell hybridomas from 

wild type B6, IFN-
-/-

 B6, and CXB2 mice immunized with CII.  Hybridoma generation 

allowed the low frequency CII-specific T cells to be immortalized and expanded for 

subsequent determinant analysis.  While various attempts were made to produce these T 
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cell hybridomas in wild type and IFN-
-/-

 B6 mice, the production of these cells proved 

successful in only the CXB2 mouse strain.  Stimulation of these CII-specific T cell 

hybridomas with a CII peptide library allowed the identification of an immunodominant 

I-A
b
-restricted CII determinant, located at position 514-525 of the CII sequence.  

Structurally, MHC class II molecules contain an open ended binding grove in which nine 

amino acids can bind closely.  The peptide determinant interacts closely with the MHC 

class II molecule in this region through interactions with the carbon backbone of the 

peptide and via a series of hydrophobic pockets within the MHC molecule referred to as 

p1, p4, p6, p7, and p9.  Also, due to the open ended nature of the binding groove, amino 

acids of the peptide that extend beyond the nine amino acid core can contribute to 

binding stability (162).  In order to experimentally define the core determinant, and to 

assess the contribution of each amino acid within the CII determinant to the formation of 

the ternary complex, the T cell hybridomas were stimulated with a panel of alanine 

substituted analog peptides with individual substitutions at each position from CII(512-

526).  Analysis of T cell hybridoma stimulation by these analog peptides allowed the 

identification of the core determinant as CII(517-525).  Interestingly, it was found that 

substitution with alanine at five of the positions within the nine amino acid core 

completely abrogated T cell stimulation.  This is unusual in that similar studies, in which 

alanine substituted analog peptides were used to stimulate CII-specific T cell hybridomas 

restricted to other MHC class II haplotypes, including DR1 and I-A
q
, the substitutions 

were well tolerated and tended to reduce rather than completely inhibit T cell stimulation 

by the analog peptide (101, 163).  This may be an indication that the stability of the I-A
b
 

CII determinant within the peptide/MHC /TCR complex is low and therefore highly 

sensitive to slight changes in affinity mediated by the alanine substitutions.  As an 

additional approach to determine the immunogenic properties of the I-A
b
-restricted CII 

determinant, we used a bioinformatic method, the MHC binding algorithm SMM-align, 

to calculate the affinity of CII for I-A
b
 MHC.  These calculations indicated that there 

were no sequences present in CII that bind I-A
b
 with high affinity, including the CII(512-

528) determinant identified by the T cell hybridomas. 

Characterization of CII and CII(512-528) indicates that CII determinants weakly 

bind I-A
b
.  Evidence for this include the low proliferative responses of T cells following 

stimulation with CII, the weak stimulatory characteristics of alanine substituted analog 

determinant peptides, the identification of the core binding residues of CII(517-525), and 

the observation that amino acid differences among CII from different species (mouse, 

chicken, and bovine) may cause the altered immunogenicity of CII from the different 

species.  Reduced TCR affinity for peptide determinants reduces the activation of T cells 

for those determinants.  A low affinity determinant engages fewer T cell receptors and 

would cause reduced signaling, thus resulting in reduced T cell activation (164).  In a 

mouse model of MS, EAE, there is evidence that IFN-  may regulate T cell responses to 

weak antigens (165).  In one study by Brian Evavold, a low affinity variant of the 

encephalogenic peptide Mog(35-55) was used to induce EAE.  The use of this peptide 

variant in wild type B6 mice results in attenuated disease severity and reduced CD4
+
 T 

cell proliferative responses.  However, when IFN-
-/-

 or IFN- R
-/-

 mice are immunized 

with the variant peptide, both increased encephalogenicity and CD4
+
 T cell proliferative 

responses are increased in a manner independent of IL-17 (165).  The increased immune 
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response to the low affinity Mog determinant observed in the EAE model bears a striking 

resemblance to the responses observed in the CIA model to the determinant identified 

here, and may be a mechanism of IFN-  regulation of disease susceptibility in the IFN-
-/-

 

CIA model.  CII derived from chicken or bovine sources differs in one amino acid in the 

CII(517-525) core region, P518A.  This mutation between the two species may explain 

why chicken derived CII is arthritogenic in the B6 mouse while the bovine derived CII is 

not.  The bovine derived CII determinant is likely of lower affinity than the chicken 

derived determinant.  Additional studies are needed to define how the weak CII 

determinant present in bovine CII affects T cell response in the IFN-
-/-

 B6 mice.  

