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ABSTRACT 
 
 
 Ankle instantaneous axis of rotation (IAR) measurements represent a more 
complete parameter for characterizing joint motion.  However, few studies have 
implemented this measurement to study normal, injured, or pathological foot-ankle 
biomechanics.  Additionally, while load is suggested to play a major role in ankle 
biomechanics, including influences on articular surfaces, bony motion, and formation of 
the arches, studies concerning the effects of joint loading are limited.  
 
 A novel testing protocol was developed to simulate in vivo mechanics of the foot-
ankle complex during early stance phase gait in a human cadaveric model.  Two studies 
were conducted.  The first study was to assess the repeatability and accuracy of an 
existing robotic testing platform (RTP) and loading protocol using force measurements 
and IAR data from two cadaver specimens.  A lower leg was mounted in a RTP with the 
tibia upright and foot flat on the baseplate.  Axial tibia loads (ATLs) were controlled as a 
function of a vertical ground reaction force (vGRF) set at half body weight (356N) and a 
50% vGRF (178N) Achilles tendon (AT) load.  Two specimens were repetitively loaded 
over 10 degrees dorsiflexion and 20 degrees plantarflexion.  Platform axes were 
controlled within 2µm and 0.008 degrees resulting in ATL measurements within ±2N of 
target conditions.  Mean ATLs and IAR values were not significantly different between 
cycles of motion, but IAR values were between dorsiflexion and plantarflexion.  A linear 
regression analysis showed no significant differences between slopes of plantarflexion 
paths.  

 
 The second study aimed to determine the effects of a passive (unloaded) and 
active Achilles and axial tibial loads on ankle mechanics using IAR data and translational 
and rotational data of the calcaneus, talus, and navicular from four cadaver specimens 
during stance phase gait.  Specimens were mounted in the RTP with the tibia upright and 
foot flat on the baseplate.  Passive loading applied a 5N ATL with no AT. Active ATLs 
were controlled as a function of a vGRF set at body weight (534N) and static ATs set at 
25%, 50%, 75%, 100% vGRF.  Four specimens were repetitively loaded over 10 degrees 
dorsiflexion and 10 degrees plantarflexion.  An optoelectric motion measuring system 
was used to track bony talus, calcaneus, and navicular translations and rotations.  
Kinematics in passive motion were predominantly governed by the shape of the mating 
articular surfaces.  Once actively loaded, net joint loading had no surgically relevant 
effect on the kinematics data other than to suggest they were governed more by soft 
tissue structures.  

 
 The customized robotic platform and advanced testing protocol produced 
repeatable and accurate measurements of the IAR.  Biomechanical properties of the foot 
and ankle were demonstrated, including the tibiotalar and soft tissue relationship on the 
axis of rotation and the effect of load on foot-ankle kinematics.  The platform and 
protocol can be useful for assessing foot-ankle biomechanics under different loading 
scenarios and foot conditions, as well as studying the biomechanical effects of orthotics, 
footwear, and surgery or injury.  
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CHAPTER 1.    INTRODUCTION 
 
 
 Due to its inherent complexity and physical significance in human activities, the 
ankle complex is of great importance to researchers of degenerative diseases, injury 
prevention, and rehabilitation [1-4].  Each year, two million Americans visit the doctor 
with severe ankle pain due to arthritis, fractures, or sprains [5].  Approximately 25,000 
patients undergo ankle fusions (arthrodesis) and roughly 4,400 undergo total ankle 
replacement (TAR) surgery (arthroplasty) to repair the joint each year [5].  The efficacy 
of TAR compared with that of ankle fusion continues to be one of the most debated 
topics in foot and ankle surgery [6-9].  Historically, ankle arthrodesis has been considered 
the “gold standard” for treatment of end-stage osteoarthritis with high patient satisfaction 
rates as a result of improved stability and reduced pain [6-9].  However, fusion severely 
inhibits ankle mobility, impacting gait mechanics and the adjacent joints, in turn 
increasing the risk of advanced adjacent joint degeneration [6-9].  Arthroplasty aims to 
imitate and restore physiologic function by regaining ankle mobility through two- or 
three-component tibio-talar implants, but has experienced high failure rates in the past [6-
9].  While the evolution of TAR designs have improved in reducing failure rates, neither 
method perfectly mimics a physiologically healthy human ankle ultimately as a result of 
poor understanding of the joint mechanics [10-11]. 

 
 Shoe inserts, or orthotics, and high arch support footwear are commonly used to 
treat fallen arches, foot pain, and plantar fasciitis, an inflammation of the plantar fascia, 
by limiting the stress on surrounding soft tissue structures [2-4,12,13].  However, debate 
between shoe and orthotic design involving minimal to considerable arch support has 
arisen among orthopaedists, podiatrists, and researchers over the past decade due to the 
limited knowledge of the biomechanical effects on the foot and ankle.  Minimal support 
footwear lacking cushioning, arch support, and built up heels (Vibram FiveFingers, New 
Balance Minimus, Nike Free Run, etc.) have been becoming increasingly popular due to 
the more natural design, returning the foot to a more physiologic state [12].  Shoes with 
support were designed in the 1970’s for safe and comfortable running [12].  Prior, 
running footwear was predominantly described as a “running flat.”  It is suggested that 
the foot accommodates the extra support by changing from a forefoot or midfoot strike 
pattern to a heel strike gait pattern [2,3,12].  While it is suggested that minimal support 
shoes may be the most natural design for healthy ambulation, limited knowledge is 
available on the biomechanical effects of orthotics and footwear on the healthy and 
pathologic foot. 
 
 In vitro studies [14-29], computational modeling [30-34], and in vivo testing [12, 
35-48] have offered valuable insight into the mechanics of the ankle complex to aid in 
identification of injury, foot abnormality, surgical correction, and implant design by 
measuring forces and bony motion; however, each technique possesses some inherent 
limitations.  In vivo studies involving X-ray photogrammetic [43], magnetic resonance 
imaging (MRI) [35,45,47,48], skin mounted retro-reflective markers [41,42,44,46], and 
videofluoroscopy [49] techniques are typically avoided. The amount of information they 
are able to acquire is limited due to the invasive surgeries required to obtain data 
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[44,47,48,50].  Bone motion studies that use skin mounted retro-reflective markers suffer 
from inaccuracies due to skin-motion artifacts [50].  Additionally, in vivo data lack 
accurate and repeatable loading scenarios due to variability of responses in subjects 
[35,50].  Computational modeling is able to accurately and repeatably predict loading 
conditions, but is limited by access of validation data for both the healthy and altered 
(injured, pathological, or diseased) states, as well as an inability to include the role of soft 
tissue structures [31,50].  In contrast, in vitro cadaver studies are able to complement 
these techniques to produce clinically relevant data.  However, orthopaedic research 
involving physiologic in vitro forces to bones, tendons, and ligaments during joint 
loading has often been limited by the biomechanical testing platforms (BTPs) [14-29].  
 
 To date very few BTPs are capable of applying physiologic joint loading 
conditions to the foot-ankle complex due to decreased in vivo loads or applied loads 
estimated by a single specimen [14,15,17-20].  Some studies only address loading 
conditions at a single instance of gait [17,24,25,35].  Of the platforms able to simulate 
walking gait, a forced kinematic profile is applied and data regarding the instantaneous 
axis of rotation (IAR) is not reported [14-23,25-29].  The ankle IAR is a more complete 
parameter for characterizing joint motion, where shifts in the IAR could help define 
injury type and/or the impact of injury on foot ankle mechanics, as well as the effects of 
surgical procedures and implant and orthotic design.  Sammarco et al. confirmed that the 
center of rotation (COR) of a normal ankle does not remain constant with motion and that 
it lies within the cross-sectional area of the talus in the sagittal plane [30].  Additional 
studies suggested a fixed axis of rotation with articular congruence is an incorrect 
kinematic model for the ankle joint [11,31].  This concept was furthered by formulating 
the ankle joint behaves like a two-dimensional four-bar linkage during passive motion 
with an IAR about the sagittal plane [31-34].  This moving center of rotation was 
explained by suggesting the articular surfaces roll and slide upon each other during 
motion [11,31-34,36] and as axial load increases, contact between articular surfaces plays 
an increasingly greater role in the mechanics of the ankle and axis of rotation [38,51].  
Load plays a major role in ankle biomechanics including influences on the articular 
surfaces, bony motion, and formation of the arches [36,51].  Arch formation is key in 
forming a rigid structure to transfer loads from the tibia to the ground. Activated 
primarily by the Achilles tendon (AT), it is suggested that once the arch is formed, little 
motion occurs between the calcaneus, navicular, and talus throughout stance phase 
[2,14,20,25,36].  This suggests most of the motion in the foot and ankle remains between 
the articular surfaces of the tibia and talus. However, studies concerning the effects of 
joint loading are limited.  And still, many approximate a single point of rotation [16,35], 
assume the ankle joint behaves as a simple hinge joint [24], or define the COR using 
overly simplified techniques such as tracking landmarks over large angles 
radiographically [35,38].  Thus, there is demand for a more physiologic and accurate 
testing platform to evaluate foot and ankle mechanics that would enable accurate 
measurement and calculation of the IAR.  
 
 A novel testing protocol was developed to evaluate foot and ankle mechanics that 
used a multi-axis programmable robotic testing platform (RTP) to build on the traditional 
“pure moment” joint loading method by adding an Achilles load and an axial force 
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through the tibia.  The objectives of the current work were to: (1) Design a RTP and 
loading protocol that supported in vitro cadaveric testing of the foot and ankle complex 
during the early stance phase of gait, (2) Assess the repeatability and accuracy of the 
loading protocol using force measurements and IAR data from two cadaver specimens, 
and (3) Study the effects of a passive (unloaded) and active Achilles load and axial tibia 
load on ankle mechanics using IAR data and translational and rotational data of the 
calcaneus, talus, and navicular from four cadaver specimens during stance phase gait. 
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CHAPTER 2.    BACKGROUND  
 
 

Anatomy of the Foot and Ankle 
 
 The anatomy of the human foot is extremely complex in that is consists of 26 
bones, 33 joints, and more than one hundred muscles, tendons, and ligaments all working 
together to maintain the physiologic function of the foot.   
 
 
Bony Structures 
 
 The bones of the foot can be subdivided into three sections: the hindfoot, midfoot, 
and forefoot (Figure 2-1) [52].  The hindfoot is comprised of the talus and calcaneus. 
The talus has the primary function of articulating with the tibia and fibula and 
transferring weight from the body to the calcaneus, midfoot, and forefoot.  The midfoot 
consists of the cuboid, navicular, and three cuneiforms.  And the forefoot is composed of 
five metatarsals, five proximal phalanges, four middle phalanges, and five distal 
phalanges.  Of greatest interest to this study were the bones and articulations of the 
hindfoot since they are directly involved in the transfer of weight from the body to the 
ground.  Therefore, the kinematics of these bones are used to define the cadaveric model 
of this protocol and thus the anatomy and relationships of the tibia, fibula, talus, 
calcaneus, and navicular are described in greater detail below.  

 
 

Joints 
 
 The ankle joint, made up of the tibia, fibula, calcaneus, and talus, commonly 
referred to as the ankle complex, is involved in the transfer of weight from the body to  
 
 

 
 
 
Figure 2-1. Lateral View of the Bony Structures in the Foot and Subdivisions. 
Source: Modified with permission. Gray, H. and Lewis, W.H. (1918). Anatomy of the 
human body. (pp.268). Philadelphia: Lea & Febiger.  
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the foot and furthermore, to the ground during gait [1-4,36-38,51].  It is made up of three 
articulations: the subtalar joint (STJ), the talocrural joint (TCJ), and the tibiofibular 
syndesmosis.  The talar dome articulates with the tibial plafond, the smooth concave 
surface of the distal end of the tibia and the medial malleolus.  The distal fibula, or lateral 
malleolus, and distal tibia form a mortise, in which the talus articulates to form the TCJ.  
Considerable variation in the shape of TCJ has been observed among subjects and is 
suspected to alter the biomechanics of gait in individuals [51].  The distal tibia and fibula 
articulate with each other to form the distal tibiofibular syndesmosis.  The talocalcaneal, 
or STJ, is comprised of the anterior and posterior joints of the talus and calcaneus.  
Additionally, the transmission of forces through to the distal end of the foot is of great 
interest and therefore, the joint between the distal convex surface of the head of the talus 
and the proximal concave surface of the navicular, or talonavicular joint (TNJ), is 
considered.  
 
 Degeneration of the articulating cartilage of the TCJ is a condition called 
osteoarthritis [10].  Very common among middle age and older patients, treatment may 
involve ankle arthroplasty or arthrodesis, in which a surgeon will try to repair the joint. 
While arthrodesis fuses the tibia, fibula, and talus to remove the surface of the joint, 
arthroplasty regains the motion of the joint by replacing it with implants that mimic the 
physiologic function [5-10].  The efficacy of these surgical treatments remain a debated 
topic among orthopaedic surgeons. 

