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ABSTRACT 

            

 The role of autoreactive, antigen-specific T-cells in the development of 

autoimmunity has long been documented. T-cells expressing chimeric receptors are 

specifically redirected against such cells and have been proven to suppress autoimmune 

encephalomyelitis, the murine model of multiple sclerosis. We here demonstrate the 

ability of humanized chimeric receptors to suppress experimental autoimmune 

encephalomyelitis (EAE) in a humanized mouse model by redirecting T lymphocytes 

against autoreactive T-cells. The receptors were synthesized by linking the 84-102 

epitope of human myelin basic protein (MBP) to the extracellular and transmembrane 

domains of the beta chain of human major histocompatibility complex (MHC) class II 

molecule and the cytoplasmic zeta chain of T cell receptor and pairing it to the alpha 

chain linked to zeta. CD8+ receptor-modified T-cells (RMTC) were able to recognize the 

cognate TCR receptor of antigen-specific cells and induce cytokine secretion, 

proliferation, and cytolysis upon engagement. Most importantly, the RMTC were able to 

specifically kill antigen-specific cells both in vitro and in vivo and prevent EAE disease. 

We hypothesize that the humanized chimeric receptors could be used as a therapeutic 

approach for multiple sclerosis in the future. 
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Chapter 1. General introduction 

 

1.1 Historical perspective of multiple sclerosis 

        In 1868, the French neurologist Jean-Martin Charcot examined a young 

woman who exhibited a new type of tremor, abnormal eye movements and slurred 

speech. On autopsy, she was found to have central nervous system (CNS) “plaques” that 

we now associate with multiple sclerosis (MS). Charcot named the disease “sclérose en 

plaques”. By the end of the 19th century, the major symptoms of MS were well-

characterized and a new era of neurology arose.  

Multiple sclerosis is a chronic progressive demyelinating disorder of the white 

matter of CNS characterized by loss of myelin with relative preservation of axons. It is 

the most common CNS autoimmune disease, affecting approximately 1 million people 

worldwide (250,000 in the United States) (2). The disease disproportionately affects 

females at a 2:1 sex ratio, has no single defined cause, and several genetic markers are 

associated with susceptibility. 

Genes and environment play a major role in the pathology of MS. Among the 

primary genetic associations, human leukocyte antigen (HLA) class II genes on 

chromosome 6 and particularly HLA-DRB1 (HLA-DRB1*1501 and DQB1*0602) were 

found to increase the risk for MS (3). The risk of disease in a monozygotic twin of an 

affected individual is far greater than in dizygotic ones (25-30% compared to 2-5%). 

Also, the risk that first-degree relatives of patients with MS will get the same disease at 

some point in life is seven times higher than for the general population (4). These 

findings suggest a very strong genetic component (although not a Mendelian one). 
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Epidemiological studies implicated geography as another factor for MS. Studies 

have shown that the disease is more prevalent in the temperate regions and western 

hemisphere (Germany, Scandinavia, Canada, northern US) and that migration from a 

high-incidence area to a low incidence one before puberty significantly decreases the risk 

of acquiring MS later in life (5). Therefore, environmental factors seemingly more 

prevalent in temperate regions combine with genetic factors to determine MS 

susceptibility. 

 

1.2 Clinical signs and symptoms of MS 

MS can exhibit a very large range of signs and symptoms commonly first seen in 

the third to the fourth decade of life. 85% of patients have the typical relapsing-remitting 

multiple sclerosis (RRMS), with episodes triggered by viral infections followed by 

remissions with no residual damage or different cumulative amounts of chronic 

impairment. Over time, approximately 30% of these patients will undergo transformation 

to a secondary progressive form with less frequent acute attacks, but with gradual 

worsening of symptoms and permanent disabilities. A subset of RRF is benign MS, with 

few and mild attacks and a limited disease course or total recovery. Ten percent of 

patients with MS develop progressive deterioration of neurological functions without 

relapses and a more aggressive form of disease, called primary progressive MS (PPMS) 

(6). 

Symptoms displayed by MS patients vary according to the location of lesions. 

Cerebellar and cerebral plaques typically accompany speech and balance problems, 

tremors and loss of coordination. Motor and sensory nerve tracts deficits are revealed by 
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spastic paralysis, muscle weakness, diplopia and other visual problems including 

blindness, urinary and bowel problems, and tingling, numbness, and loss of touch and 

pain. Patients may also show signs of depression, cognitive and emotional problems, 

fatigue, and sexual disturbances.  

 

1.3 Diagnosis of MS 

MS is not easy to diagnose. There is no single test adequate for diagnosis. 

Physicians rely on history, clinical signs and symptoms, and various tests including 

magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, serology, and 

sensory evoked potential testing. The classic approach is manifestation of at least two 

clinical signs along with MRI lesions localized in the brain or spinal cord which confirm 

the diagnosis. MRI with gadolinium contrast shows enhancement of lesions that correlate 

with perivascular inflammation. Almost 90% of MS patients will show oligoclonal 

immunoglobulin (Ig) G in CSF. Although this finding is not specific for MS and can only 

be considered suggestive, it is very useful in ruling out infectious diseases or tumors that 

might mimic this autoimmune disease. Optic nerve lesions that might not show up on 

MRI can be detected by visual evoked potentials, which will reveal prolonged latencies 

consistent with plaques located within optic pathways. Serology is also not specifically a 

useful tool in diagnosing MS, but it proves helpful in differential diagnosis with other 

entities (7).  

At the microscopic level, MS plaques reveal changes located primarily at the level 

of optic nerves, chiasm, tracts, brainstem, spinal cord, and cerebellum, consisting of 

perivascular edema and an inflammatory infiltrate of T lymphocytes and macrophages.  
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Myelin is stripped from the axons impairing saltatory conduction and causing conduction 

block (Figure 1-1). Axons tend to be spared (8). During periods of remission, 

inflammation and edema subside and axons can undergo remyelination and carry out the 

normal function again. Repair of damaged areas occurs more completely in early stage 

disease when oligodendrocytes are still able to build a new myelin sheath; in time, as the 

disease progresses more advanced lesions develop characterized by gliosis. This creates a 

boundary between myelin producing cells and axons, therefore rendering remyelination 

inefficient.  

 

1.4 Pathobiology of MS 

There is no clear proof of the cause of MS. Epidemiological evidence from 

genetics, geography, and socio-economic factors has led many to hypothesize that there is 

a viral etiology (9). A definite pathogen has not been identified, though some microbes 

bear similar structures with self-antigens in the CNS such as myelin basic protein (MBP), 

myelin oligodendrocyte glycoprotein (MOG), and proteolipid protein (PLP) and it is 

possible that these promote autoimmunity through the mechanism of molecular mimicry. 

Molecular mimicry is the process by which a viral or bacterial infection causes activation 

of T-cells that are cross-reactive with self antigens. It is still  a major mechanism for 

triggering autoimmune diseases (8). 

There are other hypotheses for the etiology of MS including bystander activation 

and superantigenic T cell activation. In the bystander activation hypothesis, T 

lymphocytes are activated in the periphery by infectious agents presented on the surface 

of antigen presenting cells (APCs) and become capable of crossing the blood brain
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Figure 1-1. H&E staining of perivascular infiltrate in active MS plaque (top) and 
Prussian-blue staining of a MS plaque (bottom). Source:  
http://www.neuropathologyweb.org/chapter6/chapter6aMS.html (10). Accessed on 
January 21, 2007. 
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barrier (BBB). The cells which develop into activated T-cells are CD4+ or so-called T 

helper cells type 1 (Th1). Although both Th1 and Th2 cells are present in MS, Th1 cells 

are able to secrete proinflammatory cytokines and also express a high level of adhesion 

molecules such as intercellular adhesion molecules (ICAM) or vascular cell adhesion 

molecule (VCAM). Inflammation upregulates adhesion molecule expression on the 

endothelium of the BBB, thus making it more permeable for penetration. Th1 cells also 

secrete matrix metalloproteinases that further compromise the integrity of the BBB (11). 

The opening of this natural barricade enables future inflammatory cells to penetrate into 

the CNS. 

Once within the CNS, activated Th1 cells will die or be eliminated unless 

restimulated. An autoantigen or again, a microbe presented on the surface of CNS APCs 

(microglia) may restimulate and promote the expansion of T-cells, and induce the release 

of proinflammatory cytokines, such as interferon-γ (IFN-γ) and tumor necrosis factor-α 

(TNF-α)  that lead to macrophage activation. These cells release neurotoxic components 

(nitric oxide, reactive oxygen species) that damage the myelin sheath causing the 

structural and functional damage that results in MS (Figure 1-2). 

In addition to this indirect means of tissue damage, infectious agents can directly 

damage tissues through recruitment of T-cells with new specificities, including 

autoaggressive T-cells to the CNS. In a process called epitope spread, the immune 

response can switch from being initially restricted to a microbial antigen to incorporate 

an added self antigen-specific response. Thereby, a secondary autoimmune reaction can 

develop (12).  

Activation of T-cells by superantigens has also been proposed as a trigger for MS.  
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Figure 1-2. Immunopathogenesis of the MS lesion. APC = antigen presenting cell; 
IFN = interferon; IL = interleukin; Mic = microglia; MMP = matrix metalloproteinase; 
MO = monocyte; NAA = nacetylaspartate; NO = nitric oxide; Pl = plasma; 
VCAM = vascular cell adhesion molecule. Adapted and reprinted with permission – 
Suhayl Dhib-Jalbut et al. 2006. Neurodegeneration and neuroprotection in multiple 
sclerosis and other neurodegenerative diseases. Journal of Neuroscience 176:198-215. 
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According to this theory, virus and bacteria superantigen is able to cross-link the T-cell 

independent of peptide antigen, thus activating T-cells that can either expand or be 

deleted. Since superantigens preferentially recognize particular Vβ families, a large 

proportion of T-cells might be activated during this process. As not all self-reactive T-

cells are eliminated in the thymus by negative selection, myelin-specific ones can become 

activated and trigger an autoimmune response (13). Similar to the epitope spread theory, 

superantigen-mediated stimulation of autoreactive T-cells is detectable in mouse model 

but there is no direct evidence for this in MS.  

For many years, Th1 CD4+ autoreactive T-cells have been incriminated as the 

major T cell offenders in MS. This theory has more recently been challenged by the 

recognition of  a new subset of autoaggressive T-cells, CD4+Th-17+, whose 

differentiation is promoted by APCs in the presence of interleukin (IL)-6 and 

transforming growth factor-beta (TGF-β) and whose expansion requires IL-23 (14). 

Studies show that Th17 cells secrete proinflammatory cytokines (IL-17, IL-6, TNF-α), 

but not IFN-γ and IL-4 and adoptive transfer of these cells can induce severe 

experimental allergic encephalomyelitis (EAE) disease (15). In models of MS and other 

autoimmune diseases, disease can be suppressed by blockade of IL-23 pathway or the 

downstream IL-17 and IL-6 factors (16).  

CD8+ T-cells are also incriminated for causing an immune attack by recruitment 

and clonal expansion within the CNS. They can recognize peptides presented by major 

histocompatibility complex (MHC) class I-expressing brain cells and even outnumber 

CD4+ T-cells in the inflammatory infiltrate that characterize MS. Little is known about 

the role of CD8 cells in the pathology of MS in regards to the several aspects, such as 
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means of CNS invasion, proliferation, apoptosis, and further clarifications are required 

(17). The invading cytotoxic T lymphocytes release pro-inflammatory cytokines, such as 

IFN-γ and TNF-α, thus inducing expression of MHC class I molecules in the brain in 

vitro (18). 

It is clear that the above theories on the cause of MS are demonstrable in the 

mouse models but will be difficult to verify in humans. They leave many questions and 

lots of alternatives. 

 

1.5 Animal models of MS 

Modeling MS is a challenging task. The disease is complex and little is known 

about its triggers and mechanisms. 

 The first attempt to build an animal model of this disease was in the early 1930s 

when Rivers and collaborators noticed that certain infections (measles, smallpox) were 

followed by a wide range of CNS symptoms. Biopsy of these patients’ brains revealed a 

perivascular demyelinating inflammatory infiltrate that characterized the acute 

disseminated encephalomyelitis. This group tried to reproduce the disease in monkeys by 

repeated intramuscular injections of extracts and emulsions of rabbit brain. Although the 

model did not accurately reproduce the human disease, it was still considered to be a 

groundbreaking discovery (19). A decade later, Kabat adjusted the disease-induction 

procedure by using an adjuvant to increase the immune response (20). This had two 

major consequences: it made the immunization protocol more manageable since the 

animals, unlike Rivers’ model, only needed one injection, and it incriminated myelin as 

the culprit for MS since only animals injected with adult rabbit or monkey brain plus 
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adjuvant got sick but not those injected with rabbit lung or fetal rabbit brain.  

In 1960s and 1970s the concept of EAE developed as adoptive transfer of 

splenocytes from rats immunized with spinal cord extract into normal recipients was 

shown to induce disease (21). 

 

1.5.1 Current animal models of MS 

EAE is considered to be primarily mediated by MHC II-restricted CD4+ Th1 cells 

that secrete proinflammatory cytokines such as tumor TNF-α and IFN-γ (22). EAE can be 

induced in susceptible strains of small, easy-to-handle animals such as mice, guinea pigs, 

and rats by active immunization with myelin antigens including MBP, PLP, MOG, and 

others, plus complete Freund’s adjuvant (CFA). The administration of Bordetella 

pertussis toxin (PTx) increases the permeability of the BBB, thus creating a “breach” for 

activated T-cells that enter the CNS and cause the local inflammation (23). The first signs 

of neurological disease can be detected as early as ten days post immunization and 

depending on the model system may resemble the human relapsing-remitting or 

progressive disease forms. Inbred mice are most commonly used as the animal model for 

EAE due to their small size and well-defined genetics. Typically, disease is scored on a 1 

to 5 scale (24) and the animals are euthanized at a score of 4 or 5 according to the ethical 

guidelines (Table 1-1).  

 Not all strains of mice exhibit the same disease course and symptoms when 

immunized with myelin antigens. While a certain strain of mice might be susceptible to a 

peptide antigen, another one could be resistant to the same antigen. There are now clear 

“recipes” for EAE induction in different mouse strains (25). Some of the standard 
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Table 1-1. Clinical EAE scores. 

 
  Disease score Clinical signs of disease 
 

0                                              No signs of disease 

1 Limp tail 

  2    Partial hind leg paralysis 

  3    Complete hind leg paralysis 

  4    Hind and front leg paralysis 

  5    Moribund or dead 
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protocols include relapsing-remitting EAE in SJL mice immunized with PLP139-151, MBP-

induced EAE in PL/J or B10.PL mice, or MOG35-55-induced EAE in C57BL/6 mice. The 

disease is mostly T cell-mediated. However, MOG not only induces a T cell response, but 

also production of demyelinating autoantibodies (26). MOG-specific T-cells and 

autoantibodies were also found in circulation in patients with MS (27), but the cause that 

triggers their activation is still unknown. 

 

1.5.2 Adoptive transfer EAE 

The discovery that adoptive transfer of myelin-specific T-cells can induce EAE in 

naïve syngeneic recipients validated the autoimmune nature of EAE in mice (28). 

Susceptible mice are immunized with a particular antigenic peptide followed by isolation 

of T-cells from draining lymph nodes and spleens, and in vitro stimulation of the T-cells 

with the myelin peptide. The T-cells are then injected into naïve recipients who develop 

disease. This approach showed that the CNS can be invaded by activated 

encephalitogenic T cell clones that are capable of crossing the BBB and emphasized the 

autoimmune nature of the phenomenon. The encephalitogenic cells were thought to bear 

a CD4+Th1 cell phenotype and recognize self peptides presented in the context of MHC 

class II molecules. Later data showed that the MOG35-55 epitope is able to activate CD8+ 

MOG-specific αβ T cell receptor (TCR) positive cells that can be adoptively transferred 

into naïve C57BL/6 recipients, causing a much more severe clinical disease sustained by 

more destructive histopathologic CNS lesions. Furthermore, these antigen-specific cells 

were capable of surviving in vivo as shown by their ability to be retrieved from recipient 

mice (29). A role for CD8+ T-cells in murine EAE has been controversial and not 
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uniformly supported. 

  Although EAE induction seems fairly straightforward if following the rule “right 

strain-right antigenic peptide”, one must not overlook the association between the antigen 

and its corresponding MHC. T-cells cannot recognize an antigenic peptide properly 

unless it is presented on the right MHC. Beta2-microglobulin knockout (β2m
-/-) mice 

lacking MHC class I  are resistant to EAE induced by adoptive transfer of CD8+ MOG-

specific TCR+ cells (29). Likewise, CIITA mice lacking MHC class II, as well as mice 

deficient for invariant chain (Ii) and H-2M (DM) are resistant to both direct priming with 

peptide and adoptive transfer of CD4+ peptide-specific T-cells. Interestingly, APCs from 

these knockout (KO) mice can present MOG peptide to CD4+ T-cells, but they are not 

capable of presenting and processing the myelin protein, thus rendering the mice resistant 

to EAE induction. The fact that MOG EAE cannot be induced in class II deficient mice 

but can in β2m
-/- mice argues against a significant role for MOG-specific CD8+ T-cells 

(30). 

 

1.5.3 Transgenic mice as models for MS 

Key to understanding human autoimmune diseases is to dissect the mechanisms 

of tolerance induction. The challenge for MS is to discover how seemingly tolerant self-

reactive cells in the periphery become activated, are able to penetrate the CNS, and 

mediate disease. B10.PL mice were engineered to express a transgenic α2+ and Vβ8.2+ 

TCR specific for MBP epitope 1-11. These mice were highly susceptible to MBP-

induced EAE and some even developed spontaneous disease. T-cells removed from 

spleens or lymph nodes of these animals proliferated and secreted cytokines in response 
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to in vitro MBP stimulation (31). This MBP-specific transgenic mouse model has 

provided not only a unique model to study MS but also important information concerning 

the failure of the thymus to delete the antigen-specific T-cells, the mechanisms of 

peripheral tolerance, and the circumstances in which autoreactive, antigen-specific cells 

can cross the BBB and cause inflammation and myelin destruction (32). 

Recently, another animal model has been developed that has proved extremely 

useful in the research of demyelinating diseases: the opticospinal EAE (OSE) mouse. A 

transgenic mouse expressing a TCR specific for MOG 35-55 (denoted TCRMOG) was 

crossed with a MOG-specific Ig heavy-chain knock-in mouse (denoted IgHMOG) both on 

a C57BL/6 background. The latter mouse had B cells producing antibodies against MOG. 

Single-transgenic mice did not undergo spontaneous EAE disease, but the double-

transgenic animals exhibited signs of an EAE-like disease, closer to the human Devic 

disease than to MS. Devic disease differs from MS only in regards to the site of the 

primary attack (spinal cord and optic tracts instead of the brain) and more frequent and 

severe attacks compared to MS. Nevertheless, mice exhibited a pathologic finding similar 

to what is seen in MS: inflammatory infiltrate with prevalence of CD4+T-cells and 

macrophage, demyelination, and sometimes axonal loss. Since single-transgenic mice did 

not develop spontaneous disease, one can infer that interaction between MOG-specific T 

and B cells present in the double-transgenic mice is responsible for development of 

disease. Although OSE mice do not reproduce the classical MS, they still are extremely 

valuable for the understanding of the role of B cells in the pathogenesis of EAE since 

MOG-specific B lymphocytes do not only act as APCs but also proficiently capture even 

smallest amounts of peptide, process it, and present it to T-cells (33). 
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1.6 Therapeutic approaches for MS 

The concept that MS is a non treatable disease has changed dramatically over 

time. There is currently no definitive cure, but long-term survival has increased in recent 

years due to new discoveries about the pathology of the disease, better and earlier 

diagnostics including MRI, and better clinical trial designs. While some therapies have 

been successfully introduced and have shown to improve symptoms, others, having been 

proven to work in animal models, have not shown any benefit or even worsened the 

disease course in humans. Nonetheless, efforts are increasingly centered towards making 

MS a much more manageable disease than in the past. 

There are two goals to therapy: the first one is to treat disease symptoms, such as 

spasticity, vertigo, depression, bladder and bowel dysfunctions. The second one targets 

the pathogenic cascade: peripheral activation of antigen-specific T-cells, penetration of 

BBB and activation and proliferation in the CNS, demyelination, and interaction of TCR 

with peptides loaded on MHC complexes.  

 

1.6.1 Glucocorticoids 

Corticosteroids have long been considered a panacea for autoimmune conditions, 

and MS is no exception to the rule. Studies with intravenous (iv) methylprednisolone 

showed improvement of symptoms in patients with chronic progressive disease as well as 

acute relapses (34). Steroids have also proved beneficial for optic neuritis which is often 

the first clinical manifestation of MS (35). Therapeutic use of corticosteroids nevertheless 

has more recently decreased, partly due to their side effects (osteoporosis, glaucoma, 

worsened diabetes, suppression of adrenal glands, etc.), and partly due to the advent of 
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new therapies. However, they are still important tools though in treating RRF of MS and 

secondary progressive MS. 

 

1.6.2 Cytokines 

Interferon beta (IFN-β) 1a and 1b acts through a mechanism that is not fully 

understood, but it is proposed to involve a drop in IFN-γ levels, blockade of myelin 

attack, inhibition of metalloproteinases, and various modulatory effects on chemokine 

and adhesion molecule production (36). Several drugs currently on the market (Avonex, 

Rebif, Betaseron) were shown to reduce the annualized relapse rate by approximately 

one-third. A new study revealed a decreased concentration of monocyte-derived non-

classical MHC molecule (class Ib) called HLA-G in patients with MS. This molecule is 

important since it inhibits both Th1 and Th2 cytokine production (IFN-γ, IL-2, and IL-10 

respectively) by CD4+ T-cells. HLA-G levels were increased to almost normal levels 

after treatment with IFN-β (37).  

TNF-α or cachectin has already been shown to be an important mediator in the 

pathology of MS due to its ability to mediate inflammatory responses. However, its 

therapeutic blockade in MS has been very controversial. Studies have shown that TNF-α 

is increased in the CSF of patients with MS in direct correlation to the severity of the 

disease and neurological impairment (38). However, results of anti-TNF-α therapy with 

TNF-receptor fusion proteins such as etanercept (Enbrel) or monoclonal antibodies such 

as infliximab (Remicade) have been disappointing. Disease course was worsened and 

there was actually a new case of MS reported (39). Data of TNF blockade in EAE has 

yielded confusing results. Treatment of adoptive transfer EAE with soluble TNF 
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receptors reversed the disease and protected against recurrent episodes (40). In contrast, 

complete deletion of the gene in TNF knockout mice led to high mortality and severe 

neurological defects. Moreover, treatment with recombinant TNF reduced the disease 

course and even prevented progression of EAE (41).  