Measurement of T cell proliferation in wild type and IFN-
-/-

 B6 mice in response to 

stimulation with both chicken and bovine determinants would identify if IFN-  is 

regulating T cell responses to this low affinity determinant and potentially mediating CIA 

susceptibility by this mechanism.  In the CIA model, immunization with peptide does not 

induce arthritis.  This is likely due to the absence of CII-specific antibodies that are 

produced only when native collagen is used as the immunogen.  An experiment that 

would be useful in characterizing low affinity determinants in the pathogenesis of CIA 

would be to co-immunize wild type or IFN-
-/-

 B6 mice with both native bovine CII and 

peptide determinants derived from either chicken or bovine sequence.  Enhanced CIA in 

wild type mice when co-immunized with higher affinity CII determinants would indicate 

that variation in affinity of CII determinants mediates arthritis susceptibility.  In the 

IFN-
-/-

 B6 mice enhanced CIA with higher affinity determinants as opposed to low 

affinity determinants would indicate that determinant affinity mediates arthritis 

susceptibility in these mice. 

Having identified a low affinity I-A
b
-restricted CII determinant in vitro, we next 

sought to confirm its relevance to CIA pathogenesis in vivo.  To do this we measured the 

proliferative response of T cells from I-A
b
-expressing mice immunized with CII(512-

528), and examined the ability of the CII(512-528) peptide to induce tolerance when 

given to CXB2 mice prior to immunization with CII to induce CIA.  When T cells from 

B6 or CXB2 mice were stimulated with CII(512-528) a proliferative response was 

observed.  Also, tolerizing CXB2 mice with CII(512-528) prior to immunization with CII 

reduced both the incidence and severity of the resulting arthritis.  These studies 

confirmed that the CII(512-528) determinant was capable of stimulating a T cell 

proliferative response in vivo, and its suppression of CIA indicated that this determinant 

is responsible for mediating autoimmune development in I-A
b
-expressing mice. 

The data described above are consistent with our hypothesis that CII contains at 

least one low affinity determinant that mediates autoimmune development, and that in 

I-A
b
-expressing mice T cells specific for this determinant are produced.  The activation of 

these T cells in response to this low affinity determinant may be a point at which IFN-  

regulates the development of autoimmunity in B6 mice.  By its influence on immune cell 

differentiation, activation, and cytokine production, IFN-  serves as master regulator of 

immune function.  In IFN-
-/-

 B6 mice, it is likely that alterations in these immune 

processes mediated by the absence of IFN-  in IFN-
-/-

 B6 mice allows activation of T 

cells to weak CII antigens and promotes autoimmune development.  Therefore, in order 

to determine the mechanism by which the absence of IFN-  promotes autoimmunity we 
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examined the alterations in the cytokine milieu that occur in IFN-
-/-

 B6 mice, and 

examined changes in the immune cell functions of proliferation, differentiation, 

autoantibody production, and cytokine production that occur following T cell stimulation 

in the IFN-
-/-

 B6 mouse. 

Major alterations in immune function in response to CII immunization that occur 

in IFN-
-/-

 B6 mice appear to be primarily in cytokine and autoantibody production, and 

in T cell proliferative responses when T cells are stimulated nonspecifically.  When B 

cells, T cells, and the T cell subtypes that develop following immunization with CII were 

examined by flow cytometry, no significant differences in cell differentiation were 

observed.  However, when cytokine production was measured by ELISA, increases in 

Th1, Th17, and Tc associated cytokines were observed in cultures of IFN-
-/-

 derived T 

cells compared to wild type derived cells following stimulation with anti-CD3 and anti-

CD28 antibodies.  Similarly, levels of anti-CII antibodies, especially the complement 

fixing IgG subtype IgG2b, were also increased in IFN-
-/-

 B6 mice when compared to 

wild type mice following immunization with CII.  Also, while CII-specific T cell 

proliferative responses were too weak to detect differences between wild type and 

IFN-
-/-

 B6 mice, when T cells from these mice were stimulated nonspecifically with anti-

CD3 and anti-CD28 monoclonal antibodies, increased proliferation in IFN-
-/-

 derived 

cells was observed in comparison to the wild type cells.  While all of these changes 

potentially contribute to increased susceptibility to CIA in the IFN-
-/-

 B6 mouse it is 

likely that the immune mechanisms of proliferation, and autoantibody production are 

downstream effects of altered cytokine production in the IFN-
-/-

 B6 mouse.  Immune cell 

differentiation is mediated by the cytokine milieu, for example Th1 cell differentiation is 

promoted by IFN-  and inhibited by IL-4 and IL-10, Th17 differentiation is promoted by 

IL-6 and TGF  (166), while Th2 differentiation is promoted by IL-4 and IL-10 and 

inhibited by IFN- .  Similarly, antibody production by B cells is influenced by cytokine 

signaling, IL-5 promotes B cell growth (114) and differentiation while IFN-  promotes Ig 

class switching to IgG2a and IL-4 promotes Ig class switching to IgE and IgG1 (90-92). 

