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ABSTRACT 
 
 
 B cell receptors with certain heavy/light chain pairs predominate in the periphery 
of anti-DNA heavy chain transgenic mice while certain other B cell receptors are absent. 
We wanted to know why. To answer this, we re-constructed B cell receptors represented 
in the anti-DNA transgenic mice by cloning them as single chain variable fragments 
(scFv) to analyze their affinity to dsDNA. scFv representing receptors that were 
recovered from the spleens of transgenic mice had very little to no affinity to dsDNA. 
scFv representing receptors that were absent in the spleen had high affinity to dsDNA. 
We therefore concluded that receptors with low or no affinity to DNA successfully 
passed central tolerance in the bone marrow while receptors that had high affinity to 
DNA were likely altered by receptor editing or deleted. We also encountered B cell 
receptors that did not fit this conclusion. These were receptors that had anti-DNA heavy 
chains paired with the light chain Vκ38c. They were an exception because, though they 
were present in the spleen, they bound DNA very well. How did these anti-DNA B cells 
escape central tolerance? In our effort to answer this puzzle, we discovered that receptors 
with the Vκ38c light chain may have specificity to a Golgi antigen in addition to DNA. 
This suggested that such anti-DNA receptors may bind to an intracellular Golgi antigen 
and remain hidden inside the cell. Thus B cell receptor-cloistering in immature B cells, 
during development in the bone marrow, may allow the escape of anti-DNA B cells from 
central tolerance. After escaping from the bone marrow, these B cells become 
sequestered in the marginal zone of the spleen. Splenic B cells when immortalized as 
hybridomas show B cell receptor (IgM) accumulation in the Golgi. Receptor accumulates 
in the Golgi only when the heavy chain is paired with the Vκ38c light chain. The location 
of B cell receptor accumulation in these hybridomas ranges from the cis-Golgi to medial- 
and trans-Golgi with the bulk of the receptor being concentrated in the medial-Golgi. 
Fragmenting the Golgi architecture with nocodazole, caused the intracellular IgM 
accumulation to disperse to the same locations as the Golgi, further confirming the 
location. A novelty about these B cells is that they have an uncommon way of antibody 
secretion. Instead of secreting IgM pentamers as B cells normally do, these cells extrude 
IgM as aggregates of up to 2μm. We named the aggregates “spherons” because of their 
appearance. The spherons do not have a membrane and are likely composed of the μ 
heavy chain and the κ light chain. In addition to extruding spherons, the B cells secrete 
soluble IgM as monomers and hemimers possibly as a consequence of IgM retention in 
the Golgi. Spherons have a high similarity to immune complexes deposited in kidneys of 
mice suffering from lupus nephritis. Spherons may be relevant in autoimmune nephritis 
and immunoglobulin deposition diseases. Understanding the mechanism of production of 
spherons could help design treatment strategies for patients suffering from autoimmune 
disease.    
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CHAPTER 1:  INTRODUCTION 
 
 
The autoimmune response is similar to the body’s humoral immune response 

except that in autoimmunity, instead of tackling foreign antigens, the immune system 
targets the body’s tissues themself. Thus the major components, B cells, T cells, 
macrophages and the dendritic cells, participate in both the normal and the abnormal 
immune responses. B cell receptors (BCR) are perhaps the most important elements that 
influence the fate of B cells from the early developmental stages in the bone marrow 
(BM) to the mature stages in the periphery. It is the BCR that are secreted as antibodies 
during the humoral immune response and during autoimmune disease as pathogenic 
autoantibodies. Therefore understanding B cell regulation and BCR is extremely 
important to illuminate the origins of autoimmunity and its pathogenesis once it is 
established. Mechanisms like clonal deletion, anergy and receptor editing prevent 
autoreactive B cells from reaching the periphery. In spite of this, some autoreactive B 
cells emerge out of the BM into the peripheral organs. One possible way for this to 
happen is by retention of the harmful receptor intracellularly by some mechanism while a 
harmless receptor in the same cell aids the B cell to move to the periphery. Nevertheless 
once an autoreactive B cell is out of the BM, it migrates to the lymph nodes and to the 
spleen. In autoimmune disease, these B cells get activated and become plasma cells to 
produce pathogenic autoantibodies.  

 
The studies described in this dissertation have addressed the regulation of 

autoreactive B cells in mice. We started by constructing BCR analogs and used them to 
assess their affinity and specificity to auto antigens. The aim was to correlate this 
knowledge with possible fates of developing B cells that carry these receptors. During the 
course of the study we came across a very interesting receptor which in spite of being 
autoreactive was present in the periphery. Naturally, we were attracted towards the B 
cells that made these receptors. We have analyzed and tracked these B cells to the splenic 
marginal zone (MZ) and propose reasons for their presence in the periphery. B cells 
bearing this receptor showed another interesting property. They resembled ‘Mott cells’ 
with intracellular antibody accumulation. We extended our studies with hybridomas that 
synthesize these receptors as IgM antibodies. In these hybridomas, we discovered a 
spectacular new way of antibody secretion which might offer the explanation for the 
pathogenesis of autoantibodies in many autoimmune diseases. The general introduction 
in this dissertation reflects this progression of events, starting with role of B cells in 
humoral immune response. This is followed by the type of antibodies B cells secrete 
when they get activated in the periphery. The importance of BCRs for B cell survival and 
development is dealt with next. Following this, where autoreactive B cells might be 
present in the periphery is discussed. The subsequent sections deal with the mechanisms 
that prevent autoreactive B cells from migrating to the periphery. Finally the 
characteristics of systemic autoimmune disorders are discussed. 
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1.1  Life of a B cell 
  
 B-lymphocytes are cells that play a crucial role in humoral immunity. B cells are 
produced throughout the lifespan of an individual in the bone marrow (1) (Figure 1.1). 
2X107 cells are produced every day in mice and the cells circulate in the blood and 
lymph(2). B cells arise from common lymphoid progenitors and the earliest B cell 
precursors require contact with the stromal cells in the BM (3, 4), in addition to specific 
cytokines, particularly IL-7 (5, 6). B cells at later stages of development do not require 
cell contact, but need cytokines for further differentiation. Cell surface proteins such as 
the 200 kDa protein, B220, are useful cell surface ‘markers’ and aid in identification of B 
cells (7). Each B cell also has a unique cell surface receptor called the BCR. The BCR 
along with co-receptors named Igα and Igβ form a complex (8, 9) which recognizes 
foreign antigens.  Binding to antigen is the key initiating event that leads to antigen-
specific B-cell differentiation and the development of humoral immunity.  

 
B cells that complete development in the BM exit as immature B cells that 

migrate to the peripheral lymphoid organs - the spleen and lymph nodes. The majority of 
these immature B cells have a short life in the spleen (4 to 6 days), while some go on to 
the longer-lived recirculating B-cell compartment (~60 days). The mature recirculating B 
cells make up the naïve B cells found in periphery. These naïve B cells are referred to as 
conventional B cells or B-2 B cells. B-2 B cells, with help from another cell type called 
TH cells, generate responses to most foreign protein antigens. Two other distinct subsets, 
the B-1 B cells (10) and the MZ B cells (11) make up the long-lived B cells in the spleen. 

 
A class of cells called dendritic cells is required for the induction of B- and T-cell 

responses in vitro and in vivo. Dendritic cells, upon interaction with antigen, become 
activated and migrate to the lymph nodes. Dendritic cells are a type of antigen presenting 
cells. Dendritic cells take up antigen, process the antigen and load the antigenic peptide 
fragments onto a molecule called the major histocompatibility complex II (MHC II) (12, 
13).  Naïve antigen-specific TH cells and dendritic cells form an immune synapse. Co-
stimulatory molecules, adhesion molecules and molecules involved in antigen stimulation 
on both cell types form the synapse. Activated TH cells then expand clonally and migrate 
to the secondary lymphoid organs(14). Antigen-specific naïve B cells are also recruited 
into this pathway. To receive cognate T-cell help, antigen-specific B cells must have 
contacted their specific antigen, internalized, processed, and presented antigenic peptides 
on their cell surface in association with MHC class II (15). Once the B cells are activated, 
they too relocate to the secondary lymphoid organs to increase the likelihood of acquiring 
cognate T-cell help. Thus, at around 5 to 7 days after initial antigen contact, both the 
antigen-activated-effector TH cells and antigen-primed B cells are translocated to the 
same microenvironment. 

 
When the antigen activated B cells in the follicles of secondary lymphoid organs 

come in contact with the antigen specific TH cells, an immune synapse forms here and the 
B cells begin to divide rapidly and form secondary follicles. One group of B cells become 
short lived IgM secreting plasma cells while the other group initiates what is called the 
germinal center reaction (16). Plasma cells are terminally differentiated and secrete 
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Figure 1.1  B cell development. 

Spleen 

Mature B 
cell 

IgDhi

IgMlo 

Immature B cell 

IgMhi

Pre B cell receptor 
Bone 

Pre B cell Pro B cell 
Lymphoid 
progenitor 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 3



antigen specific antibody in large amounts (17) while B cells in the germinal center 
reaction undergo immunoglobulin (Ig) gene diversification processes called class switch 
recombination (CSR) and somatic hypermutation (SHM) (18).  

 
B-lymphocytes are cells that play a crucial role in humoral immunity. B cells are 

produced throughout the life span of an individual in the BM (1) (Figure 1.1). In the 
presence of CD40, a co-stimulatory molecule and its ligand (CD-40L) (19) there is a 
class switch in antibody secretion from IgM to IgG, IgE or IgA (20). A soluble T cell 
derived factor IL-4 also has a role in Ig CSR (21).  CSR replaces an initially expressed 
constant region of an Ig heavy chain with an alternate heavy chain constant region. 
Therefore after class switching the antibody has the same antigen specificity but a 
different heavy chain isotype. In CSR specialized regions of DNA named switch regions 
that exist 5’ to each constant region gene in the B cells are cut and rejoined after deleting 
the intervening region (22).  This process is aided by a DNA editing cytidine deaminase 
named activation induced deaminase (AID) (23).  Other proteins involved in DNA repair 
(24) and DNA joining (25) play important roles in Ig class switching.  

 
B cells undergo affinity maturation and SHM to generate high affinity antibodies. 

SHM introduces non templated mutations in the variable region of rearranged Ig heavy 
and light chain genes. Point mutations occur predominantly during SHM and SHM is 
influenced by the primary sequence of DNA (26). SHM is initiated by the deamination of 
cytidines by AID. The resulting U G mismatch if left un-repaired can result in transition 
mutations. However, error prone repair processes themselves can introduce mutations 
(27). 

 
 

1.2  B cell development 
 
Early B cell developmental stages are BCR independent and precede antibody 

gene recombination (28). The earliest committed B cell precursors are pre-pro B cells 
(Figure 1.1). These cells have not rearranged their Ig gene loci. Pre-pro B cells 
differentiate to pro-B cells (29). Ig gene recombination is initiated at the pro-B cell stage 
with the DH-JH rearrangement. Recombination is brought about by Recombination 
activation gene 1 (RAG1) and RAG 2 genes (30). Due to a property of random nucleotide 
addition or loss, the DH segments can combine with JH in any of the three available 
reading frames. Usually DH-JH rearrangements in reading frame 2 are truncated, non-
functional and incapable of supporting further B cell differentiation, in the absence of 
continuing recombinations (31). When DH-JH recombination is complete the VH genes 
become accessible to be combined with D-J, to give rise to the VDJ part of the heavy 
chain (Hc) (32, 33). The resulting RNA transcript has the VDJ along with C region and a 
splicing step gives rise to VDJC to give the complete Hc (34). 

 
IgM Hc expressed on the cell membrane marks the transition from the pro-B to 

the pre-B cell stage. Two components named V pre B and λ5 come together to form the 
surrogate light chain (ψLc) to associate with the Hc (35). The pre-BCR has the 
membrane Igμ, ψLc, Igα and Igβ (36). The pre-BCR exists as a complex with calnexin. 

 4



Igα and Igβ are signaling components that associate with the BCR as an immature 
complex (37, 38) and are required for the surface expression of membrane IgM (39, 40). 
Igα and Igβ in turn activate B cell signaling pathways through ITAMs by recruiting Src 
and Syk family kinases (41, 42). The pre-BCR triggers B cell differentiation and clonal 
expansion. Deleting pre-BCR components blocks B cell development at the pro-B cell 
stage (43). However inactivation by targeted gene disruption of λ5, one of the component 
ψLc associated with the μHc, produces a leaky phenotype that allows some B cell 
development (44). This probably can be explained by the substitution of surrogate light 
chains by early Lc rearrangements (45). Receptor aggregation probably is required in 
addition to the non-redundant signaling components Syk, Blnk and PI3K for full B cell 
development (46-48). The exact mechanism of pre-BCR signaling is not clear. The 
current model is that the pre-BCR signaling is similar to "tonic" signaling in mature B 
cells. That is, just the assembly of the complex may be sufficient for the cell to pass the 
pre-B cell developmental checkpoint (49).  

 
Allelic exclusion of immunoglobulin genes ensures the expression of a single 

antibody molecule in B cells. In allelic exclusion, after an initial rearrangement event 
occurs, simultaneous recombination of the second allele is prevented by different 
feedback mechanisms. First, this feedback mechanism brings about the down regulation 
of RAG1, RAG2 and TdT (50). Pre-B cell signaling brings about reorganization of the 
heavy chain locus resulting in the prevention of further rearrangements at the second DJH 
allele (51). After pro-B cells undergo rearrangement at the heavy chain locus, they enter 
into a proliferative stage that is aided by IL-7 signaling. During the transition to small 
pre-B cells, this pathway is down regulated, leading to histone deacetylation at the IgH 
locus (52). This then leads to a decrease in accessibility of Hc genes, which serves to 
prevent any further recombination even though these same cells are actively undergoing 
IgL rearrangement.  

  
Hc genes are arranged linearly on the chromosome and certain proximal VH 

genes are over-represented in B cells at the fetal stages. However, in adults there is 
selection against proximal VH genes and those with long complementarity determining 
regions (CDR3s) because Hc with long CDR3s have a higher probability of being 
autoreactive (53). Lc genes start undergoing recombination at the pre-B cell stage and the 
newly expressed Lc replace the ψLc on the pre-BCR (54). There are two Ig Lc isotypes 
encoded by separate gene families, κ and λ, but normally B cell progenitors functionally 
rearrange and express only one Lc gene to generate B cells which are either κ or λ (55-
57). In the mouse genome, the κ Lc family is substantially more complex than the λ gene 
family and therefore there is a bias towards the expression of the κ isotype such that 
approximately 95% of the B cells will be κ+ (58). κ Lc are often rearranged in λ 
producers but not vice versa which means that κ genes are generally rearranged before λ. 
λ rearrangements are increased when one or both κ loci are inactivated. However λ genes 
do rearrange in κ+/+ cells (59). 
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1.3  B cell receptors 
 

Antibodies neutralize foreign bacterial and viral antigens. Antibodies prevent 
pathogens from entering into cells, aid in the removal of pathogens and initiate the 
destruction of the pathogens via the complement pathways (60, 61). In mammals there 
are antibody classes or isotypes and they differ in their biological properties, location and 
capacity to deal with different antigens.  Antibodies can be monomeric, dimeric or 
pentameric depending on the number of Ig units present. Depending on the type of Hc Ig 
belong to five different classes, IgM, IgD, IgG, IgA and IgE (Figure 1.2). The heavy 
chains are named by Greek letters and they differ in size and composition. α and γ have 
about 450 amino acids, while μ and ε have about 550 amino acids (62-64).   
 

The BCR is an Ig embedded in the cell membrane. The Ig or the antibody is 
unique for each B cell and it is a hetero tetramer composed of two Hc and two Lc. The 
variable regions of each Hc+Lc form an antigen binding site. The genes specifying the H 
and the L chains are found at the Hc locus and the Lc locus. The Hc is encoded by four 
types of gene segments. They are variable (V), diversity (D), joining (J) and constant (C) 
region genes (65). Multiple copies of the V, D, and J genes are arranged tandemly in the 
genome. 
 

The Lc is encoded by the V, J and the C genes. Mouse κ locus has 197 functional 
Vκ and four functional Jκ segments. There are two types of Lc, also named by Greek 
letters, the κ and λ. Lc are made up of only two Ig domains which make up the constant 
and variable regions. As there are multiple gene segments that can be used to form the Hc 
and the Lc, different rearrangements can theoretically generate an antibody repertoire of 
>107 combinations. 

 
Each Hc has a variable region and a constant region. The variable region is 

different for every BCR but it is the same for all the antibodies produced by a single B 
cell or its clones. A single domain makes up the variable region (66). The part of the 
antibody that binds to antigens is called Fab’ (67) and the part which modulates immune 
cell function is called the Fc region (68). The Fc region binds to Fc receptors on other 
cells, and to complement. 

 
 

1.4  IgM 
 

IgM is important for combating infectious diseases because of its high capacity 
for activating the complement pathway. IgM must be polymerized into pentamers of the 
basic heterotertamers (Figure 1.3) if it is to activate complement (69). IgM also mediates 
opsonization. Opsonization is the coating of the antigen by antibody that facilitates 
uptake of the antigen by phagocytosis. The polymers have more avidity for antigens than 
the monomers. The CH3 domain of IgM binds to the C1q complement component. IgM’s 
CH1 domain interacts with C3b complement component and helps in phagocytosis of 
opsonized antigens (70). 
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The μ Hc can be produced in two forms, one (μm) which gets inserted into the B 
cell membrane (71) because of a hydrophobic C-terminal portion and the other (μs) with a 
shorter hydrophilic C terminal that gets secreted by the plasma cells (72). The two forms 
are generated by distinct mRNAs that arise due to alternate splicing/processing of the 
primary μ gene transcript. The secreted μs terminates with a tail piece that has 20 
hydrophilic residues and includes a glycosylation site at asparagine-563 and a cysteine 
575 residue that is used in the formation of a disulfide bond. This is replaced in μm by 41 
amino acids that include the hydrophobic transmembrane domain (73). In plasma cells 
monomers of sIgM (μ2L2) are assembled into polymers (μ2L2)5 and only polymers are 
secreted (74). 
 
 
1.4.1  IgM assembly 
 

Human Burkitt lymphoma line Ramos was used as a model to study the assembly 
and intracellular transport of the BCR complex (75). The cells are mature IgM bearing 
cells. Ig are glycoproteins produced on the rough ER and transported into the ER lumen. 
The order of assembly of the components was determined by labeling the cells for 3 
minutes and chasing for an hour. In this cell line, μHc is made in excess compared to Lc 
and association of the Hc with the Lc occurs independently of interaction with the 
Igα/Igβ. μHc associate with the Lc almost immediately after they are synthesized. H/L 
dimers (also called hemimers), at 110kD are also observed on non-reducing gels. The 
H2/L2 tetramer (also Ig monomer) formation occurs within the first few minutes after 
biosynthesis and is complete after about 2 hrs. The tetramer becomes Endo H resistant 
only after about 4 hrs. Resistance to the enzyme Endoglycosidase H indicates that 
secreted protein has passed through the Golgi. This implies that assembly of the H2/L2 
tetramer precedes exit out of the ER. μHc associated with Igα appears to be more 
efficiently transported out of the ER into the Golgi (75).   
 

The Golgi apparatus is a series of flattened, hollow cisternae composed of 
membranes forming the secretory pathway. These cisternae, unlike the endoplasmic 
reticulum, do not fuse into one continuous reticular structure, but are present as a stack. 
The Golgi stack is a polarized structure with a cis-face exchanging proteins and lipids 
with the endoplasmic reticulum (ER), and a trans-face communicating with the plasma 
membrane and compartments of the endocytic pathway. Complex networks referred to as 
the cis-Golgi network (CGN) and the trans-Golgi network (TGN) respectively are found 
at each of these faces (76, 77). Secretory proteins pass through the Golgi cis to trans and 
their N-linked glycans become post-translationally modified in a sequential order before 
being sorted at the TGN for delivery to their final destination within the cell. Golgi is a 
highly dynamic organelle despite its highly organized structure (76). Compartment 
identification can be done by anti-ER antibodies or anti-Golgi antibodies.  
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1.4.2  Importance of J chain for assembly into polymers 
 
Antigen and the successive cytokine signals trigger resting B cells to secrete IgM 

pentamers. Synthesis of J chain is a critical step in IgM pentamer secretion (78). The J 
chain links two monomer subunits (Figure 1.3) through disulfide bonds between 
cysteines at positions 14 and 68 of the J chain and the penultimate cysteines of opposing 
Hc to form the pentamers (79). The tail piece of the IgM has this penultimate cysteine 
and there is also an asparagine which is glycosylated. This glycosylation is also important 
for J chain incorporation and pentamer formation in IgM . The μ tail piece must have the 
CH3, CH4 domains for the J chain to be incorporated. In the absence of the J chain, an 
additional monomer closes this circle to form the hexamer (80). Similarly, elimination of 
carbohydrate in the μ Hc leads to formation of higher order polymers (81). Since IgM 
assembly occurs through stepwise addition of Hc/Lc hemimers, it limits the accessibility 
of glycosyl transferases in the μ tail piece. Therefore incorporation of J chain into 
polymeric Igs is not only regulated by the amount of J chain but also features of the 
constant domains and the μ tail piece. The production of IgM hexamers has been shown 
to activate complement-dependent cytolysis 17- to 20-fold more efficiently than J-chain-
containing pentamers and thus may have an important role in immune responses (82). 
Presence of IgM hexamers in the body can be detrimental. An example to support this is 
the presence of significant amount of IgM hexamers in the sera of patients with cold 
agglutinin disease, an IgM mediated autoimmune condition (82). The normal B 
splenocyte is a resting cell of the B2 subset that synthesizes only the membrane form of  
μ chain (μm) (83) and requires antigen and lymphokine stimulation to undergo a shift to 
the secreted form (μs). Lipopolysaccharide activated splenic MZ B cells show that the 
shift is initiated within 24-48 hr after stimulation and proceeds to completion at 72 hr. J 
chain can be detected within 48-72 hr after LPS stimulation (84).  

 
 

1.4.3  Glycosylation of IgM H chains 
 

Glycosidases play a vital role in the development of hybrid and complex types of 
N-linked oligosaccharides (85).  N-linked oligosaccharides are initially assembled in the 
endoplasmic reticulum by the stepwise addition of various sugars to a lipid carrier, named 
dolichol-P (Figure 1.4).  This oligosaccharide part gets transferred to specific asparagine 
residues on the polypeptide chain as the protein is being synthesized on the ribosomes. 
After the oligosaccharide has been transferred to protein, it undergoes processing. As a 
result some sugars are removed and while others are added. The initial reactions occur in 
the endoplasmic reticulum (86). This involves the removal of all three glucose residues 
by two membrane-bound α-glucosidases. Glucosidase I removes the outermost α 1, 2-
linked glucose. The second α-glucosidase, called glucosidase II, removes the other two α 
l,3-linked glucose residues (87). ER α-mannosidase acts on high-mannose 
oligosacchanides. The high-mannose structure that results from these reactions may 
remain as a high mannose glycoprotein and avoid further trimming or it may be 
processed further as the glycoprotein travels through the various Golgi stacks (Figure 1.5) 
(88). In proteins where the oligosaccharide remains as a high-mannose structure and 
escapes further processing, it is likely that the carbohydrate chain is buried within the  
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Figure 1.4  Glycosylation of the immunoglobulin Hc in the ER. 
 