IL-10 and TGF-β2 are suppressive cytokines in EAE. IL-10 is produced by 

regulatory CD4+ cells and selectively upregulated during recovery in EAE model. Just 

like TNF-α, studies of IL-10 treatment of EAE were mixed, particularly because the route 

of administration seemed to play an important role. Intravenous injections exacerbated 

the disease (42), whereas intranasal immunizations partially inhibited EAE (43). TGF-β2 

has not been approved for the therapy of MS due to the nephrotoxic effects seen in mice.  

 

1.6.3 Antigen-derived immunotherapies 

As corticosteroids and other drugs impair the general immune defense by 

eliminating or suppressing not only the disease-causing cells, but other T-cells, it has 

become imperative that therapeutic approaches specifically target antigen-specific cells. 

A major limitation in the therapy of MS is the phenomenon of epitope spread. This 

develops after the initiating event when CNS provides the proper environment for 

reactivation of T-cells (self-antigens and MHC complex and co-stimulatory signals 

necessary for reactivation), thus recruiting and stimulating cells reactive not only against 

the initial causative antigen, but also against other neighboring self-peptides. This leads 

to a more extensive repertoire of immune responses that may amplify tissue destruction. 

A major goal of antigen-derived therapies is to circumvent this problem by mediating 

bystander suppression. For example, self-reactive antigen-specific Th2 or Th3 cells that 
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were initially generated by oral tolerization of mice and are capable of secreting anti-

inflammatory cytokines (IL-4, IL-10) may globally downregulate the immune response 

after activation (44). One method to generate these regulatory T-cells is through peptide 

tolerization. Two approaches to tolerization with peptides have been extensively studied: 

altered peptide ligands (APL) and mucosal administration of antigen.   

 

1.6.4 Altered peptide ligands  

It is well known that activation of CD4+ Th1 cells depend on the interaction of 

immunogenic peptide bound to MHC class II with the TCR along with a costimulatory 

signal from APCs. Activation leads to proliferation, cytokine production, and cytolysis. 

Lack of costimulation renders the cells anergic to subsequent antigenic stimulation. Past 

studies have shown that an immunogenic peptide that has some of its residues mutated 

can stimulate Th1 and Th2 cells to fulfill some functions, but not proliferation. This 

phenomenon is called partial activation. The basic principle is that the surface expression 

of important molecules, such as CD3 did not change, nor did the MHC binding residues 

in the peptide. The only residues that were changed were the TCR binding moieties. 

When the cells were cultured with the original peptide and APCs, the T-cells proliferated 

normally. When the cells were first stimulated with the mutated peptide, upon subsequent 

stimulation with the original peptide, T-cells were rendered unresponsive to the 

immunogenic peptide (45).  

APLs were also approached in the therapy of EAE induced by adoptive transfer of 

a pathogenic T cell clone specific for MBP epitope p87-99. This clone caused a 

heterogenous inflammatory infiltrate of the CNS that disappeared when the clone was 
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tolerized in vivo with an analogue of the immunogenic peptide that carried a 

phenylalanine to alanine substitution at position 96. Direct transfer of the same clone 

treated with the APL led to prevention of EAE and even reversion of paralysis. The 

mechanism of action is still unclear since the therapeutic APL has no influence on 

proliferation of pathogenic T cell clone to the immunogenic peptide MBP 87-99, so there 

is no MHC competition or TCR antagonism. It has though, been noticed that deletion of 

the inflammatory infiltrate by APL depends on the availability of IL-4. Treatment with 

APL promoted a shift in the ratio between IL-4 and TNF-α  to an increase in the former 

which downregulates the latter (46). Even though treatment of EAE with APL showed 

encouraging results, this approach in human MS has led to a controversial outcome, as 

some trials ending in exacerbations of disease (47). 

 

1.6.5 Synthetic copolymers 

Glatiramer acetate (Copaxone) consists of a mixture of alanine, glutamic acid, 

lysine, and tyrosine that acts like a universal antigen, “luring” autoreactive T-cells (48). It 

efficiently binds to MHC class II molecules (DR, but not DQ or class I), thus hindering 

self-peptide from binding in the same groove. It is not fully understood how the drug 

works: it was initially thought to cross-react with MBP peptide and then compete for 

MHC binding, but has also been found to induce regulatory T-cells (49). Since 

Glatiramer-activated, Th2-like cells can cross the BBB, they enter the CNS and secrete 

anti-inflammatory cytokines, such as IL-4, IL-10, IL-6, thus promoting a non-

inflammatory environment. These Glatiramer-activated cells also exert a neurotrophic 

effect by producing brain-derived neurotrophic factor (BDNF) (50). Copaxone can 
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successfully prevent EAE induced by several peptides (MBP, PLP, or MOG) and phase 

III clinical trials have also shown it to be beneficial in RRMS (51).  

 

1.6.6 Mucosal administration of antigen 

Oral or nasal administration of antigens responsible for MS and EAE has yielded 

controversial results. Self-specific T-cells can be activated within six hours of oral 

administration of peptide and consecutive administration of the same peptide will 

decrease the number of effector T-cells. The route of administration is important, with the 

intranasal one seemingly more efficient than oral (“nasal” versus “oral tolerance”). 

Peptide administered intranasally seems to be able to reach the thymus where it can 

mediate apoptosis of high affinity thymocytes as opposed to the oral route of 

administration where the antigenic peptide might be destroyed by the acid in the 

gastrointestinal tract. The mechanisms governing mucosal tolerance - anergy or deletion 

of antigen-specific T-cells - are not clear.  Although feeding the inducing peptide 

at time of disease induction prevented EAE in mice and generated enthusiasm regarding 

the therapeutic outcome of the human disease (37),  this approach failed in MS clinical 

trials (52).  

 

1.6.7 T-cell vaccination  

Antigen-stimulated T-cells can induce EAE equally as well as the antigenic 

peptide itself in adjuvant. T-cell vaccination (TCV) uses irradiated, activated antigen-

specific CD4+ T-cells to “vaccinate” mice without causing EAE similar to microbial 

vaccination against infectious agents. These cells induce CD8+ T-cells capable of killing 
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the autoreactive CD4+ T-cells as well as preventing antigen-induced proliferation of the 

vaccine T-cells themselves. Pilot trials in MS patients have used TCV with MBP-reactive 

T-cells isolated from their blood, activated in vitro and irradiated to abrogate subsequent 

proliferation. These clones were then injected back into the patients, resulting in the 

specific deletion of circulatory MBP-specific T-cells (53). Although this procedure has 

not been used to treat patients on a large scale, it is still considered for future evaluation. 

 

1.6.8 Monoclonal antibodies  

Activated T-cells express high levels of surface adhesion molecules like VCAM 

or ICAM and upregulate their receptors on the endothelium of the BBB, thus enabling T-

cells to cross the BBB and cause inflammation in the CNS. Antibodies directed against 

the ligand-receptor pair could potentially block this first step in the CNS homing of T-

cells. VCAM-1 expression is low on blood vessels under homeostatic conditions; 

however, expression is increased under conditions of inflammation, such as found in 

brain tissue of EAE-induced animals and human MS. Administration of antibody against 

α4β1-integrin prevents accumulation of leukocytes in the brain and subsequent 

development of EAE (54). The monoclonal antibody anti-α4β1-integrin was named 

Natalizumab and has been licensed for clinical use (55). 

 

1.6.9 Gene therapy in MS 

Gene therapy for autoimmune disease has emerged as a result of progress in 

deciphering in greater detail the pathologic mechanisms by which self-antigens mediate 

autoimmune diseases. This approach can be very specific and aims to deliver a gene or 
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gene product that can specifically block disease. Gene therapies may be antigen-specific, 

while hopefully avoiding the general suppression of the immune system associated with 

conventional treatments. The goal of gene therapy in MS is generally to deliver immune-

modulating molecules (blocking antibodies, anti-inflammatory cytokines, etc.) by 

different means such that antigen-specific immune tolerance can be achieved. 

 One new tactic is the delivery of anti-inflammatory cytokine genes (IL-4, IL-10, 

or IL-12 p40 subunit) by viral vectors that are administered intrathecally in order to 

directly concentrate the gene product in the CNS, slowly releasing the cytokine of 

interest. Different vectors may be used: non-replicative herpes simplex virus type 1(HSV-

1), retroviruses or adenoviruses are able to accommodate the genes and infect cells. 

Potentially, EAE could be both prevented and treated using an HSV-IL-4 system by 

downregulating proinflammatory cytokines and therefore, macrophage activation and 

CNS invasion (56).  

An even more practical way of delivering anti-inflammatory cytokines by means 

of viruses is to retrovirally transduce antigen-specific CD4+ T-cells. The autoreactive T- 

cells will migrate to the CNS and therefore, provide a “home delivery” of Th2 regulatory 

 cytokines to the autoimmune lesions (57).  

Receptor-modified T-cells (RMTC) have emerged in the past five years as a 

means to redirect T-cells against antigen-specific T-cells and have already proven useful 

in infectious diseases and cancer. In this case new, often chimeric, signaling receptors are 

expressed on T lymphocytes. The benefit of using T-cells is their effector and regulatory 

functions, their ability to grow well in vitro and traffic to most sites of the body. Chimeric 

receptors containing extracellular domains from MHC class I linked to a signaling 
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domain from TCR can be retrovirally transduced in T-cells or T-cell hybridoma. Upon 

encounter and recognition of their cognate TCRs, these chimeric receptors exhibit 

effector functions such as cytokine secretion, proliferation, or cytolysis depending on the 

type of T cell in which they are transduced (CD4+ or CD8+) (58).  

 A more specific surrogate receptor able to target autoreactive, encephalitogenic 

Th1 cells has recently been designed. This chimeric receptor contains the extracellular 

and transmembrane domains of mouse MHC class II I-A β and α, the zeta cytoplasmic 

signaling domain, and also an antigenic peptide, MBP89-101, linked on its surface. This 

receptor not only recognizes the cognate TCR but can also be stimulated as a result of 

this interaction. Among outcomes of this TCR-TCR interaction, CD8+ T-cells transduced 

with retrovirus containing this construct can specifically kill CD4+Th1 antigen-specific 

T-cells. Although the chimeric receptor was designed to only carry one peptide epitope, 

experimental results show that this approach could also address the main problem of 

EAE, epitope spread, even when RMTC are administered one month after disease 

induction (59). One benefit of this approach is that it does not interfere with the whole 

immune system, but selectively targets encephalitogenic, antigen-specific cells. 
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Chapter 2. Development of chimeric receptors 

 

Chimeric receptors (CRs) are hybrid combinations of a recognition domain 

(variable regions of an Ig or a MHC molecule) and a signaling domain (TCR moieties 

responsible for signal transduction). The name “chimeric” resides in their mixed 

structure: CRs carry a recognition domain containing variable regions in charge of 

antigen recognition and an intracytoplasmic domain responsible for signal transduction 

(60) (Figure 2-1).  

For a better understading of how CRs were engineered, I will briefly discuss the 

structure of IgG and TCR. 

IgG is composed of two identical heavy and two light chains (kappa or lambda). 

The light chain has a variable region and a constant one and the heavy chain has 

additionally two or three constant domains. The chains are kept together by disulfide 

bonds. When treated with papain, the Ig breaks into two equal fragments of 45-50 KDa 

called fragments of antigen binding (Fab) and a third fragment of 50 KDa called 

crystalizable fraction (Fc). The antigen binding site consists of the variable domains of 

the light and heavy chains.  

 TCR is also composed of two chains, alpha and beta, each of which has a variable 

and a constant region. Its role is to recognize antigen-MHC complexes. The signals 

triggered by antigen recognition are not transduced by the TCR but by two proteins, CD3 

and zeta (ζ), that are noncovalently linked to TCR, forming the TCR complex. Upon 

recognition of peptide, a cascade of signals including tyrosine phosphorylation and 

activation of nuclear factor-kappa (NF-κB), nuclear factor of activated T-cells (NFAT), 
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Figure 2-1. Structure of the T-cell receptor and a chimeric receptor. Reprinted with 
permission – Claudia Rössig, Malcolm K. Brenner. Chimeric T-Cell Receptors for the 
Targeting of Cancer Cells. Acta Haematol 2003;110:154-159. 
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and activating protein-1 (AP-1), is triggered, eventually leading to cell proliferation and 

differentiation. The cytoplasmic domain of CD3 and ζ contain a conserved sequence 

called immunoreceptor tyrosine-based activation motif (ITAM) that plays a crucial role 

in signaling. Upon phosphorylation, ITAMs become docking sites for a tyrosine kinase 

called ζ-associated protein of 79 kDa (ZAP-70), ultimately leading to changes in gene 

expression in the T-cells.  

 CRs represent a smart combination between the ability of TCR and B cell 

receptor (BCR) to recognize different antigens and elicit intracytoplasmic signal 

transduction events leading to different effects. Some of the earlier CRs were constructed 

by using both variable region of the heavy chain (VH) and variable region of the light 

chain (VL) combined with the α or β constant domain of the TCR (61). Eshhar engineered 

a chimeric TCR composed of the variable region domain Fv of an antibody and the 

constant region of TCR. This receptor can be expressed as a transgene in T-cells via 

retrovirus, but due to the fact that two genes (VH and VL) have to be transfected into the 

same cell by two separate retroviral vectors, the efficiency of transduction was low. 

Consequently, this problem was overcome by joining together VH and VL into a single 

chain variable region (scFV) connected by a linker peptide (62, 63). The scFv is part of 

the extramembrane portion of the construct and is responsible for antigen recognition. 

This is linked to a region consisting of the gamma (γ) or zeta cytoplasmic tail of the TCR. 

The two domains are linked by a hinge region that works as a spacer, increasing the 

distance between scFV and the plasma membrane. The hinge region belongs to IgG and 

accounts for the differences in the amino acid composition of the four classes of IgGs. It 

is placed between the Fab fragment and the constant CH2 and CH3 domains of the heavy 
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chains and determines the flexibility of the IgG molecule. Flexibility is important for 

further effector functions of the IgG such as C1q binding and complement activation 

(64); this feature and also the number of inter-heavy chain disulfide bonds in the hinge 

region is strictly characteristic and different for each IgG subclass. Different hinges were 

used, such as the hinge region of human IgG1 or CD8 or part of the extracellular region 

of CD28  some of which showing better expression in T-cells than others (65). The 

advantage of using the variable domain from Ig resides in the non-MHC restricted, 

antibody-type specificity that leads to a more ubiquitous array of specificities that can be 

transferred to T-cells through CRs.  

Similar to the classic TCR, the mere contact between T-cells bearing chimeric 

receptors and target cells does not lead to cytolysis of latter. The CR can only guarantee 

specific recognition of target, but does not confer effector function to the T-cells unless 

they are activated upon this recognition. This may require the presence of a co-

stimulatory signal and although a definite role has been established for induction of 

effector T-cells from naïve T-cells, it is not clear whether the costimulation is also 

required for the induction of effector cells from memory T-cells. The two signals theory 

states that T-cell activation requires recognition of antigen-MHC complex and 

costimulation; T-cells stimulated in the absence of costimulation are rendered tolerant 

rather than memory T-cells (66).  

CD28 is a membrane protein with well-defined ability to promote T-cell 

proliferation and differentiation and induction of cytokine secretion upon binding of B7 

molecules on APCs. The addition of the cytoplasmic domain of the co-stimulatory CD28 

molecule to the engineered zeta signaling tail improved the efficacy of CR-transduced T- 
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cells (67). Another co-stimulatory pathway is mediated by CD137 that belongs to the 

TNF family. Stimulation of CD 137 inhibits activation-induced cell death (AICD) (68). 

CRs engineered as described can be transferred into human or murine T-cells and 

redirected against microbial antigens or tumor antigens in a manner independent of MHC 

restriction. Replication-defective viral vectors are used for transduction of CRs into T- 

cells. Several different vectors have been tried for this strategy, each with advantages and 

disadvantages. Adeno-associated vectors can be easily delivered into dividing and non-

dividing cells and have high transduction efficiency. Unfortunately, they integrate at low 

frequency and gene expression is, therefore, temporally limited (69). Retroviral vectors 

are better at integrating into the target genome but the target cell must be activated to 

incorporate the retrovirus. Future concerns have been raised as to whether viral 

integration may be oncogenic. 

Pre-clinical trials using CRs for the therapy of infectious diseases have yielded 

controversial results. Human immunodeficiency virus (HIV) constitutes an example. 

Infusion of CD4+ and CD8+ T lymphocytes transduced with a chimeric receptor 

containing the extracellular domain of human CD4 linked to the zeta chain of TCRs were 

followed by a decrease in the viral load and an increase in CD4+ T-cell counts. Upon 

recognition of TCR on the surface of HIV-infected T-cells, retrovirally-transduced T-

cells get activated and exhibit effector function such as cytokine production, antigen-

specific proliferation, and cytolysis of target cells (70). Other studies contradict these 

results and did not show any change in the HIV p24 or RNA plasma levels in patients 

that received cytotoxic T lymphocytes (CTL) transduced with CD4-ζ chimeric receptor, 

which indicates a lack of correlation between their in vitro and in vivo cytolytic 
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capacity (71). 

Human cancer cells possess tumor associated antigens that can be recognized and 

bound by monoclonal antibodies. These antibodies can recognize the extracellular 

domain of these genes; an example is ERBB2 oncogene present in breast ovarian, gastric, 

and colon cancers. CR bearing scFv derived from the ERBB2 antibody linked to a hinge 

region and the zeta cytoplasmic domain were engineered, followed by transduction into 

CTL. The newly modified CTL were capable of efficient in vitro lysis of fibroblasts and 

epithelial cells transfected with human ERBB2 oncogene. Adoptive transfer of both 

target cells and CTL into nude mice slowed ERBB2 tumor growth for ten days (72).  

Based on the ability of monoclonal antibodies to recognize tumor associated 

antigens (TAA), cytotoxic T lymphocytes can be redirected using these antibodies in a 

clinical trial for metastatic ovarian cancer. One-third of the patients showed objective 

clinical responses, but the approach failed in most of them due to the limited accessibility 

of the solid tumors by antibodies, dissociation of antibodies from CTL, and the limited 

ability of re-directed T-cells to kill more than one cell (73). Another clinical trial using 

chimeric receptors was directed against renal cell cancer, an immunogenic tumor, with a 

specific monoclonal antibody, G250, that recognizes a carboxy-anhydrase expressed on 

the cell membrane in both primary tumors and metastases. A CR was engineered, bearing 

the scFv domains of G250 linked to the ζ-chain from Fc receptor of IgE and was 

administered to G250 positive patients  whose metastatic lesions were not amenable for 

resection in a phase I clinical trial protocol. Although infusions of T-cells retrovirally 

transduced with CR were clinically well tolerated, the patients developed liver toxicity 

and hyperbilirubinemia, but these laboratory abnormalities were reversible. This 
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phenomenon occurred due to the interaction of G250 antibody on the surface of gene-

modified T-cells with G250L target antigen also expressed on the cells lining the bile 

ducts. The CR-transduced T-cells were detected in the peripheral blood and showed 

increased specific cytolysis against G250L target cells and increased secretion of IFN-γ 

upon chimeric receptor stimulation (74). Another report has shown that a chimeric 

receptor designed to specifically recognize and target EBV was detected even 18 months 

after injection of EBV-specific CTL into patients (75). The long-term persistence and 

effects of therapeutic T-cells brings further hope for therapy with CRs.  

 Another caveat of immunotherapy with chimeric receptors is their functional 

limitations. There’s certainly an advantage of CRs designed to carry the variable region 

of an antibody as recognition domain and the zeta cytoplasmic moiety for signal 

transduction in the fact that they can activate T-cells to trigger antigens regardless of their 

MHC restriction. Still, there are differences between the interaction of CR-bearing T-

cells with their targets and a “classic” TCR interaction with a peptide held on a MHC 

molecule. These differences can lead to important functional issues. For the most part, 

upon recognition of a MHC-peptide complex, the CD4 or CD8 coreceptors are also 

recruited and interact with the nonpolymorphic regions of MHC class I or II, thus 

bringing lck (a tyrosine kinase from the Src family located in their cytoplasmic domain) 

in close association with ITAMs on the CD3 or ζ chains, leading to augmented activation 

of transcription factors and ultimately a more potent T-cell response. We can therefore 

assume that incorporation of CD4 or CD8 coreceptors might enhance the strength of CRs. 

Therefore, new CRs have been designed comprising multiple tandem linked signaling 

domains. These include zeta, CD4, CD28 with or without lck in different combinations 
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(zeta only, CD4-zeta, CD28-zeta). The presence of lck promotes signaling by CRs 

because it enhances receptor phosphorylation. CD4 cytoplasmic tail does not possess 

intrinsic kinase activity, but in the form of CR-CD4-zeta, it was shown to be able to 

enhance the phosphorylation of CR by recruitment of p56lck to the CR similar to the way 

lck on CD4 coreceptor is recruited by TCR. Overall, the novelty of this particular model 

of CRs is the improved signaling ability upon recognition of antigen when either CD4 or 

CD28 signaling regions are incorporated. T-cells transduced with these type of CRs show 

better proliferation and cytokine production than the ones having ζ only as signaling 

domain. Among all the combinations tried, the chimeric receptor with a CD28-ζ-lck 

intracellular signaling domain revealed to be the most efficient regarding IL-2 production 

and sensitivity to stimulation. However, its low surface expression level limited the 

practicality of using this receptor (76). 

An issue to be considered in the evaluation of therapeutic T-cells bearing CRs is 

the difference between their excellent in vitro effects and the poor in vivo survival and 

expansion of CR-expressing T-cells. For in vivo survival of transduced T-cells, proper 

stimulation and expansion is vital since prolonged culture of these cells might diminish 

their functional effects. Thus, the essence is fulfillment of the right conditions for T-cell 

stimulation since insufficient amounts of cytokines lead to passive cell death, whereas 

inappropriate stimulation leads to AICD. Another problem might be the need for CD4+ T-

cells presence. CD8+ T-cells can exercise their role in antigen clearance in the absence of 

any help in short-term acute infections. Chronic infections last longer and take more time 

to clear and CD4+ lymphocytes are required to sustain virus-specific CD8+ CTL (77). For 

example, CD8+ lysis ability seen in the late stages of acquired immunodeficiency 
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syndrome (AIDS) is lost in correspondence to a dramatic drop in the number of CD4+ T-

cells.  

