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ABSTRACT 
 
 
Introduction:  Improved environments in the U.S. have resulted in taller, larger, 
and heavier children and adults compared to past generations.  Studies of other 
skeletal-dental dimensions have shown increases across generations, and our 
perception is that teeth now are forming faster.   The purpose of this study is to 
test for a secular trend towards faster tempos of tooth mineralization in a sample 
of U.S. white adolescents over the past quarter century (1980-85 to 2005-10). 

 
Materials:  Two cohorts of 200 children each were identified, each with an age 
range of 10-to-15 years, one group from 1980-85 and the more recent group from 
2005-10.  Children all were phenotypically normal American whites from the 
same dental clinic.  Stages of tooth mineralization were scored for the lower 8 
permanent tooth types using the 8-grade Demirjian system (Demirjian A, 
Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol 
1973;45:211-27).  Proportional hazards analysis was used to test for cohort 
differences while controlling for sexual dimorphism in tooth formation tempos. 
 
Results:  In the age interval studied, 10 tooth-stage combinations could be 
analyzed statistically.  Median ages of the stages were characteristically younger 
in the recent (2005-10) cohort, and 5 of these 10 comparisons achieved statistical 
significance (P < 0.05).  The difference between the cohorts is larger in girls than 
in boys.  Faster tempos of development are on the order of ½ year.   
 
Conclusion:  Faster growth tempos mean that age-sensitive procedures—such a 
serial extraction or harnessing adolescent growth—occur at younger ages and 
that published standards for tooth formation and emergence probably now are 
biased.  Faster maturation also suggests that children of the same chronological 
age are biologically more mature than in the past.  It remains to be seen how 
widespread these secular quickenings are, both geographically and across 
segments of the population. 
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CHAPTER 1.  INTRODUCTION 
 
 

It is a common perception in the United States that people have gotten 
taller and heavier by adulthood and that children are maturing faster.  Girls 
reach menarche at progressively younger ages, whereas today’s professional 
basketball players seem to tower over their counterparts of years past.  These 
sorts of changes in height, weight, and overall maturity from generation to 
generation are referred to as “secular trends” (Tanner 1990) or what Kuczmarski 
(1993) terms changes over time.  Malina (1990) explains that secular trends are 
the result of an interaction between human genetic predisposition and 
environmental influences. 
 

Researchers continue to debate as to why such changes in the human 
body occur.  Van Wieringen (1978) discusses the idea that humans are getting 
closer to reaching their genetic potential because improved nutrition and 
diminished incidence of childhood disease allow humans to attain their “optimal 
health.”  In the age of worldwide travel and communication, greater genetic 
intermixing of cultures could lead to more favorable genetic conditions in 
offspring, so-called “hybrid vigor” (e.g., Kozieł et al. 2011).  For example, Hulse 
(1957) found that grown-up sons of parents who came from different Swiss 
villages were 2 cm taller than sons of parents who came from the same village.  
The inference is that out-breeding seemingly leads to more favorable growth in 
sons due to increased heterozygosity.  Secular changes also seem to impact the 
developing dentition.  Researchers have found increasing tooth size, earlier 
eruption, faster calcification rates, and changes in arch dimension over time.  
George Nadler (1998) suggests that orthodontists are initiating orthodontic 
treatment of American adolescents earlier than they did 20 years ago.  He 
suggests that earlier treatment is not necessarily due to differences in 
mechanotherapy or a general lack of patients, but to earlier dental maturation of 
adolescents. 
 

Treatment planning for the pediatric and adolescent patient can depend 
on the level of dental maturation the child has achieved.  More broadly and more 
commonly, the orthodontist needs to be aware of how the child’s growth is 
progressing relative to group-appropriate norms.  Chronological age is most 
commonly used to estimate a child’s maturity, but this approach is imprecise 
because it does not account for differences in the tempos of development among 
children (Harris 1998).  So-called dental age—the extent of tooth development—
is a useful measure of a child’s progress towards maturity. 
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Tanner et al. (1975, p. 1) recognized that maturity is a continuum that 

“takes an individual from a state of being wholly immature to another of being 
wholly mature.”  Maturity measures must be defined by achievement of defined 
morphological or structural stages that every individual passes through along 
the pathway from immaturity to maturity.  Chronological age may not coincide 
with maturity levels since some children reach a given developmental milestone 
faster or slower than others of the same chronological age. 
 

Tanner et al. (1975) stated that the use of an age scale to estimate maturity, 
and vice versa, is not advisable for the following reasons.  First, it fails at the 
extremes.  For example, in skeletal maturity no particular age can be associated 
with an individual whose teeth or bones are fully mature, even though his status 
of 100% skeletal maturity is unequivocal.  Second, and more importantly, the 
relationship between chronological age and maturity varies from one population 
to another or from one age interval to another, so unless the maturity scale is 
continuously redefined and updated in relation to actual age, the result will be 
that the maturity scale and age do not correspond to each other (Eveleth and 
Tanner 1990).  Tanner et al. (1975) contend that it is more proper to view maturity 
in a manner that does not refer directly to age, but rather to investigate maturity 
and its relation to age as a second step in any given population assessment. 
Maturity estimates based on the percentage of adult form that has been achieved 
are also problematic when examining a child because his final endpoint in 
maturity is unknown.  For instance, a child who appears tall for his age may be 
more mature than his peers or just a child of average maturity who will be a tall 
adult.  Such determination can only be made retrospectively when final adult 
height becomes available. 
 

Physiological age is a more informative measure of maturity than 
chronological age.  Moorrees et al. (1963, p. 1490) defined physiological age as 
“the degree of maturity of the biologic tissue and organ systems an individual 
has achieved.”  Most children are average maturers, meaning that their 
chronological and physiological ages coincide fairly closely.  Other children lag 
behind in biologic maturity with regard to their chronological age.  Still others 
develop faster than indicated by their chronological age (e.g., Acheson and 
Dupertius 1957).  Chronological age only provides a rough estimate of 
developmental status, and it cannot be relied upon solely because of varying 
tempos of growth among children of the same chronological age. 
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Developmental status—the degree of adult form that has been attained—
can be estimated in several ways and expressed as an age.  Examples of 
physiological methods reviewed by Steel (1965) and Krogman (1968) are:  (1) 
skeletal age; (2) dental age; (3) morphological age based on height or weight; and 
(4) age estimates from secondary sex characteristics.  Skeletal age dominates 
much of the health care literature on the subject.  However, dental age is of 
particular interest to dental specialists since it is derived specifically from the 
development of the teeth.  Additionally, dental age is useful in forensic science to 
determine the age at death of unknown individuals (e.g., Harris et al. 2009).  
Teeth are among the least destructible body tissues and are often the most 
reliable indicator of age in corpses (Johanson 1971; Harris et al. 2009). 
 

Anderson et al. (1975) stated that tooth mineralization stages are less 
affected by nutritional (e.g., Garn 1965a; Riesenfeld 1970; Tonge and McCance 
1965, 1973) and endocrine (Garn 1965b) variations and provide a more accurate 
indication of chronological age than do developing bones (also see Demirjian 
1978).  Thus, dental age constitutes an important measure in the dental 
specialties and in forensics and anthropology.  Dental age also is useful in 
gauging the ages of children without documentation (e.g., Brook and Barker 
1973) as well as older persons who claim to be minors (e.g., Mincer et al. 1993). 
 

The present study analyzes the tempos of permanent tooth development 
in a cohort of American white children from the Mid-South United States to 
contribute to understanding of secular changes in tempos of tooth formation.  
This project provides contemporary, sex-specific norms for dental development 
in the Mid-South United States.  This project is similar to one performed by 
George Nadler (1998) who suggested a difference in dental age of maturation 
between adolescents treated in the 1970s compared to these in the 1990s. 
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CHAPTER 2.  REVIEW OF THE LITERATURE 
 
 
Secular Trends:  Definition 
 

The word secular is an adjective referring to a prolonged period of time.  A 
secular trend is a change in direction or tendency of something or some event over 
successive periods of time (e.g., Garn 1987).  Secular trends occur in the absence 
of genetic changes; they occur within the same population over time due to 
changes in the environment (such as levels of childhood morbidity and of 
nutrition).  It is important to distinguish between changes over generations due 
to changing environments versus changes in the population, such as would occur 
with significant immigration of people with different genetic backgrounds.  
Secular trends can be positive—a quickening of growth and increases in size due 
to favorable environments—or negative--a slowing of growth tempos and 
diminished size due to an adverse environment. 
 

In terms of growth, secular trends have been noted most often for children 
becoming taller and heavier over time (e.g., Gordon-Larsen et al. 1997; Tanner 
1968).  The noted increases in height and body mass of children from successive 
generations may be related to earlier maturation (Tanner 1968; Wyshak and 
Frisch 1982).  Connecting the dots, Thompson et al. (2002) explain that greater 
stature and body mass are observed at earlier chronological ages in those who 
are more advanced biologically.  Not surprisingly, research has shown that for 
both males and females born in the late 1900s peak height velocity, a measure of 
morphological maturity (Thompson et al. 2002), occurs at a younger 
chronological age than those born in the early 1900s (Hauspie et al. 1996, 1997; 
Murata and Hibi 1992; Roche 1979; Vercauteren and Susanne 1985).  
Furthermore, girls have experienced increased tempos of maturation as shown 
by earlier onsets of menarche over this same time interval (Hauspie et al. 1997; 
Huen et al. 1997; Lin et al. 1992; Tanner 1968; Wyshak and Frisch 1982). 
 

Secular trends are reversible, not universal, occur sporadically, exhibit 
ethnic and geographic differences, seem to respond to genetic and environmental 
influences, and can be described as positive, negative, or absent (Van Wieringen 
1978; Malina 1990).  The guiding theme is that the tempo of growth responds to 
the quality of the environment in which a cohort of children grows up.  A positive 
secular trend is illustrated by the common observation that children today are 
taller, heavier, and mature earlier than children of generations past.  A negative 
secular trend would occur if children and adults of more recent generations were 
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of shorter stature than children and adults of generations past.  Unchanging 
stature from generation to generation would indicate the absence of a secular 
trend.  Malina (1990) notes that the absence of a secular trend indicates two likely 
scenarios:  (1) the population in question may have attained its genetic potential 
for size and timing of maturation or (2) the population is living under 
environmental conditions that have not improved enough to allow a positive 
secular trend, however, is not impoverished enough to undergo a negative trend. 
 

It is worth articulating the point that a secular trend is a cross-generational 
effect seen at the level of the group (sample) or population.  A secular trend 
affects individuals, but can only be seen at the level of the group.  As such, it is a 
statistical concept, not a directly measurable phenomenon.  Moreover, studies 
reveal that not all individuals (nor all components of a group) respond the same 
(Hauspie et al. 1997).  For example, raising average body size across generations 
has been due to the reduction of very small (short, thin subjects) that have been 
particularly disadvantaged by society or the environment rather than uniformly 
enhancing growth across all subjects (Tanner 1962).  This recalls the aphorism 
that “a rising tide lifts all boats.”  Improving the health and nutrition of the least 
advantaged segments of a society often have the biggest “pay off” for the 
population at large.  This has been documented as well for the transition over the 
past two centuries in industrialized countries from most causes of illness being 
acute-onset high-mortality diseases such as scarlet fever, rubella, and malaria to 
chronic, generally adult-onset problems such as type II diabetes, hypertension, 
and Alzheimer’s disease (Omran 1971, 1983).  Substantive reductions in acute 
child-onset diseases (which are more prevalent in lower socio-economic strata of 
populations) have the effect of raising the average health (and growth) of the 
population.  In other words, there can be a greater effect on the population 
average of improving the well-being of the least-advantaged segments of a 
population compared to further-enhancing the growth of those who are already 
well off (Cameron 1993). 
 

Secular trends have only been briefly touched upon but they are well-
documented in the characteristics of height, weight, and sexual maturation (Van 
Wieringen 1978), all of which are important parameters for assessing growth 
over time.  Numerous other features of growth also exhibit trends, such as head 
circumference (Nellhaus 1970) and thorax width, hemoglobin level (Owen et al. 
1970), blood chemistry, skeletal age (de Wijn and Tusbach 1961), and dental 
development (Garn and Russell 1971).  Although some use the term secular to 
denote the specific time frame of a century, secular shifts can occur across shorter 
periods (Van Wieringen 1978). 
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Secular Trends:  Significance 
 

Van Wieringen (1978) notes that the importance of studying secular 
growth changes is threefold:  First, a close interrelationship has been established 
between shifts in growth and in patterns of morbidity and mortality.  From an 
epidemiological standpoint, secular growth trends are an indicator of public 
health based on comparing regional and nationwide growth patterns.  Secondly, 
secular growth trends can be used to assess the growth of an individual child 
compared to the population to which the child belongs.  The main characteristics 
of growth and somatic differentiation are height, weight, and sexual maturation.  
A child is deemed short or tall, underweight or overweight, sexually delayed or 
advanced when plotting his or her individual growth measures against 
established norms.  These norms, however, must be periodically updated to 
account for a population’s tempo of growth that shifts over time.  Thirdly, the 
social impact of a secular growth shift is important.  For example, Garn (1966) 
noted that the proportions that humans create in their world are largely 
determined by the distance between their feet and the top of their head.  Changes 
in stature over time affect clothing, furniture, the tools we use, architecture of 
houses, schools, and offices.  An earlier development of maturation 
characteristics, and thus biological adulthood, may have an effect on legislation, 
jurisdiction, education and treatment timing. 
 
 
Secular Trends:  Early Studies 
 

Van Wieringen (1978) relates that interest in human growth gave rise to 
nonscientific, emotional assumptions as well as scientific research.  Such 
assumptions included the belief that the uncivilized enemy was much taller and 
stronger than the civilized society.  This generally served as an excuse in defeat 
and a great triumph in the case of victory.  As cited in Van Wieringen (1978), 
several researchers indicate that the ancient Romans classified their soldiers 
based on height and were interested in the heights of soldiers of countries with 
whom they were at war (Kiil 1939; Oppers 1963; Udjus 1964). 
 

According to Van Wieringen’s scholarly review, early epidemiological 
growth studies of note were performed by Villermé and by Quételet.  Villermé 
(1829) studied official statistical data of French soldiers drafted between 1800 and 
1810 as to height, age at which adult physical development was attained, 
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percentage of rejections on account of ill health, and occupational status.  
Villermé also collected data concerning the standards of life in the various French 
districts from which the recruits were drafted, along with mean height, and 
percentage of rejected conscripts.  He conjectured that when the age of 
conscription was lowered, there was an increase in the number of “undersized” 
conscripts from poor areas compared to regions of high prosperity, indicating 
that growth in poor regions was slower.  He noted that when the standard for 
minimum height was lowered, the percentage of rejections on account of ill 
health increased, which suggests that small persons tended to be less healthy 
than tall persons.  Villermé further remarked that the majority of French men did 
not attain the average adult height of 164.4 cm before 20 or 21 years of age, and, 
in regions where living conditions were unfavorable, this height was not attained 
before the ages of 22 or 23.  He suggested that government could promote a 
population’s health and growth by improving general living conditions. 
 

Villermé’s publication interested the astronomer and statistician Quételet, 
who proceeded to study a sample of 900 Belgian conscripts.  Quételet (1830, 1831, 
cited in Van Wieringen 1978) found that men from the countryside were on 
average 2 cm shorter than those in the city.  He established an association in 
height according to socioeconomic level, whereby those who lived in the city 
lived in more favorable conditions.  According to Van Wieringen, both Villermé 
and Quételet interpreted their results as indicating that changes in living 
conditions are accompanied by changes in linear growth, morbidity, and 
mortality. 
 