Biosynthesis of the N-linked core oligosaccharide. Synthesis starts on the cytosolic 
surface of the ER membrane by the addition of sugars, one by one, to dolicholphosphate. 
When two N-acetylglucosamines and five mannoses have been added, the 
oligosaccharide is flipped to the lumenal side of the membrane, and seven further sugars 
are added from lipid precursors. After the last of the three glucoses have been added, the 
oligosaccharyltransferase enzyme complex catalyzes the transfer of the core 
oligosaccharide to the asparagine residues of nascent, growing polypeptide chains. The 
three glucoses are trimmed away by glucosidase I and II, and terminal mannoses by one 
or more different ER mannosidases. The ER also contains a glucosyltransferase that can 
reglucosylate glucose-free chains and thus establish, with glucosidase II, a 
deglucosylation- reglucosylation cycle. (Adapted with permission from Helenius A and 
Aebi M. (2001) Intracellular functions of N-linked glycans. Science Mar 23 (291) 
5512:2364-9). 
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Figure 1.5  Modification of the N-linked glycans on the immunoglobulin Hc in the Golgi. 
 
When the glycoprotein has folded (gray oval) and reached the Golgi complex, further 
mannose trimming occurs. The addition of a GlcNAc residue is followed by trimming of 
two additional mannoses. During subsequent terminal glycosylation there is addition of 
new terminal sugars including GlcNAc, galactose, sialic acid, and fucose. Of the original 
core glycan, just five sugars remain. Only one of many possible terminal glycosylation 
pathways is shown; the number of branches generated is variable, as are the number and 
identity of sugars added. Whereas the glycoforms in the ER are homogeneous, the Golgi-
generated forms are highly diverse and differ widely between species. (Adapted with 
permission from Helenius A and Aebi M. (2001) Intracellular functions of N-linked 
glycans. Science Mar 23 (291) 5512:2364-9). 
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protein folds and/or is somehow inaccessible to the processing mannosidases. The 
glycoproteins present in the ER bear immature N-linked glycans that are sensitive to 
Endo H digestion. Resistance to Endoglycosidase H is acquired after transport to the 
medial-Golgi. 

 
 

1.5  Quality control for protein folding 
 

Proteins are covalently modified in the ER by cleavage of the signal peptide, N-
glycosylation, formation of disulfide bonds and acquisition of their proper tertiary and, in 
some cases, also quaternary structures (89). N-glycosylation allows for quality control of 
glycoproteins in the ER. After synthesis the enzyme UDP glucose glycoprotein 
glucosyltransferase (UGGT) adds a glucose residue (90) to N-glycans positioned near 
misfolded regions thus acting as folding sensor that produces monoglucosylated proteins 
that can bind to ER chaperones calnexin and calreticulin (91). Calnexin and calreticulin  
retain misfolded proteins in the ER, prevent their aggregation and promote folding via 
interactions with ERp57 (92). The enzyme Glucosidase II removes this glucose from the 
protein for it to be inspected by UGGT again. Glucose addition can be prevented by 
removing the terminal mannose residues. Mannose trimming (by ER Mannosidase I and 
II, EDEMs, and Golgi mannosidases) thus acts as a timer that allows proteins either to be 
secreted or degraded (93). Further mannose trimming in the ER may allow 
retrotranslocation of the proteins out of the ER for degradation (94). Binding protein 
(BiP), a chaperone belonging to the Hsp70 family is another folding pathway that aids in 
protein folding (95). BiP has ATPase activity and substrate binding depends on ATP 
binding (96). ATPase cycle in BiP is regulated by ER localized DnaJ homologues (ERdj 
1 to 5). The ERdj family of proteins stabilizes the interaction of BiP with unfolded 
substrates (97). Efficient folding may also require disulfide transfer from protein disulfide 
isomerases (PDI) to nascent cargo proteins. Disulfide bond formation is very important 
for folding and quality control of secretory proteins as this increases the stability of the 
protein’s native conformation (98). Another protein with lectin activity, ERGIC-53 that 
cycles between the ER and Golgi, transports high mannose cargoes (example; IgM 
polymers) allowing their secretion (99). ERp44, another scaffold protein, accumulates in 
the ERGIC and cis-Golgi and mediates the retention of proteins (eg; IgM assembly 
intermediates) that have passed the earlier BiP dependent folding stages (100).  
 

If protein folding in the ER is disrupted, as during a chemical insult or nutrient 
deprivation, it activates a stress signaling pathway known as the unfolded protein 
response (UPR). UPR induction results in both an initial decrease in general protein 
synthesis, to reduce the influx of newly synthesized proteins into the ER, and increased 
transcription of ER resident chaperones, folding enzymes, and components of the 
proteasomal pathway to prevent the aggregation of the accumulating misfolded proteins 
(101). These misfolded proteins are recognized by ER quality control mechanisms and 
retained in the ER, preventing them from proceeding further through the protein 
maturation process (102). In mammalian cells, three ER transmembrane components, 
IRE1, PERK, and ATF6, monitor protein folding in ER and initiate UPR activation (103). 
Terminally misfolded proteins escape the ER and are sent to ER associated degradation 
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(ERAD). The misfolded proteins are recognized by EDEM 1, 2 and 3 (mannosidase like 
proteins) (104), OS-9 and XTP3-B which then bind to other molecules involved in 
ERAD. This results in retrotranslocation of the proteins marked for ER followed by their 
ubiquitination in the cytosol. ERAD is sometimes unable to clear mutant proteins 
possibly because the rate of synthesis exceeds the degradation capacity of a cell (105).      

 
 

1.6  Intracellular immunoglobulin accumulation 
 

Mutant Ig accumulation in ER is referred to as Russell bodies. Cells that harbor 
Russell bodies are called Mott cells (106). The Mott cell phenotype has been recreated in 
lymphoid and non-lymphoid cells by overexpressing μ Hc that lack the first constant 
domain. Presence or absence of Lc however appears to determine the intracellular 
location of Russell bodies in cells. In the presence of Lc, the mutant μHc aggregate in the 
rough ER (rER) and in the absence of Lc the mutant μ Hc aggregate in vesicles 
associated with ERGIC-53. Spontaneous autoimmune viable motheaten (mev/mev) mice 
have Mott cells that contain Ig accumulation in the rER. 31% of the hybridomas 
constructed from cervical lymph node cells from motheaten mice had Russell bodies. 
Intracellular Ig remained insoluble in 0.5% NP-40. This intracellular Ig was able to be 
solublized by homogenizing the material in 1% SDS. The intracellular Ig was Endo H 
sensitive consistent with localization of Ig to the rER.      
 
 

1.7  Mechanisms of B cell tolerance 
 
BCRs are generated by random rearrangements of the Ig genes. Since the 

receptors are generated randomly, it is impossible to predetermine which receptors will 
lead to anti-self activity. The B cells acquire tolerance to self components during their 
development by sampling the antigens in their environment. ‘Tolerance’ is defined as a 
physiologic state in which the immune system does not react against self antigens. Failure 
of tolerance mechanisms during B cell development leads to autoimmunity characterized 
by production of autoantibodies that react against self components. About 75% of newly 
made immature B cells in the BM are autoreactive and face a rigorous negative selection 
process (107). The evidence for autoreactive B cells undergoing negative regulation came 
from pioneering experiments by Nemazee and Burki when they constructed a transgenic 
mouse expressing a cell surface IgM (sIgM) BCR reactive against MHC class I 
molecules H2Kk and H2Kb. In the absence of the autoantigen, B cells expressing class I 
MHC BCR were observed in the periphery, but in the presence of autoantigen B cells 
expressing class I MHC BCR disappeared. The site of negative selection was inferred to 
be the BM because the transgenic receptor bearing B cells were not detected in the spleen 
(108, 109). Hence clonal deletion was proposed as a mechanism of negative selection of 
autoreactive B cells. 
  

Goodnow developed transgenic mice expressing IgM BCRs against hen egg 
lysozyme (HEL). Anti-HEL transgenic mice models confirmed Nemazee and Burki’s 
results that B cells are clonally deleted, but Goodnow demonstrated that the B cells are 
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deleted only when the antigens are membrane bound (110). Goodnow’s experiments 
uncovered another mechanism called functional anergy when B cells expressing anti-
HEL receptors mature in mice that had soluble self antigens instead of a membrane 
bound form (111). The anti-HEL B cells were not deleted but were temporarily 
inactivated and were in a state of maturational arrest. Maintaining tolerance may be 
influenced by genetic background (112) and these experiments confirm that exposure to 
antigen is generally deleterious to developing B cells.  
  

In both the systems described above, the self reactive transgenic B cells expressed 
receptors against ‘non-disease-associated antigens’(113). Erikson et al, created the first 
anti-DNA transgenic mice on a BALB/c (non autoimmune) background using the 3H9 
Hc. The 3H9 antibody has features of typical lupus autoantibodies in that it binds to 
nuclei, chromatin, DNA and phospholipids. The 3H9 H chain was repeatedly encountered 
in spontaneously arising anti-nuclear antibodies (114). Arginine mutations occur 
frequently in the H chain genes of anti-DNA antibodies in the MRL/lpr mice and 
additional arginines in the 3H9 H chain contributed to an increase in the H chain affinity 
to DNA and phospholipids (115). The productively rearranged 3H9 VDJ region from a 
MRL/lpr (autoimmune prone mouse strain) anti-DNA hybridoma was joined to the Cμ 
fragment from a BALB/c mouse. The entire construct was microinjected into pronuclei of 
fertilized embryos to obtain founder animals. 3H9 H chain only transgenic mouse is the 
progeny of one of the founder animals (114). These mice produced B cells with receptors 
specific for DNA, a main target antigen in systemic lupus erythematosus (SLE). These 
are Hc only transgenic mice and therefore B cells would express the anti-DNA Hc but 
any endogenous Lc can associate with the Hc. However the L chains have to be such that, 
they in association with the anti-DNA Hc must be able to prevent autoreactivity. The 3H9 
Hc can be associated with Lc that include Vκ4, Vκ8, Vκ9 and Vκ23. Most of these 
antibodies can bind to both ssDNA and dsDNA while 3H9/Vκ8 binds to ssDNA only.  
Thus due to the dominant anti-DNA nature of the 3H9 Hc the regulation of different 
kinds of anti-DNA antibodies was studied here. In addition to the Hc only transgenic 
mice, 3H9Hc/Vκ8Lc H/L transgenic mice were also created to analyze how anti-DNA B 
cells are regulated in normal mice. Site directed 3H9 H chain Tg mice have also been 
created (116). High numbers of anti-DNA B cells were found in the 3H9/Vκ8 mice but 
the anti-DNA serum titres were not higher compared to control mice. This suggested that 
anti-DNA B cells do not differentiate into Plasma cells and have become anergic. In 
contrast to B cells in the HEL and MHC models the anergic B cells have a high density of 
surface IgM. In the 3H9 Hc only transgenic mice there were no B cells that bound 
dsDNA. This suggests that anti- dsDNA B cells are deleted. About 60% of the B cells 
bound ssDNA but anti-DNA serum antibodies were not increased. These results showed 
that anti-DNA antibodies are regulated in non-autoimmune animals and that 
autoimmunity would result in the event of a dysregulation in autoantibody production 
(113).  

 
1.8  Receptor editing 

 
One important B cell tolerance mechanism by which the autoreactive B cells are 

prevented from making autoantibodies was elucidated by transgenic mice studies. 
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Autoreactive B cells expressing anti-DNA receptors in transgenic mice are either 
anergized or deleted. However, B cell numbers appeared to be normal. Analysis of B 
cells showed that the autoreactive BCR has been replaced with a non-autoreactive 
receptor (117). This is termed “receptor editing”.  
 

Receptor editing alters antigen receptors by ongoing rearrangements in the BCR 
encoding elements (Figure 1.6). Receptor editing is a mechanism by which immature 
bone BM B cells become self tolerant by undergoing secondary Ig gene rearrangements 
that replace an autoreactive B cell receptor with a non-autoreactive receptor (118). 
Replacing productively rearranged Lc or Hc genes can serve to eliminate production of 
an antibody that was autoreactive. Variable region of the Ig H and L chain (VH/VL) 
regions determine the specificity of a receptor, and replacing either VH or VL can change 
receptor specificity (119-121).   

 
Three articles in the same issue of the Journal of Experimental Medicine were the 

first to demonstrate receptor editing (117, 118, 122). B cell hybridomas generated after 
LPS stimulation from the VH3H9 Hc only transgenic mice were analyzed for Lc by 
Radic et al. It was found that the Lc from the Vκ12/13 gene family was observed most 
frequently and Jκ5 was used most of the time (122). This suggested that, certain light 
chains are used more frequently because they in association with the Hc do not bind to 
autoantigens. In another experiment, Gay et al generated transgenic mice (H/L) by 
introducing a cloned Vκ4Jκ4Cκ (L only) gene segment in a 3H9 (H only) transgenic 
mouse. The transgene was expressed in spleen and BM. B cells from spleen and BM 
were analyzed by flow cytometry with anti-idotypic antibodies named 1.209 and 1.3H9. 
1.209 binds to 3H9 heavy chain and binds to 3H9 antibodies with a wide variety of light 
chains. 1.3H9 bound only to 3H9+Vκ4. 1.209 bound to about 90% of adult splenic IgM+ 
cells from both H and H/L transgenic animals. 1.3H9 did not bind any cells from the 
adult mice. This suggested that 3H9 Vκ4 cells were deleted in the animals. However the 
numbers of IgM+ B cells in adult cells were normal. Moreover, spleen cells made into 
hybridomas did not produce antibody that had ANA patterns and also did not bind to 
DNA by ELISA. Primer extension analysis showed that the Hc was intact in these 
hybrids but there was expression of endogenous Lc rather than the transgenic Lc. 
Sequence analysis showed that only a limited set of Lc were expressed and members 
from the same group showed a high degree of clonal relatedness. This indicated that the 
autoreactive 3H9+Vκ4 receptor is replaced by receptor editing (117).  
 
 

1.9  Regulation of receptor editing 
 
The discovery of receptor editing was followed by papers that attempted to 

explain this mechanism. Many reports have suggested that self antigen binding to the 
BCR of immature B cells in the BM stimulates receptor editing. Hertz and Nemazee  
tested this by using immature BM B cells and exposing them to BCR ligands. They 
showed that stimulating immature BM B cells with anti-idiotypic antibodies did not cause 
cell death, but instead the receptor cross linking caused an increase in RAG-2 mRNA 
levels and endogenous light chain gene rearrangements. The BM microenvironment 
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Figure 1.6  Receptor editing at the Lc locus. 
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appeared to be essential for editing to occur because transfer of BM derived immature B 
cells into spleen cell cultures failed to show receptor editing. However if help was 
provided in the BM in the form of an anti CD-40 moclonal antibody, receptor editing was 
inhibited and B cells proliferated rapidly. This suggests that T-cell help can cause 
autoreactive B cells to escape tolerance mechanisms (59). Sandel and Monroe extended 
the observation that editing occurs in the context of BM environment and proposed that 
the site where the antigen is encountered first determines whether the cell undergoes 
receptor editing or deletion by apoptosis. They showed that cell to cell contact between 
BM and immature B cells protects them from BCR induced deletion and induced receptor 
editing (123).  

 
It was observed that Lc replacement is the major mechanism by which receptor 

editing occurs. One of the papers that dealt with this phenomenon was by Prak et al. They 
used 3H9 transgenic mice that are κ+/- (Only one functional κ locus). κ+/- B cells can 
survive by rearrangements either at the functional κ locus or the λ locus. It has been 
found that such mice have a higher λ expressing B cells in the BM and the spleen. If κ+/- 

animals also have anti-DNA transgene then it becomes even more difficult for these cells 
to stave off autoreactivity. This in turn will cause more rearrangements at the available κ 
locus and then at the λ locus. 3H9 κ+/- animals show a high percentage of cells that 
expressed Vκ12/13 and also had significantly higher rearrangements to Jκ5 (124). In κ+/- 
3H9 Heavy chain transgenic mice, many B cells had the λx light chain rather than λ1 or 
λ2 because λ1 or λ2 with 3H9 is autoreactive (120). The Vλx is one of the three 
functional Vλ genes in mice the other two being Vλ1 and Vλ2. The Vλx Lc is considered 
an editor because this when combined with 3H9 or 56R Hc does not bind DNA (125).  

 
In 3H9 κ-/- mice, rearrangements to λx is favored rather than to λ1 or λ2, and even 

when λ1 is rearranged it often is non productive. B cells with productive Vλ1 when 
present had the 3H9 Hc replaced by an endogenous Hc. Hc replacement is therefore 
another mechanism of receptor editing (126). Secondary rearrangements can continue 
until such time there are Jκ segments available but the rearrangements may or may not be 
productive. The B cell attempts to rectify its autoreactive receptor by secondary 
rearrangements at its κ locus first and then if unsuccessful rearranges the gene segments 
at the λ locus. Thus, after the production of an autoreactive IgM receptor (with a κ L 
chain) receptor editing can take three forms – 1) recombination between an upstream Vκ 
to a downstream Jκ on the same chromosome (55)  2) recombination can occur on the 
other chromosome 3) recombination can occur on the light chain λ locus (124). V gene 
replacement by H chain is also observed (126).  
 

 
1.10  Allelic inclusion 

  
Receptor editing brings allelic inclusion with it. Allelic inclusion is the expression 

of two different productive Lc rearrangements. This has been shown in the 56R+ 
transgenic mice that express a κ Lc and a λ Lc (127, 128). Wabl and Gerdes 
demonstrated the presence of two κ Lc in a nuclear transfer mouse (129). Nucleus from 
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terminally differentiated B cells fron peripheral lymph node was injected into enucleated 
oocytes to derive cloned blastocysts and subsequently embryonic stem cells. The 
embryonic stem cells were injected into tetraploid blastocysts to generate nuclear transfer 
mice. In this method the placenta is derived from the tetraploid host cells and the embryo 
from the injected embryonic stem cells (130). Casellas et al. used gene targeting to 
replace the mouse Igκ constant region (mCκ) with its human counterpart (hCκ) and 
created transgenic mice. When B cells undergo receptor editing it is more easily 
identified by the presence of human κ Lc constant region. They showed that 3–5% of B 
lymphocytes express equal amounts of cell surface mCκ and hCκ light chains and that 
10% of mature B cells coexpressed two Igκ alleles. They suggest that these cells arise 
through receptor editing. They also demonstrate that B lymphocytes carrying two BCRs 
are recruited to germinal center reactions, and participate in humoral immune responses 
(131). 
  

Like regular Ig gene rearrangements receptor editing is also due to random 
rearrangements and therefore could result in the production of BCRs that might be 
autoreactive (132). The idea of receptor editing is to rescue autoreactive B cells by 
replacing autoreactive BCRs. It was thought that expression of a new Lc leading to a new 
BCR halts the expression of the previously expressed Lc to dilute out the old BCR. 
However there are numerous examples in the literature now that this does not always 
happen. B cells have been shown to contain two productive rearrangements and also 
express two different receptors (116, 127, 133). One area that still remains unclear is 
whether one receptor (probably non-autoreactive) takes up the normal functions while the 
other receptor (probably autoreactive) just remains inside. It is possible that the 
autoreactive receptor binds to an internal antigen while the other receptor carries out the 
normal duties of a cell surface BCR to move the B cell forward through its 
developmental stages and lead it to the peripheral lymphoid organs. 
 
 

1.11  BCR signaling threshold in B cell development and tolerance induction 
 
The BCR is the single most important component that is required for survival of B 

cells irrespective of what developmental stage they are. This is seen in mice which are 
either IgH or IgL knock-ins encoding the 3-83 BCR. The receptor in the absence of 
antigen unexpectedly showed B cells that underwent extensive receptor editing. It was 
proposed that insufficient receptor expression on the B cell surface may be responsible 
for the lack of developmental progression (134). Therefore, a certain level of receptor 
expression may be required to promote B cell maturation. The importance of continued 
expression of the BCR was demonstrated more dramatically in mature B cells by 
Rajewsky’s group where they showed that removing surface Ig from mature B cells by 
cre/lox gene targeting kills the cell (135).  

 
The BCRs must be present on the cell membrane for them to play a role in 

tolerance induction. This was shown in experiments that utilized the 3H9+Vκ4 
autoantibody of the IgG2a class. In this particular experiment, these antibodies had the 
secretory domain but did not have a transmembrane domain in its Hc. Therefore the 
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IgG2a antibodies were secreted while endogenously expressed antibodies were both 
membrane bound and also secreted. Negative regulation of the secreted autoantibody is 
not effective and the sera from transgene positive animals showed elevated levels of anti-
DNA and anti-cardiolipin antibodies (136). When the Lc of the antibodies were analyzed 
it was found that the secreted-only IgG2a Hc paired with a wide range of L chains (121). 
This shows that for a receptor to be effective in maintaining tolerance it should be present 
in the proper context on the cell membrane.  

 
The presence of BCR alone may not be sufficient for B cell survival if the 

receptor is unable to signal. Experiments have shown that basal signaling is necessary for 
B cell developmental progression at the immature stages. Interruption of basal IgM 
signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-
mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A 
or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a ‘‘back-
differentiation’’ of cells to an earlier stage in B cell development. This was characterized 
by the expression of pro-B cell genes. Cells undergoing this reversal in development also 
showed evidence of new LC gene rearrangements, suggesting an important role for basal 
Ig signaling in the maintenance of light chain allelic exclusion (137).  
  

A basal level of signaling can be maintained by Hc alone. However, it has been 
shown that the surrogate Lc (SLC) is required for assembly of the Hc. Both the Hc and 
λ5 (a component of the SLC) must be present during B cell development because 
mutations preventing the expression of either the Ig Hc or λ5 results in developmental 
arrest (43). To understand the precise roles of the various components of the pre-BCR, 
Shaffer and Schlissel used mice transgenic for a surface-expressed, but truncated, form of 
heavy chain that cannot associate with surrogate light chains, to study the role of SLC in 
B cell development. The truncated Hc lacked the VH and CH1 domains and yet escaped 
ER retention to be expressed on the cell surface.  They found that expression of the 
truncated heavy chain transgene did not result in changes in surface marker expression, 
germline κ locus transcription, and V(D)J recombinase. Therefore they concluded that 
surrogate light chains, are necessary for the assembly of the wild-type pre-BCR, but are 
not directly involved in pre-BCR signaling and are not required for early B cell 
development (138). 

 
Lang et al wanted to test if the affinity of an autoantigen to its receptor has any 

bearing on B cell tolerance. 3-83 antibody is anti-MHC I. MHC I alloforms that had very 
low but detectable affinity were identified. Mice expressing these low affinity 
autoantigens were crossed with 3-83 expressing mice. It was shown that the low affinity 
antigens induced effective receptor editing and also autoreactive B cells were absent in 
the periphery. This showed that immature B cells might be very sensitive to even low 
affinity self antigens in the BM (139). 

 
The role of quantity of self antigen required for regulating autoreactive B cells 

was studied in a HEL-anti HEL system. A homogeneous population of Anti-HEL 
antibody expressing B cells was allowed to exist in the presence of different numbers of 
cells that express HEL in irradiated RAG2-/- mice. HEL antibody specific B cells were 

 22



increased in the periphery when the HEL expressing cells were rare. If the HEL 
expressing cells were very low then normal anti-HEL B cell numbers were observed in 
the periphery. B cells expressing low levels of surface receptor in the presence of B cells 
secreting very low levels of autoantigen were shown to be positively selected (140).    