In conclusion, adoptive immunotherapy with receptor-modified T-cells bearing 

chimeric receptors on their surface comprises a potential novel and specific therapy for 

malignancies and infectious diseases.  
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Chapter 3. Significance of a dileucine motif in CD28-zeta (ζ)-containing chimeric 

receptors 

 

3.1 Introduction 

Lysosomes are the ultimate destination of macromolecules transported from the 

extracellular space or cell membrane by endocytosis. These organelles can be accessed 

via internalization of carrier proteins into endosomes and then transportation to the 

lysosomes or via the biosynthetic pathway that involves an intermediate organelle, the 

trans-Golgi network, followed by intracellular delivery to endosomes and then 

lysosomes. Sorting of transmembrane proteins to endosomes and lysosomes is mediated 

by signals present in the cytosolic domain of the proteins. These signals include short 

amino acid sequences that can be tyrosine-based or dileucine motifs. There are two 

consensus dileucine motifs, [DE]XXXL[LI] or DXXLL. Dileucine (LL) motifs only have 

four to seven amino acid residues, but only two or three of them are critical for their 

function. These are recognized by proteins that play an important role in the endosomal-

lysosomal system. Clathrin coats forming around plasma membrane contain 

heterotetrameric adaptor protein (AP) complex AP-2 and other accessory factors. 

Endosomal clathrin coats and the trans-Golgi network contain AP-1 and ADP-

ribosylation factor-binding proteins (GGA1, 2, and 3) and monomeric adaptors. 

[DE]XXXL[LI]  sorting signals are recognized by the µ and β subunits of AP-1, AP-2, 

AP-3, and AP-4, leading to internalization, lysosomal, and basolateral targeting. DXXLL 

are recognized by the VHS domain GGAs, leading to sorting from the trans-Golgi to 

endosomes (78). 
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The dileucine motifs have been identified in multiple proteins in a quest to 

characterize protein motifs responsible for lysosomal targeting. For example, to eliminate 

multiple targeting signals, Letourneur engineered chimeras containing the extracellular 

and transmembrane domain of IL-2 receptor antigen Tac (the alpha chain of the IL-2 

receptor) linked to the cytoplasmic domain of each CD3 chain. Using these chimeras, a 

new dileucine-based targeting sequence in the cytoplasmic domain of CD3 γ and δ was 

revealed, responsible for both rapid internalization and delivery to lysosomes (79). This 

sequence shown to be important in lysosomal targeting contains six amino acids, 

DKQTLL; site-directed mutagenesis of either of the leucines L130 or 131 established 

their ranking. The first leucine is invariant since replacement with any other amino acid 

lead to decreased signal, whereas the second leucine could be replaced by isoleucine 

without affecting the function.  

 

3.1.1 [DE]XXXL[LI] signals 

The [DE]XXXL[LI]  signals are important in the sorting of many transmembrane 

proteins, such as: CD3-γ (human Tm-8-SDKQTLLPN-26), tyrosinase (human Tm-8-

EEKQPLLME-12), CD4 (human tm-12-SQIKRLLSE-17), etc. In CD3-γ chain, 

SDKQTLL sequence plays a part in serine phosphorylation-dependent downregulation of 

the TCR from the surface that involves rapid internalization and lysosomal degradation. 

CD4 has a very similar LL-containing sequence.  

As previously mentioned, [DE]XXXL[LI] signals are recognized by the µ and β 

subunits of various AP complexes. Each [DE]XXXL[LI] signal has a preference for a 

specific AP complex but not others. Although they bind to the µ2 subunit of AP (similar 
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to tyrosine-based motifs), these determinants do not compete with each other.  

 

3.1.2 DXXLL signals 

DXXLL signals constitute a particular type of sorting determinants present in 

proteins or transmembrane receptors that cycle between the trans-Golgi and endosomes, 

such as cation-independent (CI-MPRs) or cation-dependent mannose-6-phosphate 

receptors (CD-MPRs). These signals mediate incorporation into clathrin-coated vesicles 

that move from the Golgi apparatus to the endosomal system. Similar to [DE]XXXL[LI] 

signal, this has a very strict requirement for the LL and also D residues, because 

mutations of any of these amino acids inactivate signaling and increase the protein 

expression at the cell surface (80). This signal does not bind to AP complexes but instead 

is recognized by the amino terminal VHS domain of GGAs, which are ADP-ribosylation 

factor-dependent clathrin adaptors within the trans Golgi and endosomes (81). This 

recognition is very specific since the VHS domain cannot bind the other dileucine motif, 

[DE]XXXL[LI], or the tyrosine motif YXXø. Regulation of the recognition of DXXLL 

signals also involves serine residues in a consensus sequence placed two or three amino 

acids upstream of DXXLL signals that are phosphorylated by casein kinase II (CK II). 

Upon phosphorylation of serine, the negatively charged oxygens in the phosphate group 

interact with the positively charged residues within the VHS domains of GGAs. Upon 

this interaction, MPRs are incorporated into clathrin-coated vesicles emerging from the 

trans-Golgi network. These vesicles will then deliver the receptors to endosomes and 

eventually, to lysosomes (82). Another interaction involves GGA 1 and 3 that also bear 

DXXLL motifs able to bind their own VHS domain (83), followed by auto-inhibition. 
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Therefore, GAs should be dephosphorylated in order to displace from their own VHS 

domain, making it available for interaction with domains in the cytosolic part of other 

proteins.  

 

3.2 Identification of a murine CD28 dileucine motif that suppresses single-chain 

chimeric T-cell receptor expression and function (1) 

 

3.2.1 Introduction 

 RMTC are T-cells modified to express surrogate chimeric receptors that can 

target antigens not normally recognized by the immune system. These chimeric receptors 

that redirect therapeutic RMTC against their targets substitute for the classic T cell 

receptor. They recognize target antigen through an extracellular antigen-recognition 

domain, such as a single-chain Fv fragment, and signal through a TCR-derived signal 

transduction domain, such as the TCR ζ chain (84).  RMTC have shown therapeutic 

properties in cancer of infectious diseases systems, selectively targeting malignant or 

infected cells in model systems. No significant toxicity has been observed in phase I 

clinical trials (85). 

A possible problem in redirecting therapeutic cells with chimeric receptors is the 

limited signal the receptors are able to transduce. The physiologic coreceptor and 

costimulatory signals that are normally delivered to T-cells when they interact with an 

APC are not necessarily available in the case of RMTC engaging with the ligand on a 

target cell. These signals are important, for they promote T cell survival, proliferation, 

and effector function. To avoid this drawback, we have developed single-chain chimeric 
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receptors that incorporate moieties from both the TCR and costimulatory and/or 

coreceptor molecules. We decided to genetically link the signaling domain of the CD28 

costimulatory molecule to the cytoplasmic tail of the TCR ζ chain. Several studies have 

shown that RMTC that express chimeric receptors composed of a CD28-ζ signaling 

region showed improved functional responses compared to those that only bear the ζ 

signaling tail. 

In our study, we used RMTC to specifically target T lymphocytes. Some RMTC 

may be useful in transplantation or other settings. The specificity of the TCR is the 

defining feature of a pathologic T cell. In transplantation, these TCR are generally 

directed against allogeneic major histocompatibility complex (MHC) or syngeneic MHC 

linked to minor histocompatibility antigens. We designed surrogate CRs to specifically 

redirect RMTC against class I MHC-restricted T-cells. These CRs include the 

extracellular and transmembrane domains of the MHC class I Kb molecule linked to either 

a murine ζ or CD28-ζ signaling tail. The Kb extracellular region serves as bait for Kb-

restricted T-cells; the signaling domain promotes the RMTC’s effector functions. 

Biochemical analysis of CR-mediated signal transduction in Kb-CD28-ζ or Kb-ζ-

transduced T cell hybridoma showed that the presence of CD28 enhanced receptor 

phosphorylation and calcium flux. Furthermore, the CD28 domain allowed direct receptor 

association with the src kinase p56lck, critically involved in initiating and sustaining 

receptor-mediated signal transduction. Kb-CD28-ζ T cell hybridoma also showed 

increased IL-2 production and signaling sensitivity.  

Unlike these data with hybridoma, when we transduced primary murine T 

lymphocytes with the CD28-ζ or the ζ-CR, we did not observe significant differences in 
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chimeric receptor-mediated functional responses (82). We further observed a 2-fold to 4-

fold decrease in the surface expression level of the Kb-CD28-ζ CR in primary T-cells 

when compared with the Kb-ζ receptor. Therefore, addition of the CD28 costimulatory 

molecule in chimeric receptor leads to conflicting effects: it provides an enhanced signal 

into RMTC but at the same time diminishes the receptor surface expression and thus 

limits the extent and/or duration of this signal. 

In order to find a sensible explanation for the decreased expression of the Kb-

CD28-ζ CR, we analyzed the sequence of the murine CD28 cytoplasmic tail and we 

noticed a noncanonical dileucine internalization motif. Dileucine motifs have been well 

characterized in other proteins, but not CD28. To clarify the role of this motif in the 

CD28-ζ CR function, we inactivated it by mutating leucine to glycine, [L G]. We found 

that this mutation increased surface expression of the Kb-CD28-ζ receptor 2-fold to 5-fold 

compared with the wild type receptor. Moreover, Kb-CD28[L G]-ζ-modified T-cells 

showed increased sensitivity in cytokine production, proliferation, and cytolysis of target 

cells when compared with Kb-CD28-ζ RMTC. Therefore, this study identifies a 

previously undescribed dileucine motif within the murine CD28 tail and demonstrates its 

specific role in the restriction of CR function in RMTC. 

 

3.2.2 Materials and methods 

 

3.2.2.1 Construct 

cDNA clones or splenic cDNA were used to isolate cDNA fragments encoding 

the extracellular and transmembrane domain of the H-2Kb molecule and the cytoplasmic 
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tails of murine CD28 and ζ by PCR. Flanking restriction sites were added to the 

fragments by PCR and the dileucine mutation was introduced by PCR mutagenesis. The 

constructs were assembled and subcloned into the MSCV retroviral vector that contains 

an internal ribosome entry site (IRES) linked to the green fluorescence protein (GFP) (gift 

from E. Vanin, St Jude Children's Research Hospital). Prior to ligation of all genes into 

the final construct, all DNA sequences were confirmed by sequencing at the St Jude 

Hartwell Center for Biotechnology.  

 

3.2.2.2 Antibodies, cells, mice 

TG-B transgenic mice were used as a source of CD8+ T-cells for transducing the 

two constructs. These mice are transgenic for a rearranged SV40-T/H-2Kk-restricted TCR 

that were bred more than 20 generations with B10.BR mice. As a source of target cells 

we used OT-1 mice (Jackson Laboratories, Bar Harbor, ME), transgenic for a rearranged 

ovalbumin 257-264/H-2Kb-restricted TCR. Antibodies included clone B20.1 anti-mouse 

V 2 (Pharmingen, San Diego, CA), clone 2C11 anti-mouse CD3 (gift from M. 

Blackman, Trudeau Institute, Saranac, NY), clone AF6-88.5 anti-mouse H-2Kb 

(Pharmingen and gift from M. Blackman), goat anti-mouse IgG (Jackson Laboratories), 

and goat anti-rat IgG (Jackson Laboratories).  

 

3.2.2.3 Retroviral transduction and T cell culture  

10 µg of CR constructs and 10 µg of the retrovirus helper DNA PEQPAM (gift 

from J. Cleveland) were cotransfected into 293 T cells using calcium phosphate 

precipitation. After 16 hours, the cells were washed and cultured in Dulbecco modified 
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Eagle medium/10% fetal calf serum (DMEM/10% FCS) for 48 hours. Supernatant was 

collected twice daily and used to infect GP+E86 retroviral producer cells in the presence 

of 8 µg/mL polybrene, for five days. Transduced GP+E86 cells were sorted for GPF by 

fluorescence-activated cell sorting (FACS). To transduce T lymphocytes, we isolated 

lymph nodes, processed them in a single-cell suspension, and stimulated them in vitro 

with soluble anti-CD3- and CD28 antibodies in the presence of 2 ng/mL recombinant 

murine IL-2 (rmIL-2) (R&D Systems, Minneapolis, MN) for 48 hours. At that point, the 

medium was replaced with retroviral supernatant and 8 µg/mL polybrene, and the cells 

were spun at 1800 rpm for 90 minutes in a Jouan CR422 tabletop centrifuge (Winchester, 

VA). Transduced T-cells were sorted for expression of GFP and CD8 and expanded in 

EHAA medium (Biosource International, Camarillo, CA) in the presence of rmIL-2 for 

up to 5 days. The cells were restimulated every 10 days using 2 µg/mL Concanavalin A 

(ConA; Sigma, St Louis, MO), 2 x 106/mL irradiated syngeneic splenocytes (3000 rad), 

and 2 ng/mL rmIL-2. The assays were performed on day five or six after stimulation, in 

the absence of exogenously added IL-2.  

 

3.2.2.4 Proliferation  

96-well plates were coated with goat anti-mouse IgG followed by loading of 

purified AF6-88.5 antibody. 5 x 104 CR-transduced T-cells and 2.5 x 105 25 irradiated 

syngeneic B10.BR splenocytes were added. After 48 hours, the cells were pulsed with 1 

µCi 3[H]-thymidine for 16 hours and harvested onto filtermats. Liquid scintillation 

counting of incorporated thymidine was used to assess proliferation. All samples were 

analyzed in triplicate and plotted as means.  
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3.2.2.5 Cytotoxicity assay  

RMTC were incubated overnight in medium with different concentrations of 

ovalbumin (OVA) 257-264 peptide (St Jude Hartwell Center for Biotechnology) in PBS 

or control PBS, then washed 3 times and resuspended in medium. Effector RMTC were 

incubated with 105 OT-1 target T-cells in various ratios. The target cells were isolated 

from OT-1 TCR transgenic lymph node cells or splenocytes. After 5 to 6 hours of 

coincubation, 5000 to 10 000 6-µm fluorescent TruCount beads (Becton Dickinson, 

Franklin Lakes, NJ) were added. Samples were stained for V 2, washed once, and 

analyzed by flow cytometry. The target cells stained positive for V 2 and GFP negative, 

and were readily distinguished from the GFP+ effector cells. The TruCount beads serve as 

a tool for normalization of cellular events and provide a quantitative assessment of the 

absolute number of target cells. Percent specific cytotoxicity was determined as 100 x (1 - 

viable target cell count after incubation with peptide-pulsed effectors/viable target cell 

count after incubation with unpulsed effectors). Parallel cultures of target cells in the 

absence of effector cells were performed simultaneously in all experiments as negative 

controls. Essentially identical results were obtained when cytotoxicity was alternatively 

calculated as 100 x (1 - viable target cell count after incubation with peptide-pulsed 

effectors/viable target cell count after incubation without effectors). All samples were 

analyzed in quintuplicate. 

 

3.2.2.6 Cytokine analysis  

IFN-γ was analyzed using a Bioplex assay (Bio-Rad, Hercules, CA). 3000 

analytical beads per well were added to a prewet 96-well filter plate. The samples were 
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then added to the beads and incubated for 1 hour at room temperature (RT), followed by 

aspiration of supernatant, beads washing, and incubation for 1 hour with biotinylated anti-

IFN-γ detection antibody. Detection was performed by staining with streptavidin-

phycoerythrin (PE) and fluorescence analysis with a Bioplex plate reader (Bio-Rad).  

 

3.2.3 Results 

 

3.2.3.1 Design and expression of chimeric receptors  

H-2Kb extracellular and transmembrane domains were linked to the cytoplasmic 

domains of CD28 and ζ in order to engineer the wild-type Kb-CD28-ζ and dileucine-

mutated Kb-CD28[L G]-ζ receptors (Figure 3-1). Both constructs were subcloned into 

the MSCV retroviral vector, which includes an IRES and GFP gene. Upon transduction of 

primary CD8+ T lymphocytes with retroviral supernatant, we observed efficiencies 

ranging from 15% to 50%.  

To determine the role of the dileucine motif in CR expression, CD8+GFP+ T-cells 

transduced with either the Kb-CD28-ζ or Kb-CD28[L G]-ζ receptor were sorted and 

stained with a Kb-specific antibody. We noticed a 2-fold to 5-fold increase in the surface 

expression level in the cells bearing the mutated receptor compared to the wild-type one, 

regardless the amount of GFP cotranscribed in the cells (Figure 3-2). These results 

demonstrate that the dileucine motif in the CD28 molecule significantly restricts the level 

of surface chimeric receptor, while its disruption enhances surface expression, but this 

finding does not necessarily ensure a more robust functional response. 
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Figure 3-1. Chimeric receptor structure and sequence of the dileucine motif. 
Chimeric constructs were created by linking components in a cassette fashion. 
Extracellular and transmembrane domains are derived from the MHC class I H-2Kb 
molecule. The murine CD28 and TCR-ζ cytoplasmic tails were attached as described.10 
PCR mutagenesis was used to introduce the leucine to glycine change in the CD28 tail. 
This corresponds to an L184G and L185G conversion in the CD28 sequence (GenBank 
accession NP_031668).  
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Figure 3-2. Increased surface expression of dileucine-mutated chimeric receptor. 
Chimeric receptor (anti-Kb) expression is plotted as a function of cotranscribed GFP 
level. Transduced cell populations were analyzed for GFP (FL1) expression level and 
gated into regions comprising approximately 0.2 to 0.3 log fluorescence using Cellquest 
software (BD Biosciences, San Jose, CA). For cells within each of these gated regions, 
FL1 MFI (GFP) and FL2 MFI (anti-Kb staining or control unstained) was calculated and 
plotted. 
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3.2.3.2 Functional response of RMTC  

Previous data has shown that the T cell response to stimulation depends on the 

intensity and duration of the stimulus. This implies that the increased expression of [L

G] chimeric receptors should theoretically result in improved signaling compared with the 

wild type receptors. However, since the role of the dileucine motif in CD28 signaling has 

not been established yet, it is also possible that this disruption would hinder signal 

transduction. To determine whether this mutation proves beneficial on the functional 

response or not, we first measured T cell proliferation after stimulation through both 

receptors using a non-specific mitogen. Kb-CD28-ζ, Kb-CD28[L G]-ζ, and MSCV 

retroviral control cells responded equivalently to Concanavalin A. This result 

demonstrates that the expression of CR does not affect the proliferative ability of 

therapeutic, CR-transduced T-cells in response to non-specific stimuli (Figure 3-3). In 

contrast, differences were observed after stimulation through the CR. T-cells transduced 

with the [L G]-mutated CR proliferated better than wild type CR-transduced T-cells in 

response to CR-specific stimulation. Therefore, we can conclude that the dileucine motif 

in CD28 functionally restricts chimeric receptor activity, and the L G mutation alleviates 

this restriction. 

To determine whether the enhanced function of mutated CR-transduced RMTC 

also affected the amount of cytokines produced by T-cells upon stimulation, we analyzed 

IFN-γ secretion. A more than 3.5-fold IFN-γ production was noted upon stimulation of 

Kb-CD28[L G]-ζ RMTC with CR-specific antibody (Figure 3-4). Therefore, disabling 

the dileucine motif also improves RMTC cytokine response.  

 It was already proven that Kb-CD28-ζ RMTC can kill Kb-restricted target cells 
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Figure 3-3. Proliferative response of Kb-CD28- ζ and Kb-CD28[L G]-  RMTC.  
GFP-sorted CD8+ RMTC were stimulated 7 days after transduction with irradiated 
splenocyte feeders on plates coated with AF6-88.5 anti-H-2Kb or in the presence of the 
nonspecific mitogen conA. After 2 days the cultures were pulsed with 3H-thymidine and 
harvested 16 hours later. Data points are means of triplicate samples. Error bars show ± 1 
SD. One of 3 essentially identical experiments is shown. 
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Figure 3-4. IFN-  production by Kb-CD28-  and Kb-CD28[L G]-  RMTC.  GFP-
sorted CD8+ RMTC were stimulated 7 days after transduction in the presence of 
splenocyte feeders on plates coated with 5 µg/mL AF6-88.5 anti-Kb, with conA, or 
cultured in the absence of stimulation. Stimulation-induced IFN-  production was 
measured by Bioplex assay using anti-IFN--coated beads. Data points are means of 
triplicate samples. Error bars show ± 1 SD; *, less than 1 ng/mL. 
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(58). We tested if the new mutated CR is more efficient in this aspect. We used OT-1 

cells from the lymph nodes or spleen of mice transgenic for a TCR specific for Kb/Ova 

257-264 as target cells. Ova peptide-pulsed Kb-CD28[L G]-ζ RMTC are able to 

specifically kill target OT-1 T-cells more efficiently than the Kb-CD28-ζ RMTC (Figure 

3-5). This is a confirmation that the dileucine to glycine mutation enhances the effector 

function of RMTC, namely the ability to proliferate, secrete cytokines, and lyse Ova-

specific target cells.  

The data above show that mutations in the dileucine motif of CD28 enhance the 

effector function of RMTC in vitro. We next wanted to find out if therapeutic cells were 

also effective in vivo. To do this, we coinjected Ova peptide-pulsed RMTC transduced 

with the wild type or mutated CR along with OT-1 transgenic cells labeled with 

carboxyfluorescein succinnimidyl ester (CFSE) into severe combined immunodeficiency 

(SCID) mice. Both Kb-CD28[L G]-ζ and Kb-CD28-ζ peptide-pulsed RMTC efficiently 

eliminated OT-1 T-cells. This means that the mutated CR-transduced therapeutic cells are 

functional in vivo. These cells also show a slight – though not statistically significant – 

increase in the cytolytic activity compared to the unmutated CR-transduced RMTC, 

which might be an indication for their preferential use in the future (Figure 3-6). 