 
Secular Trends in Sexual Maturation 
 

A frequently studied secular change involves sexual maturation.  Pubic 
hair, breast development, and the onset of menstruation are the most prominent 
characteristics of sexual maturation in girls, whereas pubic hair and growth of 
the genitalia and testes are the characteristics used to monitor sexual maturation 
in boys (e.g., Marshall and Tanner 1969, 1970).  Berenberg (1975) showed that 
menarche in many countries in Europe began 2 to 4 years earlier roughly a 
century ago.  In other words, girls have begun menstruation at a rate of 3 to 4 
months earlier per decade (Figures 1 and 2).  The shortcoming of Berenberg’s 
study is that data collected before the 1920s is the recollected age of menarche, 
meaning the actual event had occurred and recalled years later. 
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Figure 1. Girls from high income families begin menstruation at an earlier age 
than those girls from low income families. 
 
Reprinted with permission.  Berenberg SR. Puberty, biologic and psychosocial 
components. Leiden: Stenfert Kroese; 1975, p. 35. 
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Figure 2. Early menarche in European countries from 1840 to 1970. 
 
Reprinted with permission.  Berenberg SR. Puberty, biologic and psychosocial 
components. Leiden: Stenfert Kroese; 1975, p. 36. 
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A more recent study by Cho et al. (2009) shows that the mean age of 
menarche decreased from 16.9 years for Korean women born between 1920 and 
1925 to 13.79 years for women born between 1980 and 1985, indicating a 
downward trend in age of menarche of 0.7 years per decade (Figure 3).  
Furthermore, Cho and colleagues found the mean age at menarche of girls born 
between 1986 and 1995 to be 13.1 years.  The authors attributed the trend to 
many factors including higher body mass indexes, lower maternal menarcheal 
age, lower maternal age at birth, and better nutrition as measured by greater 
intake of protein, sugar, fiber, ash, phosphate, natrium, thiamine, riboflavin, and 
niacin for menarcheal girls.  O’Connell et al. (2009) found similar results in 
Ireland, finding that the mean age at menarche decreased from 13.5 years in 1986 
to 12.5 years in 2006.  Jones et al. (2009) found a statistically significant decrease 
in age of menarche for Black women in South Africa born in 1956 compared to 
those born in 1990. 
 

Although less commonly studied than menarche, the Copenhagen 
Puberty Study found statistically significantly earlier breast development among 
girls born more recently (Aksglaede et al. 2009).  Such studies indicate that 
women initiate their sexual development at an earlier chronological age than in 
past generations. 
 

Menarche has also been known to be influenced by nutrition and, 
indirectly, socioeconomic status.  Many researchers have found that girls in 
disadvantaged families achieve menarche later than girls in well-off families 
(summaries in Eveleth and Tanner 1975, 1990).  Carfagna et al. (1972) reported 
such results in Naples, Italy; Indira Bai and  Vijayalakshmi (1973) in Tirupati, 
South India; and Neyzi et al. (1975) in Istanbul, Turkey.  Also, a study from 
Constanza, Romania, found that menarche arrived 2.1 months later for every 
additional sibling in the respective family (Štukovskŷ et al. 1967).  A report by 
Leenstra et al. (2005) studied rural areas with endemic malaria in western Kenya 
with high levels of malnutrition and found that menarche was delayed 1.5 to 2.0 
years compared to a US reference population.  Similarly, a 3-year delay in 
menstruation of Senegalese adolescents was described by Simondon et al. (1997) 
and attributed to malnutrition.  These studies suggest that decreases in 
socioeconomic and nutritional conditions are associated with prolonged onset of 
menarche. 
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Figure 3. Decrease in age of menarche from 1920 to 1985. 
 
Reprinted with permission.  Cho GJ, Park HT, Shin JH, Hur JY, Kim YT, Kim SH, 
Lee KW, Kim T. Age at menarche in Korean population: secular trends and 
influencing factors. Eur J Pediatr 2010;169:89-94. 
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Secular Trends:  Stature 
 

Studies of secular trends in height are numerous.  Over the past century, 
the trend is that people are not only getting taller, but also reaching taller 
statures at an earlier age.  Tanner’s (1966) review of more than a hundred 
publications dealing with secular changes in growth and maturation brought 
forth the following remarks:  (1) The positive trend in height in the 19th century 
coincided with the moment industrialization improved socioeconomic 
conditions.  (2) The trend began after birth and at the age of 5 to 7, height 
increased 1 to 2 cm/decade.  (3) The gain in weight was proportional to the gain 
in height, so there was a change in size rather than proportion.  (4) War and 
hunger slow gains in height and weight.  (5) Adult height increased by 10 cm 
and was reached at an earlier age (18 years compared to 26 years).  (6) Swedish 
boys reached their peak height velocity one year earlier in 1938 than in 1883, and 
Norwegian boys had their growth spurt at 14 in the 1930s compared to 17 
between 1825 and 1837.  Tanner (1966) suggested that the trends in adult height 
were due to some combination of genetic and environmental factors. 
 

Further studies extend Tanner’s discoveries.  Ljung et al. (1974) found that 
Swedish children and adults became taller at all ages from 1883 to 1939 (Figure 
4).  Brundtland et al. (1975) found the same positive secular trend in height over a 
two decade period in Oslo school children and adolescents aged 7 to 16 years.  
De Wijn (1975, cited in Van Wieringen 1978) found an increase in median height 
for Dutch school children from 1965 to 1974.  Baynouna et al. (2009) reported an 
increase in height of 8.2 cm in men and 7.2 cm in women in two different cohorts 
40 years apart from the United Arab Emirates, the younger generation being the 
taller.  They postulated that the increase in height of the more recent generation 
was due to the discovery of oil in the late 1960s and the ensuing wealth and 
increase in standard of living.  Similarly, Papadimitriou et al. (2009) found a 
secular increase in height for all ages of Greek schoolchildren in 2005 compared 
to a 1994-1995 cohort. 
 
 
Other Secular Trends 
 

Secular trend studies extend to numerous other body dimensions and 
features.  Little et al. (2006) analyzed the secular changes in craniofacial 
dimension among indigenous children in an isolated community in Oaxaca, 
Mexico, between 1968 and 2000.  They measured four craniofacial dimensions 
(head length and breadth, and bizygomatic and bigonial breadths) of 
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Figure 4. Secular trend in growth of height of Swedish boys and girls.  
Chronological age is shown along the X-axis.  The data make it clear that the 
secular trends involve children of all ages.  It is not just the adult heights that 
differ. 
 
Reprinted with permission.  Ljung BO, Bergsten-Brucefors A, Lindgren G. The 
secular trend in physical growth in Sweden. Ann Hum Biol 1974;1:245-56. 
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schoolchildren aged 6 to 13 years in 1968, 1978, and 2000.  Over this 32-year 
interval there were significant secular changes in the following craniofacial 
dimensions:  (1) head length became shorter both in boys and in girls; (2) 
bizygomatic breadth became narrower in both sexes; (3) head breadth increased 
over time, but only among girls; (4) brachycephalization increased significantly 
in both sexes; and (5) zygomatic index decreased significantly in boys.  Overall, 
the craniofacial complex changed to a shorter head length and narrower face, 
with the midface and lower face (mandible) changing at approximately the same 
rates.  The authors attributed these secular changes to decreased food coarseness 
and relaxed natural selection that led to a greater developmental plasticity. 
 

Bodily secular trends are not only found in the skeleton but also in 
integumental structures.  Henneberg and George (1995) found a positive secular 
trend in the occurrence of the median artery in the forearm.  The incidence of the 
median artery found in adult cadavers before the 1960s was between 4 and 8%, 
whereas its prevalence rose to 53% in 1980 to 1991.  The authors point out that 
since the artery normally dwindles around the 7th week of intrauterine life, its 
increased prevalence into adult life indicates a trend in intrauterine 
development.  
 
 
Secular Trends in the Dentition:  Tooth Size 
 

Studies have found secular trends in tooth size.  Garn et al. (1967) 
compared 46 fathers with 49 of their sons and found the mesiodistal crown 
diameters to be significantly greater in 8 of 28 permanent tooth types.  They 
found a mean increase in tooth size of 0.12 mm in sons across this one 
generation.  Lavelle (1973) studied 150 British Caucasian families and found an 
average effect of 0.08%increase in tooth size in the mesiodistal dimension and 
0.06% increase in the buccolingual dimension from parent to offspring.  A study 
by Lindsten et al. (2002) compared tooth size between a sample of 48 skulls from 
the Schreiner Collection at the University of Oslo to three contemporary samples 
and found that the skeletal sample had smaller permanent tooth crown sizes.  
Another study by Lindsten et al. (2001) reported that mandibular incisors were 
less aligned in 9-year-olds born in the 1980s compared to a cohort born in the 
1960s.  They concluded that larger teeth could indicate a secular trend toward 
increased prevalence of malocclusion in the present population.  Overall, the 
research suggests that tooth size is increasing over time. 
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A two-generation study by Harris et al. (2001) documented significantly 
increased buccolingual tooth dimension in the premolars and molars of children 
in stable post World War II China compared to their parents who experienced 
development during and after the economic instability in China during World 
War II.  It is likely that nutritional deficiencies during the development of the 
premolars and molars in the older generation were responsible for the smaller 
teeth.  This study contended that economic and nutritional hardships can result 
in a physical change in tooth size. 
 

Some controlled animal studies have also looked at the effects of altered 
environments:  Paynter and Grainger (1956) showed that exposing pregnant and 
lactating rats to nutritional deficiencies resulted in an altered size and shape of 
the offspring’s first molars.  Specifically, the mesiodistal diameter was smaller 
and the shape and size of the mesial-occlusal fissure was altered.  Similarly, 
Shaw and Griffiths (1963) documented that pregnant and lactating rats fed a 
protein-deficient diet experienced reduced molar size, especially of third molars.  
The third molars had a high percentage of distortion of the mesiolingual cusp, 
delayed eruption and increased caries susceptibility (Shaw 1969). 
 
 
Secular Trends in the Dentition:  Arch Size 
 

Secular trends have also been found in dental arch dimensions (Lindsten 
2003).  The transverse dimension of a dental arch can be measured from different 
landmarks; for example, the distance between the buccal crowns of canines or the 
distance between the mesiolingual cusps of the first molars.  In order to attain the 
ideal overbite and overjet in the posterior buccal segments, the maxillary 
transverse dimension must be larger than the mandibular transverse dimension.  
A decrease in the difference between the arches could lead to a malocclusion, 
such as a posterior crossbite.  Lindsten et al. (2001) compared two cohorts of 9-
year-old children born in the 1960s and 1980s and compared their transverse arch 
dimensions.  They found that the transverse intermaxillary difference was 
smaller in boys and in girls in the 1980s than in the 1960s.  This is noteworthy 
because this trend increases the likelihood of malocclusion, particularly posterior 
crossbites, in the younger generation.  Similar results were found by Lindsten et 
al. (2002) when comparing skeletal samples from the 14th and 19th century to 
contemporary Norwegian samples.  They found a larger intermaxillary 
difference in intercanine distance and intermolar distance in the skeletal group as 
compared to the contemporary samples. 
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Studies have found a secular trend in lateral arch length.  Lateral arch 
length is defined as the distance between the mesial surface of the first 
permanent molar to the distal surface of the permanent lateral incisor.  Lindsten 
et al. (2000) studied the lateral arch spaces between two cohorts of 9-year-olds 
born 20 years apart.  They found that children born in the 1980s had significantly 
larger lateral arch spaces in the maxillary and mandibular dental arches than the 
children born in the 1960s.  They attributed the increase in arch length to the 
recent decline in dental caries prevalence and resultant preservation of 
interproximal tooth structure. 
 
 
Secular Trends in the Dentition:  Tooth Emergence 
 

Secular trends have been found in tooth emergence.  A study by Helm 
(1969) analyzed the mean eruption times for canines, premolars, and second 
molars for two cohorts of Danish school children, one in 1913 and the other in 
1965.  Helm found that the recent sample displayed an earlier eruption of the 
second molar and canine in the maxilla and mandible and the first premolar in 
the mandible.  He also found the interval between the first and last erupting 
tooth was appreciably shorter in the recent, 1965 sample and that the emergence 
sequences differed between the cohorts.  Notably, this study shows a change in 
pattern of eruption over the 50 year span (Figures 5 and 6). 
 

Höffding et al. (1983) analyzed schoolchildren aged 6 to 15 years of age to 
provide mean times of emergence of permanent teeth in Japan.  They found 
earlier mean times of emergence when comparing the results with data from 
Japanese children in 1934 (Figures 7 and 8). 
 

In contrast to Helm and Höffding, two longitudinal studies by Parner et al. 
(2000) of Danish children compared cohorts from 1969 to 1982 and found a slight 
statistically significant increase in mean emergence times for both sexes in almost 
all teeth for the more recent cohort.  The authors found a mean increase in age of 
1.5 days per year for boys and 2.6 days per year for girls.  Parner and colleagues 
mention that although it is well known that a general acceleration in physical 
development has been observed over time, this had no acceleratory effect on the 
emergence of permanent teeth in their sample. 
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Figure 5. Test of secular trend in permanent tooth eruption in girls. 
 
Reprinted with permission.  Helm S. Secular trend in tooth eruption: a 
comparative study of Danish school children of 1913 and 1965. Arch Oral Biol 
1969;14:1177-91. 
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Figure 6. Test of secular trend in tooth eruption in boys.  
 
Reprinted with permission.  Helm S. Secular trend in tooth eruption: a 
comparative study of Danish school children of 1913 and 1965. Arch Oral Biol 
1969;14:1177-91. 
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Figure 7. Plot of mean ages at eruption for 12 permanent tooth types in boys. 
 
Reprinted with permission.  Höffding J, Maeda M, Yamaguchi K, Tsuji H, 
Kuwabara S, Nohara Y, Sadahiro Y. Emergence of permanent teeth and onset of 
dental stages in Japanese children. Community Dent Oral Epidemiol 1984;12:55-
8. 
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Figure 8. Plot of mean ages at eruption for 12 permanent tooth types in girls. 
 
Reprinted with permission.  Höffding J, Maeda M, Yamaguchi K, Tsuji H, 
Kuwabara S, Nohara Y, Sadahiro Y. Emergence of permanent teeth and onset of 
dental stages in Japanese children. Community Dent Oral Epidemiol 1984;12:55-
8. 
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A Natural Experiment in Modulating Tempos 
 

Much of the literature on secular trends focuses on statue and body 
weight because there is a long history of national surveys of these variables and 
they are fairly simple to obtain in a systematic manner (e.g., Garn 1987; Malina 
2004).  In contrast, few data are available regarding aspects of the dentition such 
as tooth emergence and caries rates.  This makes the prospective study of the 
dental status of Norwegian children (Toverud 1956, 1957a,b) of particular 
interest relative to the theme of the present study. 
 

Toverud (1956) relates that prior studies in Europe following the First 
World War (and following the Spanish Civil War) described marked reductions 
in dental caries of children—evidently because of food restrictions, especially of 
cariogenic foods.  Rather heroically, the Norwegian State Dental School planned 
a dental study that would proceed through and following the upcoming Second 
World War (WW II).  The dentists’ intent was to test whether (A) primary tooth 
exfoliation, (B) permanent tooth eruption, and/or (C) caries rates would be 
affected by the wartime conditions.  Norway was invaded by the Germans in 
April of 1940, and dental data were collected annually for the school years of 
1940-1941 through 1948-1949, and subsequently in 1951-1952 and 1952-1953.  
(WW II ended in Europe on May 8, 1945.)  Toverud (1956, 1957a,b) provides 
extensive analyses of data from the dental examinations, and only a few key 
issues are described here. 
 

The two themes of the analysis are that, due to food-rationing during the 
German Occupation of 1940-1945, (1) caries rates declined and (2) permanent 
tooth emergence was delayed.  After the war, these rates returned towards their 
prewar levels. 
 

As an aside, caries was rampant in Norway in this pre-fluoride era, and 
substantial percentages of deciduous teeth were lost prematurely, which can 
hasten eruption of the successors (e.g., Fanning 1961).  This can confound 
interpretation of the nutritional impact on tooth eruption, so the following 
examples focus on the permanent molars that are unaffected by this factor 
because they have no predecessors. 
 