 
 

Muscles, Tendons, Ligaments 
 

 The muscles acting on the foot can be classified into extrinsic and intrinsic 
muscles.  Extrinsic muscles originate on the anterior or posterior aspect of the lower leg 
and have long tendons that cross the ankle and insert on bones in the foot [52].  On the 
other hand, intrinsic muscles originate on the dorsal or plantar aspects of the foot and are 
responsible for movement of the toes and supporting the arches of the foot [52].  

 
 Within the anterior extrinsic muscles are the extensors and peroneal groups. There 
are three major extensors: the tibialis anterior (TA), extensor digitorum longus (EDL), 
and extensor hallucis longus (EHL) (Figure 2-2) [52].  The TA originates on the 
anteriolateral surface of the tibia, descends over the front of the ankle, and inserts into the 
first cuneiform and metatarsal.  The TA is the major dorsiflexor of the ankle and assists 
with foot inversion.  The EDL originates on the lateral condyle of the tibia and anterior 
surface of the fibula, crosses over the front of the ankle, and inserts into the middle and 
distal phalanges.  It functions to extend the distal phalanges and dorsiflex the ankle.  The 
EHL attaches to the anterior surface of the fibula and the dorsal center of the distal 
phalanx of the big toe.  It serves to extend the big toe and also aids with ankle 
dorsiflexion and inversion.  In the peroneal group are the peroneus longus (PL), attached 
proximally to the head of the fibula and distally to the medial cuneiform and first 
metatarsal, and peroneus brevis (PB), originating at the lateral side of the fibula and 
attaching to the tuberosity on the lateral side of the fifth metatarsal (Figure 2-2).  These 
are the main evertors of the foot, and also assist in plantarflexion of the ankle. 
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Figure 2-2. Muscles and Tendons of the Foot and Ankle. 
Bursa is the plantaris.  Source: Reprinted with permission. . Gray, H. and Lewis, W.H. 
(1918). Anatomy of the human body. (pp.268). Philadelphia: Lea & Febiger.  



 

7 

 Within the posterior extrinsic muscles are triceps surae (TS), plantaris, tibialis 
posterior (TP), and flexor hallucis longus (FHL) (Figure 2-2) [52].  The triceps surae 
consists of the soleus (SO), originating on the posterior aspect of the tibia and fibula, and 
gastrocnemius (GA), originating on the posterior aspect of the femur.  The plantaris 
originates at the inferior lateral ridge of the femur.  The tendons of these muscles merge 
into the Achilles tendon (AT) that inserts on the calcaneus.  Together, they serve as the 
main plantarflexors of the ankle.  The TP originates on the posterior aspects of the tibia 
and fibula and descends posterior to the medial malleolus and terminates by dividing into 
three portions.  The plantar portion inserts into the bases of the second, third and fourth 
metatarsals, the second and third cuneiforms and the cuboid.  The main portion inserts 
into the tuberosity of the navicular and the plantar surface of the first cuneiform.  The 
final portion inserts into the calcaneus.  The TP is the main invertor of the foot, and aids 
the GA and SO with plantarflexion.  The FHL arises from the distal two-thirds of the 
posterior surface of the fibula, descends on the medial side of the ankle, continues along 
the sole of the foot and is inserted into the base of the last phalanx of the great toe.  It 
serves as the flexor of the big toe and assists with foot plantarflexion.  
 
 The ankle is supported by two groups of intrinsic ligaments: medial and lateral.  
Medially, the deltoid ligament binds the medial malleolus to the talus, calcaneus, and 
navicular.  The lateral ligaments, two talofibular ligaments (anterior and posterior) and a 
calcaneofibular ligament, bind the lateral malleolus to the talus and calcaneus.  Holding 
the tibiofibular syndesmosis are the distal tibiofibular ligaments (anterior and posterior).  
Together, these ligaments maintain the stability of the mortise and ankle joint [52].  
 
 
Arches of the Foot 
 
 The human foot has two longitudinal arches and a transverse arch maintained by 
the interlocking shapes of the foot bones, ligaments, and muscles during activity (Figure 
2-3) [52].  The slight mobility of these arches when weight is applied to and removed 
from the foot makes walking and running more economical in terms of energy [26].  The 
medial longitudinal arch curves above the ground.  This arch is made up of the calcaneus, 
talus, navicular, three cuneiforms, and the first three medial metatarsals, with the talus 
serving as the “keystone” that holds the arch together.  In contrast, the lateral longitudinal 
arch is very low. It redistributes part of the weight to the calcaneus, cuboid and the fourth 
and fifth metatarsals, with the cuboid as the “keystone.”  The two longitudinal arches 
serve as pillars for the transverse arch which runs obliquely across the tarsometatarsal 
joints, or the joints between the cuneiforms, cuboids, and the metatarsals.  The medial 
longitudinal arch is supported by the TP, TA, AT and FHL.  The lateral longitudinal arch 
is supported by the PB and PL, and the transverse arch is supported by the PL [2-
4,11,26,36].  The longitudinal arch is key in maintaining strength and rigidity of the foot 
during weight bearing.  Excessive strain on the tendons and ligaments of the feet can 
result in fallen arches or flat feet [2-4,26,52]. 

http://en.wikipedia.org/wiki/Achilles_tendon
http://en.wikipedia.org/wiki/Anatomical_terms_of_location
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Figure 2-3. Arches of the Foot. 
Source: Modified with permission: Gray, H. and Lewis, W.H. (1918). Anatomy of the 
human body. Philadelphia: Lea & Febiger. p. 268. 
 
 

Gait  
 
 
Introduction to the Gait Cycle 
 
 Human locomotion is described by the gait cycle, characterized by the kinetics 
and kinematics of the lower extremities.  Clinically, gait is divided into two distinct 
phases: stance phase, which comprises approximately 60 percent of the cycle, and swing 
phase, which accounts for the remaining 40 percent of gait [1-4,36,37].  The stance phase 
occurs when a portion or all of the foot is in contact with the ground.  It is commonly 
described using six subdivisions: foot contact (FC), loading response (LR), flat foot (FF), 
heel rise (HR), push off (PO), and toe off (TO) [37].  This study aimed to investigate the 
early stance phase of gait with the foot flat on the ground and therefore, the swing phase 
was not addressed.  
 
 
Range of Motion, Kinematics, and Kinetics 
 
 Kinematics of foot and ankle gait patterns aim to solely describe the motion of 
structures.  There exists extensive data regarding the motion of the bony structures 
through gait by utilizing imaging techniques such as optoelectric motion tracking studies 
(MTS) in vitro and in vivo, as well as MRI and X-Ray measurements.  

 
 Hindfoot motion is often defined as occurring in in three cardinal planes: sagittal 
plane motion (plantarflexion-dorsiflexion), frontal plane motion (inversion-eversion), and 
transverse plane motion (abduction-adduction) (Figure 2-4) [4]. 
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Figure 2-4. Hindfoot Motion. 
Rotations in the three cardinal planes: sagittal plane motion (plantarflexion-dorsiflexion), 
frontal plane motion (inversion-eversion), and transverse plane motion (abduction-
adduction).  Source: Reprinted with permission. Nordin, M. and V.H. Frankel, Basic 
Biomechanics of the Musculoskeletal System. 3rd ed. 2001, Philadelphia: Lippincott 
Williams & Wilkins. p. 226.
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 During FC (0% gait), body weight is transferred rapidly from one foot to the other 
as the foot comes to contact with the ground.  In a normal healthy gait pattern, the heel is 
the first to come into contact with the foot slightly supinated (2-3 degrees) in a 
dorsiflexed state to prevent slapping of the foot [39].  During the loading response (0-
10% gait) [37], the foot comes in full contact with the floor, and BW is fully transferred 
to the stance limb.  The TA is used to lower the foot immediately after FC and acts to 
invert the foot when BW is completely on the heel [39].  The EDL and EHL also function 
as dorsiflexors to lower the foot, while the PL plays a major role in stabilizing the foot 
during this weight acceptance.  At FC, the entire lower extremity including the tibia is 
rotated medially approximately 5 degrees.  During LR, the medial rotation of the tibia 
causes a transfer of the acting pronatory moment from the ankle mortise to the talus and 
subsequently cause the subtalar joint to evert, and in turn the foot pronates (3-10 degrees) 
and becomes more flexible to absorb shock and adapt to load bearing [39].  The ankle 
then becomes plantarflexed as the forefoot comes into contact with the ground in FF, 
such that the weight is distributed between the heel and forefoot.  At FF the lower limb 
rotates laterally, causing the foot to supinate, increasing stability along the longitudinal 
arches of the foot and the transverse tarsal joint [39].  Approximately 3-10 degrees of 
supination should occur until HR.  The ankle then dorsiflexes, transferring weight from 
the hindfoot to the forefoot in preparation for HR (30%) [37]. Weight distribution then 
moves entirely to the forefoot in PO, where the PL acts a plantarflexor to propel the body 
forward.  During TO, all of the weight is transferred to the contralateral foot and the foot 
enters the swing phase.  The GA and SO are active throughout stance phase, consistently 
rising in magnitude until reaching peak activity just before PO [37].  

 
 The TCJ is considered to have an axis of rotation with one degree of freedom in 
the sagittal plane during normal walking in dorsiflexion/plantarflexion [50].  Typical 
ranges of motion (ROM) values vary between walking and running, as well as between 
young healthy patients and elderly or injured patients. In dorsiflexion, typical values 
range from 5 to 20 degrees [39,51].  In plantarflexion, values range from 7 to 55 degrees 
[39,51].  Winters reported a maximum ROM of 9.6 degrees in dorsiflexion and 19.9 
degrees in plantarflexion during walking in healthy adults [37].  However, functional 
ROMs have been shown to be approximately 5 degrees in dorsiflexion and 10 degrees in 
plantarflexion [51].  

 
 Sammarco et al. confirmed that the COR of a normal ankle does not remain 
constant with motion and that it lies within the cross-sectional area of the talus as viewed 
in the sagittal plane [30].  Additional studies suggested a fixed axis of rotation with 
articular congruence may be an incorrect kinematic model for the ankle joint [11].  This 
concept was furthered by formulating the ankle joint behaves like a two-dimensional 
four-bar linkage during passive motion and thus possesses an IAR about the sagittal plane 
[31-34].  The IAR measurement defines the point about which a rigid body undergoes 
rotation at a given instant in time.  Therefore, IAR data provide additional parameters for 
characterizing tibiotalar joint motion, where measurements are a direct representation of 
the effects of joint articular geometry and soft tissue structures.  The moving center of 
rotation was explained by suggesting the articular surfaces roll as well as slide upon each 
other during motion [11,31-34,36,51].  Realeaux developed a mathematical method to 
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calculate the coordinates of the IAR (Xcr, Ycr) of a rigid body graphically by determining 
the intersection of the bisecting lines of the velocity vectors (𝑈�, 𝑈′���) of two physiological 
landmarks (A & B) through rotation (ϕ) (Figure 2-5)[53].  Using this concept, the effect 
of rolling and sliding can be shown using a simple ankle joint model (Figure 2-6).  
During rolling, contact is made on equal intervals of the articular surface, producing an 
upward axis of rotation on the joint articular surface.  Sliding, with no influence of rolling 
would produce an infinitely downward IAR (bisectors run parallel to each other).  Thus, 
the combination of rolling and sliding on the articular surface would produce an IAR 
within the talus that is dependent on the contribution of joint interaction. 
 
 As axial load increases, contact between articular surfaces plays an increasingly 
greater role in the mechanics of the ankle and COR [51].  While passive kinematics of the 
ankle complex are governed solely by the sliding of articular surfaces without any tissue 
deformation, active kinematics are governed more by soft tissue structures [31,33].  
Studies have also shown that the four main intrinsic ligaments of the ankle joint are slack 
during walking and only taut at maximal ROM [31,51].  It thus becomes questionable 
whether the ligaments guide or limit joint motion for normal functional activities such as 
walking.  Quantifying the IAR of the ankle joint during gait may have the potential to 
advance the understanding of the biomechanical properties of the foot and ankle, 
including arch formation and effects of orthotics and footwear.   

 
 The calcaneus and talus are believed to form a rigid, unified structure during 
weight bearing, such that no translation between the two bones exists throughout rotation 
of the foot (Figure 2-7)[1,14,20,36,44,50,46,50].  However, some studies have suggested 
there may be slight translations between the two structures due to kinetic properties and 
contact surface variability of the tibia on the talus [51].  Complex geometries of the 
mortise and trochlea of the talus greatly influence these load characteristics.  The TCJ has 
shown considerable variation in shape between specimens. This may contribute to 
variations in functional ROM as well as maximal ROM.  The geometry of the articulating 
surfaces primarily determines the mechanics of the TCJ.  Data regarding contact area 
have been shown to vary from 1.5 to 9.4 cm2 depending on load and ankle position [51].  
Goto et al. have shown if contact is maintained through rotation of the tibia, the TCJ and 
STJ function as joints with one degree of freedom of motion [40].  When pushed towards 
the maximal ROM, such as in anterior drawer tests and stress tests, congruent contact is 
not maintained, forcing a deviation from normal kinematics [51]. 
 