 

3.2.4 Conclusions 

 T-cells redirected against pathologic lymphocytes are potential tools in cellular 

immunotherapy. Therapeutic cells can migrate to different sites in the body, are long-

lasting, and exhibit different effector functions. Chimeric receptors composed of antigen-

recognition and signaling domains from the TCR, such as the cytoplasmic ζ tail, were  
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Figure 3-5. Cytolysis of antigen-specific T-cells by Kb-CD28-  and Kb-CD28[L G]-
RMTC.  (A) RMTC were pulsed with 50 µg/mL ovalbumin 257-264 peptide or saline 
diluent, washed, and cultured for 6 hours with OT-1 TCR transgenic T lymphocytes at 
the designated effector-target ratio. Target cell survival was determined using 
quantitative flow cytometry. Specific cytolysis was calculated from the number of 
residual viable target cells in wells containing target cells pulsed with peptide compared 
with that in otherwise identical control wells including unpulsed effectors. (B) Similar to 
panel A, except experimental RMTC were pulsed with the designated concentration of 
ovalbumin peptide. All samples were cultured at an effector-target ratio of 1. Data points 
are means of quintuplicate samples. Error bars show ± 1 SD. Plots are representative of 3 
independent experiments. 
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Figure 3-6. In vivo killing of antigen-specific T lymphocytes using Kb-CD28-  and 
Kb-CD28[L G]-  RMTC.  A total of 107 CFSE-labeled OT-1 lymph node cells were 
adoptively transferred intravenously into SCID mice; 107 Kb-CD28-ζ or Kb-CD28[L
G]-ζ peptide-pulsed or unpulsed RMTC were then adoptively transferred intravenously at 
an anatomically separate location. Twenty-four hours after transfer, spleen and mixed 
lymph nodes (mesenteric, cervical, axillary, inguinal) were isolated and single-cell 
suspensions prepared, stained with V2-specific antibody, and analyzed by flow 
cytometry. (C) Normalized numbers of target cells in the spleens of treated animals. The 
ratio of residual transferred (CFSE-positive) RMTC targets (Vα2-positive) to nontargets 
(Vα2-negative) was calculated to control for the efficiency of adoptive transfer in mice 
treated with peptide-pulsed or control unpulsed effectors. (D) Analysis of LN cells. Error 
bars show ± 1 SD. Results are representative of 3 independent experiments.  
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proven effective in redirecting T-cells against target cells. Since their effector abilities 

depend upon the efficiency of signal transduction and the presence of costimulatory 

molecules, new generation of CRs include both the CD28 molecule and the ζ tail. 

Although we and others have observed enhanced function of the CR bearing the 

extracellular and transmembrane part of the Kb molecule linked to CD28-ζ in T cell 

hybridoma, there was no noticeable difference between the functional effectiveness of 

this construct compared to the one lacking CD28 when transduced into primary murine 

T-cells. Also, the surface expression of this CR was diminished. We hypothesized that 

the poor expression resulted in the lack of improvement of their effector abilities. We 

here identify a novel dileucine motif in the murine CD28 molecule that hampers CR 

expression and function.  

 Up to now, two classes of dileucine motifs have been described, containing 

[DE]XXXL[LI] or DXXLL. They play critical roles in the sorting of transmembrane 

proteins. DXXLL signals are distinct dileucine-based sorting signals that cycle between 

the trans-Golgi network and endosomes and mediate incorporation into clathrin-coated 

vesicles that bud from the trans-Golgi network for transport to the endosomes. They bind 

to the GGA family of ARF-dependent clathrin adaptors localized in the trans-Golgi 

network. Mutations of either D or LL upstream inactivate the signals and result in 

increased surface expression of the proteins. [DE]XXXL[LI] motifs bind to AP-1, 2, or 3 

and are less intolerant to mutations of the second isoleucine that can be mutated without 

impairing activity (74). The SRRNRLL that we discovered in the CD28 molecule is not 

identical to either [DE]XXXL[LI] or DXXLL motifs; rather, it is more similar to a 

[DE]XXXL[LI] motif that can also be found in other molecules, such as human CD4 
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(SQIKRLLSE), mouse GLUT4 (RRTPSLLEQ) or human VAMP4 (SERRNLLED). This 

motif has a positively charged arginine residue upstream the dileucine motif instead of 

the canonical negatively charged amino acid residues.  

Our experimental results disentangle the functional properties of the dileucine 

motif in CD28 molecule. Although disruption of this motif leads to enhanced surface 

expression and effector function, internalization might not be directly related to this fact. 

CD3γ molecule also has a SDKQTLL sequence responsible for internalization of the 

TCR but only after phosphorylation of serine (80). It is therefore, possible that 

internalization requires a conformational shift that makes the motif accessible to sorting-

associated proteins. In our CR, the CD28 tail was taken out of its normal 

environment/structure, possibly making the dileucine motif more exposed to the protein-

sorting apparatus, and leading to its constitutive activation. 

The dileucine motif in CD28 limits the CR expression and signaling when 

transduced into primary murine T-cells. Mutation of leucine residues to glycine improves 

surface expression and upregulates proliferation, cytokine secretion, and cytolysis of 

target cells. 

In addition to the in vitro evidence, we also provide evidence that effector T-cells 

bearing CR with mutated dileucine motifs are active in vivo, leading to selective killing 

of specific target cells. This constitutes a possible future therapeutic approach in 

transplant tolerance and autoimmunity.  
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Chapter 4. Development and function of humanized chimeric receptors 

 

4.1 Introduction to the development of humanized chimeric receptors  

 Surrogate chimeric receptors designed to bear an antigenic peptide linked to parts 

of MHC class I or II molecule and signaling parts of the TCR may be used as therapeutic 

tools (57). These CRs can be transduced into T lymphocytes giving rise to receptor-

modified T-cells designed to specifically target only pathogenic, peptide-specific T-cells. 

In initial studies our laboratory used a T-lineage specific promoter to express in 

transgenic mice a chimeric receptor that included the immunodominant epitope of myelin 

basic protein (MBP) in SJL mice linked to its restricting I-As MHC and the signaling 

domain of TCR-ζ.  MBP-specific T-lymphocytes stimulated these transgenic RMTC, 

inducing effector functions, such as cytokine secretion, proliferation, and/or cytolysis of 

target cells.  CD8+, T helper 2, or CD4+CD25+ transgenic RMTC showed therapeutic 

activity in EAE, even after the dissemination of T cell responses through epitope spread 

(55).  These data supported the application of RMTC immunotherapy in autoimmune 

diseases. 

I have examined whether RMTC carrying humanized CRs can be similarly 

redirected against autoantigen-specific T lymphocytes. These humanized CRs were 

engineered by genetically linking autoantigenic peptide, MHC, and TCR-ζ or other 

signaling domains. The MHC-Ag serves as bait that specifically recognizes the TCR of 

autoantigen-specific T lymphocytes. Cognate TCR recognition of the extracellular MHC-

Ag crosslinks the chimeric receptor, activating the RMTC through the receptor’s 

signaling domains.  
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Linkage analyses have associated HLA-DR2 (DRA*01/DRB1*1501) in patients 

of European descent with susceptibility to MS. Additionally, reactivity to a specific 

epitope, MBP84-102, restricted to this HLA has been well characterized in patients with 

MS (86). In this study we took advantage of this established association to design two 

chimeric receptors specific for DR2-restricted, MBP84-102-specific T-cells.  Each 

heterodimeric receptor includes an extracellular and transmembrane domain comprised of 

HLA DRA*0101/DRB1*1501 with genetically linked MBP84-102 peptide.  One receptor 

pair incorporates the cytoplasmic ITAM-rich domain of TCR-ζ on both the α  and β 

chains (MBP-DR2-ζ).  The second receptor pair lacks these signaling chains (MBP-

DR2), allowing us to define the role of receptor signaling in therapeutic cell function, 

which we were unable to do with the transgenic cells in our previous mouse model. The 

receptors were placed in an MSCV-based retroviral vector to allow us to determine 

whether adoptively transferred T-lymphocytes retrovirally transduced with the tri-

cistronic (α, β receptor, GFP) chimeric constructs are functional, able to re-direct effector 

activity, and capable of modulating autoimmune disease in a humanized model system. 

In this chapter, I describe our efforts to create humanized chimeric receptors and 

validate them through in vitro studies of the therapeutic cells’ effector abilities.  The 

receptors were transduced into two types of effector cells, immortalized TCR-CD4-CD8- 

4G4 T-cell hybridoma and primary CD8+ T lymphocytes.  The activity of the receptors 

against cognate MBP84-102/DR2-specific T-cells was tested using either a hMBP84-

102-specific Ob1A12 T-cell hybridoma (or Ob hybridoma), a T-cell clone derived from a 

patient with relapsing-remitting multiple sclerosis, or T-cells from mice made transgenic 

with rearranged TCR derived from the Ob hybridoma, Ob Tg mice (87). These Ob Tg 
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mice were bred with another strain that constitutively expresses human DR2 gene using 

the human DR2 promoter (Fug 5 mice) (88). As a negative control for our in vitro studies 

we used 6F11 T cell cell hybridoma specific for MBP89-101 epitope (same as hMBP 84-

102) restricted by I-As. 

 

4.2 Materials and methods 

 

4.2.1 Design of humanized MBP-DR2-ζ construct 

 The MBP-DR2-ζ construct contains two polypeptides. The first one includes the 

extracellular and transmembrane domains of the human MHC class II beta chain 

DRB1*1501 linked to the human MBP peptide epitope 84-102 and the ζ cytoplasmic 

domain of the TCR. This was then linked to the human MHC class II alpha chain 

DRA*0101 paired with the ζ cytoplasmic tail of TCR. The alpha and beta chains were 

connected by a small amino acid sequence extracted from the Thosea asigna virus (TaV). 

We cloned the two genes in a single open reading frame by eliminating the stop codon at 

the end of the first ζ tail. The 2A sequence allows for polycistronic message formation.  

As the mRNA is translated, the ribosome pauses at the 2A sequence and cleaves the N-

terminal peptide from the nascent protein product.  The ribosome does not release the 

mRNA however, and continues to synthesize the C-terminal polypeptide.   Following 

cleavage, the 2A peptide remains attached to the C-terminus of the first gene. The 

advantage of this bicistronic system using 2A sequences is the same amount of two 

distinct proteins, α and β chains of the chimeric construct, is produced (89). Internal 

ribosomal entry sites (IRES) can also be added to mRNA to permit for polycistronic 
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message production, however, variable translational efficiencies are observed from the 5’ 

mRNA cap and the IRES, leading to non-stoichiometric protein production. This 

synthetic heterodimeric gene was subcloned into the murine stem cells virus (MSCV) 

retroviral expression vector that contains an IRES-linked green fluorescent protein 

(GFP) for an easy identification of the gene by fluorescence activated cell sorting (FACS) 

analysis.  

 

4.2.1.1 Generation of leader sequence  

 We started by extracting total RNA from MGAR cell lines using RNeasy 

procedure (Qiagen, Valencia, CA). MGAR cells are Epstein-Barr virus (EBV)-

transformed B cells that express DRA*0101/DRB1*1501. We used the following 

protocol:  

 10x106 MGAR cells were counted and spun for 5 minutes in a centrifuge tube. 

The supernatant was discarded and 600 µl lysis buffer RTL (Quiagen) containing 10 

µl/ml 2-mercaptoethanol was added to the pellet which was then resuspended by 

vortexing. The disrupted cells were then homogenized by pipetting the lysate directly 

onto a QIAshredder column followed by a 2 minute-centrifugation in a microcentrifuge at 

maximum speed and collection of the homogenized lysate. One volume (600 µl) of 70% 

ethanol was added to the homogenized lysate, mixed, applied to an RNeasy minispin 

column carried by a 2-ml collection tube, and centrifuged for 15 seconds at 8000 x g. 

This step was repeated until the whole volume was used and the flow-through was 

discarded every time. 700 µl buffer RW1 (Quiagen)  was added to the column and 

centrifuged again like above, followed by transfer of the column onto a new collection 
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tube and addition of 500 µl buffer RPE (Quiagen) and another step of centrifugation. We 

repeated this step twice. The column was ultimately transferred again to a new collection 

tube and 30 µl of RNase-free water was added to the RNeasy membrane to elute RNA. 

We obtained 194 µg/ml total RNA that was stored at -80˚C. 

 After RNA extraction, we performed reverse transcription polymerase chain 

reaction (RT-PCR) using the standard Omniscript protocol (Qiagen) for first-strand 

complementary DNA (cDNA) synthesis as follows: 

  Tube 1: 10 µl mix containing 2 µl RNA (thawed on ice) and 8 µl RNase-free 

water was heated at 65˚C for 5 minutes. 

 Tube 2: 10 µl mix of oligo d(T) primer (12 nucleotides) at a final concentration of 

1 µM, 10x RT buffer, dNTP mix, 1 µl RNasine, RT enzyme, and water. 

 Tube 2 mix was added to tube 1 mix and kept for an hour at 37˚C. The single-

stranded cDNA obtained can be kept at -20˚C or PCR for the genes of interest using 

specific primers can ensue.  

 Exon 1 from HLA-DRB1 encodes the leader peptide (GenBank Accession # NM 

002124; accessed on April 3, 2003). A Kozak sequence for initiation of translation in 

vertebrates (90) was introduced by PCR and the whole piece was flanked by EcoRI and 

NheI restriction sites. The set of primers used for this reaction was: 

 Primer 1: 5’-GATCAGAATTCGCCACCATGGTGTGTCTGAAGCTCCCTGG 

 
 

Primer 2: 3’-TTCATCGCTAGCCAAAGCCAGTGGGGAGCTCAGCAC  

 

 We set up a PCR using MGAR cDNA and this set of primers as follows: 100 µl 

NheI 

EcoRI Kozak 



 58 

reaction mix containing 2 µl cDNA, 10 µl buffer and magnesium chloride (MgCl2), 2 µl 

dNTPs, 2 µl primer 1, 2 µl primer 2 (at a concentration of 25 pmol/µl), 0.5 µl high fidelity 

Taq polymerase and 81.5 µl water was submitted to 35 cycles of amplification using the 

following set-up:  

 First cycle of amplification: denaturation 5 minutes at 94˚C, annealing 2 minutes 

at 55˚C, extension 3 minutes at 72˚C. 34 subsequent cycles followed using a gradient for 

the annealing step, starting at 65˚C and subtracting 0.2˚C each cycle until it reached 

55˚C. We checked the size of the leader sequence on a 1% agarose gel and we obtained 

the expected size of 101 base pairs (bp). The PCR product was submitted for sequencing 

in a tube of 12 µl total mix containing 1 µl of DNA, 1 µl of each primer, forward (primer 

1) and reverse (primer 2) at 3.2 pmol, and water at the Hartwell Center, St. Jude 

Children's Research Hospital. 

 Once the product was proven correct, we used the two enzymes, EcoRI and NheI, 

to digest the leader sequence, gel purify it, and subclone it into pBluescript (pBS) II KS 

(+) vector (Stratagene, La Jolla, CA) digested with the same enzymes. 

 

4.2.1.2 Generation of MBP peptide sequence 

 NCBI nucleotide search found the sequence for Homo sapiens MBP (GenBank 

Accession # NM 002385; accessed on April 30, 2003).The MBP epitope 84-102 

(DENPVVHFFKNIVTPRTPP) was synthesized as oligonucleotides by the Hartwell 

Center at St. Jude Children's Research Hospital, Memphis, TN. The oligonucleotides 

used have the following sequence: 

 Forward primer: 5’-CTAGCGATGAAAACCCCGTAGTCCACTTCTTCAAGA 

NheI 
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Reverse primer: 3’-GATCCGCCTGACCCTCCGCCACCGGACCCGCCACCTCCG 

 

GGTGGTGTGCGAGGCGTCACAATGTTCTTGAAGAAGTGGACTACGGGTTTTC

ATCG 

 These two oligos were mixed in a 1:1 ratio, annealed at 94˚C, cooled down at 

room temperature, and ligated it together with EcoRI/NheI-digested leader sequence into 

pBS II KS vector using T4 DNA ligase (New England BioLabs, Ipswich, MA). This 

time, the vector was digested with EcoRI (that the leader sequence has a site for) and 

BamHI (present at the end of the peptide sequence or beginning of the beta chain). We 

ended up with the following piece of 185 bp that we sequenced and confirmed to be 

correct: 

 

 

 

 

 

4.2.1.3 Generation of HLA-DRB1*1501 

  NCBI nucleotide search found the sequence for Homo sapiens HLA-DRB1 

(GenBank Accession NM_002124 on May 5, 2003) mRNA with exons 2 and 3 coding 

for the extracellular domains. We amplified the cDNA obtained as previously described 

(4.2.1.1) with the following set of primers, adding two restriction sites, BamHI and AatII: 

 Forward primer: 5’-TCAGGCGGATCCGGGGACACCCGACCACGTTTCTTG 

 

BamHI 

BamHI 

leader hMBP84-102EcoRI BamHI

NheI
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 Reverse primer: 3’-TCTTGACGTCTGATTCCTGAAGTAGATGAACAGCCC 

  

 PCR amplification yielded a 682 bp product. We subcloned this gene into pBS II 

vector digested with BamHI/AatII, sequenced this, and confirmed the correct sequence. 

 

4.2.1.4 Generation of the ζ chain 

 NCBI nucleotide search found the sequence for Homo sapiens CD3ζ (GenBank 

Accession NM_000734 on May 1, 2003)) mRNA. cDNA was provided by courtesy of 

Dr. Dario Campana, St. Jude Children's Research Hospital, Memphis, TN and amplified 

by PCR to obtain the cytoplasmic tail flanked by  AatII and ApaI restriction sites using 

the following set of primers: 

 Forward primer: 5’-AATCAGACGTCAAGAGTGAAGTTCAGCAGGAGCGCA 

  

 Reverse primer: 3’-GCCATGGGCCCGGGATTTTCCTCCACGTCCCCGCATGTT 

 

AGAAGACTTCCCCTGCCCTCGGCTCTGCGAGGGGGCAGGGCCTGCATGTGAA 

G 

 The reverse primer also included the reversed 2A sequence (discussed below), 

which was synthesized as part of the oligonucleotide. Similar to the other genes, the zeta-

2A gene was also sequenced, confirmed correct, and subcloned into pBS II vector. The 

product was 396 bp. 

 

 

AatII 

Aat II 

Apa I 
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4.2.1.5 The 2A sequence  

Thosea asigna virus (TaV) is a member of the Tetraviridae family comprised of 

single-stranded RNA picornavirus whose polyproteins undergo co-translational cleavage 

to produce several proteins (P1, P2, P3). The 2A sequence is a proteinase that cleaves at 

its own amino terminus generating two protein products, P1 and P2. The 2A sequence 

was previously used in retroviral vectors as an alternative system to IRES to generate a 

polycistronic message (91). In the MBP-DR2-ζ and MBP-DR2 constructs the 2A 

sequence is flanked by α and β chimeric receptor chains forming a unique open reading 

frame. The cleavage of the polyprotein product occurs at the C-terminus end of the 2A 

sequence, leaving it fused to the upstream β chain protein which is otherwise released 

intact. The amino acid sequence of the 2A was: 

 5’-RAEGRGSLLTCGDVEENPGP-3’ 

We ligated the β chain gene to zeta-2A and subcloned them into pBS II vector 

digested with BamHI and Apa I. We ended up with the following piece of 1078 bp that 

was confirmed correct by sequencing: 

 

 

 

 

 

4.2.1.6 Generation of HLA-DRA*0101 

 NCBI nucleotide search found the sequence for Homo sapiens HLA-DRA 

(GenBank Accession NM_019111 on May 5, 2003) mRNA with exons 2 and 3 coding 

Beta chain Zeta 2ABamHI ApaI

AatII
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for the extracellular domains and exon 4 coding for the transmembrane domain and the 

cytoplasmic tail. cDNA produced from MGAR cells as described at 4.2.1.1 was used to 

isolated the DRA fragment. The extracellular and transmembrane domains of interest 

were flanked by ApaI and AatII restriction sites. The following set of primers was used 

for amplification of the two domains: 

 Forward primer: 5’-AATCCCGGGCCCATGGCCATAAGTGGAGTCCCTGTG 

 

 Reverse primer: 3’-CTCTTGACGTCAATCCCTTGATGATGAAGATGGTCCCAA 

  

 PCR amplification yielded a 736 bp product. This gene was subcloned into pBS II 

vector digested with the two enzymes after sequencing and checking for the correct 

sequence. 

 

4.2.1.7 Generation of synthetic ζ tail 

 Two zeta tails were required for the MBP-DR2-ζ construct, one linked to the α 

chain, the second linked to the β.  For the β chain, native ζ sequence was used. For the α 

chain, we chose to redesign the ζ tail by keeping the same amino acid sequence but 

changing the codons that determine each amino acid. This was to ensure that 

rearrangement between the two ζ chains would not occur during the production of 

retrovirus. Synthetic ζ was engineered as two sets of large oligos, one for the first half of 

the construct and the second one for the rest of the construct. The 3’ end of the first set 

and the 5’ end of the second set, respectively, had a PstI restriction site. The two sets are 

as follows: 

ApaI 

AatII 
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Set 1 - Forward primer: 5’-GGAGCGGATCCGACGTCCGCGTAAAATTTTCTCG 

 

TTCAGCTGATGCACCAGCTTATCAACAAGGACAAAATCAACTATACAATGAA 

CTGAACCTTGGTAGGCGTGAAGAATATGAC 

Reverse primer: 3’-TTTGTCCTTCTGCAGCTCGTTATAAAGTCCCTCTTGTGGA 

 

TTTTTTGCGACGTGGTTTACCTCCCATTTCTGGATCTCTTCCTCTACGTTTAAT

CTAG TACGTCATATTCTTCACGCCT 

Set 2 – Forward primer: 5’-AACGAGCTGCAGAAGGACAAAATGGCAGAAGCA 

 

TATTCAGAAATCGGAATGAAGGGAGAAAGAAGACGAGGTAAAGGCCATGAC

GGATTATAT 

Reverse primer: 3’-GACTACTCGAGTTATTACCTTGGAGGTAATGCTTGCATA 

 

TGTAAAGCATCATAAGTATCTTTTGTAGCCGTTGATAATCCTTGATATAACCG

TCATGGCC 

The two sets of primers were annealed and made double stranded using one PCR 

cycle (4 minutes denaturation at 94˚C, 1 minute annealing at 55˚C, 3 minutes extension at 

72˚C) and high fidelity Taq polymerase, followed by purification and digestion with the 

two sets of enzymes, BamHI – PstI and PstI – XhoI for the second one. The two pieces of 

the synthetic ζ gene were then subcloned into pBS II vector digested with BamHI and 

XhoI. The product was 354 bp long. 

This synthetic gene was then ligated together with the α chain and subcloned 

AatII BamHI 

PstI 

PstI 

XhoI 



 64 

again into pBS II vector digested with ApaI and XhoI. We ended up with a gene of 1090 

bp shown below that was confirmed correct by sequencing: 

 

 

 

 

 

4.2.1.8 Ligation into the final construct 

 We have avoided the inconvenience of cloning six genes of different sizes into a 

considerably large vector such as MSCV (6.825 Kb) by subcloning two genes at a time 

into a smaller vector, pBS II KS (+) of only 3 Kb. We ended up with three pieces of the 

final product: leader-MBP, beta-ζ-2A, and alpha-synthetic ζ of 185, 1078, and 1090 bp, 

respectively. We then subcloned the leader-MBP and the beta-zeta-2A into pBS II. This 

step yielded the following clone of 1263 bp, shown below:  

 

 

 

 

 

 We digested this new gene with EcoRI/ApaI and inserted it along with the alpha-

synthetic ζ one digested with ApaI/XhoI into MSCV retroviral vector cut with  

EcoRI/XhoI that includes an IRES linked to GFP. The whole leader-MBP-β-ζ-2A-α- 

synthetic ζ construct was 2.352 Kb. 