Eruption of the permanent second molars provides an obvious example of 
the delayed emergence due to nutritional declines (Figure 9).  These data had 
been collected each year on 9 year olds.  Toverud (1956, p. 416) noted that, “the 
need for calories was not met by a large proportion of the children.  The 
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Figure 9. Graphs of the declines in the number of permanent upper second 
molars in Norway for three one-year cohorts.  (Top) Data for boys.  (Bottom) 
Data for girls.  Interpretation is that tempos of growth slowed during WW II, 
primarily because of food restrictions.  These permanent molars (without 
predecessors) are not affected by alterations in timing of the primary teeth. 
 
Reprinted with permission.  Toverud G. The influence of war and post-war 
conditions on the teeth of Norwegian school children. I. Eruption of permanent 
teeth and status of deciduous dentition. Milbank Memorial Fund Quarterly 
1956;34:376. 
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insufficiency of the diet was particularly marked for children in the ages of 
prepuberty, periods of rapid growth.”  Interpretation of Figure 10 is that second 
molar eruption was progressively delayed in children as the war progressed, and 
this is reflected in lower percentages of emerged second molars in both sexes 
across the three sets of years examined.  Indeed, by chi-square analysis, all six of 
the trends plotted in Figure 9 show highly significant differences. 
 

In concert with delays in permanent tooth emergence, Toverud shows that 
percentages of retained primary teeth increased in response to the wartime 
conditions.  For example, in 8-year-olds (Figure 10), the percentages of children 
with primary first molars in place increased across time.  The graph shows that 
the response is quite similar in boys and girls, and both sexes exhibit some 
recovery at the latest, 1952-1953 examination. 
 

Percentages of decayed and filled teeth (DF scores) are a coarse measure 
of nutrition, and these rates decreased significantly as the war progressed.  The 
trends are consistent for the primary canines, first molars, and second molars in 
each arch and in both sexes.  Data for the mandibular teeth are graphed in Figure 
11.  Tooth decay depends on a food source for the bacteria to consume, so the 
logical scenario is that under-nutrition reduces the availability of plaque for the 
bacteria to feed upon. 
 

In sum, Toverud’s analysis provides one of the most extensive studies in 
humans showing how restricted nutrition impacts dental development.  
Nutritional effects of WW II on children’s growth is a “natural experiment” 
where there is no control of the conditions of specific individuals or groups 
examined, but it shows directly the response of humans, so it complements 
controlled animal experiments (e.g., Shaw 1970) where the specimens’ lifestyles 
are well regimented but they are not human. 
 
 
Dental Secular Trends and Nutrition 
 

The reigning explanation as to why researchers have found increasing 
tooth size as well as earlier dental emergence and earlier tooth formation over 
time is altered nutrition.  Thompson et al. (2002) examined the development of 
fatness, as measured by skinfold thicknesses, in healthy white children and 
adolescents from Canada in the 1960s and 1990s.  The authors collected data 
from two previous longitudinal studies spaced 30 years apart.  When they 
matched sex, height, body mass, and maturity between the two studies, they 
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Figure 10. Graph of the percentages of 8-year old children with retained 
primary mandibular second molars.  Interpretation is that restricted-nutrition 
during WW II is reflected in slower tempos of dental maturation.  After the War, 
there is a slight return toward the pre-War status. 
 
Reprinted with permission.  Toverud G. The influence of war and post-war 
conditions on the teeth of Norwegian school children. I. Eruption of permanent 
teeth and status of deciduous dentition. Milbank Memorial Fund Quarterly 
1956;34:391-2. 
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Figure 11. Graphs of the declines in decayed plus filled primary teeth across 
three cohorts in Norway.  (Top) Data for boys across the three-year cohorts.  
(Bottom) Data for girls.  The progressive declines are interpreted as enhanced 
dental health due to restricted diets during WW II and afterwards. 
 
Reprinted with permission.  Toverud G. The influence of war and post-war 
conditions on the teeth of Norwegian school children. I. Eruption of permanent 
teeth and status of deciduous dentition. Milbank Memorial Fund Quarterly 
1956;34:402. 
  



26 

found that skinfold thicknesses of the males and females in the more recent 
cohort was significantly greater than the previous.  The fatness of children and 
adolescents had increased over the 30-year interval.  The increased trend of 
childhood obesity has dental consequences.  Hilgers et al. (2006) looked at the 
difference between chronological age and dental age (per the Demirjian method) 
of 104 children, and analyzed this difference against body mass index (BMI), age, 
and the child’s sex.  Dental development was accelerated in overweight and in 
obese children by 1.51 and 1.53 years, respectively.  The secular increase in 
childhood obesity is one good reason to expect a secular change in tooth size, 
mineralization tempos, and thus timing of tooth emergence. 
 

At the other end of the spectrum, studies have shown that malnutrition 
tends to slow dental development.  Bastos et al. (2007) studied a sample of 359 
Brazilian children born in 1993.  These authors set out to determine the best 
predictors of pairs of emerged teeth at 6 and 12 months of age and emergence of 
first permanent molars at 6 years of age.  Gestational age is predictive of the 
number of pairs of emerged teeth at 6 months.  Birth length and growth stunting 
at 6 months of age are associated with the number of pairs of emerged teeth in 
children aged 12 months.  Growth stunting at 6 months of age predicts the 
emergence of the first permanent molars at 6 years.   Growth stunting is defined 
as the reduction in final stature at adulthood due to past chronic malnutrition 
(Waterlow et al. 1977).  Bastos and colleagues found a link between malnutrition, 
as reflected in low birth length and stunting, and delayed tooth emergence.  
These results are not surprising in that delayed dental emergence has been 
reported to be associated with malnutrition, low socioeconomic status, low 
birthweight, and prenatal diseases (Enwonwu 1973; Ondarza et al. 1987; Ondarza 
et al. 1997; Robinow 1973).  Some studies, however, have found no statistical link 
between nutrition and dental development (Flores-Mir et al. 2005; Cameriere et al. 
2007), whereas others such as Garn and Russell (1971) contend that tooth 
eruption is only modestly delayed in instances of malnutrition and slightly 
advanced in obesity.  Obviously, differences among these studies are readily 
explained by the actual levels of “malnutrition” observed in these various 
samples. 
 
 
Chronological and Physiological Age 
 

When dealing with growing patients, the dentist ought to be aware of 
whether the child is developmentally advanced, normal, or delayed in relation to 
the child’s chronological age.  This is important in orthodontics because it guides 
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treatment planning and allows the clinician to monitor the child’s overall tempo 
of development.  Population norms provide benchmarks against which the 
sequence and timing of tooth formation and tooth emergence (clinical eruption) 
can be gauged.  Additionally, dental development is a useful, convenient way for 
the dentist to evaluate whether a child’s growth is appropriate and, 
quantitatively, how deviant it is.  Chronological age (CA) is the same as calendar 
age.  In western cultures, birth is defined as the start of life (age zero), which 
ignores the prenatal period of roughly 9 months (actually an average of 266 days 
from conception).  Chronological age ignores variations that occur during the 
gestational time interval.  Importantly, CA provides no measure of the rate or 
tempo of biological maturation—which commonly does not coincide with the 
child’s CA (e.g., Tanner 1962, 1990). 
 

Tanner et al. (1975, p. 1) define biological (or physiological) maturity as the 
“normal growth process that takes every individual from one common condition 
of being wholly immature to another of being wholly mature.”  Referencing a 
child to developmental “milestones” offers greater accuracy in assessing the 
degree of maturity as opposed to stature or size comparisons that lack endpoints, 
except possibly in retrospect when the adult value is known. 
 

An example helps clarify this issue.  It is expected that a child’s permanent 
first molars will emerge at six years of age (e.g., Hurme 1949), which gives rise to 
calling them the “six year molars,” but this is just a statistical average.  Modally, 
when children are six years old, they have matured biologically to the point that 
their first molars emerge into the oral cavity.  Graphing the actual ages of 
emergence, however, shows that even this well-documented average (the “six 
year” molar) exhibits appreciable variability.  Figure 12 is a plot of actual 
emergence ages obtained from the large longitudinal study of children by 
Sadakatsu Sato (Sato and Parsons 1990).  It is evident that the modal age of 
emergence is indeed during the sixth year.  A few children are developmental 
quite advanced and achieve this biological maturity marker (tooth emergence) 
during year 4, and several more children (ca. 15% for upper M1 and 30% for 
lower M1) are developmentally advanced with emergence during year 5 instead 
of year 6.  Conversely, some children (ca. 15% for lower M1 and 25% for upper 
M1) do not experience emergence till year 7, and a very few are delayed until 
year 8. 
 

The concept here is that the rate of development—while poorly 
understood (e.g., Tanner 1963; Smith 2003; Boughner and Hallgrimsson 2008)—is 
primarily regulated by the child’s genotype (Garn et al. 1960; Hughes et al. 2007)  
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Figure 12. Plot of the distribution of chronological ages at which the 
permanent first molars emerge in children (sexes pooled).  Data are from Sato 
and Parsons (1990).  Chronological ages displayed along the horizontal axis are 
coded as years-and-months. 
 
Reprinted with permission.  Sato S, Parsons P. Eruption of permanent teeth: a 
color atlas. St. Louis: Ishiyaku EuroAmerica, Inc., 1990, p. 26. 
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though it is modified by the environment.  Emergence of a tooth is a measure of a 
child’s level of biological development.  Children who experience tooth 
emergence sooner than the average are termed early maturers.  Their “dental 
age” is ahead of their chronological age.  Children who experience emergence 
after the mode are maturing slower than average.  All children experience molar 
eruption, but the pace or tempo of their biological development varies from child 
to child.  This causes some biological measure of maturity, such as bone age or 
dental age, to be a more accurate estimate of development than calendar age.  
Biological measures of developmental age provide recognition of the range of 
normal variation and, thus, a quantitative measure of how deviant a child’s 
development is from the norm. 
 

As an historical aside, most dentists have heard of the publication by 
Saunders (1837) who presented a plan to the British Parliament to enforce child 
labor laws that prohibited young children from working in factories.  Saunders 
argued that the status of tooth emergence “could be used for more accurate 
determination of the actual age of a child, frequently falsified by parents in the 
exploitation of their children for financial gain” (Fanning 1961, p. 202). 
 

The historically important work of Psyche Cattell (1928) can be mentioned 
here as an example of the method.  Cattell reported on a cross-sectional study of 
American white school children from an area of Boston, Massachusetts.  Figure 
13 is a plot of her data of the median number of teeth emerged into the oral 
cavity assessed against chronological age, divided into 6-month intervals.  There 
are several notable findings here, but we note just two of them.  One, sexual 
dimorphism is evident in these data in that girls exhibit a faster tempo of tooth 
emergence than boys throughout the age interval studied.  Cattell’s findings of a 
sex difference already were well-known at the time (e.g., Röse 1909; Matiegka 
1921) but her data make this difference quite evident.  The greatest sex 
differences are at the end of childhood (ca. 10-11 years in these data) when girls 
have as much as three more teeth emerged compared to boys.  Two, most of the 
permanent teeth emerge during two rather short intervals within the 10-year 
span shown in Figure 13.  There is an evident steepening in the rates of tooth 
emergence between about 6 and 8 years and a second from about 10 to 12 years.  
These two intervals are termed the first and second transitions (van der Linden 
and Duterloo 1976).  These conjugations of emerging teeth detract from the 
utility of using the number of teeth to estimate dental age because no teeth are 
emerging during several intervals of a child’s development. 
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Figure 13. The median number of permanent teeth emerged into the oral 
cavity by chronological age and by sex.  Girls are statistically ahead of boys at 
all ages.  Two “spurts” of tooth emergence are evident, one from about 6 to 8 and 
the other between about 10 and 12.  These periods of rapid increases in the 
number of teeth emerged reflect what van der Linden and Duterloo (1976) term, 
respectively, the first and second transitions. 
 
Reprinted with permission.  Cattell P. Dentition as a measure of maturity. 
Harvard Monographs in Education. Harvard University Press, 1928, p. 54. 
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As discussed below, this same ageing concept is more broadly applicable 
to tooth formation (i.e., crown-root mineralization) in place of tooth emergence.  
Formation occurs across a broader age interval and, thus, can be applied more 
broadly than emergence (e.g., Demirjian 1978; Harris et al. 2010). 
 

Physiological age (or its frequently used synonyms of biological age and 
developmental age) is an estimate of the status of an individual’s level of 
development (e.g., Krogman 1968a,b,c).  It is a more informative measure of 
maturity than chronological age because physiological age accounts for the 
differing growth tempos that children undergo.  Physiological age is estimated 
by the maturation of one or more tissue systems, and it is expressed in terms of 
each system studied (e.g., Moorrees et al. 1963a; Liliequist and Lundberg 1971).  
Notably the systems do not need to correspond within a child.  Lack of 
correspondence is a complex issue that involves considerations of what ages are 
studied, whether (and to what degree) the children studied have been stressed 
(in the sense of Selye 1976), and which tissue systems are analyzed.  Perhaps the 
best-studied example is that hand-wrist bone age and dental age both respond to 
stressors in the child’s environment (e.g., Garn et al. 1965), but bone age is far 
more susceptible to the environment than tooth development.  Put differently, 
tooth development is much better canalized than the growth of bone 
(Waddington 1942, 1957). 
 

A child’s developmental status can be estimated in several ways and 
expressed as an age equivalent, such as (1) skeletal age, (2) dental age, (3) 
morphological age, and (4) secondary sex characteristics age (Steel 1965; Eveleth 
and Tanner 1990).  Of these, skeletal age is the most widely used and most 
broadly applied method.  Skeletal age is a measure of the progress that a 
complex of bones (such as the hand and wrist) has made towards attaining adult 
form, typically as recorded radiographically.  Skeletal age (bone age) commonly 
is estimated from a hand-wrist radiograph, though other structures such as the 
knee (Pyle and Hoerr 1969) or the foot and ankle (Hoerr et al. 1962) can be used.  
With reference to the hand and wrist, the Greulich and Pyle atlas (1959)—coded 
as GP2—continues to be the most appropriate reference for children in the 
United States (Fry 1968).  Pyle et al. (1971) provide a simplified version of the 
GP2 atlas as does Fishman (1987).  British children are more accurately evaluated 
using the Tanner-Whitehouse atlas (Tanner et al. 1975).  Of note, there are no 
published standards for non-whites in the United States, forcing clinicians and 
researchers to use one of the white-based atlases (e.g., Zhang et al. 2008; Ontell et 
al. 1996).  It has been shown by Tanner et al. (1975) that phenotypically normal 
boys at the age of 14 may be skeletally advanced or delayed by upwards of two 
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years in comparison to their chronological age.  Of course, children with growth 
disorders can show a much broader range (e.g., Garn et al. 1965a,b).  The 
deviation of physiological age from chronological age needs to be taken into 
account during patient evaluation and treatment planning. 
 
 
Tooth Eruption 
 

Tooth eruption is the movement of a tooth from its site of development 
within the alveolar process to its functional position in the oral cavity (Massler et 
al. 1941; Grøn 1962; Smith and Buschang 2010).  Developing teeth actually move 
in all three planes of space and increase in size within the alveolar process prior 
to active eruption (e.g., Logan and Kronfeld 1933; Carlson 1944). 
 

Tooth eruption is complex, and several mechanisms may be involved (e.g., 
Steedle and Proffit 1985; Proffit and Frazier-Bowers 2009; Wise 2009).  Numerous 
in vivo animal experiments and human radiographic studies have been 
conducted to better understand the process of tooth eruption.  Although several 
theories have been advanced, the factors responsible for the eruption of the teeth 
are not fully understood.  Factors that have been related to the eruption of teeth 
include elongation of the root, forces exerted by the vascular tissues around and 
beneath the root, growth of the alveolar bone, growth of dentine, growth and 
pull of the periodontal membrane, hormonal influences, presence of a viable 
dental follicle, pressure from the muscular action, and resorption of the alveolar 
crest.  The fact that active eruption begins only after crown formation is complete 
suggests a role of the enamel organ.  Gorski et al. (1988) suggest that not only is 
the enamel organ responsible for amelogenesis, but also for initiating eruption. 
 