 
 

1.12  B cells may be positively selected 
 

Role of negative selection for B2 B cell repertoire is well documented but the 
evidence for positive selection is mostly indirect. If a B cell is unable to make a receptor 
at any developmental stage, or if it is unable to transmit signals intracellularly, it is 
blocked from further differentiation. This is considered as evidence for positive selection. 
The nature of this positive selection signal is unclear. Loder et al, show that in CD45 and 
Btk mutant mice the B cells are arrested at the T2 cell stage in the spleen and in Igα 
cytoplasmic tail mutants (signaling defective) the development of T1, T2, MZ and mature 
B cells is affected causing a decrease in cell numbers (141).  Monroe and colleagues have 
demonstrated that just the cytoplasmic domains of Igα and Igβ in the absence of BCR are 
sufficient for B cell differentiation to a splenic B cell. This argues that positive selection 
at the pre-B and immature B cell stages may require only tonic signaling from the pre-
BCR and BCR (142). Schlomchik at al., looked at differences in the BCR repertoire of 
immature and mature cells by flow cytometry and cloned PCR products into a library for 
screening. They found that in-frame κ repertoire of immature B cells was diverse but in 
mature B cells the frequency of Lc from one family Vκ24/25 (143) (or Vκ1 if a different 
mice strain was used) was significantly enhanced. Since only a few H/L pairs are 
enriched in the mature B cell population they consider this to be proof for positive 
selection (144). Cyster et al., showed that immature anti-HEL B cells lacking CD45, 
despite their signaling handicap, go on to become mature B cells if HEL is available 
during development (145). Wang and Clarke used the VH12 B cells that either bind or do 
not bind to phosphatidylcholine (PtC) to show that PtC non binders 6-1/Vκ1A B cells are 
present as transitional B cells but do not differentiate further. They interpret this 
developmental arrest as evidence for a ligand mediated positive signal (146).  

 
 

1.13  B cells in the periphery 
 

Immature B cells exit the BM and migrate to the spleen and lymph nodes. For 
example, B cells can be present in the follicles or the MZ in the spleen. MZ B cells are 
interesting because of their association with autoreactivity and also their ability to react 
quickly to bacterial antigens. 

 
MZ B cells constitute only 5–10% of total splenic B cells. The accessibility of 

MZ B cells (IgMhighIgDlowCD21highCD23low) to the bloodstream allows this subset to 
initiate rapid T-independent IgM responses to blood-borne antigens. In contrast, follicular 
B (FO B) cells (IgMlowIgDhighCD21intCD23high) reside in the splenic follicle bordering the 
periarteriolar T cell zone, a position that facilitates interaction with T cells and 
participation in T-dependent immune responses. The MZ B cells differentiate quickly 
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into IgM producing plasma cells or sometimes function as antigen presenting cells (147). 
The absence of the MZ in humans in early life coincides with susceptibility to blood 
borne pathogens (148). These cells exist in a partially activated state and also express 
high levels of IgM that facilitate high avidity interactions with repetitive capsular 
antigens. MZ can also secrete class switched antibodies efficiently (149). Once activated, 
MZ B cells differentiate into plasma cells within the extrafollicular compartments of 
secondary lymphoid organs (147). The MZ B cell IgM response can be observed in vitro 
using the bacterial component LPS as a stimulant. LPS treated MZ B cells respond 
rapidly, exhibiting robust Ab secretion, proliferation, and up-regulation of costimulatory 
molecules (150). LPS treatment of FO B cells induces these same events, but they do not 
occur as quickly or as strongly as in MZ B cells (151). It has been reported that a 
molecule named Notch-2 is important for B cells to become residents of the MZ (152, 
153). Lower levels of another transcription factor named E2A also results in MZ B cell 
phenotype (154). Others have reported that strength of signaling through the BCR is 
responsible for mature B cells becoming either the MZ B cells or follicular B cells. The 
signal strength model has been proposed in the context of a transcription factor named 
Aiolos and another kinase, the Bruton’s tyrosine kinase. In this model, strong signaling 
through the BCR leads to development of follicular B cells whereas weak signaling 
through the BCR results in MZ B cell formation (155). Rajewsky’s group used the 
Epstein Barr virus protein LMP2A as a BCR surrogate in BCR deficient mice. LMP2A 
has an immunoreceptor tyrosine-based activation motif similar to that found in the 
Igα and Igβ signaling subunits of the BCR, in its N-terminal intracellular region (156). 
LMP2A protein may sequester Src family protein tyrosine kinases and Syk from the BCR 
signaling complex and inhibit BCR-induced intracellular calcium mobilization (157), 
providing the infected B cells with a BCR-independent survival signal at the same time. 
LMP2A expressed under a strong or weak promoter leading to high or low receptor 
expression. Low expression presumably leads to low signal strength and B cells in this 
case migrate to the MZ (158). These results are in direct contrast to the observations by 
Kanayama et al. This group made a quasimonoclonal Hc transgenic mice that express 
BCRs having different affinities for nitrophenyl acetyl in association with different light 
chains. They found that receptors that had a higher affinity for the antigen were present in 
the MZ. The MZ B cell development also has been proposed exclusively based on BCR 
density or based on multi reactivity of the receptor (159). Moreover, it has been proposed 
that constraints during the developing stages of B cells (160) or just the presence of 
multireactive receptors (11) on B cells lead to MZ development. Also, there is no easy 
way to determine if and why cells that are in the MZ migrate to the follicle or the vice 
versa.  
 
 

1.14  Check points to prevent autoreactivity 
 

The actual number of autoreactive B cells that arise during B cell development is 
not known and also when and where these B cells are regulated is not clear. To get a 
better idea about these questions Wardemann et al., cloned antibodies from single B cells 
derived from the BM and blood. Early immature B cells and immature B cells were 
analyzed. Cells that had a surface phenotype of pre-B cells (but express Igκ or Igλ) were 
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designated early immature B cells (CD34-CD19+CD10+IgM-). Immature B cells were 
cells that expressed surface IgM (CD34-CD19+CD10+IgM+). It was shown that about 
76% of the antibodies from early immature B cells had high reactivity in HEp-2 ELISAs. 
The frequency of reactive antibodies from the immature B cells stage dropped to about 
43% but remained at about 40% in newly emigrated B cells (CD27-CD19+CD10+IgM+) 
found in the blood. Further reduction of autoantibodies was noticed in mature naïve B 
cell clones (CD27-CD19+CD10-IgM+). They concluded that most self-reactive B cells are 
removed at the immature B cell stage in the BM and also transition stage from the newly 
migrated to the mature naïve B cell stages (107). Yurasov et al., later showed that in SLE 
patients autoreactive antibodies were not effectively removed at the transition between 
new emigrant (CD19+CD10+IgM+CD27-) and mature naïve B cells (CD19+CD10-

IgM+CD27-) (161). The autoantibodies were polyreactive and in one case even increased 
in the mature naïve B cells in a SLE patient. Therefore it was concluded that SLE patients 
have a significant defect in the early B cell tolerance ckeckpoint between the BM and the 
periphery (162). 
 
 

1.15  Autoimmunity 
 

Autoimmunity is an immune response to “self”. Although many cell types 
contribute to autoimmune disorders, lymphocytes are key effectors for the initiation and 
propagation of autoimmunity (163). Autoimmunity results from failed establishment and 
maintenance of tolerance to self-antigens. Immunological tolerance is the ability of the 
individual to differentiate “self “from “non-self “. Normally the immune system does not 
attack components that make up the organism. The abnormal autoantibody responses are 
similar to the normal immune responses and use B and T-cell genes. B-T cooperation is 
essential for autoantibody responses. T lymphocytes are activated when their receptors 
bind to antigen presented by an antigen presenting cell (Apc). B cells and macrophages 
can function as Apc. Autoimmunity can be systemic or organ specific. Systemic 
autoimmunity is autoreactivity that is not restricted to a specific organ. The main diseases 
under this group are SLE and chronic graft-versus-host disease (cGVH) among many 
others. The presumption that a disease is autoimmune is mainly based on the presence of 
autoantibodies. Autoimmune disease differs from person to person and the disease can 
flare up and subside periodically (164). Some patients display attributes of multiple 
systemic autoimmune disorders. 
 

SLE, an important systemic autoimmune disease, is characterized by the presence 
of autoantibodies against DNA and/or nucleosomes. The anti-nuclear antibodies (ANAs) 
form immune complexes with free DNA present in the body (165). It is thought that these 
complexes accumulate in the kidney glomeruli (166) and joints to initiate a type III 
hypersensitivity reaction that manifests as glomerulonephritis, arthritis, vasculitis and 
various other possible SLE-associated clinical findings (167). Free DNA and histones at 
sites of high cell turnover are cleared by DNase I, a major nuclease present in serum. 
Therefore in DNase I knockout mice there are classical symptoms of SLE like 
glomerulonephritis (165). It has also been shown that serum DNase I levels are lower in 
SLE patients (168). Anti-DNA antibodies in SLE patients are directed mainly against 
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dsDNA. dsDNA antibodies recognize DNA base-pairs rather than the backbone. 
Antibodies against all histone classes occur in SLE. A main target of anti-histone 
antibodies is the H2A-H2B DNA complex (169). Anti-histone antibodies in 
immunofluorescence assays show homogenous chromosomal staining in dividing cells. 
Some SLE patients exhibit anti-phospholipid antibodies. Cardiolipin and 
phosphatidylserine are the preferred antigens (169). Binding to phospholipids  appears to 
be dependent on a serum cofactor called β2-GPI (170). Antinuclear antibodies often 
show binding to multiple antigens. It was suggested that multi-reactivity may either be 
due to changes in conformation of the antibody combining site or the combining site has 
different areas each capable of binding to a different antigen. Anti-DNA antibodies 
binding to nucleosomes may be called multi-reactive because one part of the antibody 
combining site may interact with the DNA and the other with the protein histones. Anti-
DNA antibodies often have mutations to amino acids arginine (R) or asparagine (N) 
which are residues that favor dsDNA binding. Anti-histone antibodies acquire mutations 
to aspartic acid (D) or glutamic acid (E). Thus, negatively charged residues in the 
antibody combining sites are thought to bind to the positively charged lysine (K) and 
arginine (R) in the extended portion of the histones. Anti dsDNA antibodies belonging to 
the IgG class cause more severe disease symptoms and tissue damage than IgM 
antibodies because IgG arise after SHM and affinity maturation (171, 172) and are more 
specific to tissue autoantigens. 

 
The presence of Ig in serum or urine prompts the consideration of multiple 

myeloma, Waldenstrom’s macroglobulinemia and the relatively common and 
asymptomatic monoclonal gammopathy of undetermined significance (MGUS). Even a 
small B cell clone, as seen in MGUS, may synthesize a harmful monoclonal protein that 
can cause devastating systemic organ damage and dysfunction through its aggregation 
and deposition or through its antibody activity against autoantigens (173).   

 
In transgenic mice models, increased B cell activation leads to autoantibodies and 

systemic autoimmunity as demonstrated when CD19, a costimulatory signaling 
component associated with the BCR, was overexpressed. CD19 overexpression leads to 
autoantibody production probably due to a lower threshold of B cell activation (174, 
175). Genes that constitutively down regulate B cell function, appear to play a part in 
preventing autoimmunity. Therefore animals deficient in or lacking CD22 (176), TGF β, 
CD45, Fcγ RIIb (177) and SHP-1 (178) suffer from progressive autoimmune disease. 
IgM antibodies to DNA are produced when B cells are activated by LPS leading to some 
degree of systemic autoimmunity. It is the MZ B cells that are activated first by LPS and 
it has been suggested that autoreactive B cells reach the MZ. LPS is the major component 
of Gram negative bacteria. This might be a good model for autoimmunity that arises due 
to infections (179).   

 
 

1.16  Autoantibody characteristics 
 
Anti-DNA antibodies in individuals are usually clonally related which implies 

that autoantibody generation is “antigen-driven” and involves clonal expansion. In 
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general, autoantibodies are produced after a process of SHM (180). Autoantibodies from 
patients with systemic diseases usually bind with greater avidity to antigens from the 
same species. This implies that autoantibody generation is self-antigen dependent and 
comes about after affinity maturation. Epitope mapping studies have shown that 
autoantibodies recognize multiple epitopes of nuclear proteins (181).The anti nuclear 
antibodies are directed mainly against dsDNA and histones (182). Anti-dsDNA 
antibodies bind nucleosomes also (183). Moreover, anti-histone antibodies bind mainly to 
H1 and H2B (184), the most accessible histones in the nucleosome particle which shows 
that anti-Histone antibodies also target nucleosomes (185). Nucleosomes are released by 
hybridoma cells undergoing apoptosis (186) and are also exposed at the cell surface of 
apoptotic cells (187). Immune complexes form between anti-nuclear antibodies and 
nucleosomes and get deposited in the glomerular basement membrane in lupus.  

 
Many sera with antibodies to cytoplasmic antigens may be reported as ‘anti-

nuclear antibody (ANA) negative’, if the antibodies have specificity for cytoplasmic auto 
antigens (188). ANA negative sera do contain autoantibodies that react with cytoplasmic 
antigens such as the Golgi complex, centrosomes (189), lysosomes, and proteasomes 
(169).  
 
 

1.17  Anti-Golgi autoantibodies 
 

Anti-Golgi antibodies (AGA) were first identified from a patient with Sjogren’s 
syndrome with lymphoma (190). Subsequently AGA have been reported in SLE (191), 
Raynaud’s phenomenon (192), Wegener’s granulomatosis (193) and viral infections 
including Epstein Barr virus (194), Hepatitis B (195) and HIV (192). Representative 
human serum containing AGA were used to screen a HEpG2 expression library and the 
purified AGA from the serum recreated the Golgi pattern of immunofluorescence on 
HEp-2 cells. The AGA did not have reactivity to microtubules, nucleus or the plasma 
membrane. Patient sera react with Golgi autoantigens that range from 35 to 260kDa (191, 
196) as seen by immunoblotting studies. However, AGA antibodies are predominantly 
against five Golgi autoantigens which are giantin, golgin-95, golgin-97, golgin-160 and 
golgin-245. The Golgins have α-helical coiled coils except for the N- and C- terminal 
domains. Giantin is the most common autoantigen against which AGA were present. 
Incidentally giantin is also the highest molecular weight Golgi antigen. Epitope mapping 
of giantin using recombinant fragments showed that epitopes at the C-terminal 
transmembrane domain on the cytoplasmic face of the Golgi were the most reactive to 
AGA in the sera (197). Usually the human sera react to only one autoantigen which 
suggests that the immune response is not directed only to the coiled coils. This view is 
reinforced because AGAs do not react against other coiled coil domain containing 
autoantigens such as nuclear mitotic apparatus protein (198), lamin B (199), myosin Hc 
(200), SS-A/Ro (201) and Ku (202). It is thought that the Golgi autoantigens may be 
released into the immune system after cell lysis which could be responsible for 
stimulating the production of AGA (197).        
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1.18  Autoantigens 
 

Nuclear protein complexes arguably are the most important autoantigens. 
Components of the nucleus particularly chromatin and RNA associated proteins are 
recognized as autoantigens. Nucleosome, the fundamental unit of chromatin likely plays 
a key role in autoimmune diseases like SLE. Two copies each of histones H2A, H2B, H3 
and H4 make up the nucleosome core particle around which helical DNA made up of 146 
base pairs is wrapped. Adjacent nucleosome particles are linked like beads on a string by 
histone free DNA and a molecule of histone H1 is present at the point where the DNA 
starts wrapping the core histone particle (182).  

 
Most proteins are post-translationally modified. However some proteins with 

post-translational modifications function as SLE autoantigens (203). RA patients show 
antibodies to citrullinated proteins in the inflamed synovium (204). Likewise SLE 
associated nuclear autoantigens get modified or cleaved during apoptosis (205). The 
presence of antigen is required for autoimmunity to develop but other factors likely play a 
role. For example, injecting mice with apoptotic bodies results in the production of a low 
level of anti-nuclear antibodies and the response is muted and short lived (206). Injecting 
unaltered DNA does not provoke an autoimmune response. However, when it is coupled 
to other proteins or if the DNA strands are damaged then there is a response (207). 
Interestingly it has been shown that there is a small amount of circulating DNA 
conjugated to histones in SLE patients (208). It has been proposed that apoptotic blebs 
may harbor autoantigens (209). However, it appears that, for blebs to be effective 
autoantigens, clearance of apoptotic cell debris by macrophages must be defective (210). 
Apoptotic blebs might serve as autoantigens in the presence of infectious agents, as 
shown by generation of T-cell responses and secretion of inflammatory cytokines by 
macrophages upon injection of apoptotic bodies plus LPS (211).  
 
 

1.19  Importance and purpose of this study 
 
The current knowledge about B cell regulatory mechanisms has been derived 

from transgenic mice producing B cells against either non-disease associated antigens or 
DNA. In the case of non-disease associated antigens, though we can control the amount, 
type and location of antigen, this still does not permit us to study B cell regulation as it 
would occur normally. With anti-DNA transgenic mice, there is the assumption that 
developing B cells encounter DNA in the BM. In what form is the DNA and how strong 
the binding between the BCR and the DNA is not known. Therefore to study these 
aspects of B cell regulation we made recombinant receptors and analyzed their binding 
properties to disease associated autoantigens. Moreover, in spite of the B cell tolerance 
mechanisms and various checkpoints it is not clear how autoreactive B cells break 
tolerance and get activated to produce autoantibodies in the periphery. While studying the 
receptor properties, we came across an interesting anti-DNA receptor that led us to 
propose a new mechanism for B cells to escape tolerance mechanisms and migrate to the 
periphery. These findings are dealt with and discussed in the next chapter. 

 

 28



One important criterion that defines SLE is the detection of autoantibodies in the 
patient serum. Though the titres of autoantibodies can be assessed, it is not clear which 
autoantibodies are responsible for disease. In fact, it was recently shown that in spite of 
having substantial serum anti-DNA antibodies, noticeable clinical disease was limited in 
mice (212) that were B cell activating factor (BAFF) deficient. These data suggests that 
anti-DNA antibodies may not be solely responsible for autoimmune disease. Also, the 
exact B cells that produce autoantibodies cannot be identified and where they reside in 
the periphery is not clear. Autoreactive B cells must be activated by antigen because IgG 
are involved in pathogenesis and the B cells undergo SHM (172). Though it is considered 
in general that anti-DNA antibodies are responsible for pathogenesis in SLE it is not clear 
which autoantibodies are precisely responsible for disease. SLE is defined by various 
types of glomerulonephritis and mostly all of them are due to deposition of immune 
complexes on the glomerular basement membrane. Do the autoantibodies form an 
immune complex while in the serum and then get deposited at the basement membrane? 
This scenario appears to be unlikely because immune complexes are not readily 
detectable in SLE patients (213, 214). More recently it was shown that anti-nucleosomal 
antibodies binding to histones of nucleosomes get deposited more readily on the heparan 
sulfate present in the glomerular basement membrane (166). Clearly, heparan sulfate 
cannot be considered an autoantigen because the anti-nucleosomal antibodies do not bind 
to it directly. Therefore, the target antigen in the glomerular basement membrane for the 
autoantibodies has not been demonstrated conclusively.  

 
In addition to SLE, Ig deposition diseases are another class of diseases where 

antibodies or components of an antibody are deposited in tissues. Either Hc or Lc can be 
exclusively deposited in tissues to cause pathogenesis. Lc deposition disease is referred to 
as primary amyloidosis. Here, insoluble Lc fragments are produced that polymerize into 
fibrils and get deposited extracellularly causing visceral organ dysfunction. Amyloidosis 
is associated with nephritis, cardiomyopathy, neuropathy and hepatomegaly (215). In 
addition, there are deposits that consist of apparently normal HL pairs (216).  Why do 
certain cells make antibodies that get deposited? Are these antibodies autoreactive? Why 
do Lc from certain cells gets secreted in higher quantities? There is no definite answer to 
any of these questions yet. Our studies uncovered a B cell that secretes antibody 
potentially capable of tissue deposition. Characteristics of these B cells and the 
autoantibody they secrete are dealt in detail in the third chapter of this thesis. 
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CHAPTER 2:  EDITING AND ESCAPE FROM EDITING IN ANTI-DNA B 
CELLS* 

 
 

2.1  Introduction 
 

Receptor editing replaces autoreactive BCRs with non-autoreactive BCR (217, 
218). It is accomplished through secondary rearrangement of upstream Ig light (L) (118, 
122, 219) or heavy (H) chain (126) variable (V) genes.  Autoreactive B cells that would 
otherwise be deleted (220, 221) use editing to revise their receptors and exit from the 
BM.  Given the high frequency of autoreactivity among immature B cells (107), receptor 
editing plays a major role in determining the size and shape of the mature B cell 
repertoire (131, 222). 

 
This mechanism also yields incompletely or partially edited B cells.  Incompletely 

edited BCR retain some self-reactivity and/or gain new autospecificities.  B cells 
expressing such BCR are a liability as they are activated in lupus susceptible mice and 
during induction of lupus (119, 127, 223, 224).  They can evolve to pathogenic effector 
cells by mutation and class switch.  This pathway to autoimmunity is illustrated by 3H9, 
a typical pathogenic anti-DNA expressed by a diseased mouse (114). By reverting the 
somatically mutated VH3H9 to its germline sequence, it was discovered that the 
precursor of 3H9 bound to phosphatidylserine (PS) (170).  Subsequent mutations gave 
rise to 3H9, an Ab with reactivity toward dsDNA, nucleosomes, and additional 
phospholipids (115, 120, 225, 226).  Thus, an incompletely edited B cell was the 
precursor of this pathogenic autoAb. 

 
Partial editing leads to co-expression of L chains, one of which is autoreactive.  

The autoreactive H/L combination thus gains access to the periphery.  It escapes central 
tolerance, we presume, because the non-autoreactive H/L pair dilutes the expression of 
the autoreactive pair.  Since we discovered this type of partially edited B cell, many 
examples of allelic or isotypic inclusion have been observed (116, 127, 128, 227, 228), 
including additional tg-encoded autoreactivities (229, 230), and autoreactivities present 
within an unperturbed repertoire (129, 131).  Such B cells have been referred to as 
“Trojan horses” and may, if activated in the periphery, pose a risk of autoimmunity. 

 
Here we describe an incompletely edited anti-dsDNA B cell that is regulated in a 

novel way: This B cell retains anti-dsDNA reactivity and acquires specifity for a Golgi-
associated antigen. Its antibodies accumulate in the cell interior, bound to the Golgi 
apparatus.  

 
 

 
*Adapted with permission from PNAS. Salar N. Khan, Esther J. Witsch, Noah G. 
Goodman, Anil K. Panigrahi, Ching Chen, Yufei Jiang, Amy M. Cline, Jan Erikson, 
Martin Weigert, Eline T. Luning Prak, and Marko Radic. 2008. Editing and escape from 
editing in anti-DNA B cells. PNAS. March 11, 2008, Vol 105, No:10, 3861-3866. 
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The most direct interpretation of our results argues that the altered site of BCR expression 
allows these B cells to escape central tolerance and accumulate in the periphery. This 
mechanism may conceal a partially edited or unedited autoantibody expressing B cell. 

 
 

2.2  Methods 
 
 
2.2.1  Construction of bivalent variable fragments 
 

Our system for bivalent scFv expression in E.coli and the H chain variants of 3H9 
were previously described. We cloned the murine Vκ12/13A (referred to as 12-46 by 
Thiebe et al.) as a rearrangement to Jκ2 from the Balb/c hybridoma 7942-H40 by using 
the oligonucleotide primers Vκ12/13 amino (5’-GCG TGT GGA TCC GAC ATC CAG 
ATG ACT CAG-3’) and Jκ2 (5’-GCG GTT AGA TCT CCA GCT TGG TCC CCC CT-
3’). The primers introduced unique restriction sites at the amino and carboxy termini of 
the VL domain that were complementary to sites in our expression vector. The Vκ21D 
(21-4; Thiebe et al.) to Jκ2 and Vκ38c (gj38c; Thiebe et al.) to Jκ1 rearrangements were 
similarly amplified from hybridoma DNA (22) by using primers Vκ21D amino (5’-GCG 
GTT AGA TCT GAC ATT GTG CTG ACC CAA TCT-3’) and Jκ2 or Vκ38c amino (5’-
GCG TGT GGA TCC GAC ATC CAG ATG ACA CAG-3’) and Jκ1 (5’-GCG GTT 
AGA TCT CCA GCT TGG TGC CTC CA-3’) respectively. In this manner, nine H/L 
chain combinations were constructed. Each scFv was fused in-frame to the c-jun leucine 
zipper to generate bivalent Fv that contained the domain B of Staphylococcal protein A 
for detection and a carboxy terminal His-tag for purification of the fusion protein.  
 