Alpha chainSynthetic zetaApaI XhoI

AatII

leader hMBP84-102EcoRI

NheI

Beta chain Zeta 2A ApaI

AatIIBamHI
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4.2.2 Design of humanized tailless MBP-DR2 construct 

This signaling deficient construct was produced in order to clarify the role of CR 

signaling for RMTC function.  

 

4.2.2.1 Generation of leader-MBP peptide 

We used the same leader-MBP peptide gene that we previously used for the tail-

bearing construct restricted by the same sites, EcoRI and BamHI (see 4.2.1.1 and 

4.2.1.2). 

 

4.2.2.2 Generation of HLA-DRB1*1501 

 We amplified the cDNA with the following set of primers, adding the same 

BamHI as for the previous construct, but changing the second site to an ApaI. The 

reverse primer was a large oligonucleotide that also contained the 2A sequence in a 

manner analogous to how we added 2A to the ζ chain in the MBP-DR2-ζ construct:  

 Forward primer: 5’-TCAGGCGGATCCGGGGACACCCGACCACGTTTCTTG 

 

Reverse primer: 3’-GCCATGGGCCCGGGATTTTCCTCCACGTCCCCGCATGTT 

 

AGAAGACTTCCCCTGCCCTCGGCTCTGCGAGGGGGCAGGGCCTGCATGTGAA

G 

 Similar to the other genes, the beta 2A gene was also sequenced and subcloned 

into pBS II vector. 

 

BamHI 

Apa I 
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4.2.2.3 Generation of HLA-DRA*0101 

 We amplified the cDNA with the following set of primers, adding an ApaI 

restriction site to link it to the HLA-DRB1*1501 construct, but also an XhoI at the 

terminus to link it to the MSCV vector since we removed the synthetic zeta gene. 

 Forward primer: 5’-AATCCCGGGCCCATGGCCATAAGTGGAGTCCCTGTG 
 

 Reverse primer: 3’-TACTACTCGAGTTATTACAGAGGCCCCCTGCGTTCTGC 

  

This gene was subcloned into pBS II vector sequenced to confirm it. 

 

4.2.2.4 Ligation into the final construct 

 Similar to the MBP-DR2-ζ construct, we chose to subclone leader-MBP with the 

beta 2A gene first to circumvent possible cloning difficulties that might occur in a four-

way ligation. The new product, leader-MBP-beta 2A (shown below – 742 bp) was 

subcloned into the pBS II vector. 

 

 

 

 

This new gene was then digested with EcoRI and ApaI and then cloned into the 

final vector, MSCV-IRES-GFP, along with the ApaI/XhoI-cut alpha gene of 736 bp, 

yielding a product of 1.8 Kb.  

 

 

XhoI 
 

ApaI 
 

leader hMBP84-102EcoRI

NheI

β chain-2A ApaI

BamHI
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4.2.3 Generation of retrovirus-producing cell lines 

 Retroviruses are small oncoviruses with an outer envelope and an inner core 

containing negative double-stranded RNA responsible for genetic information. Since 

retroviruses can infect living cells and insert DNA into the genome, they have been 

converted into gene delivery systems and are able to transduce a wide variety of cell 

types from different species. For safety reasons, the retrovirus must be able to infect 

target cells but not replicate. This has been accomplished by replacing the coding region 

that gives rise to essential viral proteins with the gene of interest to be transferred. This 

replication-defective virus cannot make the proteins needed for subsequent rounds of 

replication, but the retrovirus can still enter into the cells and integrate the viral genome 

in the DNA of the cell. To produce recombinant retroviruses, the env, gag, and pol 

proteins (still needed for production of new virus) are provided in trans by separate 

constructs transfected into retroviral packaging cells. 

 

4.2.3.1 Generation of MBP-DR2-ζ and MBP-DR2 retroviruses 

In order to generate the two retroviral ecotropic vectors we used two helper 

plasmids encoding encoding the gag-pol and env proteins (pEQ.PAM-E and pVSVg) and 

a plasmid containing the MSCV retroviral vector including the CR constructs.  We used 

293 T cells as packaging cells for an initial transient transfection. The virus supernatant 

produced by these cells was then used to infect GP+E86 cells, which were maintained as 

stable viral producers and from which retrovirus used to transfect T-cells was harvested. 

We followed the following protocol (75):  

Materials: 
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293 T cells and GP+E86 cells 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum 

(FCS) and penicillin-streptomycin-glutamine (PSG) 1% 

pEQ.PAM-E plasmid  

pVSVg plasmid 

MBP-DR2-ζ/MBP-DR2 plasmid 

Calcium chloride CaCl2 2.5M 

2X Hepes Phosphate Buffered Saline (HPBS) pH 7.12 

Method: 

24-hours prior to transfection, 2x106 (or 4x106 the day of transfection) 293 T cells 

were plated on a 10 ml tissue-culture treated Petri dish. On the day of transfection, four 

hours prior to the procedure, the medium was changed with fresh complete DMEM. At 

the time of transfection, cells were approximately 70% confluent. DNA mix was prepared 

using 4 µg pEQ.PAM-E and 2 µg pVSVg  and 4µg MBP-DR2-ζ/MBP-DR2 plasmid, 50 

µl 2.5M CaCl2 and adjusted to 500 µl with distilled water at room temperature (RT). This 

mix was then added to 500 µl HPBS dropwise while vortexing and incubated 1 minute at 

RT. The whole mixture was added onto 293 T cells and incubated for 16 hours at 37˚C. 

The next day the plates were washed with prewarmed phosphate buffered saline (PBS) 

twice and new complete DMEM was added. 3x105 GP+E86 cells were plated in a 10 ml 

dish. 24-hours later, the medium from 293T cells was replaced, spun at 3000 rotations per 

minute (RPM) for 5 minutes in a centifuge with rotor and then the supernatant was used 

to infect GP+E86 cells twice a day, adding 8 µg/ml polybrene to facilitate binding and 

entry of the retrovirus. The GP+E86 cell line was used to produce retroviral supernatant 
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which was then used to transduce 4G4 T cell hybridoma and activated primary murine T-

cells. It is recommendable that the GP+E86 cells be frozen in freezing mix (EHAA 

medium with 20% heat inactivated FCS and 10% dimethyl sulfoxide (DMSO) and kept at 

-80˚C as soon as the transfection has been finished. Since they are stably transfected with 

retrovirus, they can be thawed out and frozen again multiple times. After thawing, 

GP+E86 cells were washed once in HBSS medium and plated onto large or medium 

tissue culture-treated flasks. Retroviral supernatant was collected daily and the medium 

was replaced until the cells were completely confluent.  

 

4.2.3.2 Retroviral transduction of 4G4 T-cell hybridoma  

GP+E86 cells previously transfected with either MBP-DR2-ζ CR (GP+E86-MBP- 

DR2-ζ) or MBP-DR2 CR (GP+E86-MBP-DR2) were thawed out from the liquid nitrogen 

tank, washed once with 1x Hanks’ balanced salt solution (HBSS, Gibco, Carlsbad, CA), 

and cultured in 75 or 150 ml culture-treated flanks. Viral supernatant was collected at 24 

hours and spun at 3000 rpm for 5 minutes. 4x106 4G4 T-cell hybridoma were added per 

well in a 6-well plate and 2 mls of retroviral supernatant and 8 µg/ml polybrene were 

added, and the cells were spun at1800 rpm for 90 minutes in a centrifuge with rotor. The 

procedure was repeated twice for a better yield of GFP+ cells.  

 

4.2.3.3. Flow cytometry of retrovirally-transduced cells 

 To check for HLA class II expression, transduced 4G4 cells were resuspended in 

FACS buffer (PBS with 1% BSA and 0.1% sodium azide (NaN3, Sigma) and incubated 

30 min on ice with primary phycoerythrin-conjugated (PE) anti-human HLA-DR 
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antibody (Becton Dickinson, Franklin Lakes, NJ) at the concentration recommended by 

the supplier. The cells were then washed and resuspended in FACS buffer and analyzed 

using a FACSCalibur (BD Biosciences) and CellQuest software. CR-transduced 

hybridoma were then flow cytometric sorted for GFP+ on a MoFlo high-speed cell sorter 

(DakoCytomation) (courtesy of Dr. Richard Cross, PhD, St. Jude Children's Research 

Hospital). 

  

4.2.3.4 Retroviral transduction of primary murine T-cells 

  Lymph nodes and spleen from C57BL/6 mice or OT-1 mice (transgenic for CD8+ 

cells) were harvested and processed into a single cell suspension by crushing through a 

40-µm nylon filter. Red blood cells were lysed with Gey’s solution (7.0 g/l NH4Cl, 0.37 

g/l KCl , 0.3 g/l Na2HPO4.12H2O, 0.024 g/l KH2PO4, 1.0 g/l glucose, 10.0 mg/l phenol 

red, 8.4 mg/l MgCl2.6H2O, 7.0 mg/l MgSO4.7H2O, 6.8 mg/l CaCl2 and 45 mg/l NaHCO3) 

and the lymphocytes were cultured in 6-well plates and stimulated with 2 µg/ml purified 

mouse anti-CD3ε and 2 µg/ml anti-CD28 antibodies (Pharmingen, San Diego, CA) or 2 

µg/ml Concanavalin A (ConA) overnight. After 24 and 48 hours, the media was carefully 

removed and 2 mls/well of viral supernatant was added along with 8 µg/ml polybrene and 

sorted for GFP expression by flow cytometry. GFP+ cells were re-fed and split into 6-

well plates when they reached a high density. They were also sorted for GFP+ and on day 

10-12, the cells were restimulated with 2 µg/ml ConA and irradiated (4,000 rad) 

syngeneic splenocytes.  
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4.2.4 Ob and 6F11 target hybridoma cell lines 

 

4.2.4.1 Stimulation of Ob hybridoma with hMBP84-102 peptide 

 105 Ob and 6F11 cells were incubated overnight with four different 

concentrations of purified hMBP84-102 peptide on a 96-well round-bottom plate in 

complete Bruff medium (EHAA or Click’s medium enriched with 10% FCS, 1% 

Penicillin-Streptomycin-Glutamine (PSG), and 4.2 µl 2-mercaptoethanol per 1,000 ml 

medium). Irradiated (20, 000 rad) MGAR cells were used as antigen presenting cells. 24-

hours later, 60 µl of supernatant was removed and submitted for IL-2 secretion analysis 

by Multiplex (Bio-Rad, Hercules, CA).  

 

4.2.4.2 Stimulation of Ob hybridoma with mouse anti-humanVβ2 antibody 

A 96-well flat bottom plate was coated with 10 µg/ml purified rat anti-mouse IgG 

(Jackson Immunoresearch Laboratories, Inc., West Grove, PA) and incubated at 4˚C 

overnight. 24-hours later, the plate was washed three times with HBSS solution and 

coated with 50 µg/ml mouse anti-human TCR Vβ2 monoclonal antibody (Immunotech, 

Warrenale, PA) either overnight at 4˚C or for two hours at 37˚C. The plate was washed 

again and 105 Ob or 6F11 cells were added. 24-hours later 60 µl of supernatant was 

removed and submitted for IL-2 secretion. 
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4.2.5 Stimulation of TCR/DR2 T lymphocytes 

  

4.2.5.1 Stimulation of TCR/DR2 T lymphocytes with hMBP84-102 peptide 

5x105 cells from lymph nodes or splenocytes of double transgenic mice were 

cultured in 96-well flat-bottom plates without antigenic peptide or with peptide in 

different concentrations and irradiated splenocytes from humanized DR2 transgenic mice 

(denoted as Fug5). After 72 hours of culture, the cells were pulsed with 1 µCi of 

[3H]thymidine and harvested on filtermats16 hours later. All samples were analyzed in 

triplicates. 

 

4.2.5.2 Stimulation of TCR/DR2 T lymphocytes with EL4-MBP-DR2 cells 

 2x106 T-cells from lymph nodes or splenocytes of transgenic mice were 

stimulated with 4x106 irradiated (20,000 rad) EL4-MBP-DR2 antigen-presenting cells 

(EL4 thymoma cells transduced with the tailless MBP-DR2 construct) and the same 

number of irradiated feeders. The cells were grown in complete Bruff medium with  

10 U/ml recombinant IL-2 and split every other day. We have also used this procedure to 

build an antigen-specific cell line by re-stimulating them in the same conditions on day 

ten, using Con A as a mitogen.  

 

4.2.6 Stimulation of RMTC with HLA-DRB antibody  

The plate-bound antibody stimulation was set up as described at 4.2.4.2. Briefly, 

transduced 4G4 RMTC were stimulated with three different concentrations of plate-

bound mouse anti-human HLA-DR2 antibody or control goat anti-mouse IgG. 24-hours 
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later, 60 µl of supernatant was removed and submitted for IL-2 secretion analysis by 

Multiplex. 

 

4.2.7 IL-2 secretion by RMTC in response to recognition of Ob hybridoma 

 5x105 4G4 hybridoma transduced with MSCV and MBP-DR2-ζ were cocultured 

in three different ratios with Ob or 6F11 target hybridoma in a 96-well round bottom 

plate for 8 hours. The cells were spun, the medium was replaced, and Brefeldin A (BFA, 

Epicentre Technologies) was added for 6 hours at 37˚C and 5-10% CO2. The cells were 

spun again at 4˚C and then washed with staining wash buffer (SWB; 1x PBS, 2% FBS, 

0.1% NaN3) and BFA 10µg/ml. The primary surface antibody (mouse anti-human Vβ2 

PE-conjugated) diluted in SWB+BFA was added and the plate was then incubated on ice 

for 20 minutes, then washed with PBS+BFA twice and resuspended in the same mix. The 

cells were then fixed with 2% formaldehyde in PBS for 20 minutes at RT, washed and 

incubated in permeabilization buffer (SWB + 0.5% saponin) for 10 minutes at RT. The 

cells were then incubated with the APC (Allophycocyanin)-conjugated rat anti-mouse IL-

2 monoclonal antibody (Becton Dickinson) for 30 minutes on ice, followed by a wash 

with PBS, and resuspension in SWB. Flow cytometric analysis was performed after 

gating on the double positive, APC+ (on FL4 axis)/GFP+ (on FL1 axis) cells or 

alternately, on APC+ (on FL4 axis)/Vβ2+ (on FL2 axis) cells. This way we can identify 

the cells that secrete IL-2 (featured by APC staining) by gating on either FL1/FL4 (GFP+ 

cells secreting IL-2) or FL2/FL4 (Ob hybridoma secreting IL-2). 
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4.2.8 IFN-γ secretion by RMTC in response to recognition of Ob hybridoma 

 5x105 Ob hMBP84-102-specific hybridoma or 6F11 control cells were cocultured 

with RMTC transduced with MSCV, MBP-DR2-ζ, and MBP-DR2 chimeric receptors for 

24 hours. 60 µl of supernatant was then removed and submitted for cytokine secretion 

analysis by Multiplex. 

 

4.2.9 Proliferation of RMTC in response to stimulation by Ob hybridoma 

 5x104 GFP+-sorted CD8+-transduced RMTC cells were incubated with different 

ratios of irradiated Ob or 6F11 hybridoma and syngeneic feeders on a 96-flat bottom 

plate. After 72 hours, the cells were pulsed with 1µCi [3H] thymidine and harvested after 

16 hours. Proliferation was measured by liquid scintillation counting of incorporated [3H] 

thymidine. The samples were analyzed in duplicates and plotted as mean ± 1 stdev.  

  

4.2.10 Cytolysis of target cells by RMTC 

 

4.2.10.1 Cytolysis of Ob target hybridoma by RMTC assayed by radioactive chromium 

(Cr) release 

4x106 Ob hybridoma specific for human MBP84-102 peptide or 6F11 control 

hybridoma specific for MBP89-101 were incubated with 200 µCi 51Cr for 30 minutes at 

37˚C with intermittent shaking. After half an hour, the cells were washed three times with 

PBS saline solution and cocultured in different effector to target ratios with CD8+-RMTC 

transduced with MBP-DR2-ζ, MBP-DR2, or MSCV vector for 4 hours on a 96-well 

round bottom plate. All cell combinations were set up as triplicates. Target cells in 
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medium only were also set for controls. Labeled antigenic targets are recognized and 

lysed by RMTC, releasing radioactivity into the supernatant. 20 µl TritonX (Sigma-

Aldrich, St Louis, MO) was added to 51Cr-labeled Ob hybridoma (control wells) and 

served as a positive control for maximal release of radioactive Cr. Spontaneous lysis 

(control 51Cr) was estimated by the release of radioactive Cr by Ob hybridoma alone.  

 After incubation at 37˚C, the plate was centrifuged and 100 µL supernatant was 

harvested and counted. We used the formula below to calculate the percent of specific 

cytolysis from the release of 51Cr: 

 (Experimental 51Cr – control 51Cr)/(maximal 51Cr – control 51Cr) x100 

 

4.2.10.2 In vitro cytolysis of primary MBP-DR2-specific cells by RMTC 

  105 T-cells/well from TCRxDR2 double transgenic (DTG) or TCRxDR2xhCD4 

triple transgenic (TTG) mice were cocultured with CD8+ RMTC at different ratios 

overnight in a 96-well round bottom plate. The next day, the plate was centrifuged and 

cells were double stained with the mouse anti-human Vβ2.1 antibody (PE) and rat anti-

mouse CD4+ or CD8+ antibody (APC). After 30 minutes incubation on ice, the cells were 

washed and resuspended in SWB. In order to find out the absolute number of target cells 

left after overnight cytolysis, we used TruCOUNT assay and added TruCount high 

control fluorescent beads (BD Bioscience, San Jose, CA) at a final concentration of 2000 

beads/sample. These beads were used as markers to guarantee that equal fractions of each 

sample were enumerated, thus allowing quantitative comparison of the number of events 

and eliminating the variability between samples. The absolute number of cells in the 

sample can be determined by normalizing to the number of acquired beads. 
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FACSCaliburTM was used with forward (FCS) and side scatter (SSC) set in a logarithmic 

mode. TruCount beads were gated in a FCS/SSC plot and analysis was stopped when 500 

beads were counted. We then ran the sample tubes and analyzed the double positive 

hVβ2.1+CD4+ or hVβ2.1+CD8+ cells after gating and counting 500 beads.  

 

4.2.10.3 In vitro cytolysis of primary MBP-DR2-specific T-cells by RMTC detected by 

stimulation with EL4-MBP-DR2 cells  

 This experiment was set up similarly to 4.2.10.2. Unlike the previous experiment, 

we chose not to directly analyze the residual cells after the overnight coculture of the two 

cell types, but instead we added 2x105 EL4-MBP-DR2 antigen-presenting cells or control 

EL4 cells at the time of the culture, for five days. On day five we stained each well with 

mouse anti-human Vβ2.1 and rat anti-mouse CD4+ and CD8+ antibodies and analyzed the 

residual double positive cell counts by quantitative flow cytometry. 

 

4.2.10.4 Cytolysis of target DTG cell lines by RMTC 

 105 double or triple transgenic cell lines (obtained as described in 4.2.5.2) were 

cocultured with MSCV retroviral vector control, MBP-DR2-ζ, or MBP-DR2 RMTC in a 

96-well round bottom plate for six hours at four different ratios. After 6 hours, we stained 

the cells as described in 4.2.10.2 and evaluated the number of residual hVβ2.1+CD4+ and 

hVβ2.1+CD8+ cells by quantitative FACS. 
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4.3 Results 

 

4.3.1 Design of chimeric receptors  

 In order to specifically target pathologic, hMBP-specific T lymphocytes, we 

engineered two chimeric receptors: MPB-DR2-ζ and MBP-DR2. The first CR included 

the extracellular and transmembrane domains of the human MHC class II beta chain 

DRB1*1501 linked to the human MBP peptide epitope 84-102 and the ζ cytoplasmic 

domain of the TCR. A 2A sequence from TaV connected this part of the construct with 

the human MHC class II alpha chain DRA*0101 paired with the ζ cytoplasmic tail of 

TCR. The whole gene was subcloned in MSCV retroviral expression vector that contains 

an IRES site and the GFP gene (Figure 4-1). In parallel we designed a tail-deficient CR 

that lacked any signaling moiety from the TCR (Figure 4-2).  

 

4.3.2. Transfection of CRs into transient and permanent viral-producing cell lines 

 Transfection of both retroviruses had a good yield in both 293T and GP+E86 cells 

(Figures 4-3 and 4-4). The latter cell line was used to produce retroviral supernatant 

which was then used to transduce 4G4 T-cell hybridoma and activated murine T-cells.  

 

4.3.3 Transduction of 4G4 T-cell hybridoma and primary murine T-cells   

 Transduction of both 4G4 T-cell hybridoma and primary murine T-cells had a 

good yield, although we noticed a difference between the efficiency of transduction in 

4G4 hybridoma and primary T lymphocytes. 4G4 cells transduced with the ζ-bearing C 

showed an equivalent surface expression of the receptor compared to the ζ-deficient CR, 
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Figure 4-1. MSCVII-GFP-MBP-DR2-ζ construct. The immunodominant epitope of the human myelin basic protein 
was genetically linked to the extracellular and transmembrane domains of MHC class II β chain chain and human 
cytoplasmic TCR ζ chain. This was then paired with the extracellular and transmembrane domains of MHC class II α 
chain and another cytoplasmic signaling tail. The 2A sequence from FMDV was inserted between the DRB β and α 
chain to provide equal amounts of the bicistronic message. 
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Figure 4-2. MSCV II-GFP-MBP-DR2 construct. This construct is similar to MSCV II-GFP-MBP-DR2-ζ 
construct (in Figure 4-1) with the exception of the ζ cytoplasmic signaling tail. 
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Figure 4-3. Transient retroviral transfection in 293T cells. 293T cells were transiently 
transfected with retrovirus according to the methods. The percentage represents the GFP+ 
cells. FL1 axis shows uncompensated GFP+ cells. Top center: 293T cells transfected with 
MSCV (empty virus). Bottom left: 293T cells transfected with MBP-DR2-ζ construct. 
Bottom right: 293T cells transfected with MBP-DR2 construct.
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Figure 4-4. Retroviral transfection in GP+E86 cells. GP+E86 cells were transfected 
with retroviral supernatant from 293T cells according to the methods. The percentage 
represents the GFP+ cells. FL1 axis shows uncompensated GFP+ cells. Top center: GP+E 
cells transfected with MSCV (empty virus). Bottom left:GP+E cells transfected with 
MBP-DR2-ζ construct. Bottom right: GP+E cells transfected with MBP-DR2 construct. 
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whereas transduction in murine T lymphocytes showed an approximately 30% increase in  

the surface expression levels of MBP-DR2 CR compared with MBP-DR2-ζ (Figures 4-5 

and 4-6). 