At birth, the jaws contain the partially mineralized crowns of all 20 
deciduous teeth and the beginning of mineralization of the permanent first 
molars and some incisors (e.g., Kraus and Jordan 1965; Infante 1974).  Eruption of 
the deciduous dentition, beginning on the average of 7.5 month of age, and 
terminates on an average of 29 months of age (e.g., Falkner 1957; Friedlaender 
and Bailit 1969).  Dental eruption is then quiescent for nearly 4 years.  Beginning 
around 6 years of age, the 8 deciduous incisors are exfoliated, and 12 permanent 
teeth erupt within about a two year interval.  After this activity, eruption goes 
into another period of quiescence until around 9 to 10 years of age, when the 
remaining 12 deciduous teeth are exfoliated, and 16 permanent teeth erupt 
within a two year period.  The 6 year period of the mixed dentition, roughly 6 to 
12 years of age, is the most complicated period of dental development and the 
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one in which the development of malocclusions is most likely to occur (e.g., van 
der Linden 1982). 
 
 
Estimation of Dental Age 
 

Dental age is of particular interest to dentists since it is based specifically 
on the development of the teeth.  Two main methods have been used to estimate 
dental age, namely tooth emergence and tooth mineralization.  Tooth emergence 
is easily observed on oral examination.  Obtaining a tooth count at an 
examination and comparing it to appropriate standards estimates the child’s 
dental age.  Several group-appropriate standards are available (see review by 
Liversidge 2003), though the time-honored statistics of Hurme (1948, 1949, 1951) 
still are commonly cited.  Hägg and Taranger (1985) also report reference data on 
tooth emergence (Figures 14 and 15).  These authors support the method as being 
“simple and convenient,” and it is a method that is useful in a cross-sectional 
examination. 
 

Notably, several intrinsic and environmental factors can alter the 
emergence of teeth.  Eruption has been found to be influenced by local infection, 
injury, obstruction, crowding, and extraction of primary predecessors (Schroff 
1959; Fanning 1962).  Premature exfoliation of the primary predecessor may 
either retard or speed up the eruption of the permanent tooth (Fanning 1962).  
Ankylosis of a primary tooth can delay the eruption of the permanent successor 
(e.g., Frank 2000; Sabri 2008). 
 

Demirjian (1978) and others have also pointed out that tooth emergence is 
only useful during those short childhood periods when teeth actually are 
emerging into the oral cavity.  All 20 primary teeth typically emerge between 6 
and 30 months of age, with no new teeth until onset of the mixed dentition at 
around 6 years of age, followed by a two-year interval of quiescence during the 
intertransitional phase (van der Linden and Duterloo 1976).  The second interval 
of emergence also lasts about two years, ending with emergence of the second 
molars at about age 12. 
 

In contrast, the tempo of tooth mineralization is not affected by the 
premature loss of the deciduous teeth (Fanning 1962).  Mineralization can, 
however, be affected by all sorts of genetic and environmental issues.  One such 
congenital condition is hypodontia.  Hypodontia is the consequence of the 
congenital absence (failure to form) of one or more teeth (McDonald and Avery  
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Figure 14. Plot of the number of primary teeth emerged against chronological 
age (in months).  The data are from Swedish children born in the mid-20th 
century. 
 
Reprinted with permission.  Hägg U, Taranger J. Dental development dental age 
and tooth counts. Angle Orthod 1985;55:93-107. 
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Figure 15. Plot of the number of permanent teeth emerged against 
chronological age (in years) based on data from Hägg and Taranger (1985).  
There is an evident sex difference throughout, with girls temporally ahead of 
boys.  The data are from Swedish children born in the mid-20th century. 
 
Reprinted with permission.  Hägg U, Taranger J. Dental development dental age 
and tooth counts. Angle Orthod 1985;55:93-107. 
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1994).  Furthermore, hypodontia now is recognized as part of a more complex 
entity, involving not only aberrations in number, size and shape of the remaining 
teeth, but also abnormalities in the overall rate of dental development and time 
of eruption (Brook 1984; Evans 2010).  Hypodontia of the mandibular third molar 
is associated with delayed calcification of P1 and M2 (Garn, Lewis and Bonné 
1961).  Uslenghi et al. (2006) concluded that “tooth formation in children with 
hypodontia was significantly delayed compared to the matched group.” 
 

Tooth emergence is commonly defined as the penetration of the oral 
gingival by some part of the tooth crown, however slight, such that part of the 
crown (normally the mamelons or cusp tip) is visible on intraoral examination, 
so-called clinical emergence.  Other definitions are used, such as eruption coronal 
to the alveolar margin or emergence into functional occlusion (Harris et al. 2010).  
In any event, emergence “is a single, fleeting event in the continuous process of 
tooth eruption; and the chance that the time of inspection coincides with the 
actual moment of emergence is, as a rule, small” (Fanning 1961, p. 202). 
 

Moorrees et al. (1963a, p. 1490) state that, “tooth formation is superior to 
tooth emergence for assessing dental maturation, because the majority of teeth 
can be studied at each examination.”  Also, since mineralization of the 
developing teeth is a continuum, starting at crypt formation and ending in the 
completion of the root apex, it can be used over a much longer period of time—
from birth through adolescence (Demirjian et al. 1973; Demirjian 1978). 
 

Dental age can be assessed by comparing the degree of mineralization that 
an individual tooth has achieved relative to established developmental stages 
that a tooth must pass through.  For instance, a tooth that has completed crown 
mineralization but has yet to commence root formation is given one score and a 
tooth with a closed root apex, another.  These scores can then be compared to the 
expected ages at which the same stages are met in the reference population.  The 
comparison of the child’s age to the age expected for their level of maturity 
indicates whether they are average, advanced, or delayed, as well as the extent of 
any deviation. 
 
 
Competing Systems of Grading Mineralization 
 

A great benefit of clinical radiography is that it is noninvasive; internal 
structures—such as teeth encased in their bony crypts—can be visualized 
without harming the structures.  Conventional radiography depends on the 
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strong attenuation of x-rays by the radiodense minerals in enamel and dentine.  
Radiographs are useful for monitoring tooth mineralization, which is the 
progressive process of dentinogenesis and amelogenesis.  Predictably (e.g., Logan 
and Kronfeld 1933; Johanson 1971), the radiographic record of tooth formation 
lags behind what is occurring histologically ahead of the mineralized stages of 
tissue formation. 
 

Tooth mineralization is a continuous process.  Dentine formation always 
progresses ahead of enamel formation of the crown, and mineralization only 
occurs in the coronal-to-apical direction.  An obvious approach to assessing the 
extent of mineralization would be to measure the length of the radiodense 
portion.  This can be done (e.g., Israel and Lewis 1971; Liversidge et al. 1993), but 
there are several detractions: 
 
• Teeth are three-dimensional objects, so their orientation imaged onto two-

dimensional film can be distorted. 
• Conventional radiographic images are magnified because of variable source-

to-object, object-to-film, and source-to-film distances—and these distances are 
rarely recorded. 

• Films are grainy to one degree or another (even their digital analogs 
depending on pixel or voxel size), so defining the margins of these small 
objects involves error—and the apparent margins can be affected by x-ray 
exposure. 

• There is considerable inter-individual variation in final tooth dimensions, and 
adult size can only be determined after the fact.  Sex and race differences also 
have to be taken into account. 

 
Consequently, millimetric measurements have been avoided.  In their place, 
observers have relied on dividing the formation process into visually 
distinguishable stages.  These anthroposcopic determinations are ordinal scale 
data, meaning that the stages occur in a known, invariant order, but the stages 
cannot be assumed to be equally spaced or of equal duration.  The number of 
stages as well as their defining criteria differ considerably among observers, and 
even though Demirjian (1978) and others have attempted to relate various 
systems one to another, they are generally not comparable because different 
criteria are used. 
 

Elizabeth Fanning’s work (1960, 1961) is noteworthy because she 
developed probably the greatest number of formation stages.  She defined 20 
stages for multi-rooted teeth.  The more ambiguous stages were omitted for the 
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commonly-referenced study by Moorrees, Fanning and Hunt (1963a), which 
recognized 13 stages (and 14 for multi-rooted teeth). 
 

The controlling issue is that when numerous stages are used, differences 
between them are necessarily small and confusion between adjacent grades is 
more likely.  At the other extreme, using just a few stages ensures that the 
differences between them are clear-cut and obvious, which lessens mis-
recognition.  Conversely, with many stages, the gradations are of shorter 
duration.  Using few stages forces each stage to encompass a greater age interval, 
which reduces precision of the age estimation.  Consider that the permanent 
teeth begin mineralization at about term delivery and all teeth except the third 
molars have completed root apexification by about 16 years of age.  Consider too 
that just three stages of formation could be used, such as (1) crown initiation, (2) 
crown completion, and (3) root completion.  At best, then, each stage would 
encompass a few years (and more for root formation than crown formation).  The 
“dental age” of a subject could, then, only be assigned to a few broad age 
intervals.  Partitioning formation into more stages creates smaller, more precise 
age intervals.  The “tension” in developing a staging system is (A) to develop a 
classification that uses several stages to enhance precision but (B) restrain the 
number of stages to reduce mis-recognition. 
 

Different developmental stages have been defined by different authors 
(reviewed in Demirjian 1978).  Stages are defined by distinguishing shape 
characteristics, from the beginning of calcification through the final level of root 
maturation.  The earliest study to assess dental maturity radiographically was by 
Hess, Lewis and Roman (1932).  They evaluated the physiological maturity of 
children based on permanent tooth formation.  Hess et al. (1932, p. 1058) 
concluded that, based on anatomical as well as radiographic studies, “the major 
calcification even of the deciduous teeth takes place subsequent rather than 
previous to birth and that in regard to the first permanent molars, that 
calcification must be regarded as a postnatal phenomenon.” 
 

Numerous classification systems have been proposed.  Nolla (1960) 
divided the continuum into 11 stages (Figure 16).  One of the more commonly 
cited method is that of Moorrees, Fanning and Hunt (1963a).  Moorrees et al. 
recognized 13 successive stages of tooth mineralization for single-rooted teeth 
and 14 stages for molars (Figure 17).  Moorrees et al. (1963a) outlined 5 factors 
that may affect the assessment of dental maturation:  (1) the applicability of these 
data to which the population that a child belongs; (2) variations in the rate of 
development of different teeth in an individual child; (3) the experience of the  
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Figure 16. Illustration of the 11 tooth mineralization stages defined by Nolla 
(1960).  The stages are given numeric values progressing from absence of crypt 
formation (0) through root apex closure (10).  Each row in the diagram depicts 
mandibular (left) and maxillary (right) examples of each tooth type (molar, 
premolar, canine, and incisor). 
 
 0 Absence of crypt 6 Crown complete 
 1 Presence of crypt 7 Root 1/3 complete 
 2 Cusps calcified 8 Root 2/3 complete 
 3 Crown 1/3 complete 9 Root complete, apex open 
 4 Crown 2/3 complete 10 Root complete, apex closed 
 5 Crown almost complete 
 
Reprinted with permission.  Nolla CM. Development of the permanent teeth. J 
Dent Child 1960;27:254-66. 
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Figure 17. Schematic drawings of the stages of tooth mineralization used by 
Moorrees, Fanning and Hunt (1963a).  There are 13 stages for single-rooted teeth 
and 14 stages for multi-rooted teeth, the difference is the addition of cleft 
initiation for the multi-rooted molars.  Diagram supplied by E. F. Harris. 
 
Reprinted with permission.  Moorrees CFA, Fanning EA, Hunt EE Jr. Age 
variation of formation stages for ten permanent teeth. J Dent Res 1963a;42:1490-
1502. 
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rater in recognizing sequential stages of tooth formation; (4) the availability of 
earlier or later records of the same child to serve as a basis of reference when 
rating tooth development; and (5) the span of time between the occurrence of one 
stage of development and the next. 
 

Haavikko (1970) simplified the Moorrees system to 11 grades by 
eliminating those that seemed hard to distinguish.  Her system is illustrated in 
(Figure 18). 
 

Liliequist and Lundberg (1971) proposed another system for scoring the 
extent of crown-root mineralization.  They conducted a longitudinal study of 287 
children based on the radiographic assessment of the mandibular teeth 
(excluding third molars) and the maxillary anterior teeth.  The classification 
scheme consists of 8 stages of development between the non-mineralized crown 
(tooth crypt) and the completion of mineralized root development.  As an aside, 
the Liliequist and Lundberg study is an example where the authors mistook the 
numerical labels of the stages as actually signifying quantitative data.  They 
treated the numbers of the stages (Figure 19) as if they were ratio-side data, 
ignoring the ordinal-grade nature of the morphologically-defined stages.  This is 
one reason that Demirjian and coworkers were so conscientious about labeling 
their mineralization stages using letters rather than numerals. 
 

Demirjian et al. (1973) and others have criticized methods that are based 
on absolute sizes of root length, which make it difficult to apply the systems in 
the absence of longitudinal data.  For example, labeling a root as “half formed” 
presumes that the researcher has rather precise information about that root’s 
final length, which is hardly likely.  Demirjian et al. proposed an 8-grade scoring 
system for the dentition that parallels the methodology developed by Tanner and 
coworkers (1975) that used hand-wrist radiographs (Figure 20).  The system 
avoids the use of absolute measurements of anticipated adult crown and root 
lengths.  Demirjian et al. (1973) contend that a useful maturity scale must be 
composed of easily recognizable stages that all teeth must pass through.  They 
state that since stages are indicators of maturity and not of size, they should not 
be defined by any absolute dimension.  Their resulting classification is based on 
the visual assessments of morphological criteria, such as the amount of dentine 
deposit, shape of the pulp chamber, and other distinguishable criteria. 
 

The research of Gustafson and Koch (1974) merits mention here.  
Although they compiled and synthesized prior reports rather than describing 
new data, they developed a chart that has received wide use, especially by  
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Figure 18. Illustrations of the 11 stages used by Haavikko (1970) to score tooth 
formation.  The stages are different for single-rooted teeth (top) and multi-rooted 
teeth (bottom).  Diagram supplied by E. F. Harris. 
 
Reprinted with permission.  Haavikko K. The formation and the alveolar and 
clinical eruption of the permanent teeth: an orthopantomographic study. Proc 
Finn Dent Soc 1970;66:103-70. 
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Figure 19. Sketches of the seven stages of tooth mineralization used by 
Liliequist and Lundberg (1971).  Grades were assigned numeric labels: 
 
 0 Presence of crypt, no crown calcification 
 0.5 Crown 1/2 complete 
 1 Crown complete 
 2 Root length less than crown height 
 3 Root length about equal to crown height 
 4 Root tapered (pointed) 
 5 Root longer than crown; apex rounded 
 6 Root complete 
 
Reprinted with permission.  Liliequist B, Lundbert M. Skeletal and tooth 
development: a methodologic investigation. Acta Radiol 1971;11:97-112. 
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Figure 20. Sketches of the seven stages of tooth mineralization used by 
Liliequist and Lundberg (1971).  The authors were careful to use letters to label 
tooth stages in order to avoid any suggestion that the ordinal grades are 
equidistant.  Diagram supplied by E. F. Harris. 
 
Reprinted with permission.  Demirjian A, Goldstein H, Tanner JM. A new system 
of dental age assessment. Hum Biol 1973;45:220. 
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forensic odontologists.  The chart depicts just four stages of tooth development, 
namely (1) the initiation of mineralization, (2) the completion of crown 
mineralization, (3) the gingival emergence of the tooth, and (4) completion of the 
root (apexification).  Their chart depicts the range and modal ages of each of the 
four stages.  Data for 24 tooth types are plotted, namely all 10 primary teeth and 
the 14 permanent tooth types (omitting third molars).  The chart provides a 
handy one-page summary of key developmental stages, and, again, it has seen 
widespread use.  Limitations are that (A) the data combine biological and 
histological data that actually reflect different events, (B) sexual dimorphism is 
ignored, and (C) the data are compiled from “whites” but uses samples drawn 
from Europe, Great Britain, and the United States. 
 