In order to determine how the absence of IFN-  effects global changes in the 

cytokine milieu, and to determine how these changes potentially alter immune function to 

produce a disregulation phenotype that results in increased susceptibility to CIA in 

IFN-
-/-

 B6 mice, gene expression analysis by microarray was performed using mRNA 

from lymphocytes obtained from wild type and IFN-
-/-

 B6 mice immunized with CII.  

This analysis identified a number of genes that were differentially expressed between 

wild type and IFN-
-/-

 B6 mice including immune signaling molecules, immune effector 

molecules, and mediators or indicators of inflammation.  While several genes were 

identified as upregulated in the IFN-
-/-

 mice that may be effectors of the destructive 

inflammation that is characteristic of autoimmune arthritis, two genes were identified that 

are likely mediators of autoimmune susceptibility.  These genes were the 

proinflammatory cytokine IL-17, identified as upregulated in the IFN-
-/-

 mouse, and the 

negative regulator of IL-18, IL-18 BP, identified as downregulated in the IFN-
-/-

 mouse.  

IL-17 is a strongly proinflammatory cytokine that is produced by Th17 cells that also 

produce the proinflammatory cytokines, IL-6, TNF- , and GM-CSF.  IL-17 further 
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promotes inflammation by stimulating the production of IL-6, IL-8, G-CSF, GM-CSF, 

IL-1 , TGF , and TNF-  by fibroblasts, endothelial cells, epithelial cells, keratinocytes, 

and macrophages (167).  Its influence on RA pathogenesis has been identified by its 

expression in RA synovium, and by knock out mouse models in which the absence of IL-

17 reduces the development of CIA (45, 150).  IL-18 is also a proinflammatory cytokine 

that has been linked to autoimmune pathogenesis in RA.  IL-18 is expressed in the RA 

synovium, and functions to promote the expression of proinflammatory cytokines 

including IFN- , GM-CSF, IL-1 , and TNF-  by synoviocytes (120).  Furthermore, 

removal of IL-18 by knock out models or by the use of anti-IL-18 antibodies reduces the 

severity of CIA (132).  IL-18 BP is a negative regulator of IL-18 and is produced by 

macrophages and endothelial cells stimulated by IFN-  (123).  As a negative regulator of 

the proinflammatory cytokine IL-18 whose expression is promoted by IFN- , IL-18 BP 

likely plays a large role in the susceptibility to CIA in IFN-
-/-

 mice.  Further evidence of 

IL-18 BP’s role in mediating arthritis susceptibility is the increased expression of 

cytokines including IL-1 , GM-CSF, and TGF 1 that are downstream of IL-18 signaling 

in IFN-
-/-

 B6 mice.  In IFN-
-/-

 B6 mice immunized with CII, expression of these genes 

is observed to be upregulated compared to wild type B6 mice as measured by real time 

PCR.  In addition, when the levels of these cytokines are measured by ELISA in the 

supernatants of T cells stimulated in culture with anti-CD3/CD28 antibodies, the 

concentration of these cytokines is increased in the IFN-
-/-

 cells as compared to the wild 

type.  These data provide compelling evidence that a major mechanism of IFN-  

regulation of CIA susceptibility is the promotion of IL-18 BP expression.  In this model, 

IFN-  mediated expression of IL-18 BP by wild type mice is high, and protection from 

autoimmunity is conferred.  In IFN-
-/-

 B6 mice, the absence of IFN-  reduces expression 

of IL-18 BP and allows increased signaling by IL-18, and the proinflammatory function 

of IL-18 likely promotes the susceptibility to autoimmunity in IFN-
-/-

 B6 mice.  To test 

this model of IL-18 BP regulation of autoimmunity, IFN-
-/-

 B6 mice were treated with 

exogenous IL-18 BP concurrently with CII immunization to induce CIA.  This treatment 

protected CIA-susceptible mice from the development of disease, delayed onset, and 

reduced the severity of arthritis.  These data confirm that IFN-  mediated IL-18 BP 

expression regulates autoimmune development in these mice. 

Having confirmed IL-18 BP’s role in mediating autoimmune susceptibility in an 

in vivo model, we further characterized the mechanism by which IL-18/IL-18 BP 

signaling mediates immune development by examining the effects of IL-18 and IL-18 BP 

on the proliferation and cytokine production of T cells from wild type and IFN-
-/-

 B6 

mice stimulated with anti-CD3 and anti-CD28 antibodies.  When added to stimulated T 

cell cultures, IL-18 promoted T cell proliferation, while addition of IL-18 BP inhibited 

the proliferation of wild type T cells.  These data indicate that in wild type mice, one 

mechanism of autoimmune regulation may be through reduced IL-18 dependent T cell 

proliferation mediated by high levels of endogenous IL-18 BP.  Furthermore, when 

cytokine production was examined in stimulated T cell cultures, it was observed that wild 

type cells had reduced cytokine production compared to stimulated IFN-
-/-

 T cells.  