 
2.2.2  Bacterial expression and purification of scFv 
  

Rosetta cells (Novagen, San Diego, CA) were transformed with scFv expression 
vectors and grown as previously described. Crude proteins were purified from the 
bacterial periplasm using Ni-NTA agarose chromatography (Qiagen,Valencia, CA), 
washed twice and eluted in 0.05 M Tris-HCl, 1M NaCl and 0.3 M imidazole, pH=8.0. 
The eluate was dialyzed against Bicine-EDTA buffer (50 mM Bicine pH 8.0, 0.15 M 
NaCl and 10mM EDTA) prior to use in binding assays. To demonstrate the relative 
purity, size, and standardized concentration of the scFv, 1 μg of each protein was 
analyzed by SDS-PAGE. The recombinant proteins migrated close to 40kD, as predicted 
for our scFv fusion protein monomers. The small differences between the scFv were 
expected due to size differences between the Vκ used in scFv construction. 
 
 
2.2.3  Binding assays 
  

The recombinant Ab fragments were used in an antigen capture assay (115), 
whereas PS binding was assessed by direct immunoassay (170).  
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2.2.4  Cell culture 
  

Jurkat T cells (Clone E6-1 ATCC, Manassas, VA) were used to assess scFv 
binding (187, 231).  B cell hybrids expressing VH56R+Vκ38c IgM (Hybridoma 160.3, 
and VH56R+Vκ21D IgM (Hybridoma 79.1) were derived from a VH56R mouse with 
graft versus host disease (127).  In addition, we used VH56R/76R+Vκ38c IgM and IgG 
hybridomas (232) and a VH56R+Vλx IgM hybridoma (228). The hybridomas used in this 
study were analyzed by RT-PCR and ELISA to minimize the possibility of allelic and 
isotypic inclusion (127, 228) 
 
 
2.2.5  Immunofluorescence and confocal microscopy 
  

Cells were fixed with 6% paraformaldehyde for 15 minutes on ice and 
permeabilized with 0.075% Triton-X.  To identify the Golgi, AF488-labeled lectin II 
(Invitrogen, Carlsbad, CA) was used.  The IgM was visualized with AF647 labeled goat 
anti-mouse IgM (Invitrogen), and DNA was stained with Sytox Orange (Invitrogen).  
Surface IgM was visualized by staining live cells on ice and in the presence of sodium 
azide.  Bound scFv were detected with AF647-conjugated rabbit anti-mouse IgG 
(Invitrogen).  Samples were viewed on a Zeiss LSM510 laser scanning microscope, as 
described (187).   
 
 
2.2.6  Animals 

 
The VH56R Tg has been described previously (116, 172).  VH56R mice were 

backcrossed on the C57BL/6 background for ten generations.  
 
 
2.2.7  Flow cytometry 

 
Splenocytes were harvested from VH56R mice and littermate controls, washed, 

and resuspended at 1 x 107 cells/mL for staining with the following Abs:  FITC CD21 
(Clone 7G6), PE CD23 (Clone B3B4), Biotin IgMa (Clone DS-1), all from BD 
Pharmingen (San Jose, CA), APC AA4.1 and B220 APC-Cy7 from eBiosciences (San 
Diego, CA), and our own anti-IgMa antibody, RS 3.1, conjugated to AF 488.  Stained 
samples were analyzed and sorted on a FACSVantage SE Cell Sorter (BD Biosciences).  
Flow cytometric data were analyzed using FlowJo version 6.4.7 software (TreeStar, 
Ashland OR).  To examine intracellular IgM in B cells, splenocytes from one VH56R 
mouse were sorted for IgMa-low surface phenotype and cultured in RPMI media with 
10% FCS, 10μM β-ME, and antibiotics for 48 h.  At the end of that period, cells were 
harvested and prepared for confocal microscopy, as described above. 
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2.2.8  Quantitative PCR 
 
Genomic DNA was purified from sorted cells and used for quantitative PCR 

(40°C 10 min., 95°C 10min., followed by 60 cycles at 95°C 10 sec., 60°C 30 sec., 72°C 1 
sec.), as suggested for the LightCycler 480 real-time PCR system (Roche Applied 
Science, Indianapolis, IN).  The Vκ38c-Jκ5 product was amplified with forward primer 
(5’-CTC ATA CAT TAC ACA TCT ACA TTA CAG CC-3’) and reverse primer (5’-
TGC CAC GTC AAC TGA TAA TGA GCC CTC TC-3’) and detected with a FAM-
labeled hydrolysis probe (5-TCC TTC AGC ATC AGC AAC CTG-3’).  For each sample, 
the Vκ38c-Jκ5 product was normalized to a β-actin PCR product and compared to wild-
type C57BL/6 B220+ IgM+ κ+ splenocytes. 
 
 
2.2.9  Single cell sorting, cDNA synthesis and PCR 

 
IgMa-bright (CD19+IgM allotype b– IgM allotype a high), IgMa-dim (CD19+IgM 

allotype b–IgM allotype alow), MZ (B220+CD21hiCD23int), and Fo B cells 
(B220+CD21intCD23hi) from one VH56R/B6 mouse were sorted and Ig gene 
rearrangements were assayed using primers for VH56R, Vκ38c, and a degenerate Vκ(s) 
primer with nested Cκ reverse primers, as previously described (127, 233).  We 
sequenced 76 Vκ38c-positive PCR products from individual wells in five 96-well plates.  
Of these, 75 sequences matched Vκ38c in-frame rearrangements. 
 
 

2.3  Results 
 

We have recreated the splenic B cell repertoires of three H chain tg mice (Figure 
2.1) in vitro and observed that VH/VL pairs expressed in the spleen do not bind to 
dsDNA.  However, we also discovered an exception: VH/VL pairs incorporating the 
editor Vκ38c retained affinity for dsDNA yet were expressed in the spleen.  To explore 
why central tolerance is unable to regulate these anti-dsDNA VH/VL pairs, we examined 
their cellular distribution in hybridomas and their expression in splenic B cell subsets. 
 
 
2.3.1  Analysis of autoreactivity 
 
 The repertoire in anti-dsDNA H chain tg mice is highly biased toward editor L 
chains (Figure 2.2).  The IgM antibodies encoded by the tg H and editor L chains bind 
DNA poorly or not at all (116).  However, to evaluate the role of receptor editing in anti-
dsDNA binding, one must compare the expressed H/L pairs to the “missing” H/L pairs, 
i.e. to those H/L pairs that are the precursors of receptor editing and thus are excluded 
from the peripheral repertoire.  To analyze the missing VH/VL pairs, we re-derived and 
expressed them as bivalent single-chain Fv (scFv) in E. coli.  For comparison, we 
generated VH/VL pairs that are expressed in anti-DNA H chain tg mice.  The structure of 
the recombinant VH/VL pairs provided a technical advantage over the IgM antibodies:   
 

 33



 
 

 
 
Figure 2.1  Construction of bivalent variable fragments. 
 
Our system for bivalent scFv expression in E.coli (234) and the H chain variants of 3H9 
(170) were previously described. We cloned the murine Vκ12/13A (referred to as 12-46 
by Thiebe et al.) (33) as a rearrangement to Jκ2 from the Balb/c hybridoma 7942-H40 
(235) by using the oligonucleotide primers Vκ12/13 amino (5’-GCG TGT GGA TCC 
GAC ATC CAG ATG ACT CAG-3’) and Jκ2 (5’-GCG GTT AGA TCT CCA GCT TGG 
TCC CCC CT-3’). The primers introduced unique restriction sites at the amino and 
carboxy termini of the VL domain that were complementary to sites in our expression 
vector (234). The Vκ21D (21-4; Thiebe et al.) to Jκ2 and Vκ38c (gj38c; Thiebe et al.) to 
Jκ1 rearrangements were similarly amplified from hybridoma DNA (116) by using 
primers Vκ21D amino (5’-GCG GTT AGA TCT GAC ATT GTG CTG ACC CAA TCT-
3’) and Jκ2 or Vκ38c amino (5’-GCG TGT GGA TCC GAC ATC CAG ATG ACA 
CAG-3’) and Jκ1 (5’-GCG GTT AGA TCT CCA GCT TGG TGC CTC CA-3’) 
respectively. In this manner, nine H/L chain combinations were constructed. Each scFv 
was fused in-frame to the c-jun leucine zipper to generate bivalent Fv that contained the 
domain B of Staphylococcal protein A for detection and a carboxy terminal His-tag for 
purification of the fusion protein (234). 
 
 
 

 34



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2.2  H chain Tg BALB/c mice show drastic differences in their L chain 
repertoires.  
 
The endogenous L chain repertoires in anti-DNA H chain tg mice have previously been 
analyzed by constructing LPS hybridomas from splenic B cells (116, 122). Vκ12/13A 
predominates in LPS-stimulated B cell hybridomas from VH3H9 mice (116, 122), with 
Vκ21D and Vκ38c following at lower percentages (A). Vκ12/13A is absent in VH56R 
Tg mice (116), whereas Vκ21D predominates and Vκ38c is less prevalent (B). Vκ38c is 
abundant in VH56R/76R Tg mice (116), whereas Vκ12/13A and Vκ21D are absent (C). 
Additional Vκ are expressed at low frequencies but not represented in the figure. 
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The bivalent binding of our scFv made them useful substitutes for measuring BCR 
interactions with antigen.  All together, we constructed nine scFv, five to represent 
VH/VL pairs expressed in the spleen and four to represent pairs that are missing from the 
peripheral repertoire (Figure 2.1). 

 
Our initial analysis focused on the most closely related VH/VL pairs:  those in 

which a single residue in VH determines whether a VL participates in the splenic B cell 
repertoire or not (Figure 2.2). Thus, we compared VH3H9+Vκ12/13, a pair that accounts  
for 64% of the repertoire in VH3H9 mice (Figure 2.2A) to VH56R+Vκ12/13, a pair that 
is absent from the repertoire in VH56R mice (Figure 2.2B), and VH56R+Vκ21D, a pair 
that accounts for 78% of the repertoire in VH56R mice (Figure 2.2B) to 
VH56R/76R+Vκ21D, a pair that is absent from the repertoire of VH56R/76R mice 
(Figure 2.2C).  The absence of Vκ12/13 from the VH56R repertoire results from the 
single replacement of Asp in VH3H9 by Arg at position 56 in VH56R.  Similarly, the 
absence of Vκ21D from the VH56R/76R repertoire is a result of introducing a second 
Arg (at position 76) into the VH56R/76R tg.  Because these Args increase the affinity of 
the VH for dsDNA (115), we predicted that the missing pairs would provide an insight 
into how increased dsDNA binding limits the number of acceptable editor L chains.  

 
Indeed, these scFvs displayed a gradient of binding to dsDNA with VH/VL pairs 

that are expressed in the spleen having little or no dsDNA binding and pairs that are 
absent from the repertoire exhibiting avid binding (Figure 2.3A).  Hence, the binding 
curves of VH3H9+Vκ12/13 and VH56R+Vκ12/13 define the upper and lower boundaries 
of the interval of relative anti-dsDNA affinities that contains the threshold between 
affinities that allow B cell maturation and affinities that prevent it (Figure 2.3A). 
 
 
2.3.2  DNA and PS binding of Vκ38c combinations 

 
The Vκ38c contributes to the B cell repertoire in VH56R mice (Figure 2.2B) and 

it is the predominant Vκ in VH56R/76R mice (Figure 2.2C).  Therefore, we expected that 
Vκ38c would have characteristics of L chains that edit anti-dsDNA specificity, i.e. 
reduced avidity to dsDNA.  In previous experiments with hybridoma-derived IgM (116, 
127), the effect of Vκ38c on dsDNA binding was unclear because hybridomas often co-
expressed Vλ1, a L chain that is an effective dsDNA binder (115). 

 
The present experiments established that pairs between Vκ38c and either VH56R 

or VH56R/76R do indeed bind DNA (Figure 2.3C).  In addition, both VH/VL pairs bound 
avidly to PS (Figure 2.3D).  We compared the Vκ38c VH/VL pairs to the VH3H9+Vκ4 
pair used by the 3H9 autoantibody, an anti-dsDNA that is excluded from the peripheral 
repertoire (221).  The VH56R+Vκ38c pair bound dsDNA nearly as well as VH3H9+Vκ4, 
whereas VH56R/76R+Vκ38c bound four-fold better (Figure 2.3C). To account for the 
presence of avid anti-dsDNA receptors in the splenic B cell repertoire, we considered that 
additional autospecificities could affect expression of these BCR. Consistent with this  
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Figure 2.3  Binding of bivalent scFv to dsDNA and PS in ELISA. 
 
At the given concentrations of scFv, absorbance was measured at 405 nm.  VH3H9+Vκ4 
and VH56R/76R+Vκ4 were used as positive controls for dsDNA (A, C) and PS binding 
(B, D), respectively.   The area shaded in (A) and (C) indicates a range of relative anti-
DNA affinities that includes a proposed threshold of DNA binding responsible for 
inducing receptor editing.  The H/L pairs that are represented in the repertoire fall below 
the threshold, those that are absent bind DNA above the threshold.  H/L pairs that 
incorporate Vκ38c exceed the proposed threshold and react strongly with dsDNA (C) and 
PS (D).  
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idea, previous work on anti-dsDNA autoantibodies found that they often react with other 
autoantigens, such as chromatin, ribonucleoproteins, or membrane lipids (172). 
 
 
2.3.3  Specificity of VH/VL pairs for intracellular antigens 

 
To test whether the anti-dsDNA VH/VL have an additional autospecificity, we 

used Jurkat T cells as a source of diverse antigens. Indeed, immunohistochemistry 
revealed that the VH56R+Vκ38c and VH56R/76R+Vκ38c scFv bound to an area adjacent 
to the nucleus (Figure 2.4A and 2.4B), whereas VH3H9+Vκ21D did not show 
intracellular binding (Figure 2.4G), and VH56R/76R+Vκ4 bound preferentially to nuclear 
antigens (Figure 2.4H). 

 
The location of the VH56R+Vκ38c and VH56R/76R+Vκ38c binding and its 

distribution in the form of lamellar stacks and tubular bundles suggested binding to stacks 
and projections of the Golgi. The scFv binding paralleled the binding of Griffonia 
simplicifolia lectin II, a lectin that binds terminal GlcNAc sugars enriched in the Golgi 
(Figure 2.4C). To account for the binding of VH56R+Vκ38c and VH56R/76R+Vκ38c 
scFv to the Golgi, we considered whether the scFv and the lectin bind to terminal 
GlcNAc moieties. However, we observed only limited colocalization between the 
VH56R+Vκ38c scFv and lectin II, in spite of the fact that both bound in the immediate 
vicinity of each other (Figure 2.4D-F). Because the binding of the scFv was more limited 
and diffuse in the presence of the lectin (Figure 2.4D-F) than in its absence (Figure 2.4A), 
it is likely that the lectin sterically hinders access of the scFv to its antigen.  

 
 

2.3.4  Distribution of Ig in hybridomas  
 
The binding of VH56R+Vκ38c and VH56R/76R+Vκ38c IgM to a Golgi antigen 

may alter the intracellular distribution of IgM in situ.  To assess this possibility, we 
examined hybridomas expressing Vκ38c from VH56R and VH56R/76R tg C57BL/6 mice 
(127, 224).  Both VH56R+Vκ38c (Figure 2.5A and 2.5F) and VH56R/76R+Vκ38c 
(Figures 2.5C and 2.5D) IgM formed a dense aggregate in the interior of the hybridoma 
cells.  In contrast, the IgMs with other editors, VH56R/Vκ21D (Figure 2.5B and 2.5G) or 
VH56R/Vλx (Figure 2.5E), were distributed at or just beneath the cell surface, leaving the 
center of the cell free of Ab.  Therefore, the specificity of the tg VH and Vκ38c pairs 
leads to the accumulation of the IgM in the interior of the cells and may reflect binding 
between the newly synthesized IgM and an antigen that is expressed in the Golgi. 

 
Because IgM and IgG isotypes differ in their assembly requirements, we tested 

whether constant region isotype affects intracellular retention.  We took advantage of the 
fact that B cells expressing VH56R/76R+Vκ38c switch to IgG in MRL-lpr/lpr mice 
(232).  IgG hybridomas derived from autoimmune VH56R/76R mice express 
predominantly Vκ38c (232).  Analysis of VH56R/76R+Vκ38c IgG hybridomas 
demonstrated that class switch did not change the intracellular accumulation of the IgG  
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Figure 2.4  Analysis of scFv binding to Jurkat cells. 
 
scFv binding to fixed and permeabilized cells was visualized with AF647 rabbit anti-
mouse IgG (displayed in red) and nuclei with Sytox Orange (blue).  The VH56R+Vκ38c 
(A) and VH56R/76R+Vκ38c scFv (B) bind to a perinuclear domain composed of tubular 
bundles and lamellar stacks that likely corresponds to the Golgi apparatus.  Binding of 
AF488 lectin II (green) identifies terminal GlcNAc moieties that are enriched in the 
Golgi (C).  The location of VH56R+Vκ38c scFv binding is surrounded by lectin II-
reactive domains (D-F). VH3H9+Vκ21D scFv does not bind to Jurkat cells (G), whereas 
VH56R76R+Vκ4 scFv binds predominantly to the nucleus (H).  Image of lectin II 
binding (I).  Separate RGB channels are shown at one-third size below the composite 
color images for panels D through I. Binding of scFv to Jurkat cells was indistinguishable 
from the binding to mouse thymocytes. 
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Figure 2.5  Distribution of IgM in B cell hybridomas and primary B cells. 
 
VH56R+Vκ38c (A) and VH56R+Vκ21D (B) hybridoma cells were fixed, permeabilized, 
and incubated with AF467 goat anti-mouse IgM (red), AF488 lectin II (green), and Sytox 
Orange (blue).  The VH56R+Vκ38c IgM accumulate inside the cell (A).  Cultures of 
VH56R+Vκ38c contain cells with fragmented nuclei and apoptotic phenotype [Insert].  In 
contrast, VH56R+Vκ21D IgM are localized on or close to the cell surface and little or no 
Ig is retained inside the cell (B).  Individual cells producing VH56R/76R+Vκ38c (C) or 
VH56R+Vκ38c IgM (F).  IgM cluster at the cell surface (Panels A & C, arrowheads).  
Hybridoma expressing VH56R/76R+Vκ38c IgG1 shows a similar intracellular 
accumulation of the Ig but smaller clusters at the plasma membrane (D).  Individual 
VH56R+Vλx (E) and VH56R+Vκ21D (G) hybridoma cells show IgM receptors that are 
distributed at or near the cell surface.  Cells that have lost expression of IgM do not bind 
to the goat anti-mouse Abs (H).  VH56R+Vκ38c hybridomas that were incubated with 
anti-mouse IgM, then fixed and stained with Sytox orange, show cell surface clusters of 
IgM (I).  VH56R+Vκ21D hybridomas, when treated the same, show reduced levels of 
surface IgM (J).  B cells from the spleen of a VH56R mouse that were sorted for low 
surface IgMa, then grown in culture for 48 h, fixed, and stained as in (A) above, show 
cytoplasmic IgM aggregates (K).  Discrete clusters of IgM appear at the cell surface.  The 
intracellular IgM distribution in these primary B cells is strikingly similar to the IgM 
distribution in VH56R+Vκ38c hybridomas (A). 
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(Figure 2.5D), although the IgG aggregates were smaller and more widely distributed 
throughout the cytoplasm than the IgM aggregates.   
 
 
2.3.5  Cell surface expression of VH56R+Vκ38c 

 
Given the intracellular accumulation of VH56R+Vκ38c, we wondered whether 

this Ab reaches the cell surface.  Indeed, the VH56R+Vκ38c and VH56R/76R+Vκ38c 
IgM, rather than being degraded, appeared in clusters at the plasma membrane (Fig 2.5A 
and 2.5C, arrow heads).  To test whether this IgM is also exposed at the cell surface, we 
stained live hybridomas (see methods) and observed that the VH56R+Vκ38c IgM forms 
large surface IgM clusters (Figure 2.5I). Such large surface IgM clusters were not 
observed on more than 200 cells expressing VH56R+Vκ21D. Moreover, the surface 
density of VH56R+Vκ38c IgM is higher than VH56R+Vκ21D.  Thus, even though 
VH56R+Vκ38c and VH56R/76R+Vκ38c IgM accumulate in the cytoplasm, these 
receptors also translocate to the cell surface.   

 
Even though VH56R+Vκ38c hybridomas accumulate intracellular IgM and 

express IgM at the cell surface, the distribution of IgM in vivo might be different. If Golgi 
binding blocks or delays antibody transport to the cell surface, then surface levels of 
VH56R+Vκ38c IgM may be reduced compared to other VH/Vκ pairs. To determine 
surface IgM levels in newly forming B cells, we analyzed B220+, AA4.1+ cells (Hardy 
fraction E) in the BM of VH56R Tg C57BL/6 mice. We used κ staining to compare 
surface IgM levels in B cells expressing the IgMa

 allotype (that should include 
VH56R+Vκ38c-expressing B cells) to B cells expressing the IgMb

 allotype. In two 
independent experiments (one of which is shown in Figure 2.6), we observed reduced κ 
surface staining in IgMa

 than in IgMb cells. A lower level of κ expression was also 
observed in IgMa+

 recirculating BM B cells (Hardy Fraction F), splenic transitional cells, 
and mature B cells from VH56R Tg C57BL/6 mice (Figure 2.6). These findings are 
consistent with the model that binding to an intracellular antigen impairs antibody 
trafficking to the cell surface. 

 
To examine the intracellular distribution of IgM in primary B lymphocytes, we 

isolated B cells from the spleen of a VH56R mouse and maintained them in short-term 
culture prior to confocal microscopy.  We sorted for IgMa-positive B cells, in order to 
exclude cells expressing endogenous VH from our analysis (Figure 2.5K).  
Approximately one third (35%) of B cells exhibited intracellular IgM, the distribution 
and density of which were comparable to the intracellular IgM of VH56R+Vκ38c 
hybridomas.  In addition, some of the IgM receptors formed clusters at the cell surface 
(Figure 2.5K). 
 
 
2.3.6  VH56R+Vκ38c receptors are enriched in marginal zone B cells 
 

To analyze the expression of VH56R+Vκ38c BCR in B cell subsets, splenocytes 
were sorted as transitional (Tr) (B220+, AA4.1+), follicular (Fo) (IgMaint, CD21int), and 

 43



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6  Surface κ staining intensity in IgMa versus IgMb gated B cell populations 
from VH56R Tg C57BL/6 mice. 
 