 Kinetics study the forces that cause movement and are based on in vivo 
electromyographic (EMG) studies of the foot and ankle muscles during walking, as well 
as force plate studies of the ground reaction forces (GRFs).  EMG activity for six muscles 
during walking is shown in Figure 2-8.  Only activity in stance phase is discussed.  
 
 The TA, EDL, and PL act as stabilizers and dorsiflexors of the foot primarily 
during FC and PO [37].  However, only the flat foot portion of the stance phase of gait is 
incorporated in this model and therefore, these muscles are not considered.  The major 
contributors of force to the ankle joint are the muscles that converge to the AT [37].  At 
FC the force is minimal, progressively getting larger until peak values are reached at PO.   
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Figure 2-5. Realeaux’s Graphical Method for Calculating the IAR. 
Two landmarks on a rigid body were tracked throughout rotation.  Intersections of the 
perpendicular bisectors of the velocity vectors of the landmarks denote the IAR (CR).  
The angles between the bisectors were determined graphically and used with the 
positions of the landmarks to calculate the IAR.  Reprinted with permission:  Crisco III, 
J.J., Chen, X., Panjabi,  M.M., Wolfe, S.W. (1994). Optimal marker placement for 
calculating instantaneous center of rotation. J Biomech. 27(9), 1183-1187.  
 
 

 
 
 
Figure 2-6. Rolling and Sliding Effect on IAR. 
Simple model of the tibia and talus articular interaction.  Rolling produces and IAR on 
the articular surface, sliding produces an infinitely downward IAR.
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Figure 2-7. In vitro Talocalcaneal Kinematic Data. 
Relative motion of the talus to the calcaneus through stance phase gait (0-100%).  A) 
Comparison of cadaveric kinematic data (100% stance phase) (n=13) (thin white line) to 
in vivo bone pin analyses (thick white line) (n=3) with 95% confidence intervals.  
Positive angles denote plantarflexion, inversion, and adduction of the distal segment 
relative to the proximal.  Source: Reprinted with permission. Nester, C.J., Liu, A.M., 
Ward, E., Howard, D., Cocheba, J., Derrick, T., Patterson, P. (2007). In vitro study of 
foot kinematics using a dynamic walking cadaver model. J. Biomech. 40(2), 1927-1937.  
B) Rearfoot kinematics for each specimen during stance phase (0-100%) (n=5).  Positive 
values denote plantarflexion, eversion, and adduction.  Source: Reprinted with 
permission. Lundgren, P., Nester, C., Liu, A., Arndt, A., Jones, R., Stacoff, A., Lundberg, 
A. 2008. Invasive in vivo measurement of rear-, mid-and forefoot motion during walking. 
Gait & Posture 28(1), 93-100.  C) Relative calcaneus angular motion with respect to the 
talus (n=6).  Positive values denote dorsiflexion, eversion, and abduction.  Source: 
Reprinted with permission. Whittaker, E.C., Aubin, P.M., Ledoux, W.R. 2011. Foot bone 
kinematics as measured in a cadaver robotic gait simulator. Gait & Posture 33, 645-650.   
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Figure 2-8. EMG Activity for Six Muscles during Walking. 
Mean EMG (solid line) and standard deviations (dotted lines) are shown for varying 
sample sized.  Values normalized to each subject’s mean EMG.  Source: Reprinted with 
permission. Winter, D.A., Yack, H.J., 1987. EMG profiles during normal human 
walking: Stride to stride and inter subject variability. Electroencaphalogr Clin 
Neurophysiol. 67: 402-411.  
Typical values at 30% gait reach body weight (BW) with peak values at PO reaching 
250% BW [37,39,51].
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 GRFs are commonly measured using force platforms in gait laboratories. GRFs 
show magnitude and direction of forces applied to the foot and ankle structures during 
locomotion.  Peak values typically range from 1.1 to 1.3 times BW, with average stance 
phase values around BW [39].  
 
 A rigid body analysis can be used to describe the dynamic loading characteristics 
of the ankle as a function of an AT force (Fa) and vertical GRF (vGRF) (Figure 2-9) 
[54].  Assuming static equilibrium, the maximum vGRF is achieved in the neutral 
orientation at 0 degrees such that as a force (BW and weight of the foot (Wf)) is 
transmitted to the ground, the joint contact forces approximately equal the sum of the 
vGRF and Fa.  With these forces are associated moment arms defined by the distance of 
the applied force to the joint center.  Physiologically, as rotation occurs, the GRF moment 
arm (b) will move from the hindfoot in plantarflexion to the forefoot in dorsiflexion, 
which is accommodated by increased AT loads [51]. 
 
 

Biomechanical Testing Platforms (BTPs) 
 
 Several BTPs have been engineered to simulate loading of the ankle. However, 
very few BTPs offer a physiologic loading environment [15,17,18,19]: either using 
reduced in vivo loads or neglecting tendon load incorporation. Some only investigate one 
instance of gait (Figure 2-10) [24,27,35,38].  Others apply loads or force a kinematic 
profile estimated by a single specimen (Figure 2-11) [15,17,20,21].  Some models 
assume the ankle complex behaves like a hinge joint with a single axis of rotation, 
whereas other studies suggested a fixed axis of rotation with articular congruence is an 
incorrect kinematic model for ankle joint motion [11,30,31,36].  To date, few studies 
have been conducted that address an instantaneous axis of rotation (IAR) analysis of the 
ankle joint [23,35,38].  These measurements are limited by the accuracy of the 
methodology. In these cases, radiologic measurements were made to determine the IAR.  
Additionally, measurements were made over large angle intervals reducing to the 
accuracy to as much as several millimeters.  
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Figure 2-9. Free Body Diagram of Force Vectors and Moment Arms. 
Force analysis of the foot and ankle used to set the parameters of loading, where Ft 
represented the axial tibia load, Fa was the AT load, vGRF was the vertical ground 
reaction force, and Wf was the weight of the foot and tibia.  The black dots represent an 
initial prescribed axis of rotation and foot center of mass.  A, b, and c represent the 
respective moment arms associated with these force vectors.  Source: Modified with 
permission: Stewart, T.E., (2012). An Innovative Testing Protocol to Study Foot and Ankle 
Kinetics during Early Stance Phase of Gait. Master’s Thesis, UTHSC.  
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Figure 2-10. BTPs That Investigate a Single Instance of Gait. 
A) Design by Jarrell et al. applies a static axial force to the tibia.  Source: Reprinted with 
permission: Jarrell, S.E., Owen, J.R., Wayne, J.S., Adelaar, R.S., 2009. Biomechanical 
comparison of screw versus plate/screw construct for talonavicular fusion. Foot & Ankle 
Intl. 30(2), 150-156.  B) Design by Bahr et al. applies axial tibia forces and tilts the foot 
plate to simulate dorsiflexion, plantarflexion, pronation, or supination.  The tibia can be 
twisted to simulate internal and external rotation.  Forces are applied at single instances 
of gait, usually at large angle intervals.  Source: Reprinted with permission: Bahr, R., 
Pena, F., Shine, J., Lew, W.D., Engebretsen, L. (1998). Ligament force and joint motion 
in the intact ankle: a cadaveric study.Knee Surg Sports Traumatol Arthrosc. 6(2), 115-21.  
C) Baxter et al. performed in vivo studies where specimens were asked to tense muscles 
and rotate the ankle to simulate a single instance of gait.  Large angle intervals were used 
to determine the center of rotation with high error.  Source: Reprinted with 
permission:Baxter, J.R., Novack, T.A., Van Werkhoven, H., Pennell, D.R., Piazza, S.J. 
(2012). Ankle joint mechanics and foot proportions differ between human sprinters and 
non-sprinters.  Proc Biol Sci. 22(1735), 2018-2024. 
 
 

http://www.ncbi.nlm.nih.gov/pubmed/9604197
http://www.ncbi.nlm.nih.gov/pubmed/9604197
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Figure 2-11. Gait Simulators Engineered to Study Foot and Ankle Biomechanics. 
Each simulator forces a kinematic profile from foot contact to toe off and applies 
dynamic tendon loads with no ability to measure the IAR.  A) Design by Burg et al. 
applies a dynamic AT load and kinematic profiles determined by a single specimen.  
Source: Reprinted with permission: Burg, J., Peeters, K., Natsakis, T., Deretmaeker, G., 
Sloten, J.V. (2012). In vitro analysis of muscle activity illustrates mediolateral 
decoupling of hind and mid foot bone motion. Gait & Posture.  B) Design by Nester et al. 
applies dynamic loads to 6 tendons.  Source: Reprinted with permission: Nester, C.J., 
Liu, A.M., Ward, E., Howard, D., Cocheba, J., Derrick, T., Patterson, P. (2007). In vitro 
study of foot kinematics using a dynamic walking cadaver model. J. Biomech. 40(2), 
1927-1937.  C) Design by Sharkey and Hamel applies dynamic loads to six tendons and 
forces a kinematic profile determined by a single specimen.  Source: Reprinted with 
permission: Sharkey, N.A., Hamel, A.J. (1998). A dynamic cadaver model of the stance 
phase of gait: performance characteristics and kinetic validation. Clin. Biomech. 13, 420-
433.  D) Design by Noble and Colbrunn applies a dynamic AT load.  Source: Reprinted 
with permission: Noble Jr., L.D., Colbrunn, R.W., Lee, D.G., van den Bogert, 
A.J., Davis, B.L. (2010). Design and validation of a general purpose robotic testing 
system for musculoskeletal applications. J Biomech Eng. 132(2), 025001:1-12. 
 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Noble%20LD%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed?term=Colbrunn%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20den%20Bogert%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20den%20Bogert%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed?term=Davis%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=20370251
http://www.ncbi.nlm.nih.gov/pubmed/20370251
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CHAPTER 3.    A NOVEL KINEMATIC BASED PROTOCOL TO STUDY FOOT 
AND ANKLE BIOMECHANICS 

 
 

Introduction 
 
 Due to its inherent complexity and physical significance in human activities, the 
ankle complex is of great importance to researchers of degenerative diseases, injury 
prevention, and rehabilitation [1,2,3,4,10,27].  In vivo testing [3,35,36,37,38,55] and in 
vitro studies [14-25,26,27], as well as computational modeling [31-34] have offered 
valuable insight into the mechanics of the ankle complex.  However, each technique 
possesses some inherent limitations.  In vivo studies lack accurate and repeatable 
measurements [50] and computational modeling lacks the inclusion of soft tissue 
structures [11,31].  In contrast, in vitro studies complement both techniques to produce 
clinically relevant data, but are limited by current biomechanical testing platforms (BTP) 
[14-25,27,35,38]. 
 
 Very few BTPs offer a physiologic loading environment [15,17,18,19], some only 
investigate one instance of gait [24,27,35,38], and others apply loads or force a kinematic 
profile estimated by a single specimen [15,17,20,21]. Some models assume the ankle 
complex behaves like a hinge joint with a single axis of rotation, whereas other studies 
suggested a fixed axis of rotation with articular congruence may be an incorrect 
kinematic model for ankle joint motion [11,30,31,36].  To date, few studies have been 
conducted that address an instantaneous axis of rotation (IAR) analysis of the ankle joint 
[23,35,38].  IAR data provide additional parameters for characterizing tibiotalar joint 
motion, where measurements are a direct representation of the effects of joint articular 
geometry and soft tissue structures.  Quantifying the IAR of the ankle joint during gait 
may have the potential to advance the understanding of the biomechanical properties of 
the foot and ankle, including arch formation and effects of orthotics and footwear. 
 
 There is a need for a biomechanical testing platform and protocol that will 
provide simulation of controlled tibia and Achilles tendon (AT) loads without 
constraining the foot-ankle kinematic profile.  The objectives of the current work were to: 
(1) Develop a novel loading protocol that simulated in vivo kinetics of the foot and ankle 
complex in a human cadaveric lower extremity model during early stance phase gait and 
(2) Establish an accurate and repeatable measurement of the IAR of the foot-ankle 
complex. 
 