 In conclusion, there’s a clear difference between the transduction efficiency in 

hybridoma compared to activated T-cells. Hybridoma are very uniform, clonally 

expanded cells that would exhibit the same ability to harbor a retrovirally-transduced 

gene. The intracytoplasmic signaling tail renders the CR capable of signal transduction 

and therefore, primary activated T-cells transduced with the tail-bearing CR will 

internalize the surrogate receptor, leading to a decreased surface expression of the CR. 

Removal of the signaling tail restores the surface expression of the CR to almost the same 

levels as MSCV control. 

 

4.3.4 Specificity of Ob hybridoma 

 Before we proceeded to use Ob hybridoma as target cell lines, we first needed to 

ensure their antigenic-specificity by testing their response to stimulation with peptide and 

the mouse anti-human Vβ2 antibody. 

 

4.3.4.1 Stimulation of Ob hybridoma with hMBP84-102 peptide 

To verify the specificity of Ob hybridoma for hMBP, we stimulated the cells with 

different concentrations of antigenic peptide. The Ob hybridoma secreted IL-2 in 

response to peptide stimulation. The amount of IL-2 secreted by the cells was directly 

proportional to the amount of antigenic peptide used to stimulate the cells. Control 6F11 

hybridoma did not show any response to stimulation with hMBP restricted by HLA-DR2 
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Figure 4-5.  Expression of HLA-DR2 on 4G4 T-cell hybridomas  transduced with chimeric receptors. MSCV 
retroviral vector control, ζ-bearing, and ζ-deficient CRs were transduced into 4G4 TCR-/- hybridomas. The efficiency of 
transduction is shown by the amount of GFP which represents the surface expression level of the chimeric receptors. The 
cells were stained with mouse anti-human HLA-DR2 antibody and then analyzed by FACS. Left panel: MSCV-transduced 
4G4 T cells. Middle panel: MBP-DR2-ζ-transduced 4G4 T cells. Right panel: MBP-DR2-transduced 4G4 T cells. 
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Figure 4-6.  Expression of HLA-DR2 on primary murine  CD8 + T-cells  transduced with chimeric receptors. MSCV 
retroviral vector control, ζ-bearing, and ζ-deficient CRs were transduced into primary CD8+ T-cells. The efficiency of 
transduction is shown by the amount of GFP which represents the surface expression level of the chimeric receptors. The cells 
were stained with mouse anti-human HLA-DR2 antibody and then analyzed by FACS. Left panel: MSCV-transduced  T-cells. 
Middle panel: MBP-DR2-ζ-transduced  T-cells. Right panel: MBP-DR2-transduced T-cells. 
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(Figure 4-7 upper panel).  

 

4.3.4.2 Stimulation of Ob hybridoma with mouse anti-humanVβ2 antibody 

 Ob hybridoma are specific for hMBP84-102 restricted by HLA-DR2 and they 

stain for hVβ2 antibody. Upon stimulation with plate-bound mouse anti-human Vβ2, Ob-

specific, but not 6F11 control cells responded to this stimulation by IL-2 secretion 

(Figure 4-7 lower panel). 

 In conclusion, we hereby proved that Ob hybridoma constitutes a clonal 

population of cells specific for hMBP84-102 peptide and they respond stimulation with 

either the peptide or the specific Vbeta antibody by proliferation. 

 

4.3.5 Specificity of T lymphocytes from TCR/DR2 transgenic mice 

 

4.3.5.1 Stimulation of TCR/DR2 T lymphocytes with hMBP84-102 peptide 

To reproduce previously published data, we stimulated T lymphocytes from 

double transgenic TCRxDR2 mice with hMBP84-102. We did not obtain consistent 

results, and the proliferative response of T-cells proved extremely variable with different 

mice and experiments. T-cells removed from the lymph nodes of some of the mice 

responded very well to peptide stimulation, while others did not (Figure 4-8). 

 

4.3.5.2 Stimulation of TCR/DR2 T lymphocytes with EL4-MBP-DR2 cells 

Considering the results from the previous experiment, we searched for alternative 

ways of stimulating antigen-specific cells from DTG mice. Specifically, because we 
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Figure 4-7. Ob cells respond to stimulation by producing IL-2. Ob and control 6F11 
hybridoma were stimulated with different dilutions of hMBP peptide (upper panel) or 
mouse anti-human TCR Vβ2 (lower panel) antibody and secretion of IL-2 was assayed 
after 24 hours. Only Ob hMBP-specific cells, but not 6F11 control cells responded to 
stimulation by the secretion of IL-2. 
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Figure 4-8. Proliferation of TCR/DR2 cells in response to hMBP peptide. T-cells 
from lymph nodes of TCR/DR2 mice were stimulated with different concentrations of 
peptide and 72 hours later 1µCi [3H] thymidine was added to each well. Proliferation was 
measured by liquid scintillation counting. Top figure: in this particular experiment, the 
transgenic T-cells proliferated robustly in response to peptide stimulation. Bottom figure: 
in this experiment, the transgenic T-cells did not respond to peptide stimulation. 
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suspected that the low expression levels of DR2 gene on B cells from humanized class II 

transgenic mice (Fug5) were impeding the proper stimulation of hMPB-specific cells, we  

 we tested the use for EL4 thymoma cells transduced with the MBP-DR2 tail-deficient 

construct as a stimulus. This way the antigen-specific cells would undergo a proper 

stimulation, but will not suffer the effects that the tail-bearing CR would provide. We 

showed that EL4-MBP-DR2 cells, though not EL4 cells alone, stimulate lymph node or 

spleen-derived T-cells from DTG or TTG mice due to expression of hMBP-DR2 (Figure 

4-9).  

 

4.3.6 Stimulation of RMTC by HLA-DRB antibody  

 Since RMTC are transduced with CRs containing the DR2 gene, we wanted to 

first test the ability of our CRs to be stimulated by the specific MHC class II antibody. 

We used 4G4 T cell hybridoma expressing the CRs. Upon stimulation with the plate-

bound mouse anti-human DR2 antibody, only 4G4-MBP-DR2-ζ cells responded by IL-2 

secretion. This demonstrates that the chimeric receptor bearing the signal transduction 

domain is the only one able to transmit a functional signal and that deletion of the ζ 

cytoplasmic domain impairs this ability (Figure 4-10).  
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Figure 4-9.  CD4+ and CD8+ TCR/DR2 cells respond to stimulation by EL4-MBP- 
DR2. CD4+ (top panel) and CD8+ (bottom panel) cells from lymph nodes and spleens of 
TCR/DR2 mice were sorted and stimulated with hMBP peptide, EL4 control, or EL4-
DR2 antigen-presenting cell lines (EL4-MBP-DR2) for 72 hours. Proliferation was 
assayed by [3H]thymidine incorporation.  
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Figure 4-10. Stimulation of RMTC by anti-HLA-DR2 antibody. 4G4 T-cells were 
transduced with MBP-DR2-ζ, MBP-DR2, and MSCV control retrovirus and cultured 
overnight on an anti-DR2 antibody-coated plate. 24-hours later, 60 µl supernatant was 
removed and checked for secretion of IL-2. 4G4-MBP-DR2-ζ cells showed exclusive 
secretion of IL-2. 
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4.3.7 Specific recognition and stimulation of target cell lines by MBP-DR2-ζ-bearing 

RMTC   

 

4.3.7.1 Recognition of cognate TCR by RMTC 

Having proven that the MBP-DR2-ζ-RMTC can be specifically stimulated by the 

anti-DR2 antibody, we next wanted to test the ability of the RMTC to specifically  

recognize cognate TCR on the surface of Ob target hybridoma and transmit a signal in 

response to this recognition. Upon coculture with irradiated hMBP84-102/DR2-specific 

Ob hybridoma but not control MBP89-101/I-As-specific 6F11 hybridoma, MBP-DR2- 

ζ-transduced 4G4 T-cells secreted IL-2 detectable by flow cytometry after 

intracytoplasmic staining. Although this approach does not provide information about the 

amount of IL-2 secreted, we were nevertheless able to identify the specific interaction 

that yielded this cytokine (Ob hybridoma and 4G4-MBP-DR2-ζ cells) and the specific 

cell type that produced it (4G4-MBP-DR2-ζ cells). This was an important piece of 

information since both the Ob and RMTC cells can produce IL-2 and it proved that the 

RMTC were specifically responding to cognate TCR stimulation (Figure 4-11). 

 To analyze similar recognition by CR-transduced primary CD8+ T-cells, we 

stimulated the MBP-DR2-ζ, MBP-DR2, and MSCV control CTL RMTC with Ob or 

6F11 control and quantitated the secretion of IFN-γ. Hybridoma do not produce this 

cytokine, whereas primary T-cells do. This shows that the only cell type producing INF-γ 

would be the tail-bearing RMTC (Figure 4-12).  
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Figure 4-11. Intracellular IL-2 production by 4G4-MBP-DR2-ζ cells. Ob and 6F11 
target cells were cocultured with 4G4-RMTC for 8 hours and the number of cells 
producing IL-2 was assessed by flow cytometry. 4G4 cells transduced with the ζ-bearing 
chimeric receptor secreted IL-2 in response to stimulation by Ob specific, but not control 
6F11 hybridoma. 
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Figure 4-12. IFN-γ secretion by MBP-DR2-ζ RMTC stimulated by Ob hybridoma. 
We cocultured target (Ob or 6F11 cells) with RMTC effector cells at 4 different ratios. 
IFN-γ was secreted by MBP-DR2-ζ CD8+ T-cells (but not MBP-DR2 CD8+ T-cells or 
MSCV retroviral vector control cells) upon recognition of cognate TCR on Ob, but not  
control 6F11 hybridoma. 
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4.3.7.2 Proliferation of MBP-DR2-ζ RMTC in response to stimulation with Ob 

hybridoma  

Irradiated Ob hybridoma were capable of inducing proliferation of CD8+ MBP-

DR2-ζ RMTC at all tested ratios of responders to target cells (Figure 4-13). This 

experiment, along with the previous ones, proved that RMTC can recognize antigen-

specific T-cells upon cognate TCR-CR interaction and this recognition induces the 

RMTC effector functions, including cytokine secretion and proliferation.  

 

4.3.8 Cytolysis of target cells by RMTC 

 The ultimate goal that the RMTC were designed for is the specific cytolysis of 

antigen-specific cells or cell lines. We used two types of target cells: Ob or 6F11 control 

hybridoma, and naïve or activated T-cells from TCR/DR2 transgenic mice. 

 

4.3.8.1 Cytolysis of Ob target hybridoma by RMTC 

The cytolytic activity of genetically modified CD8+ RMTC was evaluated by the 

release of 51Cr after four hours of coculture of RMTC with 51Cr-labeled Ob or 6F11 

hybridoma. CD8+ RMTC bearing the ζ-chimeric receptor were capable of specifically 

killing over 70% of antigen-specific target Ob hybridoma, but did not kill 6F11 controls 

even at effector:target ratio as low as 1:1 cells. Tailless MBP-DR2 RMTC and MSCV 

control T-cells were not able to kill either targets. This shows that RMTC bearing the ζ-

CR are able to specifically and efficiently kill hMBP84-102/DR2 target Ob hybridoma, 

whereas removal of intracytoplasmic signaling tail renders RMTC unable to perform 

their killing function (Figure 4-14). 
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Figure 4-13. Proliferation of CD8+ MBP-DR2-ζ RMTC in response to Ob 
hybridoma. Irradiated Ob or control 6F11 hybridoma were cocultured in different ratios 
with CD8+ RMTC and on day 3, [3H]thymidine was added and liquid scintillation 
counting was performed 24 hours later. At any given ratio, Ob hybridoma could only 
stimulate the proliferation of MBP-DR2-ζ-RMTC, but not the tailless CR-transduced T-
cells or MSCV retroviral vector-transduced cells. 
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Figure 4-14. Cytolysis of Ob hybridoma by CD8+-MBP-DR2-ζ RMTC. Ob hMBP-
specific or control 6F11 hybridoma were labeled with 51Cr and cocultured with RMTC 
for four hours. Specific cytolysis was calculated based on chromium release from the 
dead target cells. ζ-bearing CR-transduced cells were shown to have an exclusive and 
potent cytolytic activity against MBP-DR2-specific Ob hybridoma, but not control 6F11 
cells.  
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4.3.8.2 Cytolysis of primary antigen-specific T-cells by RMTC 

 Based on the ability of RMTC to kill Ob peptide-specific hybridoma, we 

hypothesized that the same RMTC would also display cytolytic activity against primary 

antigen-specific T-cells. The results challenged our hypothesis: although ζ-bearing 

RMTC did indeed kill Ob hybridoma, they failed or poorly killed naïve T-cells from 

DTG or TTG mice and with very little difference in the cytolytic abilities of the MBP-

DR2-ζ, MBP-DR2, and MSCV control transduced RMTC (Figure 4-15). A possible 

explanation would be the fact that, although the residual cells were hVβ2+, this does not 

constitute a direct indication of their antigenic specificity. Indeed, published data using 

ELISPOT analysis has shown only 0.5% of T-cells in TCR/DR2 double transgenic mice 

respond to hMBP84-102 (87). Therefore, we found an alternate approach to avoid 

stimulation with peptide by stimulating T-cells from these mice with the DR2+ antigen-

presenting cell line. 

 

4.3.8.3 Cytolysis of primary antigen-specific T-cells cells by RMTC detected by 

stimulation with DR2+ antigen-presenting cell line 

 Since primary, naïve antigen-specific cells from DTG animals could not be killed 

by RMTC probably due to the low number of hMBP84-102-specific cells, we used a 

different approach to detect residual hMBP-specific T-cells by stimulating target cells 

with DR2+ antigen-presenting cells (EL4-MBP-DR2) as described to selectively expand 

surviving antigen-specific T-cells. Analysis of residual target cells on day five of 

stimulation with the hMBP-presenting cell line identified a significantly lower number of 

peptide-specific cells when they were cocultured with MBP-DR2-ζ RMTC as opposed to 
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Figure 4-15. CD8+ RMTC show limited cytolysis of naïve TCR/DR2 cells from 
double transgenic (DTG) mice. T-cells from TCR/DR2 DTG mice were cocultured with 
RMTC in three different ratios overnight. The next day the cells were stained with anti-
human Vβ2 and anti-mouse CD4+ or CD8+ antibody. TruCount beads were added for 
quantitative assessment of the residual antigen-specific cells. RTMC were not able to 
efficiently kill primary, hMBP-specific T-cells. Upper panel: overnight cytolysis of CD4+ 
DTG cells by RMTC; lower panel: overnight cytolysis of CD8+ DTG cells by RMTC. 
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the number of target cells cocultured with MSCV control or tailless RMTC (Figures 4-16 

and 4-17). This leads to two conclusions. The first one is that, by day five after 

stimulation, the antigen-specific T-cells would undergo clonal expansion, whereas the 

non-antigen-specific cell would die. The second conclusion is that the significantly lower 

number of residual CD4 and CD8 antigen-specific cells when naïve target cells were 

cocultured with MBP-DR2-ζ CTL is due to killing by CTL as opposed to expansion of 

target cells were cocultured with MBP-DR2 or MSCV control CTL.  

Surprisingly, both CD4+ and CD8+ target cells from TCR/DR2 transgenic animals 

showed sustained proliferation in response to antigenic stimulation. Human MBP peptide 

is presented by HLA class II, DR2 gene. The fact that not only CD4 T-cells, but also CD8 

T-cells respond to this peptide by proliferation contradicts the dogma of immunology that 

CD4 T-cells would recognize antigens presented on an MHC class II molecule, whereas 

CD8 T-cells would recognize antigens complexed with MHC class I (92). This accounts 

for the coreceptor independence of CD8+ antigen-specific cells from TCR/DR2 

transgenic mice and explains their proliferation in response to peptide stimulation. 

 

4.3.8.4 Cytolysis of target DTG cell lines by RMTC 

 Knowing that peptide-specific cells from DTG mice can be expanded with the 

DR2+ antigen-presenting cell line, we were interested in determining whether we could 

produce hMBP-specific T-cell lines and whether the RMTC could similarly kill these cell 

lines. CD4+ and CD8+ hMBP-specific target cell lines were grown as described in 

Materials and methods (paragraph 4.2.5.2) and cocultured with RMTC. Only the CD4+ 

MBP-specific cell line was efficiently killed by MBP-DR2-ζ RMTC, whereas none of the 



 100 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-16. Cytolysis of primary CD4+ DTG target cells by RMTC measured by 
stimulation of residual MBP-DR2-specific T-cells. T lymphocytes from DTG mice 
TCR/DR2 were cocultured with therapeutic cells or MSCV retroviral control in three 
different ratios in the absence or presence of DR2+ antigen-presenting cell line (EL4-
MBP-DR2) for five days. At the end of the fifth day, the residual cells were stained with 
hVβ2 and mCD4 antibodies and quantitative FACS analysis was performed. We found a 
considerably lower number of residual CD4+ peptide-specific cells when these were 
cocultured with MBP-DR2-ζ RMTC as opposed to the MSCV control cells or MBP-DR2 
RTMC. 
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Figure 4-17. Cytolysis of primary CD8+ DTG target cells by RMTC measured by 
stimulation of residual MBP-DR2-specific T-cells. T lymphocytes from DTG mice 
TCR/DR2 were cocultured with therapeutic cells or MSCV retroviral control in three 
different ratios in the absence or presence of DR2+ antigen-presenting cell line (EL4-
MBP-DR2) for five days. At the end of the fifth day, the residual cells were stained with 
hVβ2 and mCD4 antibodies and quantitative FACS analysis was performed. We found a 
considerably lower number of residual CD8+ peptide-specific cells when these were 
cocultured with MBP-DR2-ζ RMTC as opposed to the MSCV control cells or MBP-DR2 
RTMC. 
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other RTMC (MBP-DR2 and MSCV control) showed this ability. Moreover, both CD4 

and CD8 antigen-specific cell lines survived and expanded after six hour-coculture with 

tailless RMTC or MSCV control cells. Prior data show that RMTC are only able to kill 

primary CD8+ antigen-specific T-cells and not stimulated CTL and that activated CD8+ 

antigen-specific T-cells are resistant to fratricidal lysis (56). Our experience with the 

antigen-specific T-cell lines from humanized transgenic mice yielded the same results: 

CD4+ antigen-specific T-cells can be killed by the tail-bearing RMTC, whereas CD8+ 

antigen-specific T-cells survived after coculture with MBP-DR2-ζ RMTC (Figures 4-18 

and 4-19). 

 

4.4 Conclusions 

We developed receptor-modified T-cells that can specifically recognize and target 

pathologic, antigen-specific T lymphocytes by transducing chimeric receptors into 4G4 T 

cell hybridoma or primary murine T-cells. The MBP-DR2-ζ CR heterodimer bears an 

antigen-MHC extracellular domain linked to the functional ζ signaling moiety from the 

TCR. The MBP-DR2 CR lacked the cytoplasmic signaling domain. Both constructs were 

subcloned in MSCV retroviral vector with an IRES site and GFP gene. Their surface 

expression was proportional to level of expression of the GPF protein. Transduction of 

4G4 T cell hybridoma with the ζ-bearing and ζ-deficient retrovirus showed similar 

surface levels of expression whereas transduction of activated, primary T-cells showed a 

discrepancy between the two CRs, with a 30% increase in surface expression of the 

tailless CR. Upon encounter of cognate TCR on the surface of Ob target hybridoma 

(specific for hMBP84-102 restricted by HLA-DR2), therapeutic RMTC recognized the  
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Figure 4-18. Cytolysis of CD4+ hMBP-specific cell lines by RMTC. Antigen-specific 
CD4+ cell lines were obtained by repeated stimulations of T lymphocytes from TCR/DR2 
DTG mice with EL4-MBP-DR2 cells. Each line was then cocultured with RTMC for six 
hours and the residual cells were then stained for hVβ2 and mCD4 antibodies. MBP-
DR2-ζ RMTC were able to efficiently kill the CD4+ peptide-specific cell line. 
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Figure 4-19. Cytolysis of CD8+ hMBP-specific cell lines by RMTC. Antigen-specific 
CD8+ cell lines were obtained by repeated stimulations of T lymphocytes from DTG 
mice TCR/DR2 with EL4-MBP-DR2 cells. Each line was then cocultured with RTMC 
for six hours and the residual cells were then stained for hVβ2 and mCD8 antibodies.  
Unlike CD4+ peptide-specific cell lines, the CD8+ T-cells could not be killed by the 
MBP-DR2-ζ RMTC. 
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target cells, responded by proliferation, secretion of IL-2 and IFN-γ, and were able to 

specifically kill target cells. The in vitro cytolytic ability of CTL RMTC was significant: 

effector cells killed over 70% of target cells when cocultured in a 1:1 effector to target 

ratio and even up to 90% when five times more effectors were added to the target cells. 

Cytolysis was only detected in RMTC transduced with the ζ-bearing CRs, but not MSCV 

control or the ζ-deficient RMTC.  

Several attempts to direct RMTC against naïve, antigen-specific T-cells from 

lymph nodes of TCR/DR2 humanized transgenic mice failed repeatedly in a six hour-

killing assay or overnight killing. Analysis of these double transgenic mice revealed that 

only 0.5% for their T-cells were peptide-specific cells in an ELISPOT analysis (85). 

Therefore, the reduced ability of MBP-DR2-ζ RMTC to specifically kill target cells and 

the lack of difference between the activity of ζ-bearing and ζ-deficient RMTC and MSCV 

control was rather due to the very low number of antigen-specific cells that could not be 

detected and isolated from the non-specific. The latter cells would not be subjected to 

RMTC lysis, but would interfere in the assay, making identification of specific cytolysis 

of hMBP-specific T-cell impossible to detect. We adopted an alternate way to stimulate 

antigen-specific cells using a DR2+ antigen-specific cell line (EL4-MBP-DR2) to 

selectively expand only residual antigen-specific cells. Five days later, we noticed a 

decreased number of both CD4+ and CD8+ hMBP-specific T-cells when cocultured with 

MBP-DR2-ζ RMTC in the presence of DR2+ cell line, but an expansion of these cells 

when cocultured with MBP-DR2 or MSCV control RMTC. These data show that the ζ-

CR-transduced RMTC can also kill naïve antigen-specific T-cells from TCR/DR2 double 

transgenic mice in the presence of antigen, whereas removal of the signaling domain 
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from the CR impeded this ability. Surprisingly, although the humanized transgenic mice 

have T-cells specific for hMBP presented in the context of DR2, an MHC class II 

molecule, upon antigenic stimulation, both CD4+ and CD8+ T-cells from TCR/DR2 mice 

responded by proliferation. Although fairly rare, this is not an isolate finding and 

accounts for the coreceptor independence of CD8+ TCR/DR2 T-cells. 