When IL-18 was added to these cultures, the wild type cells produced cytokines in a 

pattern that closely resembled the cytokine production of stimulated IFN-
-/-

 T cells.  
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Additionally, when stimulated IFN-
-/-

 T cells were supplied with exogenous IFN-  there 

was a reduction in cytokine production.  These data indicate that there is a regulatory 

loop between IL-18 and IFN-  that serves to mediate the production of cytokines by T 

cells following antigenic stimulation. 

Concepts of immune function identified in these studies has allowed the 

development of a model to that illustrates how IFN-  regulates immune function, and 

how in IFN-
-/-

 mice, autoimmunity occurs.  In this model, T cell interaction with a low 

affinity CII determinant in an immune milieu that consists of abnormal cytokine signaling 

mediated by the absence of IFN-  allows activation of CII-specific T cells.  The absence 

of IFN-  both causes a reduction in the expression of IL-18 BP and alters the function of 

Th1 cells.  The reduced production of IL-18 BP increases IL-18 signaling and increases 

the influence of this proinflammatory cytokine on the function of both effector T cells 

and cells within the joint synovium that mediate the chronic inflammation and erosive 

joint destruction that is characteristic of autoimmune arthritis. 

Fig 5.1 illustrates the function of T cells in wild type B6 mice following 

immunization with CII/CFA.  In this model, immunization with CII/CFA stimulates an 

adaptive immune response that is primarily of the Th1 phenotype.  Differentiation of Th1 

cells is promoted by the presence of Mtb in the CII/CFA emulsion that promotes the 

production of IL-12, and therefore drives differentiation of T cells towards the Th1 

phenotype (149).  These cells produce Th1 associated cytokines, especially IFN- , that 

promote a cell mediated immune response.  However, several mechanisms exist in B6 

mice that limit the progression of this response to autoimmunity.  These include negative 

regulation by Treg cells and feedback inhibition of Th1 effector function mediated by 

cytokine signaling.  In addition, B6 mice express MHC of the I-A
b
 haplotype.  Since CII 

is weakly immunogenic in this MHC background, possibly due to the low affinity of CII 

determinants for I-A
b
 MHC, the expansion of Th1 T cells is not particularly robust, and is 

particularly sensitive to negative regulation.  The negative regulation that protects wild 

type B6 mice from the development of autoimmunity is mediated in part by the 

expression of IL-18 BP.  IL-18 BP expression by macrophages and epithelial cells is 

induced by IFN-  produced by the developing Th1 cells.  The IL-18 BP binds to IL-18 

extracellularly and prevents it from binding to IL-18 receptors present on Th cells, and 

therefore abrogates the proinflammatory effects of IL-18 (151).  Since the Th cell 

response to CII determinants presented by I-A
b
 MHC is not strong, the reduction of the 

proinflammatory signal mediated by IL-18 is sufficient to limit T cell response to CII in 

wild type B6 mice. 

In IFN-
-/-

 B6 mice, the absence of IFN-  alters the immune milieu both prior to 

and following immunization with CII/CFA, and results in a pro-autoimmune phenotype.  

As shown in Fig 5.2 and Fig 5.3, the absence of IFN-  disrupts immune regulatory 

mechanisms resulting in altered cytokine production, Th cell differentiation, and disease 

progression.  In IFN-
-/-

 B6 mice immunization with CII/CFA stimulates an adaptive 

immune response to CII resulting in the generation of Th1, Th17, and Th2 subsets of CII-

specific T cells.  However, since IFN-  cannot be produced in these mice, Th1 effector 

function is limited.  The malfunctioning effector response of Th1 cells both disrupts 
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Figure 5.1 Model of Immune Response in Wild Type B6 Mice. 

In wild type B6 mice, regulation of immune response prevents uncontrolled progression 

to autoimmunity.  Each Th cell subtype is regulated by both autocrine and paracrine 

mechanisms.  Cytokines produced by an effector Th subtype can inhibit the function of 

development of other Th responses.  In addition, an uncontrolled continuously expanding 

immune response is inhibited by feedback inhibition.  For example, Th1 type T cell 

response is self-limited by IFN- .  IFN-  promotes IL-18 BP expression by monocytes, 

macrophages, and synovial epithelium.  This in turn reduces IL-18 signaling leading to 

reduced expression of IFN-  and Th1 cell function.  In a regulated immune response, 

these mechanisms prevent the progression to autoimmunity. 
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Figure 5.2 Model of Immune Response in IFN-
-/-

 B6 Mice. 

In IFN-
-/-

 B6 mice, autoimmune arthritis develops as a result of dysfunctional immune 

regulation.  The absence of IFN-  causes abnormal Th1 cell response, highlighted in 

green.  Without IFN- , regulatory mechanisms that would normally inhibit the 

progression of an immune response to a low affinity T cell determinant fail to activate, 

particularly the production of IL-18 BP.  As a result, abnormal Th cell differentiation and 

function occurs.  Th1 cell response is reduced while Th17 and Th2 responses increase, 

leading to production of cytokines that promote inflammation and the activation of 

synoviocytes that mediate the erosion of cartilage and bone. 
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Figure 5.3 Model of Th2 Response in IFN-
-/-

 B6 Mice. 