Single cell suspensions were prepared from BM and spleens of 3-6 month old B6.56R 
mice (n=2 mice for BM analysis and 3 mice for spleen analysis in three separate 
experiments, representative plots are shown).  Cell suspensions were stained with 
antibodies to B220-Alexa 750, IgMa-FITC, IgMb-PE, CD21-APC, AA4.1-PE-Cy7 and 
kappa- biotin, revealed with SA-PerCP-Cy5.5 as described in Methods.  Dead cells were 
excluded by DAPI staining, lymphocytes were gated on the basis of forward vs. side 
scatter and singlets on the basis of pulse width. Fluorescence data on one million events 
per tube for BM and 50,000 events for spleen were acquired on an FACSAria cell sorter 
(BD Biosciences) and analyzed.  IgMa+ (red line) and IgMb+ (blue line) cells in each of 
the gated populations defined in the figure were analyzed separately for κ staining 
intensity.  Kappa staining intensity is plotted as a function of the number of events in 
panels A-E.   
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A. Hardy fraction E (B220+, AA4.1+) C. Spl transitional cells (B220+, AA4.1+) 

B. Hardy fraction F (B220+,  AA4.1-) D. Follicular cells (B220+, CD21int) 

E. Marginal zone cells (B220+, CD21++) 
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MZ (IgMahi, CD21hi) B cells (Figure 2.7A and B).  Rearrangements of Vκ38c to Jκ5,  
the main products of editing by Vκ38c, were measured in each of the subsets by 
quantitative PCR of genomic DNA.  The results are depicted as fold differences relative 
to IgM+/κ+ cells from wild type C57BL/6 mice (Figure 2.7C).  In Tr cells, there was a 
two-fold increase over wild-type mice in the use of Vκ38c.  However, compared to wild 
type B cells, Vκ38c was enriched approximately six-fold in Fo B cells, and nearly 
twelve-fold in MZ B cells.  These results suggested that VH56R+Vκ38c B cells 
preferentially acquire a MZ phenotype and accumulate in the splenic MZ. Because the 
MZ is expanded in VH56R mice, in absolute numbers, there are nearly twice as many MZ 
than Fo B cells that express VH56R+Vκ38c. 
  
 Using surface IgM density as a basis for assigning B cells to the MZ subset could 
be problematic in the case of IgM with unusual distribution or trafficking in B cells.  To 
provide an independent measure of VH56R+Vκ38c use in the major B cell subsets, and to 
examine VH56R and Vκ38c use in individual cells, we separated B cells based on CD21 
and CD23 expression (Figure 2.7D-G), and analyzed their VH and VL use by single cell 
V gene RT-PCR.  We observed that 35% of MZ B cells expressed both VH56R and 
Vκ38c (Figure 2.7H) compared to only 17% of Fo B cells (Figure 2.7I). This result 
confirmed the data from the quantitative PCR analyses and established that the MZ 
contains the highest accumulation of the autoreactive VH56R+Vκ38c pair in the spleen. 
Moreover, these results indicated that Vκ38c and VH56R are co-expressed in individual 
MZ B cells, a result that could not be derived from quantitative PCR with B cell 
populations. 

 
 

2.4  Discussion 
 

B cells become tolerant to self-antigens by replacing autoreactive L chains with L 
chains that suppress or modify the original autoreactivity. Several L chains edit anti-
dsDNA reactivity, for example Vκ21D, combined with the anti-dsDNA VH56R, modifies 
the combining site (116) so as to curtail dsDNA binding (Figure 2.3A). Other L chains 
such as Vκ8 decrease affinity for dsDNA, and VH3H9+Vκ8 B cells are in the periphery 
in a quasi-anergic state(221). Also in the periphery is the combination of VH56R+Vκ38c, 
even though Vκ38c does not decrease dsDNA binding (Figure 2.3C). Our data suggest a 
possible reason for the escape of this VH/VL pair from central tolerance: the 
VH56R/Vκ38c has an additional specificity for a Golgi-associated antigen (Figure 2.4A). 
Because newly synthesized IgM must transit through the Golgi on its way to the cell 
surface, the binding of VH56R+Vκ38c IgM to the Golgi may delay surface IgM 
expression. Consistent with this idea, surface κ staining is less intense in IgMa

 than in 
IgMb

 B cells (Figure 2.6). It is possible that the VH56R+Vκ38c B cells might have not 
been taken into consideration for this analysis but clearly, alternative explanations for the 
reduced levels of surface Ig in IgMa

 B cells may apply, for example L chain editing 
and/or surface Ig down-regulation (131, 220, 230, 236).  

 
It is well established that intracellular Ig signals can promote B cell development. 

In preB cells, the preB receptor acts from an intracellular location to generate most, if not 

 46



 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.7  Vκ38c-Jκ5 L chain rearrangements in peripheral B lymphocyte subsets. 
 
Lymphocytes from the spleen of a VH56R/B6 mouse were separated into Tr and mature 
B cell fractions based upon B220 and AA4.1 expression (A).  B220+ splenocytes were 
further separated into MZ and Fo B cell subsets.  Quantitative PCR was used to 
determine Vκ38c-Jκ5 L chain rearrangements in IgMa peripheral subsets (C).Vκ38c-Jκ5 
rearrangements are depicted relative to a C57BL/6 wild type mouse.  Significance levels 
were determined by two-tailed Student’s t-test: *, p ≤ 0.01.  Alternatively, B220+ 
lymphocytes (D) were sorted into MZ (CD21hi CD23int) and Fo B cells (CD21int CD23hi), 
as previously (127) reported (E).  Purity of sorted MZ and Fo B cells was 98.2% and 
98.8% respectively (F and G).  Single cell RT-PCR identified VH56R and Vκ38c 
rearrangements.  The MZ (H) has almost twice the number of VH56R+Vκ38c cells 
(35.2%) compared to the Fo (16.8%; I).  About 34% of the cells in the MZ have VH56R 
and a L chain other than Vκ38c, whereas Vκ38c is associated with an endogenous H 
chain in 14% of the cells (H).  In 9.5% of the Fo B cells, Vκ38c is associated with an 
endogenous H chain (I). 
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all, signals that promote B cell differentiation (237). Similarly, intracellular IgM may be 
competent for signaling because the BCR assembles and associates with Igα and Igβ in a 
post-ER compartment (238). Furthermore, there is precedent for the development of 
peripheral B cells whose BCR binds to an intracellular antigen: B cells that express IgM 
to hen egg lysozyme (HEL), together with an ER-anchored form of the antigen, block 
surface IgM expression by Ig retention in the ER, yet they develop into splenic Fo B cells 
(239). 

 
Unlike the anti-HEL-ER B cells, the VH56R+Vκ38c B cells accumulate IgM in 

the Golgi but they nevertheless achieve high surface IgM density (Figure 2.8). In 
addition, they also acquire a MZ B cell phenotype (Figure 2.7). The different outcomes in 
the anti-HEL-ER model and the anti-dsDNA-Golgi model may reflect differences in the 
sites of IgM accumulation. IgMs such as the anti-HEL-ER that accumulate in the ER may 
be diverted to aggresomes, sites of increased protein degradation (240), whereas the 
VH56R+Vκ38c IgM that accumulates in the Golgi may not be degraded. Consequently, 
accumulation of VH56R+Vκ38c IgM might induce the unfolded protein response, an 
adaptation known to play a role in the B cell response to antigen (241). The unfolded 
protein response may drive the VH56R+Vκ38c B cells to become surface IgM-bright 
because it increases the efficiency of IgM synthesis. The increased IgM synthesis may 
reach a level that exceeds the intracellular retention capacity of the Golgi. As result, large 
IgM clusters may be transfered to the cell surface (Figure 2.5I).  
 

The surface expression of the autoreactive VH56R+Vκ38c IgM may be 
responsible for the increased abundance of VH56R+Vκ38c B cells in the MZ (Figure 
2.7). It has been argued that sustained signaling through the BCR promotes B cell homing 
to the splenic MZ (160). B cells sequestered in the MZ may play an important role in 
peripheral tolerance (242). Because MZ B cells usually lack help to undergo affinity 
maturation or switch isotype, they may be blocked in the secretion of pathogenic 
antibodies. This possibility could account for the fact that B cells expressing 
VH56R+Vκ38c receptors, despite being autoreactive and achieving high surface Ig 
density, do not spontaneously induce autoimmunity. 
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Figure 2.8  VH56R and Vκ38c secondary rearrangements are more abundant in surface 
IgMa-bright B cells. 
 
CD19+ lymphocytes isolated from the spleen of 56R/B6+/- Tg mouse were sorted into 
IgMa-bright and IgMa-dim cells (A).  Nested Single cell PCR revealed that 6.3% of the 
IgMa-dim cells have VH56R+Vκ38c rearrangements while 27.2% have VH56R 
associated with other Vκ chains.  About 66% of the B cells have H chains other than 
VH56R and 10% of such cells express Vκ38c (B).  Among the surface IgMa-bright cells, 
34% have the VH56R and Vκ38c rearrangements, whereas 61.3% have retained the 56R 
H chain but are associated with other Vκ. A small percentage of B cells (2.4%) have 
Vκ38c that pairs with a H chain other than 56R and about 2.3% of the cells have neither 
VH56R nor Vκ38c (B). 
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CHAPTER 3:  EXTRUSION OF IgM POLYMER AGGREGATES “SPHERONS” 
AND SECRETION OF IgM HEMIMERS FROM B CELL HYBRIDOMAS THAT 

ACCUMULATE IgM IN THE GOLGI 
 
 

3.1  Introduction 
 

A secreted IgM molecule is composed of 21 polypeptide chains when it contains a 
J chain as part of an IgM pentamer, or 24 chains when it is a hexamer of the basic H2L2 
monomer structure (243-245).  Initiation of the assembly of secreted IgM occurs in the 
lumen of the ER and assembly requires accurate timing of backbone folding, efficient 
exchange of chaperones for permanent H/L partners, the formation of inter- and 
intramolecular stabilizing bonds (246), and stage-specific addition of carbohydrates 
(247). The μ Hc co-translationally associates with the Hc binding protein (BiP). BiP 
dissociates when the Lc pairs with the Hc (248, 249). The μ2L2

 monomers serve as the 
basic subunit for IgM polymerization (250). Not surprisingly, such a complex assembly 
process can be disrupted by numerous structural deficiencies. 

 
Inappropriately folded or assembled IgM are retained in the ER and are subjected 

to proteasome-mediated degradation in the cytoplasm by a process called ER associated 
degradation (ERAD). ERAD maintains homeostasis in the ER and presumably this 
quality control mechanism ensures that beyond the ER, IgM are fully functional and 
correctly assembled (251, 252). If the synthesis of incorrectly assembled IgM exceeds the 
ability of proteasomes to degrade the IgM, intracellular aggregates of IgM form in the ER 
lumen that are referred to as Russell bodies (106, 253). The IgM also accumulates in the 
ER if proteasomal inhibitors are used due to rapid induction of pro-apoptotic UPR genes 
(254). On the other hand, misfolded proteins that exceed proteosomal degradation 
capacity are retro-translocated from the ER, to the cytosol where they aggregate as 
‘aggresomes’ (255). In any case, a clearly identifiable defect in folding or assembly leads 
to protein accumulation in the ER or the cytoplasm. 

 
While trying to understand the regulation of autoantibodies in non-autoimmune 

mice, we discovered an unusual type of anti-DNA B cell. This anti-DNA matures and 
joins splenic B cell subsets even though most other anti-DNA B cells are regulated at an 
immature stage of development (116). The fact that regulation of anti-DNA B cells 
coincides with the earliest expression of the BCR at the cell surface indicates that antigen 
engagement by BCR on immature B cells induces a block in B cell development. This 
block can only be relieved by revision/editing of the BCR or by functional inactivation of 
the B cell. This conclusion is consistent with studies on B cells with diverse antigen 
specificities. 

 
The unusual anti-DNA BCR, when expressed in vitro, binds, in addition to DNA, 

a Golgi-associated antigen. The B cells expressing this BCR express lower levels of 
surface Ig at all stages of B cell development, thus suggesting a possible mechanism for 
their escape from regulation (256).  If regulation of immature anti-DNA B cells depends 
on BCR engagement, then the reduced surface Ig expression may allow these B cells to 
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escape central tolerance and participate in more mature B cell functions.  These B cells 
reach the periphery and we can immortalize them as B cell hybridomas.   

 
Here, we examine the intracellular IgM distribution in these anti-DNA B cell 

hybridomas.  The hybridomas, expressing IgM composed of the VH56R Hc or 
VH56R/76R Hc and Vκ38c Lc, in contrast to hybridomas expressing the same VH 
combined with other Lc, accumulate IgM in the medial Golgi, and secrete few if any 
soluble polymeric IgM.  Instead, they extrude aggregates of polymeric IgM that we refer 
to as ‘spherons’ because of their shape.  In addition, the hybridomas secrete monomeric 
IgM.   

 
 

3.2  Methods 
 
 
3.2.1  Animals 

 
The VH56R Tg has been described previously (116).  VH56R mice were 

backcrossed on the C57BL/6 background for ten generations.  
 
 
3.2.2  Cell culture 
  

B cell hybridomas expressing VH56R+Vκ38c IgM (H160.3) (127), 
VH56R/76R+Vκ38c IgM (H40) (232) and VH56R+Vλx IgM (L55) (228) have been 
previously described (256). The 38C-13 lymphoma was a kind gift from Professor J. 
Haimovich, Tel Aviv University, Tel Aviv, Israel and WEHI-231 was a kind gift from 
Dr. A.K. Yi, University of Tennessee, Memphis, USA.   
 
 
3.2.3  Immunofluorescence and confocal microscopy 
  

Cells grown of glass cover slips were fixed with 3% paraformaldehyde in HBSS 
with 3mM CaCl for 15 minutes on ice and permeabilized with 0.1% Triton-X in the same 
buffer. To identify the Golgi, AF488 labeled Griffonia simplicifolia lectin II (Invitrogen, 
Carlsbad, CA), was incubated with cells. Other Golgi markers used were, rabbit anti-β-
COP (Affinity Bioreagents, Golden, CO.), rabbit anti-giantin, and rabbit anti-Golgin-95 
(kind gifts from Dr. Marvin Fritzler, U Calgary, Canada) followed by AF488 labeled goat 
anti-rabbit IgG (Invitrogen). Anti-Mannosidase-II (Covance, Denver, PA) was used to 
label medial-Golgi, and was identified by AF488 goat anti-mouse IgGγ2b (Invitrogen). 
IgM was visualized with AF647 labeled goat anti-mouse IgM (Invitrogen), and DNA was 
stained with sytox orange (Invitrogen). DiO (Invitrogen) or AF488 labeled annexin V 
(Invitrogen) were used to stain the cell membrane. In one experiment, cells were treated 
with nocodazole (Sigma Aldrich, St Louis, MO) at 2.5μg/ml for two hours before being 
fixed and stained as described above. Samples were viewed on a Zeiss LSM510 laser 
scanning microscope, as described (187, 256).     
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3.2.4  Electron microscopy 
 

Cells grown on a polyester permeable support membrane (Corning incorporated, 
Acton, MA) were fixed with 3% paraformaldehyde and 2% glutaraldehyde in HBSS on 
ice for 15 minutes and washed with 0.05M glycine in PBS (pH 7.4) for 15 minutes. The 
membrane was cut into wedges and then osmicated in 1% OsO4 for 4 hours and 
dehydrated in a graded alcohol series. The membrane was incubated overnight in a 1:1 
ethanol: Spurr’s low viscosity embedding medium (Electron Microscopy Sciences 
[EMS], Hatfield, PA) followed by three changes in 100% Spurr’s medium, 3 hrs each. 
For embedding, the cells in Spurr’s medium were cured for 2 days at 80°C. The 
polymerized Spurr’s medium with cells embedded in it was cut into 75nm sections and 
placed on nickel grids. The sections were treated with 4% uranyl acetate (Ultrostain I, 
Leica, Deerfield, IL) in 100% methanol followed by lead citrate (Ultrostain II, Leica) in 
acetone to provide contrast to the cellular structures.   
 

IgM aggregates (spherons) were collected from the flask after removing cells and 
media. The flask’s plastic surface to which the spherons had adhered was washed twice 
with HBSS. After washing, 1 ml of HBSS was added and the flask was scraped with a 
cell scraper to remove the spherons. The spheron fraction in HBSS was filtered through a 
5μm pore filter (Millipore, Billerica, MA) to remove debris and intact cells. The filtrate 
was spun at 25,000 RPM in an SW-31 rotor for 30 minutes and the supernatant was 
discarded. The spheron pellet was washed and fixed with 3% paraformaldehyde and 2% 
glutaraldehyde in HBSS on ice for 15 minutes and washed with 0.05M glycine in PBS 
(pH 7.4) for 15 minutes. The spherons were incubated in two changes, 10 minutes each, 
of 0.2% Aurion BSA-c (EMS) in PBS (pH 7.4) (to reduce background binding by the 
gold conjugated antibody). Goat anti-mouse IgM antibody conjugated to 25nm gold 
particles (EMS) in 0.1% BSA-c was added to the spherons and incubated at room 
temperature for 2 hrs. The spherons were post fixed in 2% glutaraldehyde in PBS (pH 
7.4) for 5 minutes and washed with distilled water. Embedding and processing was done 
as for the cells. All sections were analyzed with a JEOL, JEM-2000 Ex II electron 
microscope.  
 
 
3.2.5  Metabolic labeling and analysis of cell fractions  
   

Cells were labeled by incubating 2.5X106 cells/ml in cysteine and methionine free 
labeling media (Sigma Aldrich) with 100μCurie of 35S labeled cysteine and methionine 
for 16 hrs at 37°C and 5% CO2. Hybridoma cultures were grown to confluency and then 
divided into fractions corresponding to media, cells and (plastic adherent) IgM 
aggregates. Cells were separated from the media by centrifugation at 6000g for 15 
seconds. Media was collected in separate vials and kept on ice. Cells at 1X107/ml were 
lysed in the lysis buffer (0.05 M Tris HCl pH 7.5, NaCl 0.15 M, 0.5% deoxycholic acid, 
0.5%NP-40) and a cocktail of protease inhibitors (Roche, IN) and the cell lysate was 
collected by centrifugation at 6000g for 10 minutes. The pellet was solublized by 
denaturation in 2% SDS at 100°C for 5 minutes and diluted with lysis buffer to bring the 
final SDS concentration to 0.1% to allow for immunoprecipitation. Immunoprecipitation 
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was done by adding 10μg/ml unlabeled goat anti-mouse IgM (Southern Biotech, AL) to 
all the fractions (cell lysates, media, and NP-40 insoluble fraction) and incubated at 4°C 
on a rotary incubator for 2 hrs. 50% protein A sepharose beads (Sigma Aldrich) were 
added and incubated at 4°C for 30 minutes on rotary incubator. The beads were washed 
with washing buffer (0.05 M Tris HCl pH 7.5, NaCl 0.4 M, 0.5% deoxycholic acid, 
0.5%NP-40) three times by centrifugation at 6000g for 10 seconds. Following the 
washes, the sepharose beads were divided into two parts. Each part was boiled in either 
the reducing buffer (0.125M Tris HCl pH6.8, 20% glycerol, 10% 2-mercaptoethanol, 4% 
SDS) or non reducing buffer (Same buffer without the addition of 2-mercaptoethanol) for 
5 minutes at 100°C. After boiling, the eluates were separated by SDS-polyacrylamide 
electrophoresis. For reducing conditions 10% polyacrylamide gels were used. Samples 
were analyzed under non-reducing conditions on 8% gels. The gels were run at 150mA 
constant current for about 1.5 hrs. The gels were placed on filter paper and dried in a gel 
drying apparatus (Biorad, Hercules, CA) and visualized by autoradiography. Spherons 
were collected and purified as described for electron microscopy and run under reducing 
and non-reducing conditions as above.   
 
 
3.2.6  Pulse and chase  
  

1.25 X 107 cells/ml were grown in RPMI with 15% FBS for 16 hrs. The cells 
were washed twice with 1x PBS to remove old media. Then cells were starved in 
incomplete RPMI without methionine and cysteine (Sigma Aldrich), and 1% dialysed 
FBS without 35S, for 40 minutes at 37°C. The cells were pulsed with 25μCi of 35S labeled 
methionine / cysteine for 15 minutes. The cells were washed twice in cold PBS and 
chased in complete medium at 37°C with excess cold methionine and cysteine for 0, 2, 4 
and 6 hrs. Cells, media and spherons were collected at the indicated time points. The 
harvested cells and spherons were treated with lysis buffer. IgM from cell lysates, media 
and spherons was immunoprecipitated and the material was resolved on SDS-PAGE gels 
as above. 
 
 
3.2.7  Two dimensional gels 
  

Cells and media were collected and processed as described above. Samples were 
run in the first dimension under non-reducing conditions in an 8% gel. The whole strip of 
gel was cut and incubated in a reducing buffer (62.5mM Tris HCl (pH 6.8), 10% 
glycerol, 5% 2-mercaptoethanol, 2% SDS, 0.05% bromophenol blue) for 20 minutes. 
After reduction, the gel strip was placed horizontally atop a slab gel and proteins were 
separated under reducing conditions on a 10% gel. In this experiment, cell lysates were 
either analyzed without chemical cross linking or after chemical cross linking. For cross 
linking, cells were washed first with PBS (pH7.4) followed by two washes in HEPES 
buffer (pH 8.3). Di-thio-bis succinimidyl propionate (DSP) 0.015% (in DMSO) was 
added and incubated for 1 hr on ice and cells were shaken occasionally to avoid pellet 
formation. The cross linking reaction was stopped by incubating with 1M glycine for 15 
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minutes. Cell lysis and subsequent analysis was performed in the exact manner as done 
for cells without cross linking.      
 
 
3.2.8  Glycosidase treatments 
  

IgM from cell lysates, media and spheron fractions were immunoprecipitated 
using protein A sepharose beads. The beads were washed and divided into three parts. 
One part was untreated; the second was incubated with Endo H (New England Biolabs, 
Ipswich, MA) and the third was incubated with PNGase F (New England Biolabs). 
EndoH treatments were performed as recommended by the manufacturer. Briefly, 2x 
denaturing buffer (1% SDS, 0.08M DTT) was added to the beads and boiled at 100°C for 
10 minutes. To the eluate, reaction buffer (0.05M sodium citrate pH 5.5) and Endo H 
(75,000U/ml) were added and incubated at 37°C for 1 hr. For PNGase F, the sepharose 
beads from the cell lysate were incubated in denaturing buffer A (0.5% SDS, 150mM 
Tris (pH 7.8), boiled at 100°C for 2 minutes, cooled and the supernatant containing the 
IgM was removed. Equal volume of reaction buffer A (4% NP-40, 3.2mM PMSF, 32mM 
EDTA) was added followed by PNGase F (25,000 U/ml) and incubated at 37°C for 1 hr. 
The samples were run under reducing conditions. The sepharose beads obtained after 
immunoprecipitation of the media were incubated in denaturing buffer B (0.5% SDS and 
100mM 2-Mercaptoethanol) and boiled at 100°C for 3 minutes. The supernatant after 
removing and cooling was added to equal volume of reaction buffer B (1% NP-40, 
60mM Tris (pH 8.6), 6mM EDTA, 0.1% SDS, 0.02 M 2-mercaptoethanol). PNGase 
(37,500 U/ml) was added, incubated and samples run under reducing conditions as above. 
 
 
3.2.9  Western blotting  
  

Proteins were transferred from gels to nitrocellulose membrane as described 
before (257). Alkaline phosphatase labeled goat anti-mouse μ and goat anti-mouse κ 
antibodies (Southern biotech, Birmingham, AL) were used as secondary reagents 
according to manufacturers’ recommendations. Rabbit anti-human J chain IgG (Nordic 
Immunology, Tilburg, The Netherlands), was used as the primary antibody to analyze J 
chain expression in the hybridomas. The anti J chain antibody was detected by a HRP 
conjugated goat anti-rabbit IgG antibody (Sigma Aldrich). Bands were visualized using 
substrates from the AP color development kit (Biorad) or by chemiluminescence kit 
(Perkin Elmer, Boston, MA).  
 