 The ability of MBP-DR2-ζ RMTC to kill naïve, antigen-specific T-cells from 

TCr/DR2 mice did not apply in the case of peptide-specific cell lines. Stimulated T 

lymphocytes behave differently from naïve T lymphocytes. We built a CD4 and a CD8-

specific cell line by several rounds of antigenic stimulation using DR2+ antigen-

presenting cells. Just like naïve CD4 T-cells, peptide-specific CD4+ cell lines were killed 

upon in vitro coculture with the tail-bearing RMTC, but not MSCV control or ζ-deficient 

therapeutic cells. CD8+ hMBP-specific cell line proved resistant to lysis. This fact was 

demonstrated in the early 1990s and we have also proven that CD8 T-cells acquire 

resistance to lysis in between day three and seven post stimulation (56). EAE is 

classically considered a CD4 disease and therefore, the ability of our MBP-DR2-ζ RMTC 

to specifically kill both naïve and activated CD4+ hMBP-specific cell lines are grounds to 

hypothesize that they might also work in the in vivo mouse model. 

 

  

 

 

 

 



 107 

Chapter 5. In vivo activity of RMTC in humanized mice 

 

5.1 Introduction 

 

5.1.1 Humanized transgenic mice as MS models 

Similar to other autoimmune diseases (rheumatoid arthritis, celiac disease, 

insulin-dependent diabetes), MS is associated with certain MHC class II genes. The 

disease is triggered by association of autoantigenic peptides with certain MHC class II; 

MHC-peptide is recognized by CD4+ T-cells that, upon activation, mediate inflammation 

and destruction of the myelin sheath, ultimately leading to impaired saltatory conduction 

(93).  

In the previous chapter, we described the development of RMTC as therapeutic T 

lymphocytes bearing humanized chimeric receptors, which can be redirected against 

antigen-specific T-cells. Upon encounter of target, hMBP-specific T lymphocytes, 

therapeutic cells will engage the target cells’ TCR through their surrogate chimeric 

receptor, leading to various effector functions, such as proliferation, cytokine secretion, 

and specific cytolysis of peptide-specific cells. 

 Once we have shown that RMTC can recognize cognate TCR and exhibit effector 

functions in response to this recognition, the next step was to test whether this interaction 

would lead to the same effects in vivo. 

In an effort to better understand autoimmune diseases and MS in particular, mice 

that express disease-relevant MHC II molecules have been developed. These mice were 

then crossed with mice transgenic for other genes encoding TCRs, human CD4, and 
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candidate autoantigens. Since they bear human genes, these mice present similar disease 

features either spontaneously or after immunization with peptides. Although they are not 

a perfect representation of the human immunopathology, these animals are, nevertheless, 

the closest mouse model to study MS-causing mechanisms and symptoms (87). 

 

5.1.2 Humanized HLA-DR2, TCR, and CD4 mice 

After analyzing autoantigens and MHC molecules associated with MS, studies 

have shown that one of the immunodominant MBP peptide epitope in DR2+ patients was 

84-102. This epitope was identical in humans and mice (94). 

Serologic typing of patients serum has identified the common MHC class II 

molecule as HLA-DRB1*1501 and DRA*0101 that recognized the MBP peptide (86). 

Based on these data, Fugger and collaborators engineered three humanized transgenic 

mice. A first mouse bore the human DR2 gene (HLA-DRB1*1501 and DRA*0101) 

expressed under the control of its native promoters. A second mouse bore a TCR derived 

from a patient with MS, denoted Ob (Ob.1A12). Because human TCR is difficult to 

express in mouse cells, the TCR construct comprised human variable domains and mouse 

constant and regulatory domain. This set-up ensures that the MBP peptide will be able to 

be recognized and bound by the human MHC class II and, since the constant and 

signaling domains of the TCR are murine, they could interact with the mouse signaling 

machinery. These two strains of transgenic mice were crossbred and then also crossed 

with another transgenic mouse carrying the human CD4 coreceptor. Caveats of this 

double and triple transgenic mouse model are that only 10-30% of B-cells were DR2+ and 

only 80% of T-cells were Vβ2+ (87). T-cells from these mice showed proliferation and 
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IL-2 secretion in response to hMBP84-102 stimulation. Upon immunization with peptide, 

the mice developed relapsing-remitting or primary progressive EAE similar to MS 

patients and with similar histopathologic aspect. Single transgenic TCR or HLA-DR2 

mice did not develop signs and symptoms of EAE following MBP immunization. 

Breeding of the double transgenic TCR/DR2 mice with Rag2-/- mice leads to 

development of spontaneous EAE due to the complete absence of T and B lymphocytes 

(including regulatory T-cells) in these knockout mice and repopulation of their immune 

system with hMBP-specific cells.  

 

5.2 Materials and methods 

 

5.2.1 In vivo cytolysis of CD4+ and CD8+ hMBP-specific cell lines by RMTC 

 Recombination activating gene 2 knockout mice (Rag2-/-) were kept in 

Helicobacter pylori-free facility of the Animal Research Center at St. Jude Children's 

Research Hospital. These mice were coinjected with 5x106 mixed CD4+ and CD8+ triple 

transgenic cells from T-cell lines and 20x106 receptor-modified CTLs. CD4+ and CD8+ 

peptide-specific cell lines were obtained by three consecutive stimulations of T-cells 

from TCR/DR2 transgenic mice with irradiated antigen-presenting cell line (EL4-MBP-

DR2) every ten days, according to the protocol described in chapter 4.2.5.2. After three 

days, recipient mice were sacrificed and spleens were processed in a single cell 

suspension, followed by double staining of splenocytes human Vβ2/mouse CD4 and CD8 

antibodies and flow cytometry analysis.   
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5.2.2 In vivo cytolysis of naïve antigen-specific T-cells by RMTC 

Irradiated (450 rad) transgenic humanized DR2 mice (strain Fug5) received 

10x106 freshly isolated T-cells from TCR/DR2 transgenic mice and 30x106 therapeutic 

RMTC by retroorbital injection. Two irradiated recipient Fug5 mice were used for each 

group (MSCV control, MBP-DR2-ζ, and MBP-DR2 RMTC).The mice were sacrificed 

after nine days or the indicated time. Lymph nodes (LN) were collected and processed to 

obtain a single cell suspension. 105 cells/well were stimulated for three days in the 

presence or absence of antigen (2x105 EL4-MBP-DR2 cells or EL4 cells, respectively, 

irradiated at 20,000 rad). 72-hours later, the cells were pulsed with 1µCi [3H] thymidine 

and harvested on filtermats after 16 hours. Proliferation was measured by liquid 

scintillation counting of incorporated [3H]thymidine. The samples were analyzed in 

duplicates.  

 

5.2.3 Prevention of EAE induced by naïve CD4+ T-cells from TCR/DR2/hCD4 using 

RMTC 

 Lymph nodes and spleen from ten TCR/DR2/hCD4 transgenic mice were 

processed in a single cell suspension and stained for PE anti-mouse CD4 microbeads. 

Cells were then separated by magnetic cell sorting (Miltenyi Biotec Inc., Auburn CA). 

13x106 pure CD4+ T-cells were then transferred into 8 irradiated Fug5 recipients along 

with 35x106 RMTC. Two days later, the mice were immunized with 300 µg hMBP84-

102 and 400 ng PTx on day 0 and 2. The animals were scored daily for signs of EAE 

disease and euthanized at score 4 to 5 (complete paralysis or moribund). 
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5.2.4 Prevention of hMBP84-102-induced EAE disease in TCR/DR2 double transgenic 

mice using therapeutic cells 

TCR/DR2 transgenic mice were immunized with 300 µg hMBP84-102 and at the 

same time, received the indicated numbers of MBP-DR2-ζ, MBP-DR2 or MSCV control 

RMTC. 400 ng PTx was injected retroorbitally at the time of peptide injection and on day 

2. Mice were followed and scored daily for signs of EAE. 

 

5.3 Results 

 

5.3.1 In vivo cytolysis of CD4+ and CD8+ hMBP-specific cell lines by RMTC 

This experiment was designed to investigate the in vivo efficacy of therapeutic 

RMTC in vivo when coinjected with hMBP-specific cell lines into Rag-/- mice for three 

days. Upon interaction with the antigen-specific cell lines, RMTC transduced with 

chimeric receptor MBP-DR2-ζ and the MBP-DR2 recognized the specific target cells and 

exhibited their effector function, namely cytolysis of CD4+ antigen-specific cells. As 

expected from previous data, CD8+ MBP-specific cell line did not undergo cytolysis. 

Surprisingly, even though MBP-DR2-transduced RMTC failed to show any effector 

function in vitro due to the absence of the ζ cytoplasmic signaling tail, in vivo co- 

adoptive transfer of these cells along with MBP-specific cell lines showed almost 

the same efficacy of killing as the MBP-DR2-ζ RMTC (Figure 5-1). 
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Figure 5-1. In vivo killing of CD4+ hMBP-specific cell line by RMTC. CD4+ and 
CD8+ hMBP-specific cell lines and RMTC were coinjected into Rag2-/- recipients. Three 
days later, mice were sacrificed, splenocytes were stained with mouse anti-human 
Vβ2/rat anti-mouse CD4 or CD8 antibodies, and analyzed by FACS. The plot represents 
the number of cells found in spleens after three days treatment with RMTC. 
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5.3.2 In vivo cytolysis of naïve antigen-specific T-cells by RMTC 

 The previous experiment confirmed that CD4+ antigen-specific cell lines could be 

killed by MBP-DR2-ζ RMTC, but these effector cells cannot kill CD8+ hMBP-specific  

cell lines. The next step was to find out if whether this also applies to naïve peptide-

specific T-cells. We coinjected freshly isolated cells from TCR/DR2 transgenic mice 

along with RMTC into irradiated recipients, sacrificed them after nine days, and looked 

for residual peptide-specific cells after stimulation with antigen (irradiated EL4-MBP-

DR2 cells) or in the absence of antigenic stimulation (irradiated EL4 cells). T-cells from 

lymph nodes of MBP-DR2-ζ RMTC-injected recipients showed little proliferation in 

response to antigenic stimulation and decreased number of residual cells compared to the 

mice that received MBP-DR2 RTMC or MSCV control virus. These results demonstrate 

that the signaling-competent therapeutic cells effectively eliminate hMBP-specific T-cells 

in vivo and further demonstrate that signaling through the ζ cytoplasmic tail is essential 

for this activity (Figure 5-2). 

 

5.3.3 Prevention of EAE induced by naïve CD4+ T-cells from TCR/DR2/hCD4 using 

RMTC 

To find out whether EAE induced by adoptive transfer of CD4+ T-cells from 

transgenic mice (as described in 5.2.3) could be prevented by MBP-DR2-ζ RMTC, we 

followed all three groups of mice daily for signs of disease. The first signs of EAE in the 

group that received MSCV CTLs became visible after only 7 days and followed a 

progressive course with very little remission. The mice that received ζ-CR RMTC did not 

show any signs of disease. This pilot experiment, which requires repetition, shows that 
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Figure 5-2. Peptide stimulation of T-cells from mice that received RMTC and naïve 
antigen-specific target cells. Cells from mice that received TCR/DR2 cells and RMTC 
for nine days were stimulated in the presence/absence of antigen for 72-hours and 
[3H]thymidine was added. 16-hours later, the cells were harvested onto filtermats and 
proliferation was measured by liquid scintillation counting. hMBP-specific cells from 
mice that received retroviral vector control and the MBP-DR2 RMTC proliferated in 
response to antigen as opposed to the ones that received the MBP-DR2-ζ RMTC. 
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upon depletion of CD8+ T-cells, CD4+ lymphocytes cause and therapeutic RMTC can 

prevent it. We can conclude that in this particular system EAE is still a CD4-mediated 

disease and that the MBP-DR2-ζ RMTC still have therapeutic potential (Figure 5-3 and 

Table 5-1).  

 

5.3.4 Prevention of hMBP84-102-induced EAE disease in TCR/DR2 double transgenic 

mice using therapeutic cells 

 This experiment is the first attempt to prevent EAE in the humanized mouse 

model using humanized chimeric receptor-transduced RMTC. We injected two groups of 

mice with MSCV control and MBP-DR2-ζ RTMC and followed them daily for signs of 

EAE. We first noticed an earlier disease onset in the MSCV control group and also a 

more aggressive disease course with only mild remission. Contrary to this group, mice 

that received MBP-DR2-ζ therapeutic RTMC exhibited a significant delay in the onset of 

disease as well as a shorter course and complete remission. These in vivo results are 

confirming our in vitro data and prove the restorative potential of ζ-endowed RMTC 

(Figure 5-4 and Table 5-2). Even though we did not have any tailless RMTC to inject in 

the mice (due to a low number of ζ-deficient RMTC that we obtained by in vitro 

stimulation), this was encouraging data and a further proof that administration of ζ-CR-

transduced RMTC might be a valid therapeutic option for EAE treatment in this 

humanized mouse system. Therefore, we repeated this experiment using 30x106 RMTC 

bearing both chimeric receptors and immunizing the mice two days later. Surprisingly, 

not only did the MBP-DR2-ζ RMTC proved beneficial, but so did the tailless therapeutic 

cells, although not in the same extend as the former ones. This might actually raise 
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Figure 5-3. Prevention of CD4+-adoptive transfer EAE with RMTC.  Irradiated Fug5 
recipients received concomitantly sorted CD4+ target cells from TCR/DR2/hCD4 
transgenic mice and therapeutic RMTC followed by immunization with hMBP84-102 
peptide and PTx. Recipients of MSCV control cells showed early disease onset and 
severe course with little remission as opposed to the ones that received therapeutic MBP-
DR2-ζ RMTC that were resistant to EAE induction. 
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Table 5-1. Clinical manifestations in CD4+ adoptive transfer EAE treated with 
RMTC . 
 
 
 
Therapeutic cells Disease frequency Mean onset Mean maximal 

  (diseased/total) day x±s.d. (range) score x±s.d.  

  MSCV 4/4 9.5±7 3±2.3 

  MBP-DR2-ζ 0/0  0±0  0±0 
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Figure 5-4. Prevention of EAE with ζ-bearing RMTC. TCR/DR2 mice received MBP-
DR2-ζ RMTC or MSCV control cells and were immunized with peptide and PTx. 
Control group showed early onset and severe disease course, whereas treated group had a 
milder form of disease followed by complete remission. 
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Table 5-2. Clinical manifestations in direct induction of EAE with hMBP and 
treatment with MSCV vector control or ζ-bearing RMTC. 
 
 
 
Therapeutic cells Disease frequency Mean onset Mean maximal 

  (diseased/total) day x±s.d. (range) score x±s.d.  

  MSCV 4/4 8.75±3.5 3.5±1.7 

  MBP-DR2-ζ 4/5  11.8±6.6 1.6±1.1 
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question about the absolute requirement for the cytoplasmic signaling tail in the chimeric 

receptor for the in vivo treatment of EAE (Figure 5-5 and Table 5-3). 

 

5.4 Conclusions 

 The results obtained from in vitro testing of RMTC encouraged us to move 

forward to the in vivo system. We coinjected therapeutic RMTC along with either 

peptide-specific cell lines or naïve antigen-specific cells obtained from the transgenic 

mice into recipient Rag-/- or irradiated DR2 (Fug5) mice. We sacrificed the mice at 

various intervals, starting from day 3 to 9, and estimated the number of residual CD4 and 

CD8 antigen-specific T-cells. According to our in vitro data, therapeutic RMTC bearing 

the ζ-signaling tail should be able to specifically recognize and kill naive antigen-specific 

T-cells. When we sacrificed recipient mice nine days after coinjection of MBP-DR2-ζ 

and naïve target cells, we found a decreased number of hVβ2+CD4+/CD8+ T-cells. Since 

we have already established that very few of the target cells provided by TCR/DR2 mice 

are antigen-specific, we stimulated cells from lymph nodes and spleen of recipient mice 

with antigen as previously described. T-cells from irradiated recipients that received 

MBP-DR2 and MSCV-control RMTC along with naïve antigen-specific cells showed 

good proliferation upon peptide stimulation unlike mice that received MBP-DR2-ζ 

RMTC. These data resemble the ones we obtained from in vitro experiments and prove 

that recognition through surrogate chimeric receptor also takes place in the mouse 

system. Surprisingly, when Rag-/- recipients received both therapeutic cells and hMBP-

specific cell lines, both ζ-bearing and ζ-deficient RMTC were effective in eliminating the 

CD4+ peptide-specific cell line. We did not pursue this observation, but the fact that 
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Figure 5-5. Prevention of EAE with ζ-bearing or tailless RMTC. Three groups of 
TCR/DR2 transgenicmice received MBP-DR2-ζ, MBP-DR2, and MSCV control RTMC 
and 48 hours later peptide and PTx. Control group showed early onset and severe disease 
course, whereas ζ-competent therapeutic cells showed a later onset and milder disease 
followed by complete remission. ζ-deficient therapeutic cells showed an intermediate 
effect, but still managed to induce remission although not in the same extent as MBP-
DR2-ζ RMTC. 
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Table 5-3. Clinical manifestations in direct induction of EAE with hMBP and 
treatment with MSCV control, ζ-bearing, or tailless RMTC. 
 
 
 
Therapeutic cells Disease frequency Mean onset Mean maximal 

  (diseased/total) day x±s.d. (range) score x±s.d.  

  MSCV 4/4 8.5±1 5±0 

  MBP-DR2-ζ 3/3  14±0  1±0  

  MBP-DR2 4/4  13±0 3±1.4 

  

 



 123 

stimulated cells are more prone to Fas-induced apoptosis might provide an explanation 

for this finding. Just like the in vitro data, RMTC with or without signaling tail were 

unable to kill the CD8+ peptide-specific cell line. 

We proceeded to test the ability of chimeric receptor-modified T-cells to prevent 

EAE disease either by direct injection of these cells into recipient, TCR/DR2 mice, 

followed by immunization with hMBP84-102, or by adoptive transfer of therapeutic cells 

along with target cells into DR2+ mice. Adoptive transfer of both RMTC and freshly 

isolated, naïve cells from TCR/DR2 mice resulted in worse disease scores and earlier 

onset of paresis and paralysis in mice that received MSCV or tailless RMTC compared to 

those that received MBP-DR2-ζ T-cells. This does not necessarily mean that therapeutic, 

ζ-bearing RMTC are less potent than they have shown to be in vitro, but rather 

insufficient number of cells compared to the number of antigen-specific, naïve target 

cells. Our next step was to sort CD4 and CD8 T-cells from TCR/DR2 transgenic mice 

and only adoptively transfer CD4+ T-cells and RMTC into irradiated DR2+ humanized 

transgenic mice, followed by immunization with peptide. There was no development of 

EAE in mice that received MBP-DR2-ζ RMTC, as opposed to MSCV-control cells. 

Although we did not have MBP-DR2 RMTC available for this particular experiment, the 

fact that ζ-CR-transduced effector cells could efficiently eradicate CD4+ target cells is 

proof that these therapeutic cells are potent not only in vitro but also in vivo in EAE 

prevention. Finally, upon direct transfer of therapeutic cells into TCR/DR2 mice and 

induction of EAE disease by peptide immunization, mice that received ζ-bearing RMTC 

showed later onset of disease with milder course. Quite unexpectedly and unlike our in 

vitro data, ζ-deficient RMTC recipients have also shown a milder EAE course and later 
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onset compared to MSCV control mice, though their potency was lower than the one 

exhibited by the ζ-bearing therapeutic cells. 

All these data lead us to believe that surrogate ζ-chimeric receptor-transduced 

RMTC as just as effective in killing antigen-specific T-cells from TCR/DR2 mice in 

vivo as they were in vitro, thus preventing EAE disease. A question that rises naturally is 

whether these therapeutic cells would also work after the first signs of EAE disease in 

forestalling the fatal outcome and improving the clinical signs and symptoms, and this 

may be a topic for future studies. 
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Chapter 6. Discussion 

 

 Multiple sclerosis is the most common autoimmune disease involving the white 

matter of the CNS. It is reported to affect 300,000 Americans with 200 people diagnosed 

weekly and 2.5 million people worldwide (2). The neurologic signs and symptoms of MS 

are varied and can also present in other diseases. Double vision, paralysis, tremor, 

numbness, and gait difficulties are caused by demyelination resulting in impaired nerve 

conduction; axons and cell bodies are spared early in the disease. The initial disease 

target is the white matter of the brain and spinal cord, but after a while the gray matter 

also becomes involved due to secondary degeneration resulting from the loss of the white 

matter. Axons will eventually be destroyed and replaced by gliosis that gives the sclerotic 

aspect on MRI.  

There are currently several therapies approved for MS. Regardless of the 

approach, treatment should target both the symptoms and the pathologic cascade. 

 Gene therapy is the newest approach in the treatment of MS. It has emerged as a 

direct result of increased knowledge concerning pathologic mechanisms in autoimmune 

diseases and aims to more specifically target pathologic T-cells than current therapies. 

Anti-inflammatory cytokine genes can be delivered into the CNS by viral vectors. More 

recently, our laboratory has developed receptor-modified T-cells bearing chimeric 

receptors that specifically target autoreactive T-cells. A similar approach has already 

been used in infectious diseases and cancer.  

 Chimeric receptors are hybrid molecules that encompass a recognition domain – 

the variable region involved in antigen recognition from MHC or Ig – and a signaling 
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domain – the intracytoplasmic signaling moieties of the TCR. This new therapeutic 

approach emerged in the 1980s-1990s when it was found that T-cells endowed with 

antibody-like abilities and no MHC restriction can be redirected against infected and 

neoplastic cells. The necessity of having a signaling domain resides in the fact that 

recognition of antigen by the variable region of the chimeric receptor is not sufficient to 

activate T-cells. Similar to the cascade of events triggered in a regular T lymphocyte, T-

cells bearing chimeric receptors undergo phosphorylation of ITAMs on the receptor’s 

signaling moiety and turn on the transcription of nuclear factors responsible for activation 

of these cells, thus inducing effector function. Engagement of the TCR constitutes the 

first signal necessary for activation of T lymphocytes but for a full activation a second 

signal is mandatory. This can be through either of several molecules including the CD28 

molecule that stimulates the expansion of CD4+ cells and CD137 (or 4-1BB) that 

prevents activation-induced cell death of activated T-cells and stimulates the expansion 

of CD8+ cells. 