Th2 response is increased in the absence of IFN- .  The lack of negative regulation of Th2 

cell differentiation mediated by IFN-  leads to the activation and disregulated function of 

Th2 cells.  B cell stimulation of B cells by Th2 cells, and the production of Th2 associated 

cytokines promotes the production of CII-specific antibodies by B cells and promotes 

disease immune complex mediated complement activation, and FcR mediated activation 

of macrophages and lymphocytes.  Production of Th2 cytokines contributes to the 

disregulation of Th1 and Th17 responses that promote autoimmunity. 
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regulatory mechanisms that would limit autoimmune progression and promotes the 

expansion and effector function of disease promoting Th17 and Th2 subsets (21, 76).  The 

absence of IFN-  production by Th1 cells fails to stimulate the production of IL-18 BP by 

macrophages and synovial epithelium.  The effect of reduced production of IL-18 BP is 

increased T cell stimulation by the proinflammatory cytokine IL-18.  In contrast to wild 

type B6 mice, in IFN-
-/-

 B6 mice I-A
b
-restricted CII-specific T cells encounter low 

affinity CII determinants in the presence of increased proinflammatory signaling 

mediated by IL-18 and activate.  In addition, the absence of IFN-  alters how the CII-

specific T cells differentiate.  IFN-  inhibits the differentiation of both Th17 and Th2 T 

cell subtypes (21, 76, 168).  Therefore as CII-specific T cells activate and differentiate, 

the Th17 and Th2 cells begin to dominate the immune response due to disregulated 

proliferation of these T cell subtypes.  This has direct effects on the mechanisms of 

arthritis pathogenesis.  Coinciding with the expansion of these cells is the production of 

cytokines including IL-17 and GM-CSF.  Along with IL-18, these cytokines act directly 

on synoviocytes to promote inflammation in the joint and initiate cartilage and bone 

erosion (45, 132, 150, 157, 169).  Disregulated Th2 cell function also promotes arthritis 

pathogenesis in IFN-
-/-

 B6 mice.  Since IFN-  inhibits Th2 cell differentiation and 

expansion, in the absence of IFN-  the activity of these cells is increased.  Following 

activation, CII-specific Th2 cells produce high levels of IL-4, IL-5, and IL-13, which 

promotes B cell maturation, differentiation, and proliferation and allows Th2 dependant 

CII-specific antibody production by activated B cells (170).  These alterations in the 

immune milieu, disregulated cytokine production, disregulated immune cell 

differentiation, and disregulated feedback inhibition of immune response, all deriving 

from the absence of IFN-  in IFN-
-/-

 B6 mice, allow progression autoimmunity and 

directly promote arthritis pathogenesis. 

The identification of an I-A
b
-restricted CII determinant that stimulates T cells has 

the potential to greatly expand our understanding of the pathogenic mechanisms of 

autoimmune arthritis.  In other mouse strains that are susceptible to CIA, the 

identification of a CII determinant restricted to the MHC haplotypes expressed in these 

mice such as I-A
q
 in the DBA/1, and DR1 in humanized B10 mice, allowed the 

development of MHC class II tetramer based assays to identify CII-specific T cells in 

these mice that are generated in response to immunization with CII and to study their 

pathogenic function.  This allows subtle changes in immune response to autoantigen to be 

examined in exquisite detail (171).  This ability expands the capability to investigate the 

mechanisms of autoimmune pathogenesis and also provides a tool to directly measure the 

efficacy of autoimmune therapy by measuring alterations in T cell immune response that 

may occur from treatment with therapeutic agents.  For example, using flow cytometric 

methods, CII-specific T cells identified with CII tetramer can be examined for activation 

and cell subset markers.  In addition, cell sorting technology allows the isolation of CII-

specific T cells for further in vitro study or adoptive transfer.  The identification of an 

I-A
b
-restricted CII determinant provides the ability to generate CII I-A

b
 tetramers, and 

this would greatly expand our ability to investigate the mechanisms of pathogenesis in 

this altered-cytokine model of autoimmune arthritis. 
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One limitation of previous studies of the autoimmune mechanisms of CIA is the 

relatively small number of knock out mice available in the genetic backgrounds that are 

susceptible to CIA such as the DBA/1 strain.  Therefore, in order to study how specific 

genes mediate autoimmune pathogenesis many months of breeding and backcrossing are 

required to generate knock out mice on these backgrounds.  The identification of an I-A
b
-

restricted CII determinant has the potential to facilitate the study of specific genes in the 

pathogenesis of autoimmune arthritis.  As one of the most widely studied mouse strains, 

numerous knock out B6 models have been developed including those with inflammatory 

cytokines like IL-17, IL-12, IL-1 , and other immune modulating genes.  The use of 

these B6 knock out strains to analyze immune cell function in response to the CII 

autoantigen identified here using either CII I-A
b
 tetramer or the use of more traditional 

methods such as measurement of proliferation and cytokine production has the potential 

to identify the detailed regulatory pathways by which these genes mediate autoimmunity. 