 
Tooth Development and Mineralization 
 

Teeth are derived from two of the primary germ layers, ectoderm and 
mesoderm, with a neural crest contribution.  The enamel of the teeth is derived 
from oral ectoderm.  Ectomesenchyme provides material for the dentine and 
pulp, and mesoderm forms the cementum and the periodontal complex (e.g., 
Corliss 1976; Avery 1994). 
 

Ten enamel organs, corresponding with the number of deciduous teeth, 
initially develop in each jaw.  The dental papilla, of neural crest origin, and the 
dental follicle, of mesodermal origin, are the anlagen of the dental pulp and 
periodontal tissue complex, respectively (Osborn and Ten Cate 1976). 
 

Each enamel organ alters its initially small bud shape by enlarging and 
flattening out as a result of disproportionate mitosis of the basal cells into a cap 
shape, and later cupping into a large bell shape (Figure 21).  Concomitant with 
these morphological alterations, histodifferentiation occurs within the enamel 
organ.  Its external layer forms the outer enamel epithelium, which is a layer of 
cuboidal cells subjacent to the developing follicle.  The stellate reticulum, 
composed of stellate cells in a fluid matrix, constitutes the central bulk of the 
early enamel organ.  The inner layer lining the dental papilla forms the inner 
enamel epithelium, part of which differentiates into the secretory columnar 
ameloblasts responsible for enamel formation.  The recurrent continuity of the 
inner and outer enamel epithelia at the cervical loop elongates into Hertwig’s 
epithelial root sheath, which will form the root(s) of the tooth (Osborn and Ten 
Cate 1976). 
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Figure 21. Schematic stages of tooth formation:  A. Teeth are derived from ectoderm and ectomesenchyme. 
B. Formation of the primary dental lamina (bud stage).  C. Proliferation of dental lamina.  D-F. Formation of enamel organ 
and dental papilla (cap stage).  G-K. Cap continues to enlarge and then becomes more bell shaped until final tooth shape 
is determined (bell stage). 
 
Reprinted with permission.  Harris EF. Dental development and anomalies in craniosynostosis and facial clefting. In: 
Mooney MP, Siegel MI, editors.  Understanding craniofacial anomalies: The etiopathogenesis of craniosynostosis and 
facial clefting.  New York: John Wiley-Liss, 2002, pp 425-67. 
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The inner enamel epithelium (IEE) interacts with the ectomesenchymal 
cells of the dental papilla to differentiate the peripheral cells of the papilla into 
odontoblasts.  Formation of dentine by the odontoblasts proceeds, and dentine is 
necessary for the further induction of ameloblasts to produce enamel.  The IEE of 
the root sheath induces odontoblast formation, but, lacking a stratum 
intermedium, the IEE fails to differentiate into enamel-forming ameloblasts, 
which explains the absence of enamel on tooth roots.  Instead, the outer enamel 
epithelium of the root sheath induces cementum formation in the adjacent 
portions of the dental follicle (Osborn and Ten Cate 1976). 
 

The ameloblasts of the IEE lying adjacent to the odontoblasts together 
form a double-layered amelodentinal membrane (Osborn and Ten Cate 1976).  
This amelodentinal membrane provides the blueprint for the future shape of 
crown of the tooth, which is elaborated on by the subsequent deposition of 
enamel and dentine in opposite directions against this junctional membrane.  The 
ameloblasts secrete enamel rods or prisms as they grow away from the 
membrane, while the odontoblasts organize the matrix of the dental papilla into 
predentine, which later mineralizes into dentine.  Enamel formation is restricted 
to the preeruptive phase of odontogenesis and is terminated by the deposition of 
an organic layer, the primary enamel cuticle.  The stellate reticulum disappears, 
and the inner and outer enamel epithelium come together to form the reduced 
enamel epithelium.  It is this reduced enamel epithelium that fuses with the 
overlying oral mucous membrane to initiate the pathway for eruption (Osborn 
and Ten Cate 1976). 
 
 
Sex Differences in Tempos of Maturation 
 

Sexual differences in the dental maturation process have been well 
documented in the literature.  The female precedence of faster tempos of tooth 
mineralization and emergence as compared to boys has become common 
knowledge (e.g., Cattell 1928; Hurme 1949; Stones et al. 1951; Liversidge 2003).  It 
is intuitive that tooth mineralization would likewise show a female precedence 
since eruption is tied to formation (Bradley 1961; Grøn 1962), and early 
radiographic studies of tooth mineralization confirm sexual dimorphism in the 
tempos of tooth formation (e.g., Garn et al. 1958; Moorrees et al. 1963a; Haavikko 
1970; Anderson et al. 1975).  As a statistical average, girls achieve maturity stages 
at earlier chronological ages than boys.  The actual amount of the male-female 
difference varies by tooth type and among populations (which suggests a genetic 
influence in the magnitude of the sex difference). 
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This sex difference increases with age, and a difference often is hard to 

detect in infants and children.  Indeed, it still is contentious whether eruption of 
the primary teeth is sexually dimorphic—probably because the nature and extent 
of the sex difference differ by population and by age interval (e.g., Infante 1974).  
The careful compilation of studies by Meredith (1946) found only a slight 
precedence in boys.  Tanguay et al. (1984) found a highly significant difference, 
also with a male precedence, but only when applying multivariate statistics. 
 

Sexual dimorphism in the permanent dentition is more obvious, with a 
female precedence throughout most of childhood (e.g., Stones et al. 1951; 
Moorrees et al. 1963a,b; Haavikko 1970).  However, in the later stages of 
adolescence, the accelerating effects of anabolic steroids appear to enhance the 
attainment of some late features in boys.  Specifically, the late forming third 
molar often exhibits male precedence in formation (e.g., Rantanen 1967; Harris 
2007).  Garn and coworkers (1958) found that, with regard to mineralization of 
permanent teeth, females are more advanced than males, with the greatest 
difference occurring in development of the canines.  Hotz et al. (1959) found that 
females were more advanced than males by an average of 4 to 5 months, again 
with the canines exhibiting the greatest difference.  Nolla (1960) and Anderson et 
al. (1975) both found that females had a faster tempo of tooth development than 
males for most stages of mineralization, except the later stages of third molar 
formation. 
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CHAPTER 3.  MATERIALS AND METHODS 
 
 

Clinical materials were collected from the graduate program of the 
Department of Orthodontics at the Health Science Center, University of 
Tennessee, Memphis.  In addition to simple demographic data (sex, birth date, 
clinical exam date), tooth maturation data were collected from one panoramic 
radiograph per person.  Data from a total of 400 usable cases was obtained.  Two 
cohorts were constructed of 200 patients each (100 males, 100 females), one 
cohort evaluated between 1980 and 1985 and the other between 2005 and 2010.  
Selected cases are American whites by self-identification, and all cases are 
between the chronological ages of 10.0 and 15.0 years of age.  Cases have a 
negative significant medical history.  Children with syndromes, cleft lip and/or 
palate and hypodontia (expect third molars) were excluded from the study. 
HIPAA authorization for the conduct of the study itself was approved.  This 
study was also approved by the institutional review board, reference number 11-
01268-XM. 
 
 
Dental Age Determinations 
 

The investigators collected mineralization data on the eight mandibular 
tooth types by visually evaluating the panoramic radiographs using the 
standards described in Demirjian et al. (1973) as illustrated in Figure 20.  Just the 
pretreatment x-ray of the subject was used.  Observations were entered directly 
into an Excel® spreadsheet (Microsoft Corporation, Redmond, WA).  For each 
film, the clearer quadrant was used for scoring or, if there was no difference, the 
left side of the film was used.  No study has found a systematic left or right 
precedence of tooth formation (reviewed in Demirjian 1978).  All eight tooth 
types were given a letter grade of A through H based on the criteria set forth by 
Demirjian et al. (1973).  Written criteria for each grade are listed in Table 1. 
 

Four two-digit codes were used to denote teeth not capable of being 
scored.  These are as follows:  crypt formation but no crown mineralization (code 
66), congenital absence or crypt not yet formed (code 77), tooth extracted or 
avulsed (code 88), and tooth present but not scorable due to poor film quality 
(code 99).  These codes were treated in the analyses as missing values.  One 
important issue for data collection is that only the highest score a given tooth has 
fully attained was recorded (Dahlberg and Menegaz-Bock 1958) and, thus, no 
interpolation or estimation of the “closest” grade was employed.
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Table 1. Descriptions of the eight stages used by Demirjian et al. (1973). 
 
 Stage Definition 
 A Initial calcification is at the superior level of the crypt in the form of an 

inverted cone or cones. There is no fusion of these calcified points. 
 B Fusion of the calcified points forms one or several cusps that unite to 

give a regularly outlined occlusal surface. 
 C a. Enamel formation is complete at the occlusal surface. Its 

extension and convergence towards the cervical region is seen. 
  b. Beginning of dentinal deposit is seen. 
  c. Outline of pulp chamber has a curved shape at the occlusal 

border. 
 D a. The crown formation is completed down to the cementoenamel 

junction. 
  b. The superior border of the pulp chamber in uniradicular teeth has 

a definite curved form, being concave towards the cervical region. 
Projection of the pulp horns is present, gives an outline shaped 
like an umbrella top. In molars, the pulp chamber has a 
trapezoidal form. 

  c. Beginning of root formation is seen in the form of a spicule. 
 E Uniradicular Teeth 
  a. The walls of the pulp chamber now form straight lines, whose 

continuity is broken by the presence of the pulp horn, which is 
larger than in the previous stage 

  b. The root length is less than the crown height. 
Molars 

  a. Initial formation of the radicular bifurcation is seen in the form of 
either a calcified point or a semi-lunar shape. 

  b. The root length is still less than the crown height. 
 F Uniradicular Teeth 
  a. Pulp chamber walls form an isosceles triangle; apex is funnel 

shape. 
  b. Root length is equal to or greater than the crown height. 

Molars 
  a. The calcified region of the bifurcation has developed further 

down from its semi-lunar stage to give the roots a more definite 
and distinct outline with a funnel shaped endings. 

  b. Root length is equal to or greater than the crown height. 
Continued 
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Table 1.  Continued. 
 

 Stage Definition 
 G a. Walls of the root canal are now parallel and its apical end is still 

partially open (distal root in molars). 
 H a. Apex of root canal is completely closed (distal root in molars). 
  b. Periodontal membrane has uniform width around the root and 

apex. 
 
Reprinted with permission.  Demirjian A, Goldstein H, Tanner JM. A new system 
of dental age assessment. Hum Biol 1973;45:221-26. 
 
 
Estimating Dental Age 
 

It is useful to explicitly describe how the Demirjian dental ages are 
estimated:  We had access to one panoramic radiograph per person (a cross-
sectional study).  The stage of mineralization of each of the eight mandibular 
tooth types was scored as described, irrespective of quadrant.  Prior studies show 
that there is no systematic left-right side bias in tooth development (e.g., Lysell et 
al. 1969; Krumholt et al. 1971).  The tooth with a clearer radiographic image, in 
either the left or right quadrant, was scored using one of nine stages described by 
Demirjian et al. (1973); these are 0 (for crypt formation without any sign of tooth 
mineralization) and eight stages of crown-root formation, coded as A through H 
(Figure 20; Table 1).  The mandibular third molars are not used in this system, 
but were scored here for completeness. 
 

Demirjian, Goldstein and Tanner (1973) use a multiple linear regression 
technique without an intercept to estimate a subject’s dental maturity score.  The 
format is: 
 

Score = C1(I1) + C2(I2) +C3(C) + C4(P1) + C5(P2) + C6(M1) + C7(M2) 
 
where the sex-specific weighting coefficients are provided by these authors in a 
table (reproduced in Table 2).  There is a numeric weighting coefficient for each 
stage of each tooth in each sex.  For each of the seven tooth types, the sex-
appropriate weighting coefficient is found in the table for each stage of 
formation, and these are used in the equation above to determine a score that has 
been scaled to range from 0 to 100.  These scores have a sigmoid pattern that is  
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Table 2. The sex-specific weighting coefficients developed by Demirjian et al. 
(1973). 
 
Tooth 0 A B C D E F G H 

Boys 
 I1 -- -- -- -- 0.0 1.9 4.1 8.2 11.8 
 I2 -- -- -- 0.0 3.2 5.2 7.8 11.7 13.7 
 C -- -- -- 0.0 3.5 7.9 10.0 11.0 11.9 
 P1 -- -- 0.0 3.4 7.0 11.0 12.3 12.7 13.5 
 P2 0.0 1.7 3.1 5.4 9.7 12.0 12.8 13.2 14.4 
 M1 -- -- -- 0.0 8.0 9.6 12.3 17.0 19.3 
 M2 0.0 2.1 3.5 5.9 10.1 12.5 13.2 13.6 15.4 

Girls 
 I1 -- -- -- -- 0.0 2.4 5.1 9.3 12.9 
 I2 -- -- -- 0.0 3.2 5.6 8.0 12.2 14.2 
 C -- -- -- 0.0 3.8 7.3 10.3 11.6 12.4 
 P1 -- -- 0.0 3.7 7.5 11.8 13.1 13.4 14.1 
 P2 0.0 1.8 3.4 6.5 10.6 12.7 13.5 13.8 14.6 
 M1 -- -- -- 0.0 4.5 6.2 9.0 14.0 16.2 
 M2 0.0 2.7 3.9 6.9 11.1 13.5 14.2 14.5 15.6 
 
Tooth codes are:  central incisor (I1), lateral incisor (I2), canine (C), first premolar 
(P1), second premolar (P2), first molar (M1), and second molar (M2).  Stage 0 
indicates bony crypt formation but with no tooth mineralization. 
 
Reprinted with permission.  Demirjian A, Goldstein H, Tanner JM. A new system 
of dental age assessment. Hum Biol 1973;45:222. 
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different for boys and girls (Figure 22).  These scaled scores have corresponding 
dental ages ranging from 3 to 16 years of age.  Demirjian et al. structured the 
scales so they range, in effect, from very immature at 3.0 years of age up to 
complete dental maturity at 16.0 years of age.  In other words, the system was 
explicitly developed such that 3.0 is artificially set to the start of dental 
maturation (0% maturity) and 16 is set to the end of dental maturation (100% 
maturity).  (In practice, then, the system is not applicable to children less than 3 
years of age.)  These scales are reproduced here in Table 3 (boys) and Table 4 
(girls).  When the maturity score is obtained from the equation above, one 
examines the sex-appropriate table.  Finding the maturity score provides the 
corresponding dental age.  For example, if the score for a boy is 93.5, expectation 
is that his dental age is 11.7 years. 
 

A useful way of conceptualizing “dental maturity” is on a percentage 
basis.  In Demirjian’s system, 0% maturity is set at 3 years of age, which is about 
as young as children are comfortable having a panoramic radiograph taken.  
Percent maturity then rises as the child develops, achieving 100% at 16 years of 
age when all 28 teeth (excluding third molars) have completed formation.  Using 
this metric, a child’s developmental progress towards dental maturity can be 
gauged quantitatively, moving from complete “immaturity” to complete 
“maturity.”  All people pass through these developmental stages, and the tempo 
of development is a measure of the speed of their progress compared to 
chronological age. 
 

The sequence of steps is, then, (A) score tooth stages, (B) identify 
appropriate weighting coefficients for those stages, (C) calculate the dental 
maturity score, and (D) use this score to identify the associated dental age.  These 
ages, of course, are based on the tempos of dental maturation that occurred in the 
French Canadian children (Centre de Recherché sur la Croissance Humaine at 
the University of Montreal) used by Demirjian and his coworkers to develop the 
maturity curves. 
 
 
A Worked Example 
 

Suppose the panoramic radiograph of a young white boy was taken when 
he was 7.23 years old (so CA = 7.23 years).  Crown-root formation stages were 
assigned to his 7 mandibular teeth.  These weighting coefficients are provided in 
Demirjian et al. (1973, their Table 2) and are reproduced here as Table 3.  The 
procedure is to use the part of the table for boys, and find that stage F for the 
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Figure 22. Plots of the sex-specific patterns of dental maturity developed by 
Demirjian, Goldstein and Tanner (1973).  Steepness of a segment of the curve 
reflects the tempo of maturation, which ranges from 0 (near 3 years of age) to 
100% at 16 years of age.  Diagram supplied by Dr. E. F. Harris. 
 