The choice of the cytoplasmic signaling domain has long been a critical topic in 

the design of chimeric receptors. Increasing the number of ITAMs did not necessarily 

enhance signaling of the CR (95). In an attempt to test the effect of different signaling 

domains on the potency of signal transduction, several intracytoplasmic domains have 

been used in a CR engineered to bear the recognition domain of MHC class I (Kb) 

molecule. The combinations of CD28-zeta, zeta-lck, CD4-zeta, and CD28-zeta-lck 

signaling domains increased receptor function measured by IL-2 secretion after 

stimulation with the anti-Kb specific antibody.  

Although CRs bearing the intracytoplasmic CD28 moiety showed very high 
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efficacy of signal transduction, their surface expression level decreased compared to CRs 

that only had ζ signaling tail. We examined the sequence of CD28 and found a previously 

unrecognized dileucine motif. Dileucine motifs are normally present very close to the 

membrane in the cytoplasmic tail of transmembrane proteins and are recognized by coat 

proteins involved in lysosomal targeting. Proteins bearing this amino acid sequence are 

internalized and transported to the endosome and eventually to the lysosome, decreasing 

their surface expression. We hypothesized that a leucine to glycine (LG) mutation in 

the dileucine motif could potentially not only improve the surface expression of the 

construct, but also the duration and intensity of the signal transduced. Indeed, when 

stimulated with the CR-specific antibody, anti-Kb, there was an enhanced production of 

IL-2 from CD8+ T-cells transduced with the Kb-CD28 (L G)-ζ compared with cells 

transduced with Kb-ζ CR. In addition, there was an increased proliferative response to the 

antibody and increased cytotoxic activity against Kb-restricted target cells. These data 

show that a mutation in the dileucine motif of the CD28 intracytoplasmic moiety 

increases the intensity of the signal transduction events.   

The primary rationale for transducing chimeric receptors into T lymphocytes in 

MS is the production of therapeutic, receptor-modified T-cells able to tolerize or even kill 

autoantigen-specific target cells. Autoreactive T-cells are normally stimulated upon 

encounter of an antigenic peptide bound to MHC on the surface of APCs. Since CRs can 

bear both an MHC class II recognition domain (extracellular and transmembrane parts) 

that has the peptide linked to the surface and the intracytoplasmic signal transduction 

domain, upon transduction into T lymphocytes the cells will acquire both APC and TCR 

abilities (peptide presentation and T cell effector function). The encounter between 
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effector and target cells bearing the chimeric receptor and a normal TCR respectively, 

leads to stimulation of both cell populations. Stimulation of RMTC is a critical feature of 

this system because it leads to the fulfillment of their effector functions: proliferation, 

cytokine secretion, and cytolysis of target. In a mouse system, therapeutic T-cells 

transgenic for heterodimeric CRs bearing the recognition domain of MHC class II IAs
β 

chain linked to MBP89-101 and a ζ signaling tail paired with IAsα chain-ζ, were able to 

express the CR on the surface and were stimulated by MBP89-101-specific 6F11 target 

hybridoma. They secreted cytokines, proliferated, and managed to kill autoreactive CD4+ 

T-cells and were not killed by them. These data show that the two cell types interact via 

CR-cognate TCR recognition and effector function occurs following this recognition.  

The key goal in using RMTC is the prevention and/or treatment of EAE disease. 

SJL/J mice immunized with MBP89-101 peptide were treated with therapeutic cells or 

PBS control at the time of disease induction. The treated animals were completely 

protected from EAE and suppression of disease was antigen-specific. Although 

protection was more efficient when the animals received therapeutic cells concomitantly 

with antigenic peptide, administration of cells even after the onset of disease symptoms 

was still effective, albeit slightly less so and with a delayed kinetic compared with 

treatment at the time of immunization. The explanation for this may reside in the status of 

the autoreactive T-cells. In the first scenario, the cells did not experience a previous 

encounter with antigen and are, therefore, naïve, whereas in the second situation, upon 

immunization with peptide, target antigen-specific T-cells had already been stimulated, 

expanded, and mediated some damage to the CNS.  

The mechanism by which RTMCs exercise their therapeutic function is inhibition 



 129 

of antigen-specific T cell response of target cells which may occur through the killing of 

the target cells. In addition to this, pathologic cells are skewed from Th1 to Th2 type and 

secrete anti-inflammatory cytokines, such as IL-4, instead of IFN-γ. 

In the work described here, we proposed extending our studies in murine EAE by 

developing a new model for the therapy of MS using humanized chimeric receptors. We 

designed two constructs based on the same principle that has already been described for 

CRs. The first construct, MBP-DR2-ζ, had a recognition domain composed of an 

immunodominant MBP epitope (84-102) linked to the β chain of a HLA class II molecule 

(DR2) and a signaling domain composed of the ζ cytoplasmic signaling tail.The α chain 

of DR2 was also linked to ζ. The DR2 HLA molecule is highly associated with MS 

disease, and T-cells specific for the MBP84-102 epitope can be detected in DR2 patients 

with MS.  We then engineered a second CR, MBP-DR2 that lacked the signaling tails to 

identify the role of signal transduction for the in vitro and in vivo efficacy of this 

particular CR. The constructs were each tricistronic, with the β and α chains separated by 

a 17-mer 2A sequence from T. asigna and an IRES linked to GFP. Both constructs were 

subcloned into MSCV retroviral vector. CRs were transduced in either 4G4 TCR- 

hybridoma or primary murine T lymphocytes from C57Bl/6 mice, sorted for GFP 

expression and expanded in complete Bruff medium and IL-2. 

The tail-bearing and tailless CRs showed good surface expression on flow 

cytometry in both 4G4 and primary T-cells when stained with anti-CR specific antibody 

mouse anti-human DR2. Transduced hybridoma showed similar levels of expression of 

CR; transduced T-cells showed better expression of the tailless CR compared to the ζ tail-

bearing one (71.7% versus 40.4%). 
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 We first wanted to see if receptor-modified T-cells bearing TCR-ζ, tailless CRs, 

or MSCV retroviral vector control could be stimulated by plate-bound DR2-specific 

antibody. Only MBP-DR2-ζ responded to stimulation by secreting IL-2. 

We next looked for the ability of CR-transduced T-cells to recognize the cognate 

TCR on the surface of target cells. The latter were either Ob1A12 hybridoma specific for 

hMBP84-102/DR2 T-cells or T cell lines from the double or triple transgenic mice, 

TCR/DR2 and TCR/DR2/hCD4, respectively, with similar specificity. These humanized 

mice have develop a disease that strongly resembles human MS model; they carry one of 

the most frequent immunodominant epitope of myelin basic protein, 84-102, presented by 

one of the most frequently used class II MHC in MS patients, DRB1*1501. Even though 

very few of the T-cells in the transgenic mice were MBP-specific in Tg mice bred on a 

Rag+/+ background, on a Rag-/- background all of the T-cells will express exclusively the 

Tg receptor and these mice develop spontaneous EAE. We further demonstrated that both 

CD4 cells and CD8 cells from the double Tg mice responded to MBP peptide restricted 

to the DR2 (DRB1*1501) HLA molecule.  Thus the T cell response in these mice is not 

coreceptor dependent.  As controls we used other targets, specifically 6F11 hybridoma 

reactive against MBP89-101/IAs and T-cells from non-Tg mice.  

Upon recognition of cognate TCR on the surface of Ob1A12 specific hybridoma 

but not 6F11 controls, RMTC bearing the ζ signaling tail were stimulated and secreted 

IL-2 and IFN-γ. Also, due to the interaction between the two cells, RMTC and target 

Ob1A12 cells, RMTC proliferated and killed the target cells. The cytolytic effect was 

specific and very effective as even at a 1:1 ratio effector to target ratio, the RMTC 

managed to eliminate over 70% of the targets. It is noteworthy that only the cells bearing 
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the cytoplasmic signaling tail were capable of both proliferation and killing upon 

recognition of cognate TCRs.         

 Our attempt to demonstrate similar results in cytolysis assays using primary 

murine antigen-specific cells from lymph nodes or spleens of DTG (TCR/DR2) mice did 

not yield the same results. In vitro overnight killing assays in which RMTC targeted T-

cells from transgenic mice showed very little difference between control and 

experimental cultures. This seemed be due to the fact that although 80% of T-cells in the 

humanized transgenic mice were hVβ2+, only ~ 0.5% of them are hMBP84-102-specific 

in ELISPOT assays. Therefore a preponderance of non-antigen-specific cells that cannot 

be recognized and killed by RMTC were present therefore preventing detection of any 

target cell lysis.  

We approached this problem in two ways.  First, we developed a functional assay 

to overcome it in which we stimulated T-cells with antigen in vitro for five days. The 

MBP-specific cells survive, get activated, and proliferate in response to peptide, whereas 

the non-specific cells die. After 5 days we could demonstrate that virtually all surviving 

T-cells are antigen specific. We treated cultures at the time of antigen-stimulation either 

with control MSCV-vector transduced RMTC, MBP-DR2 RMTC or MBP-DR2-ζ 

RMTC.  After 5 days we used quantitative flow cytometry to determine the number of 

surviving T-cells.  This demonstrated that the MBP-specific cells were killed by ζ-

bearing RMTC, whereas the target cells cocultured with MSCV control or tailless RMTC 

proliferated due to peptide stimulation. Surprisingly, these results were true not only for 

CD4+ antigen-specific cells, but also for the CD8+ MBP-specific cells.     

As a second approach, we established T cell lines using T-cells from DTG 
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(TCR/DR2) or TTG (TCR/DR2/hCD4) mice stimulated repeatedly with exogenous 

antigen (irradiated EL4-MBP-DR2 cells) and used them to test the cytolytic ability of 

RMTC. Results showed that, unlike the previous experiment where therapeutic cells 

bearing the signaling tail were capable of killing naïve, CD4 and CD8 antigen-specific T-

cells, the RMTC could not achieve the same outcome with CD8+ hMBP-specific cell line. 

CD8+ T-cells develop resistance to lysis between days 3 and 7 after activation and this 

might explain the lack of potency of the RMTC in killing the CD8+ cell line (57).  It may 

also impair the therapeutic usefulness of RTMCs in EAE models, such as potentially the 

TCR/DR2 model of ours, where class II restricted CD8 T-cells may have a pathologic 

role. 

We went on to test our RMTC in vivo.  These studies highlighted the in vitro 

results and provided evidence for the therapeutic applicability of humanized RMTC. 

Adoptive transfer of freshly isolated lymphocytes from humanized transgenic mice 

TCR/DR2 along with therapeutic cells into irradiated humanized DR2 recipients showed 

decreased proliferation upon antigenic stimulation in mice treated with the ζ- bearing 

RMTC as opposed to a vigorous proliferative response generated in mice that received 

MSCV control or tailless RMTC.  

Adoptive transfer of antigen-specific cell lines and therapeutic cells into Rag-/- 

mice followed by treatment with RMTC yielded somewhat different results. As we saw 

in vitro, the number of CD8+ peptide-specific cell line cells was not diminished by either 

ζ- or tailless RMTC when compared with the control treatment. Therefore these cells 

seemed to be resistant to lysis in vivo, much as they were in vitro.  Results with the CD4 

cell line were more surprising.  Not unexpectedly, the number of residual CD4 peptide-
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specific cells was decreased in mice injected with MBP-DR2-ζ RMTC. However, mice 

injected with MBP-DR2 RMTC showed a similar and nearly complete loss of these cells. 

This in vivo effect of the tailless CR-transduced cells could not be predicted based on any 

of the in vitro experiments. One potential explanation for the difference is that 

stimulation by the MBP-DR2 RMTC in vivo induces the MBP-reactive cell line but not 

naive T-cells to undergo activation induced cell death.  However, at the current time 

experimental evidence to support this does not exist. 

The ultimate goal of this project is to prevent or treat EAE in a humanized mouse 

model. We adopted two approaches. The first one was to adoptively transfer cells from 

triple transgenic TCR/DR2/hCD4 mice along with therapeutic cells followed by 

immunization with hMBP and PTx. The mice were observed and scored for EAE disease 

for 50 days. Recipients of the zeta-bearing therapeutic cells showed later onset of disease 

symptoms and milder course compared to the ones receiving MSCV control or zeta-

deficient RMTC. We have also tried to induce EAE by adoptive transfer of CD4+ cells 

from TTG mice and therapeutic cells followed by peptide immunization. MBP-DR2-ζ 

CTL completely blocked development of EAE disease, whereas mice that received 

MSCV CTL developed EAE within a week from injection. Since EAE is classically 

considered a CD4+ Th1-induced disease, the efficient elimination of these cells by the 

zeta-bearing therapeutic cells is an indication of their potency in blocking the disease. We 

also noticed that the mice that received MSCV control cells along with CD4+ target cells 

developed less severe signs of EAE than the mice that received unsorted target cells 

which might account for the role of CD8+ MBP-specific cells as “inducers” of EAE in 

this particular mouse model. Due to the lack of humanized MHC class II mice (Fug5) we 
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could not repeat these experiments, but this is a task we intend to pursue in the future. We 

also intend to test the ability of therapeutic cells to block disease induced by adoptive 

transfer of CD8+ cells from TCR/DR2/hCD4 transgenic mice. 

 The second approach for in vivo prevention of EAE disease involved the use of 

TCR/DR2 double transgenic mice as recipients of therapeutic cells. These mice received 

active peptide immunization and PTx two days after the transfer of RTMCs. Although 

these experiments need to be repeated, they yielded very encouraging results: mice that 

received zeta-bearing RMTC showed a delayed onset of disease, a milder course, and 

remission compared to the mice that received control CTL. The tailless chimeric 

receptor-transduced T-cells seemed to be efficient as well, though not in the same extent 

as the ones bearing the zeta signaling tail. Two more experiments validating these data 

are ongoing. 

 These studies are important for several reasons. The use of RMTC expressing 

humanized CR in humanized transgenic mice brings us one step closer to their use in 

treating multiple sclerosis in humans. Experimental therapies in humans are limited by 

both technical and ethical considerations whereas mice have similarities but are simpler 

to use as disease models. Conversely, although genetically similar, mice are not humans, 

and some therapeutic approaches that proved beneficial for them have not worked in 

humans or could even be harmful. HLA-transgenic mice are particularly useful in 

modeling autoimmune diseases associated with specific HLA alleles, such as MS. 

Although it is rather difficult to identify exactly the genes responsible for MS, due to the 

strong linkage disequilibrium, HLA class II has a clear contribution in predisposing to the 

development of disease (85). HLA is crucial as it governs T cell selection in the thymus 
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and antigen presentation in periphery. Upon binding of a TCR to a peptide antigen in the 

groove of MHC II, a cascade of signal transduction events ensues.   

CD4 costimulation may be required as a TCR interacts with MHC. The 

requirement in the humanized mouse model we have studied is less clear. The class II 

MHC used in this model is entirely human in sequence. Data from literature are 

extremely controversial on whether murine CD4 can bind human class II MHC. Some 

studies demonstrate that an entirely human MHC class II mouse cannot interact with 

mouse CD4 (96, 97). Therefore, in some humanized systems, a mixed, chimeric 

human/mouse class II molecule was engineered so that murine CD4 coreceptor could 

bind the β2 domain (also murine) of the transgenic HLA II (98). Another set of data 

seemingly contradicted this requirement. Altman et al. engineered humanized HLA-DR1 

transgenic mice and crossbred them with human CD4 transgenic mice (Hu-CD4) and 

tested the response of Hu-CD4 positive versus Hu-CD4 negative T-cells to influenza 

haemagglutinin (HA). T-cells proliferated strongly to this peptide regardless the CD4 

status (99). This suggests the possibility of interaction between human HLA class II and 

mouse CD4; however this was not formally proven. In our experience, using antigen-

specific T-cells from double transgenic or triple transgenic mice (including or lacking 

Hu-CD4) did not make a difference in the experimental results. 

Another issue regarding our system is the proliferative response of CD8+ antigen-

specific T-cells to peptide stimulation. EAE is classically considered a CD4 Th1 disease 

(100) and until recently the research was predominantly focused on this T cell phenotype. 

One study that used MOG35-55 as the immunodominant epitope showed equal 

proliferative potential of both CD4 and CD8 cells to this antigen and EAE induction by 
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adoptive transfer of CD8 antigen-specific cells (28). On the same note, the inflammatory 

infiltrate in the brain of the patients with MS incriminated both CD4 and CD8 T cell 

types along with B cells, and depletion of CD4 cells in MS patients only minimally 

decreased relapse rates (101). Invasion of the CNS after intravenous delivery of MBP-

activated, cytotoxic CD8 cells result in very severe ascending flaccid paralysis with high 

mortality (102). The aggressive and somewhat different manifestation of disease is a 

critical aspect for therapy as CD8-induced disease can be dampened by anti-IFN-γ 

antibodies (unlike the CD4-induced disease), while anti-TNF-α does not show any effect 

on the disease course. It is also noteworthy that perivascular inflammation leading to 

further demyelination in MS is composed mainly of CD8+ T-cells as these cells recognize 

endogenous antigens processed via the MHC class I pathway.  

CD8+ T-cells have been incriminated as culprits for MS. As a logical 

consequence, the humanized mice that we used for this project might actually be closer to 

the human disease than EAE mediated exclusively by CD4 T-cells, as the disease in this 

model might be caused by both CD4 and CD8 autoreactive T-cells. Since HLA-DR2 

mice bear human MHC class II, but not class I, a CD4 response to hMBP-stimulation is 

to be expected. All our experiments showed a proliferative ability of both CD4+ and 

CD8+ MBP-specific cells. Under the circumstances, we hypothesized that there are MHC 

class II-restricted CD8+ T-cells able to respond to peptide stimulation.  

If CD8+ T-cells play a prominent pathologic role in disease, they might become 

problematic for our therapeutic approach since we transduced the chimeric receptors into 

CD8+ T-cells that can only target and kill CD4+ antigen-specific cell lines, but not CD8+ 

antigen-specific cell lines. On the other hand, our RMTC are able to kill both cell types as 
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long as they are still naïve. Chimeric receptor-transduced CTL can still efficiently kill 

long-term activated antigen-specific CD4+ T-cells, whereas activated CD8+ MBP-specific 

cells become resistant to lysis. Under these circumstances, we attempted to prevent rather 

than treat disease by injecting therapeutic cells before EAE induction. This way we 

ensured very early cytolysis of the majority CD4 and CD8 naïve, antigen-specific cells. 

Indeed, when treated with zeta-bearing CR-transduced RMTC the mice developed EAE 

disease later than controls, had less severe disease, and developed a complete remission. 

A sensible explanation would be that the RMTC inhibited both CD4 and CD8 naïve, 

antigen-specific cells.       

Both in vitro and in vivo experiments using RMTC as a therapeutic tool did not 

show complete cytolysis or abrogate proliferation of target cells from TCR/DR2 mice. A 

rational question would be why residual MBP-specific cells could not get activated, 

proliferate, and induce disease. There are several possible explanations for this issue. One 

would be that the therapeutic cells are very potent in killing autoreactive T-cells and 

therefore, the low number of residual target cells would not be able to cause disease. This 

finding is true for both CD4+ and CD8+ population. A second reason refers to the 

relationship between CD4+ and CD8+ T-cells in the development of EAE disease. If CD4 

T-cells are effectively eliminated, CD8 T-cells would not be able to survive without the 

signals delivered by CD4 T helper cells. Therefore, although the chimeric receptor was 

transduced into CD8+ CTL that can only target and kill CD4 hMBP-specific cells, their 

disappearance would also impede survival of CD8+ hMBP-specific cells. 

 The in vivo efficacy of the ζ-deficient RMTC is still an open question. Removal 

of the cytoplasmic signaling tail impeded signal transduction and recognition of target T-
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cells by MBP-DR2-CTL. MBP-DR2 therapeutic cells cannot kill hMBP-specific cells. 

Likewise, they cannot inhibit proliferation of antigen-specific cells after peptide 

stimulation. The only option left that might explain is the conversion of autoreactive, Th1 

cells intoTh2 ones and secretion of anti-inflammatory cytokines (IL-4, 5, 13). This is one 

of the hypotheses that remain to be proven in the future.  

 A major limitation in the therapy of EAE is the phenomenon of epitope spread. 

The disease in primarily induced by a particular antigenic peptide that activates T-cells 

but due to local inflammation and damage, the T-cell response will extend to other 

epitopes within the same antigenic protein or different proteins  (103). Naïve T-cells can 

penetrate the inflamed CNS without the need of peripheral activation (104). Dendritic 

cells in the CNS will then activate these naïve T-cells, thus initiating epitope spread 

(105). This phenomenon occurs after the peak of acute disease, around day 16 after 

immunization with a specific peptide and it is inhibited by treatment with IFN-β (106). 

HLA-DR15/MBP85-99 humanized transgenic mice were shown to undergo epitope 

spread to other HLA-DR15-restricted MBP epitopes. We do not know if this would also 

happen in our humanized system. Previous reports from our lab using RMTC specific for 

MBP89-101 reactive T-cells after epitope spread showed symptomatic improvement of 

EAE-induced mice. In addition lymphocytes from the mice showed decreased 

proliferation not only to MBP89-101, but also to two PLP epitopes, 139-151 and 178-

191, that are important in epitope spread (58). Although these constitute encouraging 

data, we can not assume that humanized chimeric receptor-transduced therapeutic cells 

would also block epitope spread in our humanized system and this is an important 

question to be addressed in the future. 
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 The ultimate goal of this entire project using T-cells transduced with chimeric 

receptors for the therapy of MS in a humanized mouse model is to eventually use this 

approach in human clinical trials. Several adjustments should be made for the chimeric 

receptors to meet the safety requirements of such trials. The GFP gene is suitable for 

experiments in mice but it induces an immune response in humans (107). Therefore, this 

gene should be removed as the RMTC can be easily detected and quantified by staining 

with the DR2 antibody. Moreover, since there is very little data about the side-effects of 

RMTC presenting an autoantigen, a suicide mechanism would be beneficial so that their 

prompt elimination becomes readily possible. One way to do this is insertion of herpes 

simplex virus thymidine kinase gene (hsvTK) into the transduced construct.  This 

converts the dideoxynucleoside prodrug gancyclovir into its phosphorylated form, thus 

terminating the DNA chain and leading to cell death (108).  

 In this project we only tested the ability of CD8+ T-cells transduced with CRs to 

prevent or treat EAE in the humanized system. There are several other variations to this 

theme. One of them is transduction of CRs into Th2 lymphocytes or regulatory 

CD4+CD25+ T-cells. These therapeutic cells will not directly kill autoreactive, peptide-

specific cells, but rather act through different mechanisms, such as anti-inflammatory 

cytokines. In this manner they may be more potent than the CD8+ RMTC cells in settings 

where significant epitope spreading has already taken place.  The field is still wide open 

for the use of CRs and other, more “classical”, non antigen-specific approach for the fight 

for the cure of this disease. 
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