Though the identification of an I-A
b
-restricted CII determinant has the potential to 

provide insight into the generation of a pathogenic T cell response during autoimmune 

development, further avenues of investigation remain to fully characterize autoantigen 

specific T cell responses in the CIA model.  One immunodominant I-A
b
 determinant 

present in CII has been definitively identified here, yet it is likely that other epitopes are 

present in CII that are capable of binding to I-A
b
 MHC molecules and stimulating T cells.  

Some evidence of this possibility can be inferred from the binding of CII determinants to 

DR1 and the predicted binding of 29 low affinity CII determinants to I-A
b
.  Recent 

unpublished observations have indicated that T cells specific for “minor” CII 

determinants other than the immunodominant CII(257-274) epitope are generated in 

DR1-expressing mice and can be stimulated in vivo following CII immunization.  For 

I-A
b
, other low affinity CII determinants are likely to be present as indicated by the 29 

predicted low affinity sequences.  These low affinity determinants may prove to be 

important regulators of autoimmunity, potentially mediating the generation or function of 

Treg cells that inhibit the development of effector T cells against stronger CII antigens, or 

by promoting anergy of CII-reactive T cells when these low affinity CII determinants are 

presented by APC in the absence of costimulatory signaling. 

The identification of IL-18 BP as a mediator of autoimmune susceptibility has 

provided insight into the pathogenic mechanisms of autoimmune arthritis.  Yet for 

several reasons, it is likely that this pathway alone does not comprise all of IFN- ’s 

regulation of autoimmune susceptibility.  While the gene expression array allowed the 

identification of IL-18 BP as differentially expressed between wild type and IFN-
-/-

 

mice, there remain 1611 other genes that were identified as differentially expressed 

between the two mice.  Many of these genes are of unknown function, and therefore may 

prove to be important immune mediators of as yet unknown immune regulatory 

pathways.  Furthermore, the gene expression array data represents the gene expression of 

all the cells obtained from the lymph nodes, and includes mRNA from T cells, B cells, 

macrophages, dendritic cells, and all other cells present at the time that the mRNA was 

isolated from the lymph node cells.  For this study, this cell diversity was useful since IL-

18 BP is produced largely by macrophages, and may not have been identified in a more 

restricted cell population analysis.  However, microarray analysis based on discrete cell 
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types from IFN-
-/-

 mice has the potential to expand our knowledge of how IFN-  

mediates immune response of individual cell types.  One potential experiment that would 

be extremely useful in discerning autoimmune T cell responses would be gene expression 

analysis of CII-specific T cells.  If CII I-A
b
 tetramer were to be generated using the CII 

epitope defined here, these cells could be sorted by flow cytometry.  mRNA could then 

be isolated from discrete CII-specific T cell populations for examination of their gene 

expression.  Not only would this be useful for examination of IFN-  mediated immune 

regulation, but also any of the other knock out models that exist in the B6 background.  

When one considers the various T cell markers that could be used as sorting criteria, and 

the vast number of knock out models available, these approaches could be combined to 

generate a large amount of new data regarding autoimmune pathogenesis. 
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Appendix.   Binding of CII Determinant to I-A
b
 

In order to test the hypothesis that IFN-  regulates weak T cell responses, the 

affinity of CII determinants for the I-A
b
 molecule was measured.  If the affinity for CII 

determinants for I-A
b
 is low, then the ability of this peptide to stimulate a T cell response 

would be reduced.  In order to determine the strength of CII determinants in binding to 

I-A
b
, two methods were employed.  The first method was a bioinformatic approach that 

used an algorithm to predict the binding strength of potential determinants for I-A
b
 based 

on the sequence of known I-A
b
 binding determinants.  The second method was a 

biochemical competition binding assay. 