 

3.3  Results 
 
3.3.1  Cells used in this study 
 

We recently reported on H160.3, a hybridoma that expresses IgM composed of 
the VH56R+Vκ38c H-L pair.  This hybridoma exhibits multiple self-reactivities yet it is  
abundantly represented in peripheral tissues (e.g. the spleen) of non-autoimmune mice.
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Here, we wished to examine the mechanism that allows this type of B cell to escape  
tolerance induction in the bone marrow.  The escape from tolerance correlates with the 
intra-Golgi accumulation of IgM and reduced surface IgM receptor expression.  The IgM 
Ab secreted from the hybridoma binds to dsDNA, PS, MBP, thyroglobulin, cytochrome 
c, histones, insulin, and beta-galactosidase in a direct ELISA (127).  For comparison, we 
chose to analyze the L55 hybridoma.  This cell line expresses the same H chain, VH56R, 
and was immortalized using a similar procedure as H160.3.  However, L55 differs from 
H160.3 in expressing the Vλx L chain.  In contrast to H160.3, L55 secretes IgM that 
binds weakly to MBP but not to the other antigens tested (228).   
 

One striking difference between the H160.3 and L55 hybridomas was their 
intracellular IgM distribution (Figure 3.1A, C).  In H160.3, a substantial amount of IgM 
accumulated in a distinct and restricted area of the cell, although additional IgM was 
found elsewhere in the cytoplasm.  In contrast, there was essentially no IgM in the 
corresponding area in L55 cells and the cytoplasmic IgM was distributed throughout the 
cell (Figure 3.1B, D).  For orientation, our reagents also identified the nucleus by means 
of DNA staining and the plasma membrane by means of annexin V binding.  As before 
(256), we again noted that the H160.3 cells also display large IgM clusters at the cell 
surface.   
 

Because the different intracellular IgM distributions arose in cells expressing the 
same VH, we surmised that the intracellular IgM accumulation reflects the use of the 
Vκ38c L chain.  To test the idea that Vκ38c determines intracellular accumulation, we 
searched for another cell line that expresses the Vκ38c L chain.  Therefore, we examined 
the IgM distribution in 38C-13, a B cell lymphoma expressing Vκ38c (258, 259), and the 
control B cell lymphoma, WEHI 231.  Consistent with a Vκ38c contribution to the IgM 
accumulation, 38C-13 cells showed increased IgM intracellularly (Figure 3.1E), whereas, 
in WEHI 231 cells, IgM was distributed in a more peripheral manner (Figure 3.1F).  
Thus, immunofluorescence detection of IgM supported the idea that the Vκ38c L chain 
favors IgM accumulation.  We infer that intracellular accumulation of IgM derives an 
important contribution from the Vκ38c L chain. 
 
 
3.3.2  The VH56R+Vκ38c IgM accumulates in the Golgi 
 

Few, if any, reports have demonstrated the accumulation of IgM within the Golgi.  
Therefore, we selected a set of Golgi-specific markers to examine the degree of co-
localization with the IgM in the H160.3 and L55 hybridomas (Figure 3.2).  We used 
antibodies to Golgi-associated proteins to define a space within the cell that contains the 
Golgi, in order to ask two related questions:  1. What is the fraction of total IgM that is 
located within that cellular space, and 2. What is the degree of overlap between the IgM 
and the various antibodies to the marker proteins?   Typical cells used in the analysis are  
shown in Figure 3.2, and overall quantitation of intracellular distribution and 
colocalization with markers is presented in Table 3.1.  The markers that we used were: 
giantin, a cis-Golgi  associated membrane protein (197, 260); golgin-95, a protein with 
roles in Golgi structure and function (261, 262); β-COPII, a protein involved in the ER to 
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Figure 3.1  Distribution of IgM in B cell hybridomas and lymphomas.  
 
Hybridomas H160.3 (A and C) and L55 (B and D) were fixed, permeablized and 
incubated with AF647 goat anti-mouse IgM (red), AF488 Annexin V (green) and Sytox 
orange (blue). IgM accumulates intracellularly in the H160.3 cells (A). In contrast, IgM 
in L55 cells is distributed throughout the cytoplasm. (B). Magnified images of H160.3 
(C) and L55 (D). IgM aggregates are present at the cell membrane (Panels A and C). 
38C-13 lymphoma cell (E) and WEHI-231 cell (F) (treated as above) were stained with 
AF647 goat anti-mouse IgM and Sytox orange. IgM accumulates intracellularly in 38C-
13 cells (E) whereas IgM in WEHI-231 cells (F) has a more peripheral distribution.  
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Figure 3.2  IgM accumulates in the Golgi in hybridomas.  
 
H160.3 ( or an alternate subclone: H40) (Left panels) and L55 cells (Right panels) were 
incubated with Golgi markers followed by secondary antibodies (green), AF647 goat 
anti-mouse IgM (red), and  Sytox orange (blue). Each image has three panels, the top left 
is a 2D representation, the top right and the bottom left are the projected images. The area 
indicated by a white square shows a magnification of the Golgi. The Golgi (green) and 
intracellular IgM (red) split images are represented next to the Golgi magnification. H40 
(A) and L55 (B) were stained with rabbit anti-Giantin and visualized by AF488 Goat 
anti-rabbit IgG (green). IgM surrounds the Giantin and the anti-Giantin stains the center 
of the Golgi more intensely. The projected images show IgM adjacent to the Giantin and 
the co-localization can be seen as fine yellow lines. H40 (C) and L55 (D) were stained 
with rabbit anti-Golgin95 followed by AF488 Goat anti-rabbit IgG (green). Rabbit anti-β 
COP was incubated with H160.3 cells (E) and L55 cells (F) followed by AF488 Goat 
anti-Rabbit IgG (green) to visualize β COP. The IgM and the β COP stains co-localize 
partially. The greatest degree of overlap between IgM and a Golgi marker occurred when 
H160.3 cells (G) were stained with AF488 GS Lectin II (green). Lectin II stains free 
terminal GlcNAc residues and free GlcNAc residues are in the medial-Golgi. Thus it is 
likely that the intracellular accumulation of IgM in H160.3 cells is localized to the 
medial-Golgi. Mouse anti-Mannosidase II antibodies, a medial-Golgi marker, were 
incubated and visualized with AF488 Goat anti-mouse IgGγ2b (green) in H40 cells (I). In 
these cells, Mannosidase II stains as fine spots taking a granular appearance and the IgM 
co-localizes with this marker to a considerable extent. IgM in L55 cells (B, D, F, H and J) 
while being distributed in the ER, is not present in the Golgi and therefore does not show 
co-localization with any of the Golgi markers used here.   
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Golgi shuttling of cargo (263, 264); lectin II, a protein with binding specificity for the 
terminal GlcNAc moiety (265); and Golgi mannosidase II, a resident enzyme that 
removes α1,3- and α-1,6- mannose residues converting the GlcNAcMan5 to 
GlcNAcMan3 and serves to identify the medial Golgi (266).   
 

We examined complete three-dimensional reconstructions of the hybridoma cells 
and we show images in the three orthogonal planes defined by xy, xz, and yz coordinates 
(Figure 3.2).  In addition, the area most closely corresponding to the Golgi (indicated by 
the boxed area) is shown magnified and by using separate colors for IgM and the marker 
antibodies. These images confirmed the profound difference in IgM distribution between 
the two hybridomas.  A considerable portion of cellular IgM in H160.3 (or its surrogate 
H40) was present at or near the Golgi area indicated by the markers, whereas essentially 
no IgM co-localized with the markers in L55.  The five different markers had different 
degrees of co-localization with the IgM in H160.3 (or H40), although none of the markers 
completely co-localized with the IgM in this compartment.  Anti-giantin (Figure 3.2A) 
and anti-Golgin-95 antibodies appeared interlaced and partially overlapping with the IgM 
(Figure 3.2C), whereas antibodies to β-COP typically were found to surround the IgM 
(Figure 3.2E).  The greatest degree of overlap was observed between the H160.3 IgM and 
lectin II (Figure 3.2G) and between IgM and antibodies to mannosidase II (Figure 3.2I).   
 

To get a more quantitative answer to our questions, we computed the 
accumulation of IgM in and around the Golgi and determined the percent overlap 
between the IgM and the various marker antibodies (Table 3.1).  We used areas of intense 
staining with the marker antibodies to constrain the space containing the Golgi and 
compute the relative proportion of H160.3 or L55 IgM located within the Golgi as 
compared to elsewhere in the cell.  In addition, we determined the extent of overlap 
between the H160.3 IgM in the Golgi and the various Golgi markers. 
 
 
Table 3.1  Percent IgM in Golgi area compared to rest of the cell and percent co-
localization of IgM with different Golgi markers. 
 
 
Markers                Giantin        Golgin-95        β-COPII          Lectin II       Mannosidase II 
 
H160.3 
% IgM in 
Golgi                     18±2%          17±2%             18±1%             16±1%               22±2% 
 
% 
Co-localization      32±10%        22±5%            30±24%           71±5%               66±4% 
 
L55 
% IgM in 
Golgi                     <2±0.7%     <1±0.5%       <0.05±0.003%    <1±0.5%         <0.5±0.04% 
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Each of the Golgi markers gave a similar Golgi outline, as the values of H160.3 IgM 
within the Golgi fell within the narrow range of 16 to 22% of total IgM (Table 3.1).  In 
contrast, less than 2% of IgM was found in this location in the L55 hybridoma.  The 
percent overlap between H160.3 IgM and the marker antibodies was 22% for golgin-95, 
and 30-32 % for giantin and β-COP (Table 3.1).  More extensive overlap was found with 
antibodies to mannosidase II (66%) and for the fluorescent lectin II (71%) (Table 3.1). 
Free terminal GlcNAc moieties, targets of Lectin II, are concentrated in the medial Golgi 
and mannosidase II is primarily present in the medial Golgi with a smaller percentage 
distributed in the trans-Golgi (267). Therefore in sum, we conclude that H160.3 cells 
accumulate IgM in the Golgi compartment and that the accumulation involves parts of 
the cis-Golgi and most of the medial and trans-Golgi compartments. In L55 control cells, 
very small to negligible amounts of IgM are detectable within these areas of the secretory 
compartment (Table 3.1). Because we observed only an incomplete overlap between the 
H160.3 IgM and the Golgi markers, we decided to alter the architecture of the Golgi by 
nocodazole treatment and to compare the distribution of anti-golgin-95 and IgM in 
H160.3 and L55 cells (Figure 3.3).  The organization of the Golgi complex is 
interdependent with the microtubule network and the disruption of microtubules by 
nocodazole leads to a “scattering” of the Golgi fragments (268).  In cells treated with 
nocodazole for 2 hours, we could observe between 10 and 15 organelle fragments.  In 
H160.3 cells, most of the golgin-95 containing Golgi vesicles also reacted with anti-IgM 
antibodies (Figure 3.3A), whereas most of the anti-IgM in L55 cells did not co-localize 
with anti-golgin-95 (Figure 3.3D).  This confirmed our inference that H160.3 IgM is 
bound by a membrane network that behaves in a manner consistent with the Golgi 
complex. 
 
 
3.3.3  Distribution and separation of IgM aggregates from the cell  
 

In an effort to more carefully examine the IgM distribution in H160.3 cells, we 
grew the hybridoma on coverslips and prepared serial sections in the xy plane (Figure 
3.4A).  One such series of images is shown in Figure 3.4B-H.  It can be seen that in this 
cell, the Golgi was near the midsection of the stack adjacent to the cell’s nucleus (Figure 
3.4E-G).  In addition, we observed IgM clusters at the cell surface.  The last optical 
section (Figure 3.4H), grazing the surface of the coverslip, revealed spherical aggregates 
of IgM that were scattered at variable distances from the cell’s attachment site.  We refer 
to these IgM deposits that as “spherons” due to their shape.  The density of spherons 
along the glass surface decreased with increasing distance from the cell, suggesting that 
the cell was the likely source of the IgM deposits (Figure 3.4H).   
 

To test whether the spherons are bound by a membrane while they remain 
attached to the cell surface or after they detach and settle on the glass surface, we 
visualized the plasma membrane by staining with DiO, a lipophilic carbocyanine dye.   
This dye inserts into phospholipid bilayers, and labels the external and internal 
membranes of the cell (269).  This stain was applied to living cells and the binding was 
visualized without fixation or other harsh treatments.  Anti-IgM antibodies labeled with 
AF647 were added to the cells in a physiological buffer and the cells on the coverslips 
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Figure 3.3  Golgi fragments after nocodazole treatment.  
 
H40 cells (A) and L55 cells (D) were treated with 2.5μg/ml nocodazole for two hours, 
fixed, permeablized and incubated with rabbit anti-Golgin-95 for 3 hrs. This was 
followed by AF488 Goat anti-rabbit IgG (green), AF647 goat anti-mouse IgM (red), and 
Sytox orange (blue). Panel (A) shows the fragmented Golgi distributed in H40 cells that 
react with anti-golgin-95 (B) and anti-IgM (C). Antibody co-localization results in yellow 
fluorescence (A). Panels (B) and (C) are the corresponding split images of panel (A). In 
contrast, the IgM (F) in L55 cells does not co-localize with anti-golgin-95 marking the 
fragmented Golgi (E).     
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Figure 3.4  Analysis of hybridomas and spherons by microscopy.  
 
H160.3 cells were grown on cover slips for various times up to two days. The cells grown 
overnight on the cover slips were fixed, permeablized and stained with AF647 goat anti-
mouse IgM (red), and Sytox orange (blue). A stained cell on the cover slip was 
photographed beginning from the top (Slice1) and the subsequent sections towards the 
bottom were taken at intervals of 0.88μM thickness (Sections 2 through 7) (A). Section 7 
passes through the spherons that have settled on the cover slip. The top of the cell (B) 
shows faint IgM and nuclear stain. As the cell is sectioned (C – G), the intracellular IgM 
accumulation is noticeable. The last section nearest to the cover slip (H) shows spherons 
that have settled around the cell. The cell is not seen because the section grazes the cover 
slip. A dashed white circle represents the place where the cell rests. H40 cells grown for 
two days on the cover slip were stained with DiO (green), AF647 goat anti-mouse IgM 
(red), and Sytox orange (blue) without fixation and permeablization (I – O). Here only 
the IgM spherons at the cell membrane were stained, the cellular IgM was not accessible 
to the anti-IgM. The cell was sliced beginning at the top (I) and subsequent sections were 
towards the cover slip (J – N). The spherons located on the cell membrane are not 
surrounded by a lipid membrane (I – N) and neither do the spherons that have settled 
around the cell on the cover slip (O).  
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were observed under the microscope (Figure 3.4I-O).  Cells incorporating DiO revealed 
the presence of numerous surface IgM clusters that were mostly devoid of DiO staining 
(Figure 3.4I-N).  On the coverslip, spherons lacked DiO staining, suggesting that they are 
free of a DiO-reactive coat (Figure 3.4O). 
 
 
3.3.4  Ultrastructural features of spherons 

 
To gain a closer view of the IgM aggregates at the cell surface and after their 

deposition on the surface of the polyester membrane in the growth chamber, we prepared 
cells and spherons for electron microscopy.  We observed spherons that were attached to 
the cell surface (Figure 3.5A and B) and noted that spherons consist of a relatively 
uniform, grainy material and that the cell provides a relatively flat anchoring surface for 
the spherons.  The spheron when magnified shows an approximately circular contour and 
consisted of uniformly distributed amorphous material. Along their edges, spherons did 
not have any distinct boundary layer, although their outline ranged from being relatively 
smooth to showing partial disaggregation (Figure 3.5B). The spheron shown in Figure 
3.5B had a diameter of 1.53μm. Collected spherons that had settled to the surface of the 
culture vessel tended to disaggregate during the purification method used, such that they 
revealed further details of their internal structure (Figure 3.5C).  Near the edges of these 
aggregates, the internal structure was revealed as consisting of branched chains of anti-
IgM-reactive material (Figure 3.5D).      
 
 
3.3.5  Characteristics of spheron production by H160.3 hybridoma 
 

To measure the rate at which cells produce spherons, we grew H160.3 cells for 
defined times on coverslips and used light microscopy to observe the generation of new 
deposits (Figure 3.6A). To confirm that the visible deposits corresponded to spherons, we 
processed the coverslips for immunohistochemistry (Figure 3.6B). The rate of secretion 
of spherons produced by the cells was analyzed by incubating cells on cover slips for 
about 16 hours and counting the spherons after staining with anti-μ antibody. This 
allowed us to estimate the rate of spheron production as 13 spherons/cell/hour. This is 
certainly an underestimate because some spherons are likely to be dislodged from the 
glass surface by the various washing and incubation steps in our procedure. Moreover, it 
is likely that some spherons are displaced by Brownian motion from the cell and its 
immediate surroundings. Nevertheless, this estimate suggests that the production of 
spherons is a rather efficient mechanism to expel IgM from the cell. Microscopy also 
allowed us to measure the size of spherons, and we found that most spherons measured 
approximately 1 μm in diameter, although spheron size could reach and exceed 2 μm 
(Figure 3.6C). To confirm that the spherons contained IgM, we prepared the spherons by 
scraping them from the surface of the culture flask and collecting them by centrifugation.   
Gel electrophoresis of the enriched spheron fractions revealed that the major proteins 
contained in this fraction were the IgM H and L chains (Figure 3.6D). 
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Figure 3.5  Ultrastructure of the spherons.  
 
Hybridoma H160.3 cells were grown on a polyester permeable support and stained with 
uranyl acetate and lead citrate. 75nM sections were viewed on nickel grids. A spheron of 
about 1.5 μM is present on the cell at the top left (A). A magnified image of the spheron 
is shown (B). The spheron appears to be made up of uniformly distributed granular 
material. There is no visible membrane covering the spheron. The spheron’s outer edge is 
rough with an uneven appearance. Spherons that had settled on the tissue culture flasks 
were scraped, filtered, centrifuged and incubated with Goat anti-mouse IgM antibodies 
conjugated to 25nM Gold particles. Spherons lose their spherical shape during the 
purification process. Gold-conjugated anti-IgM antibodies bind to the outer edge of a 
purified spheron (C). Spherons disintegrate into what appear to be protein fibrils and the 
anti-IgM bind these fibrils well (D).  
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Figure 3.6  Rate of secretion, size and composition of the spherons.  
 
H160.3 cells were grown for 16 hrs on a cover slip and the spherons that had settled 
around the cells were viewed under a light microscope (A) or were stained with AF647 
goat anti-mouse IgM (red), and Sytox orange (blue) (B). Sytox orange was included to 
distinguish apoptotic bodies. The size of the spherons varied from 0.5μM to 2μM (C). 
Spherons were purified and run electrophoretically under reducing conditions on a 10% 
SDS-polyacrylamide gel.  Western blot was probed with alkaline phosphatase conjugated 
Goat anti-Mouse IgM and Goat anti-mouse κ (D). L55 cells do not produce spherons (D- 
I), while H160.3  (D-II) and H40 (D-III) extrude spherons which are composed of the 
IgM Hc and the κ Lc. Corresponding gels stained with coomassie blue  are shown (E – I, 
II and III).  
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3.3.6  Analysis of IgM under non-reducing conditions 
  

It is highly unusual for B cells to extrude antibody in the form of spherons. We 
therefore wanted to analyze all the IgM fractions, the secreted IgM in the supernatant, 
and IgM in the spherons extruded by the cells in order to learn about their production. 
The intracellular IgM was analyzed to determine the characteristics of the Ig that is 
retained inside the cell. Hybridomas H160.3, L55 and H40 were examined. Hybridomas 
expressing the Vκ38c Lc show that intracellular IgM is predominantly composed of 
higher order polymers. There are lesser amounts of IgM that run at about 210kDa and 
∼110kDa. These presumably are monomers and hemimers. H2/L2 make up the monomer. 
The size of the H2/L2 alone is approximately about 190 kDa [2x(70+25)]. Asparagine 
linked glycosylation of Hc adds about 20kDa (2x10(5x2)) to the monomer. Thus the 
monomer has an approximate size of about 210 kDa. The hemimers by the same 
calculation are about 105 kDa [1x(70+25+10)]. (Figure 3.7A, Lane 1 and Figure 3.7C, 
Lane 1). The intracellular IgM in L55 cells is quite similar: L55 cells also show mostly 
higher order polymers inside the cells. There are low amounts of monomers and 
hemimers.  

 
Hybridoma 160.3 secrete soluble IgM. However, surprisingly, they almost 

exclusively secrete monomers and hemimers instead of polymers (Figure 3.7A, Lane 2 
and Figure 3.7C, Lane 2). Normally B cells secrete IgM as pentamers (74) or hexamers 
and the presence of the hemimers and monomers is highly unusual.. L55 cells secrete 
polymers almost exclusively. (Figure 3.7B, Lane 2). Spherons entirely consist of IgM 
polymers in the Vκ38c Lc expressing cells (Figure 3.7A, Lane 4 and Figure 3.7C, Lane 
4). Spherons were not detected in L55 cells (Figure 3.7B, Lane 4). Since we had observed 
that Vκ38c expressing B cells accumulate intracellular IgM, we analyzed the NP-40 lysis 
buffer insoluble fraction to check whether there is NP-40 insoluble intracellular IgM. 
Normally lysis buffers having 0.5% NP-40 are sufficient to solublize luminal proteins, 
but this buffer is unable to solublize IgM in the form of Russell bodies (106, 253). Vκ38c 
expressing hybridomas do not have Russell bodies (usually located in the ER), but here 
too there is a NP-40 insoluble IgM fraction in the form of polymers (Figure 3.7A, Lane 3 
and Figure 3.7C Lane 3). The NP-40 insoluble fraction in H160.3 and H40 cells could 
represent IgM that has been modified in some way representing the earlier stages of 
spherons. There is no NP-40 insoluble IgM in the 56R+Vλx cells (Figure 3.7B, Lane 3).            
 
 
3.3.7  IgM fractions analyzed under reducing conditions 

 
The reduced μ Hc migrates at about 70 kDa in all three hybridomas (Figure 3.7D, 

3.7E, 3.7F – Lane 1). The secreted IgM in all three hybridomas has a slightly  
higher molecular weight which corresponds to about 73 kDa approximately. The slight 
upward shift is due to the additional carbohydrate moieties added to the Hc in the Golgi 
just before IgM secretion (270) (Figure 3.7D-F Lane 2). Analysis of IgM in the Vκ38c 
expressing hybridomas in the NP-40 insoluble fraction (Figure 3.7D and 3.7F Lane 3) 
shows presence of IgM. This fraction appears to co-migrate with the secreted IgM. 
However there could be an error in the assumption and the insoluble fraction might run 
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Figure 3.7  Resolution and identification of intracellular IgM, secretory IgM and spheron 
IgM in hybridomas.  
 