Reprinted with permission.  Demirjian A, Goldstein H, Tanner JM. A new system 
of dental age assessment. Hum Biol 1973;45:211-27. 
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Table 3. Weighting coefficients used to determine dental age in boys. 
 
 Age Score  Age Score Age Score  Age Score 
 
 3.0 12.4 6.3 36.9 9.6 87.2 12.9 95.4 
 3.1 12.9 6.4 38.0 9.7 87.7 13.0 95.6 
 3.2 13.5 6.5 39.2 9.8 88.2 13.1 95.7 
 3.3 14.0 6.6 40.6 9.9 88.6 13.2 95.8 
 3.4 14.5 6.7 42.0 10.0 89.0 13.3 95.9 
 3.5 15.0 6.8 43.6 10.1 89.3 13.4 96.0 
 3.6 15.6 6.9 45.1 10.2 89.7 13.5 96.1 
 3.7 16.2 7.0 46.7 10.3 90.0 13.6 96.2 
 3.8 17.0 7.1 48.3 10.4 90.3 13.7 96.3 
 3.9 17.6 7.2 50.0 10.5 90.6 13.8 96.4 
 4.0 18.2 7.3 52.0 10.6 91.0 13.9 96.5 
 4.1 18.9 7.4 54.3 10.7 91.3 14.0 96.6 
 4.2 19.7 7.5 56.8 10.8 91.6 14.1 96.7 
 4.3 20.4 7.6 59.6 10.9 91.8 14.2 96.8 
 4.4 21.0 7.7 62.5 11.0 92.0 14.3 96.9 
 4.5 21.7 7.8 66.0 11.1 92.2 14.4 97.0 
 4.6 22.4 7.9 69.0 11.2 92.5 14.5 97.1 
 4.7 23.1 8.0 71.6 11.3 92.7 14.6 97.2 
 4.8 23.8 8.1 73.5 11.4 92.9 14.7 97.3 
 4.9 24.6 8.2 75.1 11.5 93.1 14.8 97.4 
 5.0 25.4 8.3 76.4 11.6 93.3 14.9 97.5 
 5.1 26.2 8.4 77.7 11.7 93.5 15.0 97.6 
 5.2 27.0 8.5 79.0 11.8 93.7 15.1 97.7 
 5.3 27.8 8.6 80.2 11.9 93.9 15.2 97.8 
 5.4 28.6 8.7 81.2 12.0 94.0 15.3 97.8 
 5.5 29.5 8.8 82.0 12.1 94.2 15.4 97.9 
 5.6 30.3 8.9 82.8 12.2 94.4 15.5 98.0 
 5.7 31.1 9.0 83.6 12.3 94.5 15.6 98.1 
 5.8 31.8 9.1 84.3 12.4 94.6 15.7 98.2 
 5.9 32.6 9.2 85.0 12.5 94.8 15.8 98.2 
 6.0 33.6 9.3 85.6 12.6 95.0 15.9 98.3 
 6.1 34.7 9.4 86.2 12.7 95.1 16.0 98.4 
 6.2 35.8 9.5 86.7 12.8 95.2 
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Table 4. Weighting coefficients used to determine dental age in girls. 
 
 Age Score  Age Score Age Score  Age Score 
 
 3.0 13.7 6.3 41.3 9.6 90.2 12.9 97.2 
 3.1 14.4 6.4 42.5 9.7 90.7 13.0 97.3 
 3.2 15.1 6.5 43.9 9.8 91.1 13.1 97.4 
 3.3 15.8 6.6 45.2 9.9 91.4 13.2 97.5 
 3.4 16.6 6.7 46.7 10.0 91.8 13.3 97.6 
 3.5 17.3 6.8 48.0 10.1 92.1 13.4 97.7 
 3.6 18.0 6.9 49.5 10.2 92.3 13.5 97.8 
 3.7 18.8 7.0 51.0 10.3 92.6 13.6 98.0 
 3.8 19.5 7.1 52.9 10.4 92.9 13.7 98.1 
 3.9 20.3 7.2 55.5 10.5 93.2 13.8 98.2 
 4.0 21.0 7.3 57.8 10.6 93.5 13.9 98.3 
 4.1 21.8 7.4 61.0 10.7 93.7 14.0 98.3 
 4.2 22.5 7.5 65.0 10.8 94.0 14.1 98.4 
 4.3 23.2 7.6 68.0 10.9 94.2 14.2 98.5 
 4.4 24.0 7.7 71.8 11.0 94.5 14.3 98.6 
 4.5 24.8 7.8 75.0 11.1 94.7 14.4 98.7 
 4.6 25.6 7.9 77.0 11.2 94.9 14.5 98.8 
 4.7 26.4 8.0 78.8 11.3 95.1 14.6 98.9 
 4.8 27.2 8.1 80.2 11.4 95.3 14.7 99.0 
 4.9 28.0 8.2 81.2 11.5 95.4 14.8 99.1 
 5.0 28.9 8.3 82.2 11.6 95.6 14.9 99.1 
 5.1 29.7 8.4 83.1 11.7 95.8 15.0 99.2 
 5.2 30.5 8.5 84.0 11.8 96.0 15.1 99.3 
 5.3 31.3 8.6 84.8 11.9 96.2 15.2 99.4 
 5.4 32.1 8.7 85.3 12.0 96.3 15.3 99.4 
 5.5 33.0 8.8 86.1 12.1 96.4 15.4 99.5 
 5.6 34.0 8.9 86.7 12.2 96.5 15.5 99.6 
 5.7 35.0 9.0 87.2 12.3 96.6 15.6 99.6 
 5.8 36.0 9.1 87.8 12.4 96.7 15.7 99.7 
 5.9 37.0 9.2 88.3 12.5 96.8 15.8 99.8 
 6.0 38.0 9.3 88.8 12.6 96.9 15.9 99.9 
 6.1 39.1 9.4 89.3 12.7 97.0 16.0 100.0 
 6.2 40.2 9.5 89.8 12.8 97.1 
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mandibular central incisor (L1) has a weight of 4.1, stage E for the lateral incisor 
(L2) has a weight of 5.2, and so forth for the other five teeth.  The sum of the 7 
weights is 47.6 (Table 5).  This value then is located in Demirjian et al.’s Table 2 
(reproduced here as Table 3; note that Table 4 has the weights for girls), and one 
looks for the score 47.6 (Table 3).  This exact value does not occur, but it occurs 
between the scores of 46.7 and 48.3.  One could interpolate where 47.6 occurs 
between these two tabled values, but this seems excessive to us.  Instead, we 
assign this child’s dental age as 7.1, because the observed value (47.6) is 
numerically closer to 48.3 than to 46.7.  The “closest” score (48.3) corresponds in 
the table to a dental age of 7.1 years (so DA = 7.1 years). 
 

Two useful pieces of information are derived here:  One, the dental 
maturity score of 47.6 means that the boy is almost halfway (47.6%) in his 
progress towards complete dental maturity, which is defined as 100% at age 16 
in the reference sample.  Secondly—and clinically more useful—the score of 47.6 
corresponds to a dental age of 7.1 years, meaning that, on the average, boys in 
the reference sample achieved this extent of dental development when they were 
7.1 years of age.  Since this particular boy has a chronological age very close to 
this, his tempo of dental development is shown to be typical for the reference 
group, thus his label as an “average maturer.”  For research purposes, we note 
that his DA is 0.1 years behind his CA, but this is a clinically insignificant 
difference. 
 
 
Intraobserver Repeatability 
 

Repeatability error was quantified by the author by scoring the 
mineralization stages of the eight mandibular tooth types of 13 panoramic 
radiographs on two occasions separated by several months.  The resulting 103 
pairs of scores are shown in Table 6, where it is evident that repeatability 
accuracy was high.  Fourteen teeth (14/103; 13.6%) had different scores, and these 
only differed by one grade.  The most common ambiguities were between grades 
G and H, which depends on whether the root apex is closed.  This morphological 
detail requires the finest discrimination of the eight grades, and it was confused 
in 10 of the 76 cases (i.e., stages G and H). 
 

Intraobserver agreement was quantified using the Kappa statistic (Agresti 
1996).  Kappa can range from 0 (which is agreement due only to chance) up to 1 
(which is perfect agreement).  Kappa for these data was 0.796 (standard error = 
0.0509), which is quite high; indeed this level of agreement exceeds most  
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Table 5. Example of calculating the Demirjian dental maturity score. 
 

 Tooth Stage Coefficient 

 L1 F 4.1 
 L2 E 5.2 
 L3 D 3.5 
 L4 D 7.0 
 L5 C 5.4 
 L6 F 12.3 
 L7 D 10.1 
 Sum: 47.6 

 
 
 
Table 6. Results of scoring 103 mandibular teeth on two occasions. 
 
Grade B C D E F G H Subtotal 
 B 2 0 0 0 0 0 0 2 
 C 0 6 0 0 0 0 0 6 
 D 0 1 2 1 0 0 0 4 
 E 0 0 0 1 0 0 0 1 
 F 0 0 0 0 12 0 0 12 
 G 0 0 0 0 2 19 3 24 
 H 0 0 0 0 0 7 47 54 
Subtotal 2 7 2 2 14 26 50 103 
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researchers’ statistics reported in the literature.  Fleiss (1981) suggests that values 
of kappa in excess of 0.75 or so represent “excellent agreement,” so the much-
higher level of agreement found here provides considerable confidence that the 
data were obtained in a systematic, reliable fashion. 
 
 
Power Analysis 
 

There are, now, several studies that provide the statistics needed to 
calculate a power analysis, which is the calculation of the sample sizes needed to 
be fairly confident of finding a statistically significant difference between groups 
if one exists.  Brom et al. (2007) recently have published a method of calculating 
power analysis for two samples tested with analysis of covariance (ANCOVA).  
Five pieces of data are needed for the power analysis: 
 
1. The effect size, or the difference in Y-intercepts you hope to detect.  This 

difference depends on how small a difference is considered to be “clinically 
significant.”  It is arguable that the effect size should be about ½ year.  If it is 
smaller than this, then using separate, group-specific norms probably is not 
important clinically—though what is “clinically” significant depends on the 
perspective of the researcher.  For routine clinical examinations—and given 
the appreciable differences among children’s growth pattern—a ½-year 
different arguable seems small enough.  (Smaller inter-cohort differences 
require larger sample sizes.) 

 
2. The standard deviation. This is the standard deviation of all the Y values 

within each group (without controlling for the X variable).  For example 
(Table 7) this is the standard deviation of chronological age or of dental age.  
In the span of 5-to-15 years, the standard deviation for both CA and DA is on 
the order of 3.0 or smaller (Table 7).  (The age range is based on very few 
children being treated below 5 years of age, and the upper limit, 15 years, is 
defined by when all permanent teeth normally complete mineralization.) 

 
3. Alpha, which is the significance level (usually 0.05). 
 
4. Power (beta), which is the probability of rejecting the null hypothesis when 

the given effect size is true (0.80 is the common value).  With beta set to 0.80, 
the researcher would, in concept, find a statistically significant difference at 
the effect size 80% of the time. 
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Table 7. Prior estimates of standard deviations (sexes pooled). 
 

  Sample Chronological Dental 
 Group Size Age Age 
American Blacks ~800 2.90 3.10 
Vietnamese-Americans ~600 2.20 2.84 
American Whites ~1,100 2.77 2.82 

 
Reprinted with permission.  From unpublished data from E. F. Harris. 
 
 
5. The r2 (coefficient of determination) within groups.  Observed values from 

prior studies are listed in Table 8.  For all three groups listed, r2 between 
chronological and dental age is close to 0.80 (sexes pooled). 

 
 
Calculations 
 

For the ANCOVA model, interest is on whether the Y-intercepts differ.  
Prior studies (e.g., Figure 23) suggest that the tempos of dental maturation (the 
slopes or tempos of maturation) do not differ as much as the vertical offsets (Y-
intercepts).  The estimates used are:  (A) difference in Y-intercepts (0.5 year), (B) 
SD within groups (3.0), (C) r2 within groups (0.80), (D) alpha at 0.05, and (E) 
power (beta) at 0.80.  These estimates were calculated for two-tail tests of 
significance.  Results (Table 9; Figure 24) were run for a range of differences, 
from a high of 1 year down to 0.1 year.  Required sample sizes (per group) 
increase geometrically as the effect size decreases. 
 

Of note, a difference between groups of one-half year corresponds to a 
sample size of 114, and this is calculated using data for sexes pooled.  Since there 
is a well-known trend for girls to achieve tooth mineralization stages ahead of 
boys (e.g., Thompson et al. 1975), sex-specific ANCOVA models (or where “sex” 
is included as a covariate) should be more efficient—more likely to discover a 
statistical difference if one exists. 
 

The actual sample sizes for each sex and cohort exceeded 100, so there 
should be a discriminatory power between 0.6 and 0.5 years.  Total sample size 
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Table 8. Prior estimates of the coefficient of determination (r2) 
between chronological age and dental age. 

 
 Group n r2 
American Blacks ~800 0.803 
Vietnamese-Americans ~600 0.817 
American Whites ~1,100 0.891 

 
Reprinted with permission.  From unpublished data from E. F. Harris. 
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Figure 23. Plot of the associations between chronological age and dental age 
(derived from the Demirjian method).  Fundamentally, these least-square lines 
are parallel, the major differences are differences in the Y-intercepts.  Data are for 
sexes pooled. 
 
Reprinted with permission.  From unpublished data supplied by E. F. Harris. 
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Table 9. Sample size estimates (per group) based on power analysis. 
 

  Sample Size Sample Size 
 Y-Intercept Per Group  Per Group 
 Difference (b = 0.8) (b = 0.9) 
 1.0 29 38 
 0.9 35 47 
 0.8 45 60 
 0.7 58 78 
 0.6 79 106 
 0.5 114 152 
 0.4 177 237 
 0.3 315 421 
 0.2 707 946 
 0.1 2,826 3,783 
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Figure 24. Plot of the sample sizes (per group) needed with an alpha of 0.05 
and a beta of 80%.  Differences in the Y-intercepts are plotted on the horizontal 
axis.  The required sample size increases geometrically as the effect (difference 
between groups) is reduced. 
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was 446 individuals.  In other words, with the sample sizes used, a secular 
difference of at least 0.6 years is likely (beta = 0.8) to be detected statistically. 
 
 
Sample Size 
 

A total of 446 panoramic x-rays were scored, one from each individual in 
the age range of 10 and 16 years.  In the older cohort (1980-85), there were 101 
boys and 134 girls.  In the more recent cohort (2005-10), there were 102 boys and 
109 girls.  All seven teeth were scorable on these films, which is necessary to 
calculate the dental age using Demirjian’s system. 
 
 
Statistical Analysis 
 

Data were collated into an Excel® spreadsheet (Microsoft Corporation, 
Redmond, WA) then transferred to the JMP® statistical package version 9 (SAS 
Institute Inc., Cary, NC).  Exploratory data analysis (Tukey 1977) was performed, 
searching for outliers; those due to technical errors were corrected.  Descriptive 
statistics (Sokal and Rohlf 1995) were computed, including the arithmetic mean 
(x�), standard deviation (sd), standard error of mean (sem), upper and lower 95% 
confidence limit (L1, L2), sample size (n), sample variance (s2), skewness (g1), 
kurtosis (g2), coefficient of variation (cv), number of cases missing, maximum 
value, median value (50th percentile), and minimum value. 
 

Product-limit survival estimates (better known as Kaplan-Meier analysis; 
e.g., Elandt-Johnson and Johnson 1980; Allison 1995) were used to calculate the 
median chronological age of occurrence of each tooth’s developmental stage, by 
sex and by cohort.  Survival analysis estimates the average (median) time to an 
event, and “event” here is the attainment of a particular grade of crown-root 
mineralization.  Some simple review articles on this topic in the health sciences 
are by Kachman (1999), Ahmed et al. (2007), and Rao and Shoenfeld (2007). 
 