Bioinformatic Prediction of I-A
b
 Binding 

A bioinformatic examination of the CII sequence was performed using the 

binding prediction algorithm SMM-align (172).  The binding affinity of CII for both I-A
b
 

and DR1 was calculated.  DR1 serves as a control since CII determinants were known for 

this molecule and could be compared to the calculated results.  This method uses the 

sequence of the determinants of various MHC class II molecules with known binding 

affinity to calculate a weight matrix for each amino acid residue in a nonamer peptide 

that corresponds to the binding groove of a MHC class II molecule.  It does this by using 

an algorithm that seeks to match calculated values of peptide determinants to known 

affinity values.  This calculation results in a binding affinity prediction for peptides in 

terms of the IC50 required to bind a given MHC class II molecule.  In a competitive 

binding assay, the IC50 is the concentration of unlabeled peptide required to inhibit 50% 

of the binding of labeled peptide.  Therefore, lower IC50 values indicate higher binding 

affinities (172).  When the MHC class II algorithm was used to predict the binding 

properties of the CII sequence from amino acid number -15 to 1060 against DR1 the data 

indicated 294 weak binding sequences with an IC50 lower than 500 nM and 51 strong 

binders with an IC50 lower than 50 nM.  Binding affinity of CII for DR1 was 

experimentally derived by competition assay of CII-library peptides with a labeled 

peptide of a known DR1 determinant, CII(257-274).  The experimental values match well 

with the computed affinity of DR1 with regions of high binding matching the predicted 

areas of elevated binding affinity in CII (Fig A.1AB).  When the prediction algorithm 

was used to calculate affinity values for the binding of CII to I-A
b
 only 29 low affinity 

peptides were identified with calculated affinities between 50 and 500 nM (Fig A.1C).  

No high affinity peptides (IC50 < 50 nM) were identified.  This result indicates that 

overall, the CII sequence likely has low affinity for I-A
b
 with no discrete sequences 

within CII that have a predicted high affinity for I-A
b
.  The CII determinant identified by 

the T cell hybridomas, CII(512-528), was one of the predicted low affinity peptides. 

CII I-A
b
 Binding Assay

 

A requirement for the identification and subsequent measurement of binding 

affinity of I-A
b
-restricted CII determinants was the generation of soluble MHC Class II of 
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Figure A.1 Prediction of CII Peptide Binding to the MHC Class II Alleles DR1 

and I-A
b
 by SMM-align. 

AB.  When the scoring algorithm SMC-align is used to predict the binding affinity of 

DR1 CII determinants, the predicted regions of high binding correlate well with the 

experimental measurements of binding affinity.  Affinity values in nM are log 

transformed using the equation 1 – log50k (IC50 nM).  Affinity values higher than 50,000 

were assigned a transformed value of 0, higher values indicate stronger binding.  B.  In 

the predicted CII determinants of DR1 many regions show high affinity for DR1 binding.  

C.  In contrast to the DR1, the prediction of CII binding to I-A
b
 is lower throughout the 

CII sequence with no regions exhibiting high binding affinity above 50 nM.  Highlighted 

in red is a known determinant for HLA-DR1 present in the peptide library AB and the 

putative CII determinant identified in this study C. 
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the b haplotype.  Two strategies were employed to produce a soluble form of I-A
b
 in 

insect cell lines.  mRNA was recovered from the splenocytes of I-A
b
-expressing B6 mice 

and used to produce cDNA encoding the alpha and beta subunits of MHC class II in 

which the transmembrane region was replaced with a leucine zipper by PCR.  These 

constructs were then cloned into drosophila or baculovirus expression vectors and 

transfected into S2 cells or to infect SF9 cells, respectively. 

An additional requirement for binding affinity measurements is a labeled peptide 

known to bind I-A
b
.  In a competition binding assay, this peptide is used as the indicator 

to compete with unlabeled test peptides for binding to I-A
b
.  To produce this indicator, 

two peptides, known to bind I-A
b
, Mog(35-55) (160) and CytC(43-58) (104, 161) were 

synthesized with biotin groups added to the amino termini.  As an empirical test of the 

ability of these two peptides to bind I-A
b
, B6 mice were immunized with Mog(35-55) or 

CytC(43-58) in an emulsion of CFA.  Lymphocytes were recovered from draining lymph 

nodes ten days later, and re-stimulated in vitro with the biotinylated analogs of the two 

peptides.  Lymphocytes recovered from immunized mice proliferated in vitro as 

measured by 
3
H-thymidine incorporation when stimulated with Mog(35-55) or CytC(43-

58) indicating that the peptides were functional and could bind I-A
b
 both in vivo and in 

vitro (Fig A.2). 

To assess the function of the biotinylated indicator peptides and the function of 

the recombinant soluble I-A
b
, the ability of the two indicator peptides to bind the soluble 

I-A
b
 was measured using a binding assay.  The two indicator peptides, and biotinylated 

CII(257-274) as a negative control, were incubated with soluble I-A
b
 and the degree of 

binding for each peptide over a range of concentrations was subsequently measured.  