 

Materials and Methods 
 
 
Tissue Preparation 
 
 A matched pair (male, age 37) of human below knee lower extremity specimens 
was procured from Restore Life USA (Johnson City, TN).  Specimens were frozen at -
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20°C. Before preparation, the feet were thawed in a refrigeration system for two days.  
Medial and lateral radiographs were used to verify the absence of anatomical 
abnormalities or surgery (see Appendix A for individual specimen radiographs and 
comparisons).  Soft tissue and muscle were resected to expose approximately 100mm of 
the proximal shafts of the tibia and fibula.  A single one inch #6 wood screw was then 
placed across the proximal ends of the tibia and fibula to stabilize the bones and add 
additional fixation for the potting material.  After the AT was exposed and soft tissue was 
excised to allow approximately 150mm of AT length for clamping, a cable puller was 
attached and secured with a U-bolt to increase clamping power.  The tibial shafts were 
then mounted concentrically into a cylindrical pot using an alignment frame to position 
the tibia in a neutral vertical orientation.  Low-melting-point bismuth alloy (Rotometals 
Inc., San Leandro, CA) was used to fix the tibia and fibula together and create a 
mounting fixture for attachment to the robotic testing platform (RTP).  The final prepared 
specimen is shown in Figure 3-1. 
 
 
Robotic Testing Platform 
 
 An existing custom designed, multi-axis testing platform was utilized to simulate 
early stance phase gait under displacement control and force feedback (Figure 3-2) 
[54,56].  Two linear actuators, a Parker Hannifin Corp (Cleveland, OH) 406XR series 
linear ball screw actuator and an Exlar (Chanhassen, MN) GSX-30 linear roller screw 
actuator were aligned in the X and Z-axes, respectively.  Platform axes were controlled to 
within 2µm in the X and 0.31µm in the Z.  The rotary motors and drive units of the 
original test RTP were upgraded with Harmonic Drive units (Peabody, MA: model FHA-
25C-160-US250) having improved resolutions of 0.008 degrees.  Two six-axis load cells 
(JR3 Inc., Woodland, CA: models 100M40 and 45E15S) were attached to the RTP 
assembly and measured the three orthogonal forces and moments applied to the tibia via 
the gimbal assembly and forces transferred through the foot to the ground at the base of 
an X-Y table.  Force capacities and resolutions were 800N and 0.44N for the gimbal load 
cell and 4400N and 0.52N for the base load cell, respectively.  
 
 Potted specimens were clamped securely in a mounting block and rigidly 
connected to the RTP. A sagittal plane was established for each specimen by bisecting 
the second metatarsal and AT [30,31,37] with a vertical axis aligned with the tibia that 
matched the X-Z plane of the RTP.  A static AT force vector (Fa) was applied via a 
frictionless cable-pulley system to within four degrees of the vertical tibia axis, while the 
heel was raised approximately 50mm and the X-Y table was unlocked (Figure 3-3).  This 
allowed for unconstrained arch formation while properly transferring loads from the tibia 
to the calcaneus and maintaining foot support throughout the gait simulation [13,26].  
The heel was then returned to the neutral position and an axial tibia force (Ft) was applied 
to the specimen to meet the desired vertical ground reaction force (vGRF) condition 
within a prescribed ±2N tolerance.  After the desired loading condition was met, the X-Y 
table was locked and the rotation of the specimen was started.
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Figure 3-1. A Prepared below the Knee Lower Extremity Specimen.  
Tissue was resected from the proximal shafts of the tibia, fibula, and AT. A cable puller 
was attached to the AT for tendon load application.  Bismuth alloy material was used to 
create a mounting fixture for the proximal shafts of the tibia and fibula for rigid fixation 
to the testing platform.
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Figure 3-2. Diagram of 4-DOF Robotic System Configured for the Ankle Study. 
The testing platform consisted of an upper gimbal assembly with two translational and 
one rotational axes along with a 6-axis load cell, a mounting block to rigidly affix the 
specimen to the RTP, a pulley system to apply a static load to the AT, and an X-Y table 
with a second 6-axis load cell to aid in the mounting procedure.  The coordinate system is 
shown by X-, Y-, and Z-axes.  Translational and rotational vectors of the controlled axes 
of the RTP are also shown.  Source: Reprinted with permission: Stewart, T.E., (2012). An 
Innovative Testing Protocol to Study Foot and Ankle Kinetics during Early Stance Phase 
of Gait. Master’s Thesis, UTHSC.  
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Figure 3-3. Mounting the Specimen. 
Specimen mounted in the RTP.  This image shows clearance between the heel and X-Y 
table as the AT load is applied, allowing unconstrained arch formation. 
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Test Protocol 
 
 Custom software (Adept Inc., San Jose, CA) was written to implement a “pure 
moment” strategy to determine the position of the ankle joint for a given angular loading 
condition.  A rigid body analysis was used to describe the dynamic loading characteristics 
of the ankle as a function of an AT force (Fa) and vGRF (Figure 3-4).  Using this 
approach, the AT was statically loaded as a percentage of the vGRF acting on the foot 
and ankle set at half body weight (356N) and a 50% vGRF (178N) AT load was applied 
based upon values of physiologic peak contractive tension of the AT [37-39].  These 
conditions were selected within the 800N capacity of the upper load cell to achieve 
reproducible, subinjurious loading conditions.  
 
 The tibia started in a neutral orientation (0 degrees) and was rotated about an 
initial prescribed ankle rotational axis (pARA) (Figure 3-5A) that was measured off of a 
scaled medial radiograph of the foot processed in ImageJ (NIH).  This transformation in 
the X and Z directions from the null tool tip (NTT), located at the center of the gimbal, 
changed the location of the ankle rotational axis (ARA) to the center of the talus, referred 
to as the extended tool tip (ETT) (see Appendix A for individual ETTs).  Because the 
tibia was rigidly connected to the RTP, the NTT data remained aligned with the rotated 
axes of the tibia.  
 
 The next step in the test protocol was to establish the kinematic path of the ankle 
joint under pure rotational loading.  This was accomplished by introducing an 
incremental rotation to the specimen and then reducing the off-axis forces by minimizing 
the distance (∆X, ∆Z) between the pARA and the true ARA (Figure 3-5B), thus a “pure 
moment” loading condition was achieved. For each incremental rotation, the pure 
moment loading state could be modified to allow additional shear and compressive forces 
to be added and directed along the new rotational axes.  The process was repeated every 
0.5 degrees until the full 10 degrees of dorsiflexion or 20 degrees of plantarflexion was 
achieved.  Five cycles were allotted for conditioning of the tissue followed by five cycles 
to assess repeatability.  Throughout the testing sequence, specimens were kept moist at 
regular intervals with a 0.9% saline mist. 
 
 
Data Analysis 
 
 Force and positional data were sampled at 20Hz. A modified set of equations 
originally derived by Crisco et al (1994) were applied to the NTT rotational and 
positional data for each increment of rotation to calculate the IAR of the ankle within 
±0.001mm [53].  An “ankle coordinate frame” for the IAR was a fixed reference frame 
for tibial motion about the ankle joint and was defined by the bisector of the tibia and 
highest point on the tibial mortise in the initial neutral vertical orientation (Figure 3-6) 
(See Appendix A for more detailed description).  IAR paths were plotted in Excel for 
each specimen.  
 
 The test protocol had each specimen cycled five times for tissue conditioning and 
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Figure 3-4. Force Analysis of the Foot and Ankle Used to Set the Parameters of 
Loading. 
Ft represented the axial tibia load, Fa was the AT load, vGRF was the vertical ground 
reaction force, and Wf was the weight of the foot and tibia.  The black dots represent an 
initial prescribed axis of rotation and foot center of mass. 
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Figure 3-5. Modified “Pure Moment” Program. 
Kinematic and load control strategy.  A) Kinematic coordinate frames of the foot and 
ankle are defined by the NTT and ETT of the RTP.  The ETT represents the initial 
prescribed IAR of the foot located at the center of the talus and was a negative Z offset 
from the NTT.  The coordinate frame of the load cell was initially located at the center of 
the load cell and transformed to the origin of the moving joint center, i.e., the ETT.  B) 
An angular input of ankle rotation was given every 0.5 degrees, during which the loading 
protocol reduced the ankle moment due to off-axis forces by minimizing the distance 
(∆X, ∆Z) between the pARA (upper) and the true ARA (lower), thus creating a “pure 
moment” condition.  Additional shear and compressive loads could be introduced at this 
time to maintain the axial tibial force and vGRFs.  The NTT data remained aligned with 
the rotated tibia axes. Achilles load is not shown. 
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Figure 3-6. The “Ankle Coordinate Frame.” 
Designated to plot the IAR axis on different specimen radiographs.  It is defined as the 
intersection of bisector of the tibia and the highest point on the tibial mortise.
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five times in dorsiflexion and plantarflexion to demonstrate repeatability.  The final three 
cycles were plotted in Excel and analyzed statistically using GraphPad Prism 6.0 
software (La Jolla, CA).  Mean axial tibia forces and mean X- and Z- IAR values were 
compared separately for dorsi- and plantar-flexion using a One Way ANOVA with a 
Holm Sidak post hoc test for multiple comparisons (α=0.05) to show variability between 
cycles.  The mean X- and Z- IAR values for all three cycles were also compared between 
dorsi- and plantar- flexion.  Additionally, the slopes of the plantarflexion IAR paths were 
compared between cycles using a linear regression analysis in Graphpad Prism 6.0 
software.  Results are presented as means ± standard deviations.  A P-value of less than 
0.05 signified significant differences between comparisons. 
 
 

Results 
 
 The mean axial tibia loads throughout full rotation for each specimen are shown 
in Table 3-1.  No statistical differences were found between cycles of motion (P>0.05 for 
all comparisons).  The maximum tibial force error was typically within the prescribed 
±2N tolerance for all tests, with a maximum error of 6N.  These force errors 
predominantly occurred within the final degrees of motion.  
 
 Mean IAR values for specimen 1 and specimen 2 are provided in Tables 3-2 and 
3-3, respectively.  No statistical differences were found in mean X- and Z- IAR values 
between cycles of dorsi- or plantar-flexion for either specimen (P>0.05 for all 
comparisons).  When comparing mean IAR values for all three cycles between dorsi- and 
plantar-flexion, statistically significant values were found in the mean X- IAR values for 
both specimen (P<0.0001) and in the mean Z- IAR values in specimen 2 (P<0.0001).  
 
 The final 3 cycles of IAR pathways are plotted on their respective radiographs for 
both specimens with mean IAR values and standard deviations (Figure 3-7).  The IAR 
represents a moving axis of rotation due to the joint articular geometry and surrounding 
soft tissue structures.  Dorsiflexion paths show little movement in the talus, remaining 
within a 4.5mm range (i.e., 2mm in the X and 4mm in the Z).  In plantarflexion, the first 
degrees of motion started up within the articular surface of the talus.  As rotation 
continued, the IAR path moved downward towards the middle of the talus.  The 
plantarflexion IAR path had a maximum range of approximately 21mm (i.e., 20mm in the 
Z and 6mm in the X).  A linear regression analysis was performed on the plantarflexion 
paths.  No statistical differences were found between the slopes of the IAR paths for 
specimen 1 (P=0.7823) and specimen 2 (P=0.0826). 
 
 

Discussion 
 
 A novel dynamic robotic testing platform and protocol were developed and used 
to investigate the biomechanical behavior of the foot and ankle under simulated loading 
conditions representative of in vivo conditions of early stance phase gait.  The first 
objective of this study was to validate the accuracy of a loading protocol.  The model 
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Table 3-1. Average Axial Tibia Loading Conditions for Specimen between Cycles 
of Motion. 
 

Specimen 
Axial Tibia Load (N) 

(Mean ± Standard Deviation) 

Dorsiflexion Plantarflexion 

1 516.601±0.869 506.294±1.314 
2 519.291±0.721 513.633±0.427 

 
 
Table 3-2. Mean IAR Values for Specimen 1. 
 

Cycle 
XIAR (mm) 

(Mean ± Standard Deviation) 
 ZIAR (mm) 

(Mean ± Standard Deviation) 
Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 

1 -2.952±0.118 1.001±1.265   -8.982±0.510 -8.838±5.178 
2 -2.916±0.163 0.548±1.087   -9.401±0.454 -9.282±4.661 
3 -2.868±0.076 1.025±1.280   -9.184±0.528 -8.717±5.374 
Mean -2.912±0.042* 0.858±0.269*   -9.189±0.210 -8.946±0.297 

* Statistically significant between dorsiflexion and plantarflexion mean IAR values. 
 
 
Table 3-3. Mean IAR Values for Specimen 2. 
 