Three IgM producing hybridomas H160.3, L55 and H40 were metabolically labeled for 
16 hrs with 35S cysteine and methionine. Cells were lysed in a 0.5% Nonidet P-40 buffer 
in the presence of protease inhibitors. Proteins were immunoprecipitated with Goat anti-
mouse IgM antibodies and protein A-Sepharose and resolved on 8% SDS-polyacrylamide 
gels under non-reducing conditions (A – C) or on 10% gels under reducing conditions (D 
– F). The three predominant bands in the cell lysates (Lanes 1, 5, 9) in the non-reduced 
gels (A, B and C) migrated to a position corresponding to an IgM polymer, monomer of 
approximately 200 kDa (μ2L2) and a hemimer 105 kDa (μL). H160.3 and H40 secreted 
predominantly μ2L2 and μL whereas L55 secreted mainly polymers (Lanes 2, 6,10). The 
NP-40 insoluble fraction contained only IgM polymers in H160.3 and H40 while L55 had 
little or no NP-40 insoluble material (Lanes 3, 7, 11). The purified spherons extruded by 
H160.3 and H40 were composed of IgM polymers. L55 cells did not produce spherons 
(Lanes 4, 8, 12). All fractions resolve into μHc and κLc under reducing conditions in 
H160.3 cells and H40 (Lanes 13 -16 and 21 - 24). In L55 cells the cellular fraction (Lane 
17) and the secreted fraction (Lane 18) resolve in to the μHc and the λLc while the other 
two lanes representing the NP-40 insoluble fraction and the spherons do not have IgM H 
or Lc (Lanes 19 and 20). Analyses of J chain content in the hybridomas by Western blot 
(G). Secreted IgM from H40 (Lane 25), from L55 (Lane 26), Human IgM (Lane 27) and 
spherons from H 40 (Lane 28) were resolved on a 10% SDS-polyacrylamide gel and 
transferred to nitrocellulose blots. Blots were incubated with Rabbit anti-human J chain 
antibody and probed with HRP conjugated Goat anti-Rabbit IgG. The J chain was 
visualized by chemiluminescence. H40 secrete mainly μ2L2 and μL and therefore J chain 
was not detected in the secreted IgM (Lane 25). L55 cells secrete IgM polymers and J 
chain was observed (Lane 26). The Human IgM used as a positive control has a 
prominent J chain band (Lane 27). Spherons from H40 contain IgM polymers that 
incorporate the J chain (Lane 28). The corresponding gel stained by coomassie blue is 
shown (Lanes 29-32). All lanes show either κ or λ Lc. The J chain could not be detected 
in H40 cells because the cells secrete incompletely assembled IgM.   
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parallel to the intracellular IgM. Thus this fraction could represent the insoluble IgM 
located either in the Golgi or in the ER. Spherons analyzed under reducing conditions 
show the μ Hc and the κ Lc (Figure 3.7D and 3.7F, Lane 4).  
 
 
3.3.8  Analysis of IgM in two dimension 
  

Examining IgM separately either at reducing or non-reducing conditions in one 
dimension yields only partial information about the approximate size and composition of 
the various fractions of the antibody. To analyze the composition of protein multimers 
that are stabilized by di-sulfide bonds, we carried out 2D gel electrophoresis. In this 
technique a non-reducing dimension was run on SDS-PAGE and separate lanes were 
excised, reduced and run out under reducing conditions. This method allowed us to 
examine H/L associations in anti-μ immunoprecipitation. In addition, we compared  
proteins that are non-covalently linked with IgM in the different compartments. H160.3 
cells in the first dimension (Figure 3.8A1) show IgM polymers intracellularly along with 
smaller amounts of monomers and hemimers. When these fractions are run at the second 
dimension, it becomes apparent that the polymers consist of the Hc and the Lc only  
 (Figure 3.8A2). Another band that runs slightly lower is likely the Hc present in the ER 
because it matches the size of the Hc but there is no corresponding Lc there. Addition of 
a soluble chemical cross linker, (DSP), before cell lysis probably causes the chaperones 
that bind the IgM Hc to remain attached even after cell lysis. The Hc bound to 
chaperones show as additional spots above and below the Hc fraction in both hybridomas 
tested (Figure 3.8C2 and D2). The spot immediately above the Hc is likely the chaperone 
GRP94 (252, 271, 272). When the cross linker was not used, the chaperones could 
separate from the monomers, hemimers or the glycosylated Hc. Hybridomas H160.3 
secrete incompletely assembled IgM forms (Figure 3.8E1) instead of polymers. Figure 
3.8E2 confirms that H160.3 cells secrete monomers and hemimers and they consist 
entirely of Hc and Lc. L55 cells used as control was different in many aspects. The 
biggest difference was noted in the soluble secreted fraction. L55 cells secrete only 
polymers which are composed of Hc and Lc. There is a small but detectable amount of 
hemimer secretion, followed by what appear to be two Lc only fractions. These however 
are unlikely to be L chains because an anti-μ antibody is used to immunoprecipitate the 
labeled IgM. These could be unknown proteins that cross react mildly with the anti-μ 
(Figure 3.8F1 and 3.8F2). As with H160.3 cells, L55 also have polymers, monomers and 
hemimers intracellularly (Figure 3.8B1 and 3.8B2).     
 
 
3.3.9  Kinetics of IgM production and secretion  
  

To determine the rate of IgM secretion, we performed a pulse chase experiment. 
Immediately after the pulse at the time point zero, the H160.3 cells showed monomers 
and hemimers (Figure 3.9A Lane 1). At 2 hrs, 4hrs and 6hrs, polymers are present 
predominantly with small amount of monomers (Figure 3.9A Lanes 2, 3 and 4). 
Hemimers are entirely absent inside the cell beginning from the 2hr time point. When the  
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Figure 3.8  2-D Analysis of intracellular and secreted IgM.  
 
Hybridomas H160.3 and L55 were metabolically labeled for 16 hrs with 35S cysteine and 
methionine. Cells were lysed and proteins were immunoprecipitated with Goat anti-
mouse μ antibodies and protein A-Sepharose. Cell lysates prepared with (A and B) or 
without treatment (C and D) with a cross linker, DSP, were analyzed. Proteins were 
separated in the first dimension on non-reducing 8% SDS-polyacrylamide gels. The lanes 
were cut and placed horizontally across a large well on 10% SDS-polyacrylamide gels 
and run under reducing conditions for the second dimension. The major bands in H160.3 
cell lysates (A1) under non-reducing conditions are polymer intracellular IgM, and bands 
at 200kDa, 100 kDa and approximately 75kDa. The polymers, and the material at 200 
kDa and 100kDa contain the μHc and κLc in H 160.3 cells (A2). Intracellular IgM in L55 
cells (B1) is similarly composed of μHc and its λx Lc (B2). In both cell types the 75 kDa 
band represents the free intracellular μHc. H160.3 cell lysates (C2) treated with DSP 
show bands above and below the μHc in the polymer fraction. These bands might contain 
scaffold proteins (like ERGIC-53 and /or ERp44) that associate with IgM for 
polymerization and transport through the intracellular compartments. The smaller 
200kDa band, the 100 kDa band and the 75kDa bands do not contain additional proteins 
even after chemical cross linker treatment. L55 cell lysates (D2) under reducing 
conditions show the same additional bands above and below the polymer fraction as 
H160.3 cell lysates. Analysis of secreted IgM by H160.3 cells under reducing conditions 
(E2) shows that the IgM they secrete is entirely made up of μ and κ even though 
polymers are not secreted. The polymers secreted by L55 cells (F1) resolve into μ and λ 
under reducing conditions (F2).  
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corresponding secreted fractions are examined, it can be seen that the H160.3 cells 
secrete Ig in the form of monomers and hemimers predominantly. There is also a small 
amount of polymers present. At 2hrs, the monomers are the main form that is secreted 
while there is a faint band corresponding to hemimers (Figure 3.9B Lane 2). The amount 
of hemimers being secreted increases at 4hrs and the amount of monomers remains the 
same as at 2hrs (Figure 3.9B Lane 3). After 6hrs of chase, the amount of hemimers 
secreted is comparable to that of the monomers (Figure 3.9B Lane 4). The cells begin to 
extrude spherons only after 4hrs and they migrate as polymers (Figure 3.9C Lanes 3 and 
4).   

 
At the 0hr time point, the L55 cells showed polymers in addition to monomers 

and hemimers (Figure 3.9D Lane 1) suggesting that the Ig assembles into polymers as the 
Hc and the Lc are synthesized. In the L55 cells, the 80kDa band likely corresponds to 
free intracellular Hc as also seen in the 2D gel (Figure 3.8 B1 and B2). Polymers were 
recovered starting at 2 hrs and are present at all time points. Monomers are present at 2 
and 4hrs (Figure 3.9D Lanes 2 and 3). Hemimers exist in small amounts inside the cells 
up to 4hrs. At 6hrs, all the intracellular IgM is present as polymers (Figure 3.9D Lane 4). 
L55 secrete polymers predominantly and trace amounts of monomers and hemimers are 
present (Figure 3.9E Lanes 2 – 4). L55 do not extrude spherons (Figure 3.9F Lanes 1- 4).   

   
Under reducing conditions, IgM is visualized as H and L chains only. There is a 

clear difference between H160.3 and L55, in the rate of decrease of intracellular IgM 
levels beginning at 2 hrs. Intracellular IgM levels decrease steadily in L55 cells (Figure 
3.9G Lanes 1-4) because it is being secreted normally (Figure 3.9K Lanes 2-4). In 
contrast, the intracellular IgM level in the H160.3 cells though decreases with time, is not 
drastic. This indicates that a certain amount of newly synthesized IgM in H160.3 gets 
retained intracellularly (Figure 3.9J Lanes 1-4) while the secreted IgM fractions increase 
only slightly at each time point (Figure 3.9H Lanes 2-4).      
 
 
3.3.10  Hybridomas differ in glycosylation patterns 

 
Cell lysates, supernatant and spherons from the three hybridomas were analyzed 

for the glycosylation patterns. The immunoprecipitated fractions were treated with either 
Endo H or PNGase F and compared to untreated IgM fractions. The Hc fraction of 38c 
Lc expressing hybridomas, when untreated, runs between 97 and 66 kDa which is about 
the right size for a glycosylated Hc. The cell lysates when treated with Endo H clearly 
run as two bands one that is resistant to the enzyme and the other that is sensitive (Figure 
3.10 I, Lane A/E). Endo H resistance is acquired when the glycoprotein acquires 
additional and more complex sugar moieties in the cis-Golgi. An Endo H resistant 
fractionimplies that the protein has exited the ER and is present in the medial or trans-
Golgi, where the high mannose sugars have already been trimmed by the glycosidase in 
the Golgi (273). Therefore the Endo H resistant fraction suggests that IgM transitions 
through the Golgi. The Endo H sensitive fraction inside the cells indicates that there is 
IgM present inside the cell in the ER other than the Golgi accumulated fraction. There is  
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Figure 3.9  Pulse-chase analysis of IgM synthesis.  
 
Hybridomas H160.3 and L55 cells were depleted of cysteine and methionine for 40 
minutes, then pulsed with 35S labeled Met/cys for 15 minutes and chased for the indicated 
times in complete media. The 0hr time point was taken immediately after the pulse. At 
each time point, cells (A,D, G and J), media (B,E, H and K) and spherons (C,F, I and L) 
were prepared and analyzed. Labeled μ was immunoprecipitated and analyzed by non-
reducing and reducing SDS-PAGE as described in Fig 7. In H160.3 cells, the label gets 
incorporated mostly into monomers and hemimers (Lane 1) after 15 minutes. The entire 
label becomes incorporated into material migrating as polymers at 2 hrs up to 6 hrs 
(Lanes 2 - 4). H160.3 cells secrete three forms of IgM – polymers, monomers and 
hemimers (Lanes 5 - 8). The secreted polymer fraction is very small but it increases 
slightly from 2 hrs to 6 hrs. The monomer fraction remains the same but there is a 
considerable increase in hemimer secretion from 2 hrs to 6 hrs. Increase in hemimer 
secretion from 2 to 6 hrs is improbable because corresponding intracellular stores are 
absent. Therefore, the hemimers observed here could be the result of small scale 
disintegration of monomers or spherons. The labeled IgM begins to appear as spherons in 
H160.3 cells beginning only at 4 hrs and the spherons appear to decline slightly at 6 hrs 
(Lanes 11 and 12). In L55 cells, the label gets incorporated into polymers, monomers and 
hemimers (Lane 13). Hemimers start declining at 2 hrs and 4 hrs but monomers are 
present up to 4 hrs (Lanes 14 and 15). After 6 hrs of chase, monomers and hemimers are 
absent completely (Lane 16). L55 cells secrete IgM entirely in the form of polymers 
(Lanes 18 - 20) and do not extrude spherons (Lanes 21 -24). Intracellular μ levels decline 
beginning at 2 hrs (Lanes 25 -28). Under reducing conditions the secreted μ levels appear 
to increase with time (Lanes 30 -32). Intracellular μ levels in L55 decline after chase 
(Lanes 37 -40) with a corresponding increase in secreted IgM (Lanes 42 -44).      
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an Endo H sensitive IgM fraction also that migrates below the resistant fraction. This 
could represent the IgM in the ER or possibly that in the cis-Golgi since glycans with free 
terminal mannose residues could be present in proteins at both these locations. In L55 
cells, strikingly there is no intracellular Endo H resistant fraction (Figure 3.10 II, Lane 
D/E). There are two bands but both are sensitive to Endo H implying that whatever is 
present in the cell is in the ER and that there is no accumulation of Ig in the Golgi. The 
presence of two bands can be due to the difference in the processing of sugar moieties 
incorporated during glycosylation of the Hc in the ER. The band corresponding in size to 
the Hc is most likely the chaperone BiP because its size is about 78kDa similar to that of 
the Hc (Figure 3.10 II Lane D/E) (272).    

 
In both H160.3 and L55, the secreted IgM is Endo H resistant (Figure 3.10 I, and 

3.10 II Lanes B/E, and E/E). This shows that the Ig passes through the Golgi before being 
secreted. IgM monomers and hemimers also presumably pass through the Golgi because 
they are Endo H resistant. The spherons are also Endo H resistant (Figure 3.10 I Lane 
C/E). This shows that though abnormal forms of Ig are secreted, all the secreted fractions 
pass through the Golgi and acquire complex carbohydrates. PNGase F removes all N-
linked carbohydrate side chains be they simple or complex (274). Therefore all fractions 
treated with PNGase F run faster compared to the untreated and Endo H treated fractions. 
The light chains are unaffected by glycosidases since they do not get glycosylated. 
Therefore the Lc in all treatments and all fractions run at the same level.          
 

The cell lysates were treated with Endo H and analyzed under reducing conditions 
to determine at what point the IgM leaves the ER to the Golgi and when the secreted IgM 
passes from the Golgi to the cell’s exterior. The intracellular IgM in the 
VH56R/76R+Vκ38c cells at 0hrs is completely sensitive to Endo H (Figure 3.10 III, 
Lane1). Endo H resistant fractions start showing up at 2 hrs (Figure 3.10 III, Lanes 2-4). 
This indicates that a part of the intracellular IgM that was present in the ER has moved to 
the Golgi and has had old carbohydrate sugars trimmed and got new sugars added by 
Golgi glycosidases. Intracellular IgM in L55 cells is entirely sensitive to Endo H at all 
time points (Figure 3.10 IV, Lanes 1-4) indicating that assembled polymers of IgM are 
not retained in the Golgi at any point even though they clearly pass through it.   

 
 

3.4  Discussion 
 

Our examination of autoreactive B cells that fail to edit their Ig receptors and 
instead escape central tolerance has uncovered a particularly dangerous class of 
autoreactive B cells.  These cells produce a H/L chain pair that is multireactive, 
associates into an IgM antibody that accumulates in the Golgi, and arrives at the cell 
surface in the form of IgM clusters (256).  Here, we describe the release of the IgM 
clusters from the cell surface and the characteristics of such clusters.  In vivo, this type of 
B cell is enriched in the marginal zone of the spleen, a site that harbors B cells that can be 
directly activated by antigen.  
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Figure 3.10  IgM fractions after glycosidase treatment.   
 
Metabolic labeling, collection of various factions, and immunoprecipitation of μ proteins 
from H160.3 and L55 cells were performed as described in Fig 7. After 
immunoprecipitation, the IgM fractions were treated with EndoH or PNGase F or no 
enzyme for 1hr at 37°C and then analyzed under reducing conditions. Cell lysates from 
H160.3 (A) when treated with Endo H (Lane 2) show an Endo H resistant fraction and an 
Endo H sensitive fraction suggesting that there is Golgi accumulation of IgM since Endo 
H resistance is acquired in the Golgi. PNGase F treated H160.3 lysates are entirely 
sensitive to the enzyme (Lane 3). Cell lysates from L55 cells (D) are Endo H sensitive 
(Lane 11) suggesting that little to no IgM resides in the Golgi. Secreted IgM from H160.3 
(B) cells is entirely Endo H resistant (Lane 5) indicating that even IgM secreted as 
monomers and hemimers, pass through the Golgi and acquire Endo H resistance. L55 
cells (E) secrete IgM polymers that are entirely Endo H resistant (Lane 14). Spherons 
produced by H160.3 cells (C) are Endo H resistant (Lane 8). Cell lysates prepared from 
H160.3 (G) and L55 (H) cells after pulse-chase and immunoprecipitation (As described 
in Fig 7 and 9) were treated with Endo H for the indicated times and analyzed by SDS-
PAGE under reducing conditions. At 0 hrs, all the intracellular IgM is Endo H sensitive 
(Lane 19), as most newly synthesized IgM is present in the ER. IgM acquires Endo H 
resistance with time (Lanes 20 - 22), and at 6 hrs, most of the intracellular IgM is 
resistant to EndoH (Lane 22), indicating that IgM accumulates intracellularly in the Golgi 
of H160.3 cells. In contrast, the intracellular IgM in L55 cells is sensitive to Endo H even 
after 6 hrs (Lanes 23 - 26).     
 
 
 
 
 
 
 
 
 
 

 78



            

 
 

 79



IgM accumulation in the Golgi is fundamentally different from previously known 
forms of IgM accumulations in the cell.  Research on incorrectly folded IgM identified 
Russell bodies. Russell bodies are Ig that cannot be secreted and yet have escaped 
intracellular proteasomal degradation and exist within the ER and partitioned off such 
that the normal secretory pathway is undisturbed (275). Aggresomes, another class of 
intracellular protein accumulation, arise due to incomplete proteasomal degradation of 
misfolded proteins. Aggresome formation is microtubule dependent and occurs due to 
assemblage of smaller aggregates in the cell to the MTOC area (276). Both of these 
intracellular sequestration mechanisms retain proteins in the cell although in different 
locations.  In contrast, IgM that, as in this case, accumulates in the Golgi, may be fully 
assembled into IgM pentamers at the time of their release from the cell.  The IgM release 
proceeds by a fundamentally different pathway, as much of the IgM is packaged in large 
spherical aggregates, spherons, that settle out of solution, rather than becoming soluble  
macromolecules.  Most (or all) of the soluble IgM that is secreted from the cells is 
incompletely assembled and is in the form of IgM hemimers and monomers. 
 

The VH56R+Vκ38c B cells incorporate the radiolabel mainly into hemimers and 
monomers and very little polymer formation occurs during the pulse. The hemimers 
present intracellularly at the start of the chase disappear entirely beginning at two hours 
and are never observed at the later time points. Folding, glycosylation and disulfide bond 
formation between Hc and Lc appears to occur without any glitch and the IgM getting 
polymerized inside the cells is proof for this. However the VH56R+Vκ38c B cells are not 
able to sustain the rate of intracellular IgM polymerization required for efficient secretion 
of pentamers. Indeed the monomers and hemimers begin to appear in the secreted 
fraction beginning at 2 hrs. This may be due to a partial breakdown of the ER quality 
control in the cells.  
 

Cysteine 575 acts as a retention element within the ER, and undergoes disulfide 
exchange reactions with resident proteins (73). This process known as thiol-mediated 
retention (277) is required for efficient degradation of assembly intermediates in resting 
cells (278). Thiol-mediated retention and intracellular degradation prevent the premature 
release of IgM assembly intermediates from the ER (278, 279). Thiol retention is an 
extremely efficient process and consequently only trace amounts of monomeric IgM are 
found in normal serum. In thiol mediated ER retention the interchain disulfide bonds are 
reduced prior to proteasomal degradation. In the VH56R+Vκ38c cells, there could be a 
defect in this mechanism and it is not tested whether the VH56R+Vκ38c B cells have a 
cysteine 575. However, in the VH56R+Vκ38c cells the thiol mediated mechanism is 
likely to be intact due to two observations. First, the IgM accumulation is in the Golgi 
and not in the ER. Second HL and H2L2 intermediates are not the only components in 
the cells. IgM does polymerize intracellularly in the VH56R+Vκ38c B cells which will 
not be the case if thiol mediated retention occurs in the ER. The situation with 
VH56R+Vκ38c hybridomas is unique because the monomers and hemimers are secreted 
rather than being retained. This calls for other explanations such as checkpoints in the 
Golgi by ERp44 (by relocating IgM monomers from the Golgi to the ER for 
polymerization) going awry.  
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It should be pointed out that not all previously reported Ig accumulations remain 
inside B cells.  For example, hybridomas from viable moth-eaten mice contain Russell 
bodies and yet they can be separated into cells that secrete IgM and others that do not 
(275).  Similarly, the 38C-13 lymphoma cells, which are antigen sensitive resting B 
lymphocytes, were observed to accumulate IgM do not extrude IgM spherons (SK and 
MR unpublished). These cells however, secrete incompletely assembled 7S IgM  (258).  
In chronic lymphocytic leukemias of B cells (B-CLLs), impaired glycosylation and 
misfolded μ Hc lead to retention of IgM in the ER and nascent IgM remains unsuitable 
for secretion (280). Nevertheless, the production of spherons appears to be a surprisingly 
efficient way to extrude IgM aggregates from the cell.   
 

Our observation is novel to such an extent that it is difficult to precisely assert its 
relevance in vivo.  However, we know that splenocytes from VH56R mice release 
substantial amounts of spheron-like IgM aggregates after 2 days of culture in the 
presence of LPS (SK and MR unpublished).  Thus, the production and release of IgM 
spherons is not limited to B lymphocyte-myeloma heterokaryons, but is a potential 
attribute of primary B cells.   
 

If B cells can produce spherons in vivo, then what might be the fate of such large 
antibody assemblies?  It is unlikely that they would remain in the circulation for any 
extended period of time.  Instead, they may follow the fate of large immune complexes 
and be cleared through the reticuloendothelial system in the liver (281).  However, other 
sites of spheron capture could include the basement membrane in the kidneys or sites of 
lymphatic circulation through lymph nodes and the spleen.   

 
Anti-dsDNA antibodies have been eluted from kidneys affected by lupus (282). 

Eilat et al. showed that some murine anti-dsDNA antibodies were capable of increasing 
the amount of proteinuria produced by the kidneys, by using an isolated rat kidney 
perfusion system (283). The potential pathogenicity of human monoclonal anti-dsDNA 
antibodies was demonstrated in the severe combined immuno-deficient (SCID) mouse 
mice. Hybridoma cells producing anti-DNA antibodies when implanted intra-peritoneally 
into these mice, showed the ability to induce significant proteinuria. The proteinuria was 
associated with the ability of the antibodies to bind to the kidney (284). VH56R+Vκ38c 
hybridomas have the potential to produce similar effects in mice. It remains to be seen if 
kidneys from VH56R Tg mice show antibody deposition and proteinuria.    
 

Purified anti-dsDNA antibodies from patients with SLE showed cross-reactivity 
with α-actinin and this was most commonly observed in patients with lupus nephritis 
(285). This argument was strengthened by demonstrating an association between 
antibody affinity for α-actinin and binding to glomeruli in vitro (286) . VH56R+Vκ38c 
scFv showed affinity to α-actinin (SK and MR unpublished) in addition to being a good 
anti-DNA antibody. Thus VH56R+Vκ38c antibody production in vivo could lead to 
autoimmune disease and the resulting pathological changes.  
 

In considering the possible fates of IgM spherons, we have to consider that they 
are multireactive. If this multivalency is physiologically relevant, then we may have to 
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consider that the spherons may lodge in various tissues based on the specificity of the 
IgM and thus form nucleation sites for beta amyloid IgM deposits, as are observed with 
different types of B cell dyscrasias and malignancies. Spherons are relevant in B cell 
dyscrasias like monoclonal Ig deposition disease (MIDD) (287). Immunoglobulin 
deposition diseases are usually diagnosed by demonstrating the pathologic deposits by 
light and electron microscopy. Moreover, the IgM deposits may lead to tissue damage 
due to the binding and activation of complement. 