Girls characteristically have a faster tempo of dental maturation than boys 
(e.g., Dahlberg and Menegaz-Bock 1958; Haavikko 1970; Demirjian 1978), though 
the extent of the sex difference varies by tooth type and population (e.g., Harris 
2007).  Whether there is a statistically significant difference for a given tooth and 
stage between the two age cohorts (1980-1985 versus 2005-2010) while controlling 
for sexual dimorphism was tested here using proportional hazards analysis (e.g., 
Cox and Oakes 1994; Allison 1995) using the JMP® statistical package. 
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Survival analysis is not suitable for the terminal stage of formation (stage 

H).  On reflection, it should be evident that, once mineralization is complete, this 
stage persists throughout the individual’s life, so “median age of occurrence” for 
stage H in a cross-sectional study is simply a function of the age distribution of 
those in the sample (the more biologically adult subjects; the greater the observed 
median. 
 

Tooth formation is normally distributed as regards chronological age (e.g., 
Hayes and Mantel 1958; Smith 1991).  This means that, for a given stage of tooth 
formation, the age distribution of attainment of this stage is normally distributed.  
An example is shown in Figure 25.  This example is selected because of its large 
sample size.  A normal distribution (blue line) is overlain on the empirical 
distribution.  It is easy to conceptualize, that the normal distribution can be 
redrawn as cumulative distribution (also known as an ogive; Croxton and 
Cowden 1939). 
 

An ogive has an S-shape configuration (Figure 26).  The left-most portion, 
with a low slope contains the relative few early-maturers who achieve the stage 
at an early chronological age.  The slope (steepness) of the curve increases to a 
maximum (at the median or 50th centile), where the density of the distribution 
tends to be greatest.  Thereafter, the slope decreases, tapering to a nearly-flat 
slope at the far right where just a few individuals are slow to achieve the stage 
(the late maturers).  The shape of the ogive often is taken to be symmetric about 
the median.  This is not necessarily so.  For example, a Verhulst equation can be 
used (Gershenfeld 1999), where the early and late maturers are distributed 
differently. 
 

Statistically, the question in the present study is whether the median age 
of attainment of a tooth-formation stage changed over time (a secular trend).  
That is, we speculated that the median chronological age of attainment of a stage 
(the median) has diminished over time, presumably in consequence to improved 
nutrition and, possibly, reduced childhood morbidity.  This actually could be 
evaluated as a one-tail test, because the secular trend, if one exists, is toward 
younger chronological ages at attainment.  Still, as a conservative bias, the 
inferential tests are evaluated as two-tail tests. 
 

The practical steps of analysis were (1) to use survival analysis to generate 
the medians and graphical output and then (2) to use proportional hazards 
analysis to test whether the difference in median ages between the two cohorts   
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Figure 25. Example of the age distributions of stages C through G (sexes 
pooled) for the lower second molar to illustrate the method.  Data are from a 
large sample of American white children. 
 
Reprinted with permission.  Unpublished figure supplied by E. F. Harris. 
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Figure 26. Schematic depiction of the S-shape ogive that reflects the nature of 
the cumulative increase in the percentage of a sample achieving a maturational 
event as chronological age progresses.  Statistically, the issue is to estimate the 
median age and a measure of dispersion. 
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achieved statistical significance.  Actually, because it is necessary to take sexual 
dimorphism in attainment times into account (e.g., Garn et al. 1958; Anderson 
and Thompson 1973), we used a two-way ANOVA design that has this format of 
cohort and sex as the two main effects, and cohort-by-sex is the one interaction 
effect.  Details of the proportional hazards analysis follow the descriptions by 
Hosmer and Lameshow (1989) and Allison (1995).  Results of survival analysis by 
tooth and grade can be found in Appendix A (Tables A-1 through A-16).  The 
plots of survival analysis can be found in Appendix B (Figures B-1 through B-17). 
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CHAPTER 4.  RESULTS 
 
 
Proportional Hazards Analysis 
 

The permanent tooth types begin mineralization by birth if not before 
(Kraus and Jordan 1965; Reid and Dean 2006), so, excluding the late-forming 
third molar (Rantanen 1967; Harris 2007), the crowns and much of the roots of all 
of the other tooth types have mineralized by the age of early permanent 
dentition, when children traditionally seek orthodontic treatment.  For example, 
there are inadequate data to test any of the stages of tooth formation for either 
the mandibular central or lateral incisor because these events have already 
occurred by 10 years of age.  This means that there are rather few stages of 
formation in the 10-to-16 age range for comparison between cohorts.  Indeed, just 
17 tooth-grade combinations had sufficient sample sizes to test for both cohort 
and sex effects—and 5 of these are for the third-molar that is not used in the 
Demirjian method. 
 

Also, Stage H, the terminal stage persists throughout an individual’s life, 
so testing for the differences in onset of this stage using cross-sectional data 
typically is biased.  We go ahead and present the analysis for stage H noting that 
sample selection ceased at the chronological age of 16, and this imposed upper 
limit makes the sex and cohort differences suggestive. 
 
 
Demirjian Method 
 

The sex-specific equations developed by Demirjian et al. (1973) were used 
to calculate each subject’s dental age.  Data analyzed in the prior section were the 
formation stages of each tooth; this section combines the stages for the 
mandibular seven teeth into a composite measure of “dental age” for the 
individual.  Some researchers have found that Demirjian’s method under-
estimates dental age in other groups (e.g., Hedge and Sood 2002; Leurs et al. 2005; 
Al-Emran 2008; Tunc and Koyuturk 2008), but that is immaterial here since the 
point is to use a common reference against which to compare the two Mid-South 
cohorts. 
 

Perhaps the simplest comparison is to pool the results for the two sexes, 
and calculate DA-CA for the cases.  DA-CA is, of course, how the person’s dental 
age (using the Demirjian system) compared to his or her chronological age.  If the 
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average DA-CA is negative, then dental age tends to lag behind CA, whereas, if 
DA-CA is positive, then dental age exceeds CA.  Results for the two cohorts are 
plotted in Figure 27, and it is evident that the older (1980-85) cohort had a 
median that was close to zero (using the Demirjian et al. standards), while the 
recent (2005-10) cohort has a median that is at about +1 year.  By group-
comparison t-test (e.g., Woolf 1968), DA-CA for the two cohorts are highly 
significantly different (t = 7.5; df = 405; P < 0.0001).  Interpretation is that the 
recent (2005-10) cohort achieved tooth mineralization stages at significantly 
younger ages than the older cohort, and the average difference is 1.02 years (SE = 
0.137; 95% confidence limits:  0.75 and 1.29 years). 
 

This simple comparison combines everyone in the 10-to-16 year age range, 
which is not particularly informative.  A more insightful result occurs when 
dental age is plotted against chronological age for the two cohorts (Figure 28).  It 
is evident that the more recent (2005-2010) group has visibly older dental ages at 
the corresponding chronological ages compared to the older cohort (1980-1985).  
That is, contemporary (2005-2010) children are reaching the same levels of dental 
maturation at least a year earlier than children a generation ago (1980-85).  The 
typical 12-year-old child now has the dental maturation of a 13-year-old a 
generation ago.  These results also mean that using older “standards” of tooth 
formation (e.g., Nolla 1960; Moorrees et al. 1963) will over-estimate contemporary 
children’s dental age and, thus, under-estimate their growth potential. 
 

Another effect of the secular trend is evident in Figure 28.  There is a 
horizontal “line” of dots at the top of the figure at dental age 16.  This clustering 
occurs because all seven mandibular teeth (teeth I1 through M2) complete tooth 
formation before about 16 years of age, so the dentition is fully mature, and the 
dental score for the Demirjian system is 100.0, which corresponds to 16.0 years of 
age—thus the clustering.  With this method, all cases who are dentally adult 
have a dental age at the upper limit of 16 years.  Notice that there is a scarcity of 
cases along the horizontal axis to the right of about 15 years of age.  This is 
because most cases—and especially those in the recent cohort—who are at least 
15 years of age have a totally mature dental age of 16 years. 
 

These results are for sexes combined, which is reasonable since Demirjian 
and coworkers developed sex-specific equations that should remove the effects 
of sexual dimorphism in tooth formation (e.g., Thompson et al. 1975).  However, 
it is possible (e.g., Roche 1979; Garn 1987) that boys and girls have experienced 
different secular trends.  Figures 29 and 30 show the results when the data are 
tested in separate subsets of girls and boys, respectively. 
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Figure 27. Box plots for the distributions of DA-CA for the two age cohorts 
(sexes combined).  The difference between medians is 1.02 years, showing that 
the more recent (2005-10) cohort had a significantly faster tempo of tooth 
formation. 
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Figure 28. Plot of dental age against chronological age in the two cohorts 
(sexes pooled).  Children in the recent (2005-10) cohort achieve mineralization 
stages (and, thus, dental ages) at significantly earlier chronological ages than in 
the older (1980-85) cohort. 
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Figure 29. Plot of dental age by chronological age in the two cohorts of girls.  
Unlike the results for boys, these two cohorts diverge with age, meaning that the 
tempo of growth is faster in the recent (2005-10) cohort than formerly. 
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Figure 30. Plot of dental age by chronological age in the two cohorts of boys.  
Throughout the 10-to-16 age range, the recent (2005-10) cohort parallels the rate 
seen in the older (1980-85) cohort, but with about a one-year offset because the 
recent cohort is more mature throughout the age span. 
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Boys and girls have both experienced a significant increase in their rates of 
tooth mineralization (positive secular trends), but the effect has been more 
dramatic in girls.  For boys, the difference between the two cohorts is largely an 
offset of about a year.  For girls, there is an offset—a greater dental age for a 
given chronological age—but the tempo of development during adolescence also 
is occurring at a faster pace.  The generational difference is about 1 year at 10-11 
years of age, but this increases to almost two years by 14-15 years of age. 
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CHAPTER 5.  DISCUSSION 
 
 

A secular trend is a change in the tempo of growth over one or more 
generations due to changes in the environment (Roche 1979; Garn 1987; Cole 
2000).  When evolutionary effects such as gene flow (migration) and selection can 
be dismissed, yet there is a change across generations in the size or timing of a 
developmental trait, the assumption is that the environment has affected 
growth—that there has been a secular trend (Roche 1979; Cole 2000). 
 

Secular trends are episodic—they occur when the environment affecting 
children’s growth changes enough to alter growth, and such changes follow no 
set sequences.  In the United States and other industrialized countries, children 
and, in consequence, adults are becoming larger, and children at each age are 
taller and heavier than in the past, and these trends have been documented in a 
number of industrialized nations (e.g., Tanner 1966; Komlos and Lauderdale 
2007; Batty et al. 2009).  These trends are in concert with observed decreased ages 
of menarche (Berenberg 1975), increases in tooth sizes (Garn et al. 1968; Lavelle 
1973; Warren et al. 2003), increases in arch dimensions (Lindsten 2003), and 
earlier tooth emergence (Diamanti and Townsend 2003).  It is not unanticipated, 
then, that tooth formation also is proceeding at a faster pace than in the past.  The 
present results fully agree with the preliminary findings of Nadler (1998), who 
showed that children in his orthodontic practice (Arizona, U.S.) were achieving 
tooth mineralization stages at early chronological ages (1992-1994) than in the 
past (1972-1974).   Nadler’s study suggested a 1.4-year reduction in the average 
age at achievement of stages across the two decades.  Until now, this is the only 
study that has tested for more rapid tooth development—though faster rates of 
emergence are evident (e.g., Warren et al. 2003).  The present study confirms 
Nadler’s preliminary findings, showing too that girls have experienced a greater 
change than boys in the same population.  Based on our multiple stages and 
pooling over seven tooth types, the present analysis suggests a secular increase 
on the order of 0.8 years in boys and 1.1 years in girls over the quarter-century 
between cohorts.  The common theme across the present study is that the older 
(1980-85) cohort achieved the mineralization stage at an older average 
chronological age than the recent (2005-10) group.  For example—using the 
Demirjian standards—the average 12-year-old in the 1980-85 cohort possessed a 
dental age of 12.9 years.  A generation later, in contrast, the average 12 year old 
boy is more mature, with a dental age of 13.7 years.  The same degree of dental 
maturation in a boy in the 1980-85 cohort now is achieved 0.8 years earlier. 
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The present report raises several questions:  How long has this secular 
trend been ongoing?  Our choice of two cohorts was defined by the availability of 
older records (1980-1985) in our archives.  It is unlikely that this earlier cohort 
coincides with the onset of the current secular trend, though it is unclear when 
this might have begun.  Comparably, it is unlikely that the recent (2005-10) 
cohort in any way coincides with the cessation of increasing tempos of tooth 
formation.  The homogenizing effects of the “modern American culture” suggest 
that the trend should be widespread across the nation, but this awaits 
documentation.  To date, data on tooth formation and emergence are for the 
American white majority population.  At least for American blacks (Garn et al. 
1972, 1973; Harris and McKee 1990), data disclose an inherently faster tempo of 
growth in blacks than whites, especially for girls (Zhang et al. 2009).  Next to 
nothing is known about Hispanics who are a heterogeneous group.  It can only 
be supposed that these segments of the U.S. population have partaken of the 
secular trends reported here. 
 

This study also raises the question of causation.  Why has this secular 
trend occurred?  Little is known how a child’s health translates to his or her 
tempo of growth.  Broadly, under-nutrition (Shaw 1970; Tonge and McCance 
1973) seems to act by slowing mitotic rates and, thus, taking longer for the 
growing animal to reach critical developmental stages.  Conversely, proper 
nutrition up-regulates mitosis (Davis and Fiorotto 2009). 
 

The acceleration in tooth formation may be greater in girls than boys.  In 8 
of the 10 comparisons, the median changes between cohorts are larger in girls 
than boys.  While this 8:2 split does not exceed chance (χ2 = 3.6; 0.10 > P > 0.05), 
the average secular change in boys (~0.7 years) is larger than in girls (~0.3 years). 
 

These sex differences may have corollaries with the recent ‘epidemic’ of 
obesity in the United States and other industrialized countries brought about by 
ample, inexpensive food in combination with reduced physical activity (CDC 
1999).  Over-nutrition in girls enhances the onset of menarche, probably because 
of elevated titers of estrogen (Nguyen and El-Serag 2010).  The opposite occurs in 
boys, where elevated weight gain actually slows the onset of puberty (Walvoord 
2010), which may translate into larger adult sizes because of a protracted interval 
of growth.  A recent study by Hilgers and colleagues (2009) of 104 children 
between the ages of 7 and 15 linked higher than normal body mass index (BMI) 
to accelerated dental development.  Their results further suggest that increasing 
frequencies of children with greater fat deposits probably contribute to the faster 
trend in tooth formation.  This is corroborated by Hilgers’ et al. (2007) finding 
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that hand-wrist bone age also is accelerated in contemporary children with high 
BMI.  Their work shows that the tempos of dental age and bone age are both 
accelerated in children with a high BMI even though several studies have shown 
that there is only a weak statistical association between these two measures of 
physiological age (e.g., Robinow et al. 1942; Nanda 1960; Björk and Helm 1967; 
Lancet et al. 1973). 
 

Enhanced nutrition in the U.S. obviously has occurred (CDC 1999), but 
nutritional improvements can be subtle.  For example, it is often overlooked that 
this past century witnessed the cessation of rickets (vitamin D deficiency), goiter 
(iodine deficiency), and pellagra (niacin deficiency), among other diseases that 
were common in the U.S. until the mid-20th century but are uncommon today 
because of public health initiatives. 
 