Cycle 
XIAR (mm) 

(Mean ± Standard Deviation) 
 ZIAR (mm) 

(Mean ± Standard Deviation) 

Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 
1 -4.228±0.626 -0.231±1.338   -6.400±0.705 -3.532±4.934 

2 -4.309±0.501 0.088±1.516   -6.270±1.278 -3.081±6.160 

3 -4.297±0.243 -0.088±1.470   -6.666±0.545 -3.566±5.272 

Mean -4.278±0.044* -0.077±0.160*   -6.445±0.202* -3.393±0.271* 
* Statistically significant between dorsiflexion and plantarflexion mean IAR values. 
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Figure 3-7. IAR Paths. 
A) Specimen 1 and B) Specimen 2 during dorsiflexion and plantarflexion plotted on a medial radiographs.  Mean IAR values for all 
three cycles (circles) with standard deviations (too small to see) are shown.  Dashed arrows denote the direction of the IAR through 
rotation. 
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simulates a static Achilles load during stance phase of walking with decreased in vivo 
loading conditions.  The role of soft tissue in this model was accounted for by 
preconditioning of the cadaver feet by subjecting them to several load and movement 
cycles before relevant data were captured.  The simulation accounted for 20 degrees of 
plantarflexion and 10 degrees dorsiflexion, whereas the total functional range of walking 
motion of the ankle during stance phase is approximately 15 degrees [3,27,37,39].  While 
force errors were typically controlled within prescribed ±2N tolerances throughout 
testing, they increased towards the end of motion possibly as a result of rotating the ankle 
beyond its functional limit.  The ATLs were limited by the upper loading capacity of the 
gimbal load cell, such that loading conditions were set at half body weight (356N) and 
the Achilles tendon force was set to half the vGRF (178N).  However, the ground 
reaction forces produced during the simulation were in agreement with a percentage of 
recorded in vivo forces [1-4,11,39].  Additionally, application of the AT force to within 
four degrees of the long axis of the tibia introduced a minimal force error of 0.25%.  
 
 The second objective of the current study was to address intra-specimen 
variability between cycles of motion.  Stability of the ankle joint is determined by three 
main factors: articular congruity, ligamentous structures, and ankle position [11,36]. All 
have been shown to have high variability between specimens [51].  Baxter showed a 
difference in biomechanical properties of sprinters versus non sprinters, suggesting 
physical health plays a major role in mechanics of the ankle [35].  Therefore, the goal 
was to demonstrate a repeatable measurement of the IAR in the sagittal plane.  This 
loading protocol showed variability in the mean IAR measurements between cycles of 
motion (as measured by the standard deviation) of less than 1 mm.  The talus dimension 
for the two specimens were approximately 60mm in width and 38mm in height, 
demonstrating small relative variability on a clinical scale.  Current gait simulators and 
BTP protocols are either unable to measure the IAR [14-22,24] or are limited to high 
errors in the calculation of the IAR due to methodology [23,35].  While dorsiflexion 
paths remained within a 4.5mm range, plantarflexion paths showed more movement.  
However, plantarflexion slopes were not significantly different between cycles of motion 
in specimen 1 or 2, demonstrating a repeateable measurement of the IAR path. 
 
 Some limitations are present in this study.  The proximal fusion of the tibia and 
fibula removed the physiologic joint function where the bones may undergo translations 
and rotations relative to each other.  This has been observed primarily when the knee 
experiences external and internal rotation [28].  Our model accounts for tibial sagittal 
plane motion only.  During force application an out of plane load was produced as a 
mode of lateral stabilization of the joint.  However, a negligible moment build up was 
observed throughout motion (0.5Nm) and did not restrict flexion.  Additionally, the 
current model does not incorporate a dynamic Achilles tendon force profile 
representative of in vivo loading conditions, nor does it account for any of the other 
major plantarflexors, extrinsic dorsiflexors, or intrinsic muscles of the foot.  However, 
these muscles are predominantly active during heel strike, and heel rise to toe off gait 
[36,39].  The force applied via the Achilles tendon has been shown to have the greatest 
role in the biomechanical behavior of the ankle joint during stance phase when the foot is 
flat.  Therefore, it is the only tendon force accounted for in this study.  During normal 
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gait, the tibia is driven from maximum plantarflexion to dorsiflexion with a continuous 
load on the joint.  This protocol is limited in that the dorsiflexion and plantarflexion paths 
are generated independently.  Furthermore, plantarflexion is driven in a direction 
uncharacteristic of the target in vivo stance phase motion.  However, the Achilles tendon 
load is applied to the specimen in such a manner to simulate the in vivo loading scenario 
where the joint is plantarflexed.  The independent movement from the neutral orientation 
between dorsi- and plantar-flexion may explain the disconnect between the initial point of 
IAR paths in dorsiflexion and plantarflexion.  Another limitation is that our study was 
two-dimensional whereas the ankle joint can move in three dimensions [1,11,50]. 
 
 In conclusion, this work has provided description and validation of a novel 
loading protocol developed to support in vitro cadaveric testing of the foot and ankle 
complex.  This protocol provided a two-dimensional analysis of the IAR of the ankle 
joint using tightly controlled loads in conjunction with a passive AT force.  The low force 
error tolerance and consistent axial force values demonstrate the RTP’s ability to 
accurately simulate forces.  The results of the study are one of a handful to address the 
instantaneous axis of rotation of the ankle joint and provide the most accurate 
measurement to date.  The IAR measurement was repeatable within one millimeter, 
smaller than what is feasibly measurable in a clinical setting.  Because the IAR 
measurement is a direct representation of soft tissue structures and articular geometry, 
future in vitro studies may yield great insight into the biomechanical properties of the 
foot and ankle within the sagittal plane, including arch formation and effects of orthotics 
and footwear on ankle kinematics.  As new information describing the dynamic loading 
characteristics of the foot and ankle is obtained from in vivo gait studies (stair climbing, 
orthotics, footwear), this novel RTP and test protocol can readily simulate these 
conditions.  Current development includes incorporating a dynamic Achilles tendon load, 
a higher capacity load cell to accommodate forces comparable to in vivo loads, and an 
optoelectric motion tracking system to study the interaction of the bones of the arch of 
the foot throughout ankle rotation. 
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CHAPTER 4.    EFFECTS OF ACHILLES LOADING ON THE KINEMATIC 
PROPERTIES OF THE FOOT-ANKLE COMPLEX DURING STANCE 

PHASE GAIT 
 
 

Introduction 
 
 Several studies have been conducted to accurately describe bony motion of the 
foot during normal gait to aid in identification of injury, foot abnormality, surgical 
correction, and implant design [35,41-49,57,58].  In vivo studies involving X-ray 
photogrammetic [43], magnetic resonance imaging (MRI) [35,45,47,48], skin mounted 
retro-reflective markers [41,42,44,46,57], and videofluoroscopy [49] techniques are 
typically avoided due to: invasiveness, limited field of data measurement, required data 
reduction, rigid body assumptions, or reduced repeatability of the measurement.  Skin 
mounted retro-reflective markers suffer from inaccuracies due to skin-motion artifacts.  
Additionally, movement of groups of bones such as the tarsals, navicular, talus, cuboids 
and cuneiforms are often combined into gross motion of the complex or are ignored due 
to the invasiveness of accessing the bones.  

 
 In vitro bone pin analyses used in cadaveric gait models offer a more accurate 
measurement of foot kinematics, but are subject to the limitations of current 
biomechanical testing platforms (BTPs).  Some of these limitations are: applying a non-
physiologic loading environment [15-19,46], using simplified tibial kinematics 
[15,17,20,22,29,46], or lacking dynamic loading conditions and tendon loads 
[17,24,25,27,35].  Additionally, BTPs lack the ability to measure the instantaneous axis 
of rotation (IAR).  The IAR represents a more complete parameter for characterizing joint 
motion.  The ability to detect shifts in IAR may help in defining injury type and/or the 
impact of injury on foot ankle mechanics, as well as the effects of surgical procedures 
and implant and orthotic design.  While most kinematic analyses of the foot are 
characterized by simple rotations, joint motion can also be described by rolling and 
sliding of articular surfaces during motion with a dependency on loading scenarios [31].  
Load plays a major role in ankle biomechanics including influences on the articular 
surfaces, bony motion, and formation of the arches [51].  Arch formation is key in 
supplying a rigid structure to transfer loads from the tibia to the ground.  Activated 
primarily by the Achilles tendon (AT), it is suggested that once the arch is formed, little 
motion occurs between the calcaneus, navicular, and talus throughout stance phase 
[20,25,36,44,46,58].  This suggests most of the motion in the foot and ankle remains 
between the articular surfaces of the tibia and talus.  However, studies concerning the 
effects of joint loading are limited.  Paired with a bony motion analysis, a study 
incorporating an IAR measurement would offer the most complete description of the 
kinematics of the foot and ankle.  Thus a need exists for a more physiologic and accurate 
BTP that would enable accurate calculation of the ankle IAR under different loading 
conditions.  

 
 We began to address these concerns by using an existing kinematic based protocol 
to study foot and ankle biomechanics in a cadaveric lower extremity model that provided 
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a complete description of the bony motion and IAR of the foot during stance phase gait. 
The aim of the study was to demonstrate the effect of active and passive loading 
conditions as well as a variable Achilles load (25%, 50%, 75%, 100% body weight) on 
the IAR of the ankle joint as well as the bony motion of the talus, calcaneus, and 
navicular throughout motion.  We hope this study will illuminate the effects of an 
Achilles load on arch formation by showing whether the arch remained a rigid structure 
for the different loading conditions and whether ankle motion was restricted due to arch 
formation.  
 
 

Materials and Methods 
 
 
Specimen Preparation 
 
 Four fresh-frozen cadaveric lower limb specimens (1 female pair, age 44, 1 male 
pair, age 37) were procured from Restore Life USA (Johnson City, TN).  Before 
preparation, the feet were thawed in a refrigeration system for two days.  Each specimen 
was screened radiographically by an orthopaedic surgeon to exclude the presence of any 
anatomical abnormalities (see Appendix A for individual specimen radiographs and 
comparisons).  

 
 Soft tissue and muscle were resected to expose approximately 100 mm of the 
proximal shafts of the tibia and fibula.  The tibia and fibula were fixed proximally with a 
single one inch #6 wood screw.  The AT was exposed and soft tissue was excised to 
allow approximately 150 mm for clamping using a cable puller secured with a U-bolt.  
Specimens were then mounted concentrically into a cylindrical pot using an alignment 
frame to position the tibia in a neutral vertical orientation.  Low-melting-point bismuth 
alloy (Rotometals Inc., San Leandro, CA) provided final fixation of the tibia and fibula. 
Four standard Kirschner wires (K-wires) were inserted into the talar neck, navicular, and 
calcaneus under X-Ray guidance with caution to avoid tendon structures.  Tissue was 
resected around K-wire insertion areas to reduce obstruction of K-wire motion during 
testing.  
 
 
Robotic Testing Platform and Protocol 
 
 An existing custom designed, multi-axis testing platform was utilized to simulate 
early stance phase gait under displacement control and force feedback (Figure 4-1A) 
[54,56].  Two linear actuators, a Parker Hannifin Corp (Cleveland, OH) 406XR series 
linear ball screw actuator and an Exlar (Chanhassen, MN) GSX-30 linear roller screw  
actuator were aligned in the X and Z-axes, respectively.  Platform axes were controlled 
within 2microns in X and 0.31microns in the Z.  The rotary motors and drive units of the 
original test RTP were upgraded with Harmonic Drive units (Peabody, MA: model FHA-
25C-160-US250) having improved resolutions of 0.008 degrees.  Two six-axis load cells 
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Figure 4-1. Diagram of 4-DOF Robotic System Configured for the Ankle Study. 
A) The testing platform consisted of an upper gimbal assembly with two translational and 
one rotational axes along with a 6-axis load cell, a mounting block to rigidly affix the 
specimen to the RTP, a pulley system to apply a static load to the AT, and an X-Y table 
with a second 6-axis load cell to aid in the mounting procedure.  The coordinate system is 
shown by X-, Y-, and Z-axes.  Translational and rotational vectors of the controlled axes 
of the RTP are also shown.  Source: Reprinted with permission: Stewart, T.E., (2012). An 
Innovative Testing Protocol to Study Foot and Ankle Kinetics during Early Stance Phase 
of Gait. Master’s Thesis, UTHSC.  B) MMS diagram.  Cameras were aligned in the 
sagittal plane 180 degrees apart.  Three dimensional optoelectric LED target arrays were 
mounted on K-wires implanted in the talus, calcaneus, and navicular, and one was placed 
on the mounting block as reference to tibial motion.  Targets aligned with orientation of 
the K-Wire.  The MMS coordinate system is shown with associated rotations. 
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JR3 Inc., Woodland, CA: models 67M25S3 and 45E15S) were attached to the RTP 
assembly and measured the three orthogonal forces and moments applied to the tibia via 
the gimbal assembly and forces transferred through the foot to the ground at the base of 
an X-Y table.  Force capacities and resolutions were 1157N and 0.29N for the gimbal 
load cell and 4400N and 0.52N for the base load cell, respectively.  

 
 An optoelectric motion measurement system (MMS) (DynasightTM, Origin 
Instruments, Texas) was used to measure translations and rotations of bone structures 
(Figure 4-1B).  Three-dimensional optoelectric target arrays were mounted onto the 
implanted K-wires in the foot and one target remained in the mounting fixture as a 
reference to tibial rotation.  Targets were aligned with the orientation of the K-wires.  
This allowed a direct, repeatable measurement of the placement of the target as well as 
the orientation of the K-wires relative to the sagittal plane (Appendix B).  The X, Y, and 
Z axes of the MMS were aligned with the X, Z, and Y axes of the RTP, respectively.  
These coordinate systems were aligned with anatomical cardinal planes and do not 
necessarily reflect the axes of rotation of joints.  Bone rotation and positional data were 
collected three times at 10Hz during playback of the fifth cycle of motion. 