 
Cryoglobulins are Ig that precipitate at temperatures below 37°C. This 

temperature-sensitive precipitation is usually indicative of a monoclonal plasma cell 
dyscrasia, a circulating immune complex, or both. Type I cryoglobulins are composed of 
a monoclonal immunoglobulin, mainly IgG and occasionally IgM or IgA. Clinical 
manifestations are usually caused by capillary obstruction because of precipitation of the 
cryoprotein. Capillary obstruction can also occur in the kidney (288). Rare forms of 
organized monoclonal immunoglobulin deposits related to type I cryoglobulins include 
glomerulonephritis with organized microtubular monoclonal immunoglobulin deposits 
(GOMMID) (289, 290) a condition associated with various B-cell–derived 
immunoproliferative disorders, including chronic lymphocytic leukemia (289) and 
multiple myeloma (291). Antibody secreted by VH56R+Vκ38c hybridomas is 
predominantly monoclonal IgM and this does not precipitate at temperatures below 37°C. 
However spherons produced by the VH56R+Vκ38c cells are capable of circulating as 
immune complexes if produced by cells in vivo. Spherons deposition in kidneys and 
capillaries could lead to disease similar to that caused by cryoglobulin deposition.    

 
We believe our studies will pave the way for a better understanding of the 

pathogenesis of Ig deposition diseases. While it is known that these disease entities or 
their manifestations are all related to increased IgM in the blood serum, the source of the 
IgM itself is not known. The VH56R B6 mice could serve as an in-vivo model to deduce 
the mechanisms responsible for Ig aggregation and tissue localization. This along with a 
better understanding of factors affecting plasma cell activation should help understand 
disorders associated with abnormal protein deposition.  
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CHAPTER 4:  GENERAL DISCUSSION 
 
 

4.1  Our search for rules of receptor editing uncovers an exception 
 
A widely held assumption is that non-autoimmune individuals do not have 

autoreactive B cells in the periphery. This assumes that B cells with autoreactive 
receptors are subject to tolerance by clonal deletion, anergy and receptor editing at the 
immature B cell stage after expression of a fully assembled IgM BCR (292). Receptor 
editing is the primary mechanism that eliminates autoreactive receptors. Deletion occurs 
mainly when Ig gene rearrangement is disallowed, constrained or unsuccessful (221). 
Anergy may result if the BCR signaling that is induced by self antigen is weak, as may be 
the case for soluble antigens (293). For the different mechanisms, specific antigens, or 
forms of signaling that initiate B cell regulation have not been fully established.  

 
In this thesis, we tested the prediction that ‘binding to autoantigens’ induces 

receptor editing in B cells of non-autoimmune individuals. To this end, we resurrected 
peripheral B cell receptors by cloning the Hc from the 3H9, VH56R and the VH56R/76R 
Hc transgenes and providing them with various κ Lc. We analyzed their affinity to 
dsDNA and found that some receptors had high affinity to DNA while others did not bind 
DNA very well. We delineated a threshold range based on affinity of these recombinant 
receptors to DNA. Consistent with effective regulation, receptors that bound DNA with 
high affinity were absent from the periphery while those that did not have much affinity 
were present. Thus, avid anti-self BCR were absent from the periphery, possibly because 
of receptor editing. Our observations are in accord with other studies that have shown 
that receptor editing eliminates a large portion of immature B cell receptors that bind 
DNA (122, 124, 125, 218, 294).    

 
In our study however, we discovered one conspicuous exception that does not fit 

the proposed threshold mechanism. The combinations of Vκ38c with either VH56R or 
VH56R/76R bound DNA very well and yet were present in the periphery. Crucial for this 
exceptional result may be that these receptors had specificity for the Golgi in addition to 
DNA. Specificity of the VH56R+Vκ38c receptors for the Golgi may sustain developing 
B cells harboring these receptors and allow them into the periphery. It remains to be seen 
if our exception represents an isolated case or, alternatively, a generalized mechanism for 
escape of autoreactive B cells to the lymphoid periphery.     

 
 

4.2  Our efforts to identify the mechanism for escape of VH56R+Vκ38c cells 
 
With our colleagues at the University of Chicago and the University of 

Pennsylvania, we then examined B cells from mice expressing the relevant Hc 
transgenes. We noticed that surface BCR densities were reduced in the immature B cells 
(Hardy fraction E) carrying the VH56R anti-DNA Hc. We conceptualized that the 
VH56R+Vκ38c B cells might be part of this population and the intracellular BCR in these 
cells, when moving to the cell surface, may be delayed or impeded due to binding to a 
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Golgi antigen. This delay may allow the VH56R+Vκ38c B cells to circumvent the central 
tolerance mechanisms. Receptor retention as in the H160.3 hybridomas may provide a 
new mechanism that facilitates the escape of autoreactive cells to the periphery. It should 
be pointed out that the VH56R+Vκ38c BCR in the mature B cell populations may not be 
entirely retained intracellularly and likely reaches the cell surface. Other mechanisms, for 
example physiological UPR may be responsible for this observation. Nevertheless, it is at 
the immature B cell stage that B cells are tolerized and the reduction or absence of 
receptor at this stage might be the most important reason for the escape and development 
of the VH56R+Vκ38c B cells. Why the receptor might be reduced/absent at the cell 
surface only at the immature B cell stage and not in the periphery remains to be 
investigated.   

 
To understand the mechanism of receptor retention, we asked what could account 

for the intracellular accumulation of the VH56R+Vκ38c receptor? One, reason might be 
that the VH56R+Vκ38c receptors’ H or the Lc could be imperfectly folded and therefore 
are retained inside the cell by quality control mechanisms. Folding defects (295) or 
deliberate removal of Hc domains results in the intracellular retention of antibody 
components in the ER (but not in the Golgi) and the accumulation is associated with 
degradation of the Ig chains after dislocation from the ER to the proteasome (296). 
Alternatively, the receptors are properly folded but they bind an antigen in the Golgi. We 
favor the second possibility because the VH56R+Vκ38c antibody co-localizes with Golgi 
markers in hybridomas indicating that the antibody is retained in the Golgi. Moreover, 
binding of the recombinant VH56R+Vκ38c receptors to the Golgi in Jurkat cells supports 
the idea of a Golgi antigen. As far as we can determine, the VH56R+Vκ38c cells have no 
defect in either the Hc or the Lc, nor in their assembly into IgM pentamers, further 
supporting our reasoning that accumulation is due to the BCR binding to antigen in the 
Golgi.  

 
We conclude that the crucial B cell tolerance mechanisms, editing, deletion and 

anergy will work only when B cell receptors reach the cell surface. If, on the other hand, 
the B cell receptor is restrained intracellularly by some resident antigen, regulation will 
be ineffective. Therefore deletion, anergy and editing are not universal mechanisms that 
influence B cell development. Instead, they are influenced by the location of BCR or 
access to antigens.  

 
 

4.3  Determining the location of VH56R+Vκ38c accumulation  
  

We have used giantin, golgin-95, β-COP, lectin II and α-mannosidase II to 
resolve the exact location of 38c IgM. Giantin and golgin-95 together with p115 (a 
peripheral membrane protein localized to the ERGIC and cis-Golgi that binds to both 
giantin and golgin-95) play important roles in retrograde transport, anti-retrograde 
transport, cisternal stacking and vesicle tethering at the cis-Golgi (197). Thus giantin and 
golgin-95 are considered to be cis-Golgi markers. Since VH56R+Vκ38c does not 
colocalize entirely with either giantin or golgin-95 it must be in a compartment that is 
either before or after cis-Golgi. One compartment that occurs before the cis-Golgi is the 
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ERGIC. However, colocalization with β-COP is also partial, which means ERGIC may 
not be the location for VH56R+Vκ38c. On the other hand lectin II binds to free GlcNAc 
residues and is considered a Golgi marker because most free GlcNAc are present in the 
medial-Golgi. Thus the most intense signal from Lectin II comes from the medial-Golgi. 
A major percentage of lectin II is present inside the hybridomas co-localizes with the 
VH56R+Vκ38c IgM. α-mannosidase II is considered to be a marker for a broader region 
of the Golgi (297). This is because only two-thirds of the α-mannosidase II marker 
labeling is in the medial-Golgi while the rest is in the cis-Golgi cisternae (298). Our 
results show that a high percentage of VH56R+Vκ38c localizes with that of the α-
mannosidase II staining. This suggests that VH56R+Vκ38c is distributed predominantly 
in the medial-Golgi (to the trans-Golgi) compartment while a smaller percentage occurs 
in the preceding Golgi compartments. Our conclusion is supported by the co-localization 
of VH56R+Vκ38c IgM and golgin-95 in cells treated with nocodazole where intracellular 
IgM disperses to the same locations as golgin-95.      

 
Epitopes for AGA are located primarily on the cytoplasmic face of the Golgins. 

How these coiled-coil golgins become autoimmune targets is not known. One reason that 
might contribute to Giantin being the more common Golgi antigen is that it is a 
transmembrane protein which can be more stably associated with the Golgi membrane 
that the other golgins which are only peripheral membrane proteins (299). It was 
postulated that these Golgi proteins may be recognized by the immune system in disease 
states involving apoptosis or necrosis along with defective clearance (197). Golgi 
morphology varied from being swollen to appearing as vesicular structures during 
apoptosis. However most importantly, none of the golgins could be detected on the 
surface of apoptotic blebs (299). Thus the scenario where antigen exposure during 
apoptosis, leading to AGA production, may be unlikely. On the other hand, escape and 
development of VH56R+Vκ38c B cells might offer a potential answer to the 
development of AGAs. In this case it is possible to envision a situation where the Golgi 
antigens do not have to be on the cell surface for the immune system to “see” them. The 
Golgi antigens though are sequestered intracellularly may bind to the VH56R+Vκ38c 
BCR allowing B cells to escape to the periphery. Once these VH56R+Vκ38c B cells get 
activated by appropriate antigens, the B cells may start producing antibodies that would 
be detected as AGAs in the serum.  

 
Currently, we do not know what might be the Golgi antigen for the 

VH56R+Vκ38c receptor. Golgi has a vital role in secretion, lipid biosynthesis, protein 
modification and sorting. Therefore numerous targets could potentially function as the 
antigen for the VH56R+Vκ38c receptor. For example, glycosidases and 
glycosyltransferases that aid in the synthesis of N-Glycans could be the targets. α-
mannosidase II, a transmembrane glycosidase is particularly interesting because it has a 
large lumenal C-terminal catalytic domain (273) which theoretically can interact with 
VH56R+Vκ38c while the BCR is present intracellularly. Resident proteins that form the 
Golgi matrix, like golgin-95, grasp 65, and grasp 55 have small lumenal domains (300) 
and these proteins are less likely to bind to the VH56R+Vκ38c antibody. Rather than a 
protein antigen VH56R+Vκ38c could bind to a carbohydrate that is formed in the Golgi. 
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A conceptually related possibility is that the newly synthesized VH56R+Vκ38c binds to 
the carbohydrate side chains that are present on the Hc of neighboring IgM molecules. 
Each of these possibilities could explain why we see intra-Golgi accumulation in 
hybridomas.  

 
Glycosaminoglycans (GAGs) are a group of molecules that possibly can bind the 

VH56R+Vκ38c antibody. Hyaluronic acid is unique among the GAGs because GAGs 
such as aggrecan are synthesized in the Golgi while the biosynthesis of hyaluronan 
occurs on the plasma membrane. During the synthesis, the carbohydrate built inside the 
plasma membrane is pushed out to the extracellular space (301). Hyaluronic acid 
polymers are very large (with molecular weights of 300KDa to 2000KDa) (302). When 
the IgM that is synthesized intracellularly, reaches the plasma membrane, it can bind with 
the hyaluronan to increase in size at the cell membrane and then detach after reaching a 
certain size. It is possible that not all spherons may interact with hyaluronan at the cell 
surface and may detach from the cell membrane. This would explain the various sizes of 
the spherons that settle around the cells.    
 

 
4.4  Our proposed mechanism for the production of hemimers and spherons  
 
The biogenesis of secretory IgM occurs in two sequential but independent steps 

which are assembly and polymerization. μ2/L2 assembly occurs in the ER with help from 
Hc binding protein (BiP) which acts as a chaperone for the intermediates in assembly. 
ERp44 and ERGIC-53 play a role in the polymerization of IgM by acting as scaffolds for 
the formation of a planar complex of monomers (99). ERGIC-53 binds to glycoproteins 
in the ER and transports them to the Golgi where they are released (303). ERp44 interacts 
with ERGIC-53 and accumulates in the cis-Golgi (99). To begin with, the assembly of the 
VH56R+Vκ38c IgM itself may not proceed to completion since we do notice small 
amounts of monomers even after 6 hrs of chase. This could be due to a partial breakdown 
during ER quality control that involves ERp44 because it is this protein that is considered 
to load the IgM monomers onto the scaffold for polymerization. The IgM fraction that 
does polymerize in the ER is transported to the Golgi by ERGIC-53 after successfully 
passing the first BiP quality control step. However as IgM starts accumulating in the 
medial-Golgi it may cause further demands on the scaffold proteins. It has been shown 
that down regulation of ERp44 and ERGIC-53 reduces IgM polymerization and increases 
secretion of smaller forms of IgM (99). Thus, as polymerization is hampered, IgM 
monomers and hemimers may begin to be secreted by the VH56R+Vκ38c cells. A factor 
that may contribute to the secretion of hemimers is that they have a reduced avidity to 
antigen as compared to fully assembled IgM and therefore have an advantage in leaving 
the Golgi.  
  
 The J chain is a polypeptide chain made by B cells that is required for IgM 
pentamer formation. In the absence of J chain, IgM is polymerized into hexamers (78, 
304). Absence of J chain inhibits the assembly and/or secretion of IgM (305). We can 
detect J chain in the hybridomas, and IgM can polymerize. However, most polymerized 
IgM is released from the B cells in the form of spherons. Because the spherons have the J 
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chain, at least some of the IgM must be in the form of pentamers. Therefore we conclude 
that the VH56R+Vκ38c hybridomas are capable of producing complete IgM pentamers.  
 
 Formation of spherons is likely linked directly to the location of intracellular IgM 
accumulation. Defects in μ Hc folding or absence of domains that bind to the 
Lc/chaperones, result in IgM accumulation in the ER as Russell bodies. The Russell 
bodies are sequestered such that the normal secretory function is unperturbed. However 
the Russell bodies are not secreted or at least not reported yet. Spherons produced by the 
VH56R+Vκ38c hybridomas represent the IgM fraction that was probably retained in the 
Golgi (rather than in the ER). The idea is definitely conceivable that the location of IgM 
accumulation either allows the secretion or retention of IgM. The characteristic round 
shape of the spherons could be due to the the protein assuming the most 
thermodynamically favorable conformation or assume their shape after possibly binding 
to some antigen (eg. GAGs at the plasma membrane).         
  

 
4.5  Considering the fate of VH56R+Vκ38c B cells in vivo 

  
We have determined that the majority of VH56R+Vκ38c B cells reside in the MZ 

of the spleen. MZ B cells react quickly in a T cell independent manner to antigens from 
blood borne pathogens and begin to secrete IgM. Thus, VH56R+Vκ38c B cells could be 
activated by a suitable antigen associated with a bacterial infection. Once activated, the 
cells may begin to synthesize large amounts of IgM leading to IgM accumulation inside 
the cells. The accumulation in turn might lead to the production of spherons. In fact, 
splenocytes from 56R Tg mouse stimulated with LPS show spherons being produced. 
Spherons are similar to the immune complex deposits in the glomerulus of SLE patients. 
Spherons may, because of their size and surface characteristics lodge at the pores of the 
basement membrane and attract complement deposition. Such events are seen in 
glomerulonephritis. Thus VH56R+Vκ38c B cells or similar B cells that have escaped 
central tolerance mechanisms could be responsible for the secretion of autoantibodies and 
immune complexes that cause pathogenesis in SLE.     

 
 

4.6  Future directions 
 
One novel aspect of this thesis is the identification of a new mechanism for 

autoreactive B cells to escape the BM regulation. All the evidence presented thus far 
suggests that BCR retention in the Golgi may be responsible for the escape of 
autoreactive B cells. Our proposal that the intracellular antibody retention is responsible 
for autoreactive B cell escape can be more conclusively proved once an anti-idiotype 
reagent to the VH56R+Vκ38c antibody becomes available. With this reagent one could 
analyze the intracellular and cell surface VH56R+Vκ38c antibody expression levels in 
mice. Low surface expression levels and high intracellular levels in immature B cells 
could provide proof that antibody retention might be a mechanism for autoreactive B cell 
escape. Anti-idiotype antibodies against a B cell lymphoma antibody, 38C-13, have been 
produced by using idiotype conjugated to keyhole limpet hemocyanin (306, 307). Anti-

 87



idiotypes and bi-specific antibodies have been generated to be used as treatments for 
lymphomas (308, 309). Bi-specific antibodies that bind to an adhesion receptor and tumor 
specific antigen at the same time are effective in blocking tumor metastasis. A 38c 
hybridoma secreting large amounts of IgM can be grown in the peritoneal cavity of a 
pristane primed mouse to generate the idiotype immunogen (Id). This can be conjugated 
with keyhole limpet hemocyanin and injected in mice along with complete Freund’s 
adjuvant to generate the 38c anti-idiotype antibodies  (306).  
 

If the VH56R+Vκ38c antibody retention in the Golgi is entirely due to the 
specificity of the antibody, then the Golgi specificity of this antibody can be eliminated 
by mutations (induced by addition of mutagens in culture). Production of spherons and 
intracellular accumulation is likely linked. Therefore, VH56R+Vκ38c B cells can be sub 
cloned and the resulting colonies can be tested by light microscopy for spheron 
production. IgM production in each of these colonies can be tested by anti-IgM ELISA. 
Colonies that are negative for spheron production but positive for IgM production can be 
selected and the cells from such colonies can be checked by confocal microscopy for 
Golgi retention. IgM from such cells can be tested for anti-DNA activity. VH56R+Vκ38c 
antibody that loses Golgi specificity but retains DNA binding will be interesting because 
now this antibody is like any other anti-DNA antibody. If a transgenic mouse expressing 
this modified VH56R+Vκ38c receptor is made, then we may not find VH56R+Vκ38c B 
cells in the periphery. This is because without the Golgi specificity, the receptors will 
reach the cell surface and will be subjected to the normal regulatory mechanisms in the 
BM. Instead of relying on mutations in hybridomas, VH56R+Vκ38c scFv with mutated 
Lc residues can be cloned and can be tested for antigen binding in Jurkat cells. 
VH56R+Vκ38c scFv that do not show Golgi binding can be further characterized and 
used to create newer transgenic mice models. 

 
A related experiment would be to prove Golgi retention occurs in primary 

VH56R+Vκ38c B cells and that retention is due to receptor specificity. One way to do 
this would be to use retroviral transfection in cells that are 56R Hc+ to introduce Vκ38c 
and show Golgi localization of the receptor.  Retro viral vectors can be constructed by 
inserting full length cDNAs of Vk38c or mutated Vκ38c Lc into a backbone that has a 
promoter element. Retro virus enclosing the Vκ38c vector can be packaged by 
transfecting the vectors into a packaging cell line. Virus stocks containing the vectors can 
be prepared by collecting the media. 56R Hc+ cells can be infected with the retro virus 
and the 56R Hc+ cells can be analyzed after about a week of infection. The 38C-13 
lymphomas have only the Vκ38c Lc and yet show the intracellular accumulation. Thus 
the intracellular accumulation could solely be due to the Vκ38c Lc and to test that, the 
Vκ38c retroviral vector can be transfected in splenocytes to test whether this would 
recreate the antibody accumulation. VH56R or VH56R/76R Tg mice can be activated 
generically and their splenic B cells can be checked to see whether increased intracellular 
IgM is a common phenomenon.  

 
VH56R+Vκ38c B cells secreting IgM polymers in the form of spherons, has been 

the most unusual finding in this study. Live cell imaging could be used to observe 
features of the formation and growth of the spherons inside the cells. In addition, we 
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could see how they move to the cell surface and how they detach. Alternatively, GFP 
linked Lc constructs can be transfected in 56R Hc+ cells to track the formation and 
movement of spherons. Primary B cells are capable of producing spherons in the 
periphery. VH56R+Vκ38c B cells from the FO or the MZ could be sorted using the anti-
idiotype antibody and placed in culture to ask which group is capable of producing 
spherons. Moreover, the 38c antibody levels reportedly increase in older transgenic mice 
(NLP unpublished observation) and the antibodies detected in serum of older mice could 
include all forms of VH56R+Vκ38c. Nevertheless in older mice, the spherons could get 
deposited in the kidneys instead of circulating in the blood stream. Thus a histochemical 
examination of the kidneys could be performed to look for antibody deposits. To get a 
clearer idea about possible deposition sites for the spherons, labeled spherons can be 
injected to detect the sites where they get localized such as the joints or kidneys etc by 
using a technique called the “Micro positron emission tomography” (PET). PET 
determines the three-dimensional distribution of a radiolabeled agent in vivo. Mice could 
be injected with radiolabeled spherons via the lateral tail vein or via the external jugular 
vein after anesthetizing them. Data is collected by the microPET-R4 scanner. This 
scanner is a small-animal PET scanner and contains detectors capable of axial and 
transaxial resolution. Images are reconstructed into two-dimensional projections using 
specialized software (310).  

 
We have proposed that IgM secreted as monomers and hemimers by the 

VH56R+Vκ38c B cells could be due to the scaffold proteins (ERGIC-53 and ERp44) 
being constrained due to demands imposed by accumulated IgM in the Golgi. 
Unpolymerized μ2L2 monomers if present in the Golgi are bound by ERp44 to be brought 
back to the ER for polymerization and ERGIC-53 transports the IgM pentamers to the 
Golgi (99). If Golgi has accumulated IgM then ERGIC-53 might be unable to unload the 
IgM pentamer and be trapped there creating a depletion in the ER. This could cause more 
monomers to accumulate in the ER which could soak up the ERp44 in the ER. Now if a 
monomer leaves the ER unpolymerized into the Golgi, it cannot be brought back to the 
ER for polymerization because all the ERp44 are occupied. Hence the monomers and 
hemimers likely get secreted in the absence of a quality control step. We could use 
confocal microscopy to test the location of ERGIC-53 and ERp44 in H160.3 hybridomas 
to test the above hypothesis. ERGIC-53 might be concentrated more in the Golgi while 
ERp44 may stain more in the ER if our hypothesis holds true.  

 
The most difficult and challenging task will be the identification of the target 

antigen of the 38c antibody in the Golgi. Our data suggests that there is an antigen in the 
Golgi, but this has not been able to be recovered along with the IgM. At the very least, it 
must be investigated whether the antigen is protein, lipid or carbohydrate. Our data shows 
that the IgM accumulates in the medial-Golgi, and therefore proteins present in the 
medial Golgi can be tentatively selected and placed on a chip. A protein microarray could 
be used to test the 38c IgM. However it must be distinguished as to which fraction of the 
38c IgM binds to which of the medial-Golgi antigens. Since 38c hybridoma supernatants 
are polyreactive it is possible that 38c antibodies in hybridoma supernatant will show 
binding to many or most antigens on the chip. Therefore it is necessary to separate the 
different IgM fractions by size exclusion (various fractions will have different Svedberg 
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units) after ultracentrifugation and then test them for antigen binding. Lipids and 
carbohydrates can be tested by ELISA and as before may have to be selected tentatively.  

 
 Overall, data documented in this thesis, likely forms the basis of an important new 
mechanism for escape of autoreactive B cells to the periphery. It remains to be seen if 
this phenomenon is applicable in both healthy and autoimmune prone individuals. IgM 
secretion has been studied extensively and the consequences due to defects or variations 
in components of the IgM molecule have been well documented. However, as far as we 
can determine, it is the first time spherons have been described and in such detail with 
extensive characterization. The discovery of spherons has the potential to alter traditional 
views about immune complex deposition in disease and offer new insights into the 
origins of immune complexes during pathogenesis of autoimmune disorders.      
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