Peptide I-A
b
 complexes were allowed to form in solution and I-A

b
 was captured by 

antibodies adhered to microtiter wells, and the levels of bound indicator peptide were 

detected using europium labeled streptavidin.  An increase in fluorescence indicates the 

presence of biotinylated peptide bound to I-A
b
.  Binding of the Mog(35-55) peptide to S2 

derived I-A
b
 occurred at a concentration greater than 0.1 µM (Fig A.3).  No significant 

binding was observed in either preparation of soluble I-A
b
 for the CytC(43-58) or the 

CII(257-274) negative control peptide.  These results indicated that Mog(35-55) peptide 

bound to the S2 produced I-A
b
.  However, the Mog(35-55) peptide was observed to have 

low solubility in the buffers required for the binding assay, forming a precipitate at high 

concentrations.  To examine whether or not this insolubility caused technical problems 

with the binding assay resulting in non-specific binding, a titration of Mog(35-55) 

peptide was performed using both the S2 and SF9 derived I-A
b
 and a mock binding assay 

without I-A
b
 added (Fig A.4).  In each test condition, fluorescence was observed when 

the Mog(35-55) peptide was at a concentration above 1 M.  This indicates that at high 

concentrations the Mog(35-55) peptide binds non-specifically. 

To directly measure the relative affinity of the CII peptide in comparison with 

other known binders of I-A
b
, the CII peptide library was used in a binding competition 

assay with the soluble I-A
b
 produced above as well as a soluble DR1 molecule produced 

previously as a positive control for the assay.  In the binding assay, the library peptides 

were used at a concentration of 5 M to compete for binding to I-A
b
 with 10 nM of biotin 

labeled Mog(35-55).  The Mog(35-55) peptide was used in this assay as it was the only 
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Figure A.2 I-A
b
-Restricted Proliferation in Response to Stimulation with CytC 

and Mog Peptides. 

As an empirical test of Mog(35-55) and CytC(43-58) ability to bind I-A
b
, the peptides 

were used in CFA emulsion to immunize CXB2 mice.  When lymphocytes obtained from 

the draining nodes of the immunized mice were stimulated with their respective peptides, 

robust proliferation of T cells over media control was observed (p < 0.001).  This result 

indicated that these peptides were indeed capable of binding I-A
b
 and were strong 

inducers of T cell proliferation. 
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Figure A.3 Binding of Mog, CytC, and CII Peptides to Soluble I-A
b
. 

Direct binding of known I-A
b
 determinants to recombinant soluble I-A

b
 produced in S2 

cells was measured by fluorescence assay.  Two biotinylated peptides known to bind 

I-A
b
, Mog(35-55) and CytC(43-58), and a biotinylated negative control peptide, CII(257-

274) were titrated with soluble I-A
b
.  Binding was observed for the Mog(35-55) but not 

for CytC(43-58) or the negative control CII(257-274) peptides. 
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Figure A.4 Binding of Mog(35-55) to I-A
b
. 

When Mog(35-55) was titrated for binding to either S2 or SF9 derived I-A
b
 or in a 

negative control assay containing no MHC class II molecule increases in fluorescence 

were observed in all three test conditions when the Mog(35-55) peptide was at a 

concentration above 1 M. 
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peptide that was observed to bind I-A
b
.  At this concentration, we hoped to avoid the non-

specific binding of the Mog(35-55) peptide observed at the higher concentrations while 

still being able to detect competition with the CII peptides by increasing the gain of the 

flurometer.  Increased gain, amplifies the ability of the flurometer to measure low levels 

of fluorescence yet has the drawback of causing increased background.  In the DR1 

binding assay the CII peptide library was used at 5 M to compete for binding to DR1 

with 30 nM biotin labeled CII(257-274).  Biotin labeled peptide bound to the MHC class 

II molecules was detected using europium streptavidin and the resulting fluorescence was 

measured.  Data is expressed as the measured fluorescence subtracted from 10,000, the 

maximum value possible, in order to facilitate data interpretation.  Due to the 

mathematical conversion, high values indicate that the CII peptide competed successfully 

with the labeled peptide.  When bound to DR1, the CII library successfully competes for 

binding with the indicator peptide in 12 regions (Fig A.5A).  In the assay competing CII-

library peptides with Mog(35-55) for I-A
b
 binding, no binding above background was 

observed (Fig A.5B).  Proliferation in response to stimulation with the CytC(43-58) and 

Mog(35-55) peptides indicate that these peptides are functional antigens when presented 

to T cells by I-A
b
-expressing APC.  In addition, the assay is technically sound as 

indicated by the ability to detect binding of peptides to the DR1 molecule.  However, 

competition with CII peptides was not detectable.  These data indicate that the 

recombinant I-A
b
 is not performing well in these binding assays as Mog(35-55) 

apparently binds at low concentration but there is no indication that CII(512-528) 

competes. 
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Figure A.5 Binding of CII Determinants to DR1 or I-A
b
 MHC Class II Molecules. 

15 mer peptides derived from the human sequence of CII were used in competitive 

binding assays with soluble DR1 or soluble I-A
b
.  A.  Competition of library peptides 

with labeled CII(257-274) resulted in the identification of 12 regions that bind DR1 with 

elevated affinity.  B.  Competition of library peptides with soluble I-A
b
 did not exhibit 

increased binding affinity at any region. 
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