 
 A sagittal plane was established by bisecting the second metatarsal and AT with a 
vertical axis aligned with the tibia that matched the X-Z plane of the RTP [30,31,37].  
Static AT force vectors were applied via a frictionless cable-pulley system as a function 
of a vGRF (0%, 25%, 50%, 75%, 100% vGRF) set at body weight (534N).  These values 
were chosen based on physiologic joint loading during stance phase gait, where 
maximum joint loads reach approximately double BW [37].  AT loads were applied 
within four degrees of alignment with the vertical tibia axis while the heel was raised 
50mm and an X-Y table, with a second 6-axis load cell at the base of the foot, was 
unlocked.  This allowed for unconstrained arch formation while properly transferring 
loads from the tibia to the calcaneus and maintaining foot support throughout the gait 
simulation [13,26].  The heel was then returned to the neutral position and an axial tibia 
force (Ft) of 534N was applied to the specimen to meet the desired vGRF condition 
within a prescribed ±3N tolerance.  In the passive (0%) loading scenario, a force of 5N 
was applied through the tibia instead of the full BW vGRF.  After the desired loading 
condition was met, the X-Y table was locked and the rotation of the specimen was 
started.  
 
 A “pure moment” condition was implemented to maintain the axial load through 
the tibia and minimize off axis loads while rotating about an instantaneous center.  The 
tibia started in a neutral orientation (0 degrees) and was rotated about an initial prescribed 
ankle rotational axis (pARA) (Figure 4-2A) that was measured off of a scaled medial 
radiograph of the foot processed in ImageJ (NIH).  This transformation in the X and Z 
directions from the null tool tip (NTT), located at the center of the gimbal, changed the 
location of the ankle rotational axis (ARA) to the center of the talus, referred to as the 
extended tool tip (ETT).  Because the tibia was rigidly connected to the RTP, the NTT 
data remained aligned with the rotated axes of the tibia. 
 
 The next step in the test protocol was to establish the kinematic path of the ankle 
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Figure 4-2. Modified “Pure Moment” Program. 
Kinematic and load control strategy.  A) Kinematic coordinate frames of the foot and 
ankle are defined by the NTT and ETT of the RTP.  The ETT represents the initial 
prescribed IAR of the foot located at the center of the talus and was a negative Z offset 
from the NTT.  The coordinate frame of the load cell was initially located at the center of 
the load cell and transformed to the origin of the moving joint center, i.e., the ETT.  B) 
An angular input of ankle rotation was given every 0.5 degrees, during which the loading 
protocol reduced the ankle moment due to off-axis forces by minimizing the distance 
(∆X, ∆Z) between the pARA (upper) and the true ARA (lower), thus creating a “pure 
moment” condition.  Additional shear and compressive loads could be introduced at this 
time to maintain the axial tibial force and vGRFs.  The NTT data remained aligned with 
the rotated tibia axes. Achilles load is not shown. 
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joint under pure rotational loading.  This was accomplished by introducing an 
incremental rotation to the specimen and then reducing the off-axis forces by minimizing 
the distance (∆X, ∆Z) between the pARA and the true ARA (Figure 4-2B), thus a “pure 
moment” loading condition was achieved.  For each incremental rotation, the pure 
moment loading state could be modified to allow additional shear and compressive forces 
to be added and directed along the new rotational axes.  The process was repeated every 
0.5 degrees until the full 10 degrees of dorsiflexion or plantarflexion was achieved.  Five 
cycles were allotted for conditioning of the tissue followed by five cycles.  Throughout 
the testing sequence, specimens were kept moist at regular intervals with a 0.9% saline 
mist. 
 
 
Data Analysis 
 
 Robot positional data and force data were recorded at 20Hz.  A modified version 
of Reauleux’s method [53] for calculating a joint’s instantaneous axis of rotation was 
applied to the robot NTT data to determine the IAR of the ankle within ±0.001mm.  An 
ankle coordinate frame for describing ankle motion was defined by the bisector of the 
tibia and highest point on the tibial mortise in a neutral upright orientation.  The resultant 
IAR paths of the ankle motion for each specimen were plotted in Excel.   

 
 MMS data were recorded during playback of the the fifth cycle of flexion at 
10Hz. Target translation data were transformed to K-wire tips implanted in the bone.  
XYZ Euler decomposition was used to subtract the effect of rotation on the translational 
data and transform the rotated reference frame of the k-wires to the sagittal plane 
(Appendix B) [59].  Bones were considered at neutral position and rotation when the 
tibia was in the upright position perpendicular to the ground in the sagittal plane and the 
vGRF was at maximum force.  Marker positions were determined accurately within ±80 
microns.  

 
 Mean IAR values, mean bone rotations, and mean bone translations were 
compared between loading conditions and between dorsiflexion and plantarflexion for 
each specimen using a One Way ANOVA with a Holm Sidak Post Hoc Multiple 
Comparisons test.  Results are presented as means ± standard deviations.  A P-value of 
less than 0.05 signified significant differences between comparisons. 
 
 

Results 
 
 IAR paths throughout motion are displayed in Figure 4-3. Paths for specimen 1 
and 2 showed little movement in the talus for both dorsiflexion and plantarflexion, 
remaining within a 7mm range (i.e., a maximum of 3.5mm in the X and 6mm in the Z).   
Specimen 3 and 4 showed more movement throughout the talus, remaining within a 
15mm range (i.e., a maximum of 4mm in the X and 20mm in the Z).  In specimen 3, the 
0% Achilles load paths showed the most movement, whereas in the other 3 specimens the 
0% Achilles load generally had little movement, demonstrating a possible fixed point 
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Figure 4-3. IAR Paths. 
(A) Specimen 1, (B) Specimen 2, (C) Specimen 3, (D) Specimen 4.  Percentages refer to 
the amount of Achilles load in reference to the vGRF.  Arrows denote the direction of the 
path throughout 10 degrees dorsiflexion or plantarflexion.
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Figure 4-3. Continued.
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rotation where the tibial mortise motion follows the surface of the talar dome.  With a 
loaded Achilles, all paths started up towards the articular surfaces for each specimen.  
Dorsiflexion paths with an active Achilles load in specimen 1, 2, and 4 consistently 
travelled posteriorly throughout motion.  In contrast, specimen 3 paths changed directions 
between loading conditions with no apparent pattern.  However, the paths that travelled 
anteriorly remained within a tight range, demonstrating a possible fixed point rotation.  In 
plantarflexion for all specimens with a loaded Achilles, the first degrees of motion started 
up within the articular surface of the talus.  As rotation continued, the IAR path moved 
downward towards the middle of the talus, transitioning from a fixed point rotation at the 
joint articular surfaces to a sliding motion between them.  Under these loading 
conditions, the IAR appeared to move closer to the rotational center as defined by the arc 
of the tibiotalar articulating surfaces. 
 
 Mean IAR values for all specimens are shown in Table 4-1 through Table 4-4, 
respectively.  Significant differences in mean XIAR values between dorsi- and plantar-
flexion of the same loading condition were found in all cases for all specimens: 
dorsiflexion mean values were posterior to the plantarflexion mean XIAR values.  
Significant differences in mean ZIAR values between dorsi- and plantar-flexion of the 
same loading condition were found in all cases for specimens 1 and 2 and in the 0 and 50 
percent loaded conditions in specimen 4.  XIAR values in dorsiflexion generally showed 
a significant difference between loading conditions with a posterior shift due to an 
increased Achilles load.  Plantarflexion mean XIAR values did not show this same 
pattern.  While in the majority of cases there were significant differences between mean 
XIAR values between loaded conditions in plantarflexion, values did not show an 
apparent posterior or anterior shift due to increasing Achilles load.  Mean ZIAR values in 
dorsiflexion and plantarflexion demonstrated a significant upward shift due to a minimal 
Achilles load (between 10mm and 20mm).  Differences were found in the majority of 
cases of mean ZIAR values between the active loaded Achilles conditions.  However, 
there does not seem to be an apparent pattern to suggest a cause other than each path will 
incorporate variable amounts of rolling and sliding between the articular surfaces.  Once 
the Achilles was loaded, mean XIAR and ZIAR values remained within 3mm (maximum 
shift was 5.5mm in specimen 3).  These results suggest a minimal AT load is sufficient in 
actively loading the arches of the foot.  They also suggest net joint loading had no effect 
on the IAR of the foot-ankle complex once the Achilles was loaded (net joint load: 667.5-
1068N). 

 
 Mean rotations and translations for the talus, calcaneus, and navicular for 
specimens 1-4 are shown in Table 4-5 through Table 4-8, respectively.  Data was kept 
separate for each specimen to demonstrate interspecimen variability.  Mean data for all 
four specimens is shown in Appendix C.  Positive rotations in the X, Y, and Z axes 
corresponded to eversion, adduction, and dorsiflexion, respectively for a right foot 
(specimen 2 and 4).  Positive X and Y rotations were opposite for left feet such that  
positive rotations correlated to inversion and abduction for specimens 1 and 3.  Positive 
translations in the X, Y, and Z axes corresponded to anterior, superior, and lateral 
translations, respectively for a right foot (specimen 2 and 4).  Positive Z translations were 
opposite for left feet such that a positive value in specimens 1 and 3 correlated to medial 
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Table 4-1. Mean IAR Values between Loading Conditions for Specimen 1. 
 

% 
vGRF

AT 
Load 

Mean XIAR (mm)  
± Standard Deviations 

 Mean ZIAR (mm)  
± Standard Deviations 

Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 

0 1.972±0.418
#~^+

 0.849±0.152
#^

  -20.280±0.400
#~^+

 -24.000±1.358
#~^+

 
25 -2.917±0.162*^+

 -0.378±0.466*~+
  -7.402±0.453*^

 -5.536±0.763*~
 

50 -2.867±0.075*^+
 1.033±0.597

#+
  -6.084±0.529*#+

 -4.180±1.663*#
 

75 -4.439±0.756*#~
 -0.0680±0.596*~+

  -6.310±0.582*#
 -4.330±1.099*#

 
100 -4.262±0.675*#~

 0.5745±0.144
#~^

  -7.368±0.516*~
 -4.676±1.892* 

* Significant difference with 0% 
# Significant difference with 25% 
~ Significant difference with 50% 
^ Significant difference with 75% 
+ Significant difference with 100% 
Note: Significant differences between dorsi- and plantar-flexion were found in all cases 
in mean XIAR and ZIAR values of the same loading condition. 
 
 
Table 4-2. Mean IAR Values between Loading Conditions for Specimen 2. 
 

%  
vGRF 

AT 
Load 

Mean XIAR (mm)  
± Standard Deviations 

 Mean ZIAR (mm)  
± Standard Deviations 

Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 

0 1.573±0.224
#~^+ 2.386±0.075

#~^+  -17.022±0.520
#~^+ -19.691±1.568

#~^+ 
25 -4.351±1.008*~^+ 1.068±0.351*~^+  -3.921±1.246*~^ -3.751±1.062*~^+ 
50 -3.297±0.243*#+ -0.069±0.466*#^  -5.191±0.454*#^ -3.275±1.032*#^+ 
75 -3.748±0.232*#+ 1.823±1.090*#~  -6.201±0.724*#~+ -6.119±1.099*#~ 
100 -5.419±0.914*#~^ 0.063±0.614*#  -4.576±0.547*^ -5.388±1.496*#~ 

* Significant difference with 0% 
# Significant difference with 25% 
~ Significant difference with 50% 
^ Significant difference with 75% 
+ Significant difference with 100% 
Note: Significant differences between dorsi- and plantar-flexion were found in all cases 
between mean XIAR and between 0 and 50 loading conditions in ZIAR values of the 
same loading condition. 
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Table 4-3. Mean IAR Values between Loading Conditions for Specimen 3. 
 

% 
vGRF 

AT 
Load 

Mean XIAR (mm) 
 ± Standard Deviations 

 Mean ZIAR (mm) 
 ± Standard Deviations 

Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 

0 2.668±0.641
#~^+ 3.701±0.890

#~^+  -17.658±3.334
#~^+ -17.756±5.950

#~^+ 
25 -4.339±1.157*~^+ 0.831±0.615*~^+  -3.128±3.655* -2.042±2.948* 
50 -5.086±0.102*#^+ -0.625±0.394*#^+  -2.618±0.582* -3.646±0.626* 
75 -5.779±0.185*#~+ -2.034±0.418*#~+  -4.203±0.531*+ -3.654±2.249* 
100 -6.845±0.142*#~^ 3.453±0.135*#~^  -1.930±2.280*^ -4.465±1.696* 

* Significant difference with 0% 
# Significant difference with 25% 
~ Significant difference with 50% 
^ Significant difference with 75% 
+ Significant difference with 100% 
Note: Significant differences between dorsi- and plantar-flexion were found in all cases 
between mean XIAR, but no significant differences were found in ZIAR.  
 