Another, potential issue is the growing presence of endocrine-disrupting 
chemicals (EDCs) in the environment.  These are exogenous compounds (such as 
phytoestrogens and polychlorinated biphenyls) that interfere with the 
production, action, or metabolism of endogenous hormones (Walvoord 2010).  
An important consequence seems to be the development of obesity (Newbold 
2010), which may lead to earlier pubertal development (Aksglaede et al. 2006). In 
2002, Baillie-Hamilton’s landmark review first postulated a link between 
chemical toxins and obesity.  She noted that the obesity epidemic coincided with 
a marked increase of industrial chemicals in the environment and proposed that 
these chemicals were interfering with weight homeostasis by way of altering 
hormones, neurotransmitters, or altering the sympathetic nervous system 
(Baillie-Hamilton 2002).   Of particular concern is exposure of the developing 
fetus to such EDCs while in utero, which may have permanent effects (Newbold 
2010).  One particular estrogenic compound called diethylstilbestrol (DES) was 
prescribed to women from the 1940s to the 1970s because it was believed to 
prevent miscarriages.  Instead, DES caused an increase in neoplastic lesions in 
human offspring, and it has been associated with significant weight gain in mice 
6 months after birth (Newbold 2010).  Similarly, when genistein, a phytoestrogen 
common in soy products, is ingested in doses similar to what occurs in western 
diets, increased fat deposition occurs in males (Newbold et al. 2008).  It seems 
that the current obesity epidemic is not only caused by poor eating and exercise 
habits, but also seems to be linked to early exposure of environmental chemicals 
(Newbold et al. 2009). 
 

Causes of these accelerated tempos of growth will remain speculative 
until prospective studies have quantified the lifestyles of children growing at 
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faster tempos.  Broadly, diminished childhood morbidity helps children grow at 
closer to their genetic potentials compared to past populations.  Tanner (1962) 
and others note that, typically, increases in average body dimensions benefit 
most by enhancing growth of the most-stressed elements of a population. 
 

Orthodontically, the obvious message is that in many instances children 
can now be treated at earlier chronological ages.  The dental consequences of 
secular trends are that the average child now achieves the level of dental 
maturation appreciably earlier than a generation ago.  If the dentist’s interest is 
in waiting until all 28 permanent teeth have erupted into functional occlusion, 
then this typically occurs a year or more earlier than a generation ago.  If interest 
is in treating during the mixed dentition, where the opportunities for arch 
development and orthopedic changes may be greater (e.g., O’Reilly and 
Yanniello 1988; Hägg and Pancherz 1988), then it is relevant to screen children at 
earlier chronological ages than in the past.  Currently, the American Association 
of Orthodontists (AAO) suggests that each child be examined by an orthodontist 
at age 7.  Our findings suggest that this age be lowered to adjust for faster tooth 
development. 
 

For example, consider a treatment that depends on a given stage of tooth 
development—such as “the early permanent dentition.”  Such a procedure might 
be the development of the lower dental arch during premolar eruption with lip 
bumper therapy.  (The theory is that the lip bumper lessens the pressure of the 
facial musculature on the lower dentition, thus allowing for the “development” 
or widening of the dental arch via slightly more buccal eruption of the premolars 
and flaring of the incisors.)  By previous standards, lower premolars emerge 
between the ages of 10 and 12; however, today they may erupt between ages 9-
11, thus needing earlier treatment when a lip bumper is required for arch 
development. 
 

The results of this study stress the notion that medical and dental 
clinicians need to view “growth standards” as dynamic rather than static.  For 
example, it still is common to use the hand-wrist bone standards of Greulich and 
Pyle (1959) based on children who grew up in the 1930s and 1940s.  The present 
study suggests that the often-referenced standards of tooth formation (Nolla 
1960; Moorrees et al. 1963; Demirjian et al. 1973; Anderson et al. 1976) and of tooth 
emergence (Hurme 1949; Hägg and Taranger 1985) almost certainly have been 
biased by subsequent secular trends and would seem to be unrepresentative of 
the current populations’ growth tempos. 
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“Dental age”—the extent of crown-root mineralization normally achieved 
at a given chronologic age—has significantly accelerated across these two cohorts 
tested here.  Standards derived from children in generations gone by are likely to 
have mineralized and erupted their teeth at older chronological ages.  For 
example, a typical 12-year-old today would have a degree to tooth formation not 
seen in prior generations until 13-years of age or older.  Over-estimating the level 
of tooth development suggests a contemporary child is a “fast maturer” where in 
fact he is not vis-à-vis his peers.  Older standards also under-estimate a child’s 
growth potential.  This might be relevant in the case of a patient with a Class 2 
division 1 dental malocclusion in which the orthodontist removes upper 
premolars to correct the patient’s overjet rather than using a growth appliance 
(e.g., Herbst or MARA) because the clinician has underestimated the patient’s 
anticipated growth. 
 

These suggestions need to be tempered because of the great inter-
individual variation in growth tempos.  While we document highly significant 
increases in the average rate of growth statistically, it is unlikely that the clinician 
would be impressed by this change compared to the large variability brought on 
by age, race, and sex in inter-individual differences.  So too, the clinician treats 
the individual based on that child’s specific condition, so group averages play 
little role in diagnosis or treatment of a given patient,  Still, when using group 
standards for statistical reference (in order to quantify a child’s departure from 
normal) appropriate averages need to be considered. 
 

Finally, the results also have legal and forensic consequences.  For 
instance, several publications suggest that the third molar can be used as a 
medicolegal marker of whether an individual is an “adult”—where the legal 
consequences can be quite different than for a minor (e.g., Mincer et al. 1993;  
Liversidge 2009; Panchbhai 2011).  Ignoring the considerable variability of the 
third molar (e.g., Harris 2007), the present findings of a significant secular trend 
suggests that adolescents now are achieving tooth-mineralization stages not seen 
until older ages in prior generations.  The risk of using older “standards” where 
growth was slower is to over-estimate a youth’s true chronological age.  This 
likewise is true of people without documentation of age and of skeletal remains 
where age is estimated from the dentition (Brook and Barker 1972; Nuzzolese 
and Di Vella 2008). 
 

There is no reason to suspect that the secular trend demonstrated in this 
study has “peaked.”  The two cohorts studied here (1980-85 and 2005-2010) were 
simply defined by convenience based on the archived records at our University.  
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Continued improvements in children’s growth (reduction in illnesses; improved 
nutrition and over-nutrition) may well cause the trend to continue in this culture.  
It would be interesting to test prior and subsequent cohorts.  It also would be 
informative to see how pervasive the trend is:  Have other segments of the 
population shared in this trend?  What about other areas of the country? 
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CHAPTER 6.  CONCLUSIONS 
 
 

This study compared the tempos of crown-and-root formation in two 
groups of children separated by a quarter-century (1980-85 and 2005-10).  All 
children were American whites from the same clinic.  Both sexes exhibit a 
significant secular trend, with contemporary children maturing about 1 year 
faster than in the past.  The trend has been somewhat faster for girls.  It is 
necessary to collect prospective data to refine suggestions of what factors are 
driving the enhanced tempos of growth aside from the obvious but generalized 
improvements in nutrition and health care. 
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Table A-1. Results of survival analysis for stage G of the mandibular canine. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 57 12.96 0.10 12.91 12.61 13.44 Log-Rank = 29.06 3 <0.0001 

1980-85 Girls 51 12.06 0.16 12.16 11.18 12.70 Wilcoxon = 46.70 3 <0.0001 

2005-10 Boys 28 12.05 0.17 11.91 11.35 12.66 

2005-10 Girls 22 11.39 0.22 11.38 10.45 11.81 
 
 
 
Table A-2. Results of survival analysis for stage H of the mandibular canine. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 29 13.73 0.14 13.73 13.25 14.21 Log-Rank = 8.23 3 0.0416 

1980-85 Girls 71 13.34 0.13 13.40 12.52 14.14 Wilcoxon = 11.10 3 0.0112 

2005-10 Boys 56 13.61 0.11 13.72 13.09 14.10 

2005-10 Girls 86 13.05 0.13 13.27 12.10 13.97 
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Table A-3. Results of survival analysis for stage F of the mandibular first premolar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 11 11.74 0.28 11.49 11.04 12.23 Log-Rank = 5.54 3 0.1364 

1980-85 Girls 12 10.82 0.30 10.55 10.27 11.29 Wilcoxon = 6.97 3 0.0727 

2005-10 Boys 12 11.16 0.26 10.87 10.60 11.80 

2005-10 Girls 9 10.82 0.24 10.60 10.18 11.28 
 
 
 
Table A-4. Results of survival analysis for stage G of the mandibular first premolar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 56 13.03 0.10 13.06 12.61 13.62 Log-Rank = 21.83 3 <0.0001 

1980-85 Girls 59 12.35 0.14 12.24 11.57 12.97 Wilcoxon = 39.58 3 <0.0001 

2005-10 Boys 28 11.93 0.19 11.84 11.25 12.28 

2005-10 Girls 23 11.70 0.23 11.43 10.82 12.05 
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Table A-5. Results of survival analysis for stage H of the mandibular first premolar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 31 13.68 0.13 13.67 13.15 14.23 Log-Rank = 5.19 3 0.1585 

1980-85 Girls 61 13.47 0.13 13.46 12.69 14.19 Wilcoxon = 4.40 3 0.2212 

2005-10 Boys 59 13.50 0.12 13.64 12.95 14.06 

2005-10 Girls 76 13.22 0.12 13.31 12.40 14.02 
 
 
 
Table A-6. Results of survival analysis for stage F of the mandibular second premolar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 37 12.61 0.15 12.68 11.97 13.19 Log-Rank = 18.76 3 0.0003 

1980-85 Girls 38 11.57 0.15 11.65 10.83 12.21 Wilcoxon = 24.82 3 <0.0001 

2005-10 Boys 37 11.67 0.16 11.64 10.90 12.31 

2005-10 Girls 29 11.47 0.21 11.34 10.66 11.80 
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Table A-7. Results of survival analysis for stage G of the mandibular second premolar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 52 13.35 0.10 13.27 12.74 13.74 Log-Rank = 14.03 3 0.0029 

1980-85 Girls 67 13.13 0.12 13.02 12.44 13.80 Wilcoxon = 16.70 3 0.0008 

2005-10 Boys 28 12.93 0.18 13.01 12.03 13.72 

2005-10 Girls 32 12.45 0.18 12.31 11.64 13.27 
 
 
 
Table A-8. Results of survival analysis for stage H of the mandibular second premolar. LP2=H 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 7 14.24 0.25 13.88 13.45 14.82 Log-Rank = 4.32 3 0.2286 

1980-85 Girls 24 13.64 0.23 13.61 13.07 14.72 Wilcoxon = 3.00 3 0.3918 

2005-10 Boys 35 13.89 0.11 13.85 13.31 14.43 

2005-10 Girls 46 13.64 0.13 13.74 13.04 14.45 
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Table A-9. Results of survival analysis for stage H of the mandibular first molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 90 13.18 0.09 13.13 12.66 13.73 Log-Rank = 1.37 3 0.7129 

1980-85 Girls 129 12.80 0.11 12.73 12.00 13.62 Wilcoxon = 6.01 3 0.1113 

2005-10 Boys 96 12.83 0.13 13.02 11.77 13.81 

2005-10 Girls 108 12.73 0.13 12.93 11.57 13.86 
 
 
 
Table A-10. Results of survival analysis for stage F of the mandibular second molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 28 12.58 0.13 12.61 11.97 13.09 Log-Rank = 18.49 3 0.0003 

1980-85 Girls 28 11.54 0.17 11.66 10.83 12.15 Wilcoxon = 29.16 3 <0.0001 

2005-10 Boys 27 11.84 0.17 11.71 11.16 12.31 

2005-10 Girls 20 11.25 0.21 11.38 10.33 11.61 
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Table A-11. Results of survival analysis for stage G of the mandibular second molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 62 13.35 0.09 13.27 12.82 13.74 Log-Rank = 7.15 3 0.0672 

1980-85 Girls 93 13.11 0.11 13.04 12.37 13.75 Wilcoxon = 9.37 3 0.0248 

2005-10 Boys 53 13.09 0.14 13.29 12.66 13.77 

2005-10 Girls 59 12.76 0.14 12.89 11.94 13.57 
 
 
 
Table A-12. Results of survival analysis for stage H of the mandibular second molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 
1980-85 Boys 5 14.45 0.24 14.42 13.88 14.77 Log-Rank = 3.61 3 0.3062 

1980-85 Girls 8 13.90 0.33 13.80 13.14 14.78 Wilcoxon = 3.32 3 0.3454 

2005-10 Boys 15 14.29 0.14 14.35 13.83 14.64 

2005-10 Girls 26 13.93 0.15 14.10 13.38 14.48 
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Table A-13. Results of survival analysis for stage B of the mandibular third molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 10 12.64 0.37 12.89 11.83 13.08 Log-Rank = 2.45 3 0.4842 

1980-85 Girls 12 11.97 0.40 12.04 11.22 12.47 Wilcoxon = 4.27 3 0.234 

2005-10 Boys 12 12.11 0.30 11.96 11.35 12.63 

2005-10 Girls 9 11.71 0.41 11.52 10.74 11.73 
 
 
 
Table A-14. Results of survival analysis for stage C of the mandibular third molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 26 12.88 0.18 12.84 12.06 13.55 Log-Rank = 10.17 3 0.0172 

1980-85 Girls 53 12.48 0.16 12.45 11.62 13.19 Wilcoxon = 14.16 3 0.0027 

2005-10 Boys 20 11.68 0.24 11.44 10.90 11.89 

2005-10 Girls 22 12.13 0.28 12.09 10.93 13.29 
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Table A-15. Results of survival analysis for stage D of the mandibular third molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 20 13.22 0.15 13.25 12.74 13.73 Log-Rank = 0.07 3 0.9952 

1980-85 Girls 25 13.20 0.15 13.25 12.58 13.60 Wilcoxon = 0.46 3 0.9284 

2005-10 Boys 27 13.04 0.20 13.01 12.44 13.79 

2005-10 Girls 45 12.98 0.16 13.21 12.11 13.74 
 
 
 
Table A-16. Results of survival analysis for stage E of the mandibular third molar. 
 
 Group n Mean SEM Median Q1 Q3 Test df P 

1980-85 Boys 12 14.00 0.20 13.92 13.55 14.64 Log-Rank = 2.08 3 0.5555 

1980-85 Girls 16 13.86 0.27 13.98 12.92 14.89 Wilcoxon = 0.33 3 0.9547 

2005-10 Boys 17 13.90 0.16 13.81 13.52 14.12 

2005-10 Girls 16 13.74 0.28 14.27 13.11 14.56 
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APPENDIX B.  PLOTS OF SURVIVAL ANALYSIS 
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Figure B-1. Results of survival analysis applied to stage G of the mandibular 
canine. 
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Figure B-2. Results of survival analysis applied to stage H of the mandibular 
canine. 
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Figure B-3. Results of survival analysis applied to stage F of the mandibular 
first premolar. 
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Figure B-4. Results of survival analysis applied to stage G of the mandibular 
first premolar. 
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Figure B-5. Results of survival analysis applied to stage H of the mandibular 
first premolar. 
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Figure B-6. Results of survival analysis applied to stage F of the mandibular 
second premolar. 
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Figure B-7. Results of survival analysis applied to stage G of the mandibular 
second premolar. 
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Figure B-8. Results of survival analysis applied to stage H of the mandibular 
second premolar. 
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Figure B-9. Results of survival analysis applied to stage H of the mandibular 
first molar. 
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Figure B-10. Results of survival analysis applied to stage F of the mandibular 
second molar. 
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Figure B-11. Results of survival analysis applied to stage G of the mandibular 
second molar. 
  



125 

 
 
 
Figure B-12. Results of survival analysis applied to stage H of the mandibular 
second molar. 
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Figure B-13. Results of survival analysis applied to stage B of the mandibular 
third molar. 
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Figure B-14. Results of survival analysis applied to stage C of the mandibular 
third molar. 
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Figure B-15. Results of survival analysis applied to stage D of the mandibular 
third molar. 
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Figure B-16. Results of survival analysis applied to stage E of the mandibular 
third molar. 
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Figure B-17. Results of survival analysis applied to stage F of the mandibular 
third molar. 
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