 
Table 4-4. Mean IAR Values between Loading Conditions for Specimen 4. 
 

% 
vGRF 

AT 
Load 

Mean XIAR (mm)  
± Standard Deviations 

 Mean ZIAR (mm)  
± Standard Deviations 

Dorsiflexion Plantarflexion  Dorsiflexion Plantarflexion 

0 0.012±0.164
#~^+ 1.639±0.090

#~^+  -18.847±0.434
#~^+ -19.604±0.706

#~^+ 
25 -0.971±1.008*~^+ 4.310±0.818*~^+  -2.721±1.246* -1.542±3.438*~ 
50 -1.854±0.535*#^+ 2.627±0.784*#+  -1.416±1.374*^+ -4.039±1.127*#^ 
75 -2.766±1.273*#~+ 2.888±0.698*#+  -3.688±2.595*~ -1.136±1.098*~ 
100 -3.122±0.534*#~^ 0.443±0.614*#~^  -2.297±1.105*~ -2.593±0.458* 

* Significant difference with 0% 
# Significant difference with 25% 
~ Significant difference with 50% 
^ Significant difference with 75% 
+ Significant difference with 100% 
Note: Significant differences between dorsi- and plantar-flexion were found in all cases 
between mean XIAR and in the 50 and 75 loading conditions between ZIAR. 
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Table 4-5. Specimen 1 Translations and Rotations. 
 
% 

vGRF 
AT 

Load 

Translation (mm) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 -1.299±0.104 -0.156±0.386 0.968±0.061  -0.438±0.970 0.373±0.172 3.458±0.386  0.598±0.359 -0.438±0.173 2.747±0.215 
25 -4.312±0.276 -0.467±0.657 3.977±0.298  -3.004±0.487 1.012±0.347 1.037±0.117  -0.806±0.562 -1.219±0.061 -1.432±0.545 
50 -5.439±1.849 0.529±0.692 2.377±0.042  -3.281±0.993 -0.184±0.763 1.916±0.607  -3.818±0.606 -2.987±0.038 -6.219±0.831 
75 -4.165±0.916 -0.730±0.088 0.589±0.299  -3.905±0.214 -0.135±0.283 4.272±0.710  -0.197±0.087 -3.216±1.145 -2.524±0.691 

100 -3.232±0.633 -0.567±0.175 2.492±0.719  2.525±0.220 -0.259±0.535 1.437±0.344  -0.693±0.381 -2.099±0.204 -5.580±0.971 
 Plantarflexion 
0 0.950±0.282 0.211±0.498 -1.652±0.700  1.166±0.178 0.712±0.746 -2.796±0.766  -0.216±0.470 -1.912±0.097 -2.282±0.925 

25 1.605±1.537 -0.505±0.106 -3.114±0.761  2.165±0.910 1.575±0.231 -3.019±0.590  0.659±1.500 -0.400±0.186 1.281±0.338 
50 2.523±0.145 0.038±0.968 -1.810±0.057  3.354±0.162 0.344±0.068 -1.182±0.651  -0.468±0.039 -1.225±0.278 -2.596±0.409 
75 3.663±0.233 1.185±0.115 4.223±1.252  1.333±0.550 -1.511±0.697 1.112±0.956  2.765±0.311 -0.851±0.326 -3.028±1.069 

100 3.898±0.945 0.640±0.385 -4.088±0.675  4.667±0.914 -0.315±0.146 -1.770±0.853  0.249±0.110 -1.730±0.198 7.042±1.113 
            

% 
vGRF 

AT 
Load 

Rotation (degrees) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 -0.136±0.284 1.355±0.054 0.667±0.106  -0.373±0.633 0.855±0.599 0.945±0.344  0.344±0.320 -0.402±0.051 0.404±0.395 
25 -3.125±0.281 -0.368±0.498 0.658±0.160  0.943±0.107 2.651±0.285 0.801±0.133  1.914±0.170 0.169±0.041 0.124±0.010 
50 0.587±0.319 1.318±0.395 0.919±0.366  2.535±0.045 -0.844±0.157 0.439±0.373  3.865±0.353 0.046±0.156 0.165±0.149 
75 2.655±0.700 0.335±0.357 0.667±0.019  1.934±0.124 0.982±0.146 -0.465±0.022  1.325±0.928 0.567±0.143 0.165±0.043 

100 0.354±0.157 0.016±0.018 0.476±0.184  1.186±0.102 0.333±0.076 1.000±0.262  2.148±0.523 0.015±0.002 0.497±0.134 
 Plantarflexion 
0 -1.667±0.021 -1.015±0.394 -0.947±0.379  -0.168±0.401 -3.667±0.665 -0.947±0.435  -1.000±0.852 -0.622±0.557 0.205±0.011 

25 0.318±0.460 -2.107±0.334 0.466±0.133  -0.879±0.292 -1.946±0.354 -0.702±0.144  -0.356±0.584 -2.259±0.634 -0.255±0.199 
50 3.165±0.216 2.255±0.416 0.347±0.579  0.355±0.159 -2.469±0.175 -0.648±0.171  2.345±0.024 0.355±0.087 0.247 ±0.195 
75 -0.347±0.157 1.547±0.448 0.484±0.013  1.789 ±0.169 -0.716±0.096 -0.457±0.650  -0.942±0.149 -1.355±0.311 -0.333±0.219 

100 2.366±0.420 0.971±0.206 0.655±0.039  0.197±0.084 -0.844±0.047 -0.328±0.138  -0.945±0.383 0.215±0.133 -0.427±0.297 
Positive rotations in the X, Y, and Z axes corresponded to inversion, abduction, and plantarflexion. Positive translations in the X, Y, 
and Z axes corresponded to anterior, superior, and medial translations. 
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Table 4-6. Specimen 2 Translations and Rotations. 
 
% 

vGRF 
AT 

Load 

Translation (mm) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 1.130±0.164 0.366±0.195 -1.617±0.562  -1.084±0.397 0.413±0.077 0.646±0.286  -1.272±0.076 -0.526±0.289 3.212±0.495 
25 -3.558±0.726 2.047±1.566 0.530±0.898  -2.190±0.788 0.994±0.286 1.904±0.412  2.943±0.056 -1.245±0.162 3.024±0.764 
50 -4.696±0.493 0.503±0.304 -0.009±0.048  -1.963±0.193 -0.402±0.633 -1.162±0.061  4.222±0.561 -1.901±0.290 3.413±0.306 
75 -3.742±0.601 0.837±0.788 0.421±0.099  -4.077±0.138 0.008±0.832 2.178±1.102  -0.974±1.409 -1.216±0.452 1.244±0.610 
100 -4.817±0.365 -2.614±0.184 5.595±0.979  3.415±0.513 -0.103±0.437 -1.679±0.288  -1.078±0.298 -0.697±0.987 4.758±0.713 

 Plantarflexion 
0 0.420±0.150 0.120±0.098 1.752±0.270  -0.667±0.018 0.858±0.464 1.790±0.277  1.157±0.099 -0.912±0.097 -2.869±0.764 

25 -0.545±0.625 0.536±0.461 2.143±0.904  2.667±0.491 -0.575±0.021 3.991±0.526  -0.405±0.186 -0.585±0.282 -5.061±0.376 
50 2.231±0.261 1.031±0.097 2.860±0.081  3.666±0.624 -1.548±0.478 6.018±0.635  -2.438±0.393 -0.252±0.082 -2.956±0.394 
75 3.663±0.233 1.185±0.115 4.223±1.252  1.333±0.550 -1.511±0.697 1.112±0.956  2.765±0.311 -0.851±0.326 -3.028±1.069 
100 2.390±0.168 1.640±0.048 3.009±0.267  1.727±0.136 -0.823±0.145 1.770±0.435  2.005±1.190 -1.639±0.222 -1.904±1.039 

            
% 

vGRF 
AT 

Load 

Rotation (degrees) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 1.069±0.184 0.769±0.504 0.508±0.161  -1.333±0.332 0.233±0.079 -1.000±0.093  0.667±0.199 -0.219±0.438 0.026±0.542 
25 2.647±0.740 0.659±0.101 0.333±0.603  -1.680±0.031 0.567±0.085 0.168±0.093  -1.369±0.118 -0.368±0.415 0.333±0.198 
50 0.857±0.174 -0.265±0.140 -1.000±0.366  0.789±0.055 0.915±0.573 0.686±0.043  0.818±0.703 -1.005±0.042 1.649±0.942 
75 -0.467±0.003 0.667±0.178 -0.665±0.865  -1.265±0.227 1.667±0.190 -0.169±0.602  2.123±0.042 0.126±0.714 -0.333±0.346 
100 2.106±0.309 0.267±0.154 0.292±0.134  1.386±0.870 0.876±0.275 0.049±0.311  -0.946±0.152 1.069±0.002 -0.147±0.734 

 Plantarflexion 
0 -0.408±0.021 -0.637±0.479 0.794±0.379  -0.333±0.401 -2.580±0.267 1.265±0.435  0.359±0.515 0.667±0.565 -1.000±0.246 

25 -1.646±0.596 -0.649±0.443 1.460±0.343  3.632±0.393 -0.669±0.435 -0.333±0.474  1.247±0.058 2.767±0.344 -0.686±0.392 
50 -1.315±0.355 0.957±0.472 0.892±0.579  0.107±0.586 2.127±0.849 -0.690±0.371  1.376±0.291 -0.165±0.071 -0.700±0.295 
75 -1.667±0.663 -0.270±0.483 0.548±0.193  0.943±0.459 0.971±0.964 0.588±0.503  0.949±0.100 0.845±0.660 -0.914±0.245 
100 -2.155±0.144 1.333±0.192 1.156±0.290  0.467±0.484 0.921±0.247 0.333±0.161  -0.174±0.738 -1.832±0.733 -0.667±0.968 
Positive rotations in the X, Y, and Z axes corresponded to eversion, adduction, and dorsiflexion. Positive translations in the X, Y, and 
Z axes corresponded to anterior, superior, and lateral translations. 
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Table 4-7. Specimen 3 Translations and Rotations. 
 
% 

vGRF 
AT 

Load 

Translation (mm) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 3.086±0.248 -0.136±1.633 -0.361±1.160  -0.091±0.609 0.301±0.450 2.233±0.926  0.417±0.660 0.874±0.170 -2.317±0.395 
25 -2.775±0.374 -4.442±1.742 6.805±1.911  5.174±0.128 0.096±0.086 2.585±1.372  -1.661±1.343 1.383±1.318 -4.705±0.364 
50 -4.531±1.784 1.560±0.634 0.071±0.903  6.100±1.341 -1.874±1.055 2.338±1.223  -1.247±0.225 3.151±0.075 -10.918±0.581 
75 -1.638±0.610 -0.001±1.067 0.652±0.987  3.916±0.587 1.174±0.073 2.597±2.085  -0.702±1.936 2.267±1.064 -6.120±0.133 
100 -4.817±0.635 -2.614±0.184 5.595±0.979  3.415±0.513 -0.103±0.437 -1.679±0.288  0.611±0.222 2.797±0.176 -7.930±0.370 

 Plantarflexion 
0 -0.525±0.277 2.120±0.526 -1.712±0.962  -0.306±0.207 0.235±0.062 -4.023±0.733  -0.743±0.158 -1.697±0.091 4.859±0.845 

25 1.851±4.896 -0.108±0.379 -0.254±0.591  -2.322±0.730 -1.446±0.930 -4.925±3.071  1.642±1.110 -2.906±1.982 7.425±4.524 
50 2.953±0.146 1.258±0.894 -2.614±0.987  -4.897±0.149 -0.105±0.303 -3.486±1.036  0.049±0.230 -2.518±0.096 6.146±0.324 
75 3.984±0.276 2.648±0.993 -4.517±1.154  -0.199±0.122 1.014±0.291 0.071±0.666  2.667±0.389 -0.658±0.408 4.642±0.561 
100 2.681±0.227 1.234±0.243 3.266±0.364  2.473±0.409 -0.612±0.909 1.615±1.353  -0.889±1.608 -1.015±0.607 2.661±3.087 

            
% 

vGRF 
AT 

Load 

Rotation (degrees) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 -0.449±0.282 1.413±2.658 -0.514±0.353  -0.021±0.650 1.802±1.127 -0.289±0.165  0.061±0.233 -0.288±0.112 0.053±0.029 
25 -4.574±1.347 3.827±0.702 0.324±0.132  1.481±0.490 4.823±0.670 0.569±0.217  1.058±0.131 0.584±0.288 0.432±0.291 
50 1.833±0.623 -2.418±1.948 0.053±0.103  3.353±2.045 5.289±1.872 1.571±0.725  2.873±0.118 0.202±0.404 0.375±0.095 
75 -0.209±0.644 2.916±1.371 -0.490±0.447  -1.916±0.914 1.982±0.971 0.264±0.144  1.595±0.159 0.923±0.568 0.395±0.464 
100 -2.106±0.309 0.267±1.154 0.292±0.134  1.386±0.870 0.876±0.275 0.049±0.311  1.958±0.144 0.518±0.191 -0.126±0.121 

 Plantarflexion 
0 1.092±0.501 -1.963±0.361 0.497±0.061  -0.734±0.503 -4.675±0.070 -0.769±0.059  -1.102±0.509 0.211±0.107 0.160±0.031 

25 0.110±1.360 -1.058±3.364 -0.316±0.431  3.583±2.685 -1.248±0.791 -0.343±0.173  -1.768±1.026 0.228±1.515 0.148±0.077 
50 1.530±0.867 -2.196±0.699 -0.432±0.096  0.760±0.660 -2.858±0.309 -0.782±0.294  -1.794±0.150 -0.832±0.111 -0.017±0.059 
75 1.701±0.703 2.206±0.336 0.419±0.138  -2.635±0.797 -2.247±0.249 -0.866±0.159  -0.419±0.176 1.105±0.350 -0.145±0.053 
100 1.551±0.154 1.700±0.628 0.717±0.098  0.396±1.534 0.731±0.491 0.104±0.097  -0.799±0.724 -1.392±0.858 0.163±0.229 
Positive rotations in the X, Y, and Z axes corresponded to inversion, abduction, and plantarflexion. Positive translations in the X, Y, 
and Z axes corresponded to anterior, superior, and medial translations. 
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Table 4-8. Specimen 4 Translations and Rotations. 
 
% 

vGRF 
AT 

Load 

Translation (mm) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 0.867±0.235 1.624±0.141 -3.850±0.502  0.726±0.122 -0.539±0.058 -2.290±0.730  -1.125±0.110 -2.222±0.063 -7.212±0.182 
25 -2.647±1.404 0.399±0.274 0.983±0.830  -3.114±0.162 0.035±0.204 2.042±0.659  5.193±0.455 -2.443±0.491 -2.228±0.713 
50 -3.037±0.141 0.669±0.017 -2.085±0.289  -3.847±0.506 -0.283±0.258 3.469±0.710  5.557±0.419 -2.412±0.096 -4.053±0.554 
75 -2.982±0.397 0.255±0.162 -1.256±0.160  -2.493±0.058 0.717±0.127 5.061±0.431  4.549±0.784 -0.570±0.142 1.276±1.870 
100 -3.783±0.677 0.226±0.113 -2.124±0.451  -2.772±0.434 0.659±0.230 0.406±2.968  3.529±0.405 -1.287±0.711 -3.480±2.266 

 Plantarflexion 
0 -0.180±0.129 -0.955±0.030 2.676±0.173  -0.131±0.042 0.424±0.031 -0.124±0.141  -7.386±0.123 -0.373±0.176 -4.162±0.453 

25 1.487±0.403 0.613±0.045 -2.418±0.606  2.640±0.495 -0.363±0.102 -8.262±0.850  -1.104±0.111 2.115±0.286 4.142±1.983 
50 2.633±0.592 0.099±0.183 -2.125±0.592  2.504±0.436 0.498±0.512 -0.541±0.592  -1.469±0.432 0.155±0.595 0.078±2.360 
75 0.042±0.649 0.314±0.076 -2.277±1.109  2.739±0.041 -0.128±0.172 -3.296±3.751  -1.102±0.847 0.426±0.197 0.421±0.720 
100 -0.762±0.262 -0.385±0.216 -0.434±2.773  1.531±0.650 -1.489±0.581 -0.105±6.115  -0.242±1.231 -0.003±0.744 -1.177±1.904 

            
% 

vGRF 
AT 

Load 

Rotation (degrees) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 1.557±0.238 0.229±0.110 -0.649±0.136  1.722±0.456 0.421±0.229 -0.336±0.044  0.266±0.024 -4.278±0.070 0.582±0.032 
25 -1.249±0.171 0.232±1.062 -0.165±0.332  -0.713±0.121 0.195±0.626 0.184±0.032  -0.139±0.644 -1.150±0.464 1.436±0.144 
50 0.921±0.119 -0.259±0.193 -0.334±0.039  -0.553±0.427 0.464±0.977 0.740±0.045  0.977±0.707 -0.149±0.325 0.752±0.729 
75 0.307±0.147 0.431±0.221 0.456±0.138  -0.823±0.363 2.171±0.377 0.290±0.031  -1.406±0.607 -0.662±0.410 1.058±0.214 
100 0.923±0.222 -0.389±0.414 0.374±0.224  1.178±2.274 0.539±0.334 0.123±0.060  -0.454±1.019 -2.337±0.229 1.023±0.031 

 Plantarflexion 
0 -1.057±0.052 -0.300±0.036 0.271±0.070  0.262±0.095 0.804±0.086 0.190±0.038  1.915±0.213 -0.103±0.015 -0.883±0.056 

25 1.101±0.213 -0.115±0.211 0.514±0.118  4.260±0.333 0.171±1.303 0.125±0.170  -0.259±0.720 2.101±0.304 -1.550±0.070 
50 0.735±0.357 1.388±0.299 0.220±0.165  0.212±0.815 1.708±1.097 -0.575±0.211  0.709±0.796 0.835±0.584 -0.621±0.109 
75 1.094±0.566 -0.518±0.277 0.709±0.073  1.458±1.853 0.102±0.621 0.029±0.099  1.322±0.403 1.867±0.038 -0.940±0.247 
100 -0.284±0.378 -1.371±0.166 0.729±0.262  -3.405±3.089 -1.837±1.076 0.198±0.200  1.802±1.078 1.298±0.123 -0.851±0.209 
Positive rotations in the X, Y, and Z axes corresponded to eversion, adduction, and dorsiflexion. Positive translations in the X, Y, and 
Z axes corresponded to anterior, superior, and lateral translations.
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translation.  In general, translational and rotational measurements through dorsiflexion 
and plantarflexion were minimal (within a few degrees and millimeters) and can be 
deemed surgically insignificant.  Most motion occurred in the navicular in the coronal 
plane: the navicular translated laterally in dorsiflexion and medially in plantarflexion.  
Virtually no relative motion occurred between the calcaneus and talus in the sagittal or 
coronal planes (MMS X and Z axes); both translated posteriorly and medially during 
dorsiflexion and anteriorly and laterally during plantarflexion.  The navicular appeared to 
be at a maximum height in the neutral vertical orientation and translated inferiorly 
through degrees of motion.  This demonstrated the arches of the foot are activated, such 
that the navicular reached its maximum height and could not translate any direction 
except inferiorly. 
 
 

Discussion 
 
 The goal of this work was to define relative kinematics of the talus, calcaneus, 
navicular, and articular joint surfaces to better define motion at the ankle during stance 
phase gait.  A novel dynamic robotic testing platform and protocol were used to simulate 
loading conditions representative of in vivo conditions of early stance phase gait.  The 
simulation accounted for 10 degrees of plantarflexion and dorsiflexion, whereas the total 
functional range of walking motion of the ankle during stance phase is approximately 15 
degrees [2,4,37,39].  Force errors were controlled within prescribed ±3N tolerances 
throughout testing.  Application of the AT force was within four degrees of the long axis 
of the tibia introduced a minimal force error of 0.25%.  Axial tibia forces used to simulate 
physiologic vGRF through gait were reduced to 534N due to the load capacity of the 
upper load cell.  However, these approximated BW forces were within 18N of the 
physiologic weight of specimens 1 and 2, and within 71N for specimens 3 and 4.  This 
accounts for at most 10.6% error in force application (25% AT vGRF loading condition 
for specimens 3 and 4). 

 
 Minimal AT loads (25% vGRF) had a significant effect on the axis of rotation, 
causing a superior shift in the IAR of more than 10mm for all specimens.  Once the AT 
was loaded, no definitive effect of increasing load was demonstrated except for in 
dorsiflexion where the increasing load shifted the XIAR paths posteriorly.  This suggests 
that the foot ankle complex may have intraspecimen variability between cycles of motion 
even when forces and kinematic patterns are tightly controlled.  Additionally, net joint 
loading once the arch was formed by applying an AT force had no effect on the IAR of 
the ankle.  Dorsiflexion paths, in general, showed little movement in the talus. In 
plantarflexion, the first degrees of motion started up within the articular surface of the 
talus.  As rotation continued, the IAR path moved downward towards the middle of the 
talus, transitioning from a fixed point rotation at the joint articular surfaces to a sliding 
motion between them, moving closer to the rotational center as defined by the arc of the 
tibiotalar articulating surfaces.  Specimen 1 and 2 showed less movement within the 
talus, whereas specimen 3 and 4 showed a much higher range of movement.  This 
confirms interspecimen variability.  Stability of the ankle joint is determined by three 
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main factors: articular congruity, ligamentous structures, and ankle position [11,36].  All 
have been shown to have high variability between specimens [51]. 

 
 Bone motion analyses demonstrated little movement throughout dorsiflexion and 
plantarflexion.  Most rotations and translations were less than a few degrees or 
millimeters and were deemed surgically insignificant.  However, relative translation 
between the calcaneus and talus was minimal in the coronal and sagittal planes.  In vitro 
and in vivo studies have reported relative motion between these bones predominantly 
during heel strike and heel rise [20,25,44,46,58].  This protocol does not account for 
those portions of stance phase gait and thus is in agreement with current literature.  More 
motion in the three bones occurred in the coronal plane (Z-axis).  The navicular 
demonstrated a lateral translation throughout dorsiflexion and a medial translation in 
plantarflexion.  The navicular also demonstrated a slight inferior translation throughout 
dorsiflexion and plantarflexion.  This can be interpreted as a confirmation of arch 
formation due to an AT load. 

 
 Some limitations were present in this study.  This current model does not 
incorporate a dynamic Achilles tendon force profile representative of in vivo loading 
conditions, nor does it account for any of the other major plantarflexors, extrinsic 
dorsiflexors, or intrinsic muscles of the foot.  However, these muscles are predominantly 
active during heel strike, and heel rise to toe off gait [4,11,36,37,39].  The force applied 
via the AT has been shown to have the greatest role in the biomechanical behavior of the 
ankle joint during stance phase when the foot is flat and therefore, it is the only tendon 
force accounted for in this study.  During normal gait, the tibia is driven from maximum 
plantarflexion to dorsiflexion with a continuous load on the joint.  This protocol is limited 
in that the dorsiflexion and plantarflexion paths are generated independently.  
Furthermore, plantarflexion is driven in a direction uncharacteristic of the target in vivo 
stance phase motion.  However, the Achilles tendon load is applied to the specimen in 
such a manner to simulate the in vivo loading scenario where the joint is plantarflexed.  
The independent movement from the neutral orientation between dorsi- and plantar-
flexion may explain the disconnect between the initial point of IAR paths in dorsiflexion 
and plantarflexion, as well as the high starting point for the plantarflexion IAR path 
forcing the ligaments and tissue to stabilize in the neutral orientation.  Another limitation 
is that our study was two-dimensional whereas the ankle joint can move in three 
dimensions [1,11,50].  Finally, the MMS data was analyzed in the anatomical cardinal 
planes and do not necessarily reflect the axes of rotation of joints.  However, because 
motion was primarily in the sagittal plane, this limitation is minor.  Additionally, because 
rotations were minimal, transforming the translational data to a joint center was 
unnecessary. 
 
 In conclusion, this work has provided a two-dimensional analysis of the IAR of 
the ankle joint with a corresponding three-dimensional bone motion analysis using a 
novel robotic testing platform and protocol.  The results of the study are one of a handful 
to address the IAR of the ankle joint.  This yielded great insight into the biomechanical 
properties of the foot and ankle, including the tibiotalar relationship on the axis of 
rotation and the effect of load on foot-ankle kinematics.  Current work includes 
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incorporating a dynamic Achilles tendon load and demonstrating the effects of shoe 
support or tendon pathologies on ankle biomechanics.  
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CHAPTER 5.    DISCUSSION 
 
 
 A novel dynamic robotic testing platform and protocol were developed and used 
to investigate the biomechanical behavior of the foot and ankle under simulated loading 
conditions representative of in vivo conditions of early stance phase gait.  The objectives 
of the current work were to: (1) Design a RTP and loading protocol that supported in 
vitro cadaveric testing of the foot and ankle complex during the early stance phase of 
gait, (2) Assess the repeatability and accuracy of the loading protocol using force 
measurements and IAR data from two cadaver specimens, and (3) Study the effects of a 
passive (unloaded) and active Achilles load and axial tibia load on ankle mechanics using 
IAR data and translational and rotational data of the calcaneus, talus, and navicular from 
four cadaver specimens during stance phase gait.   
 
 The first objective of this study was to validate the accuracy and repeatability of a 
loading protocol.  The model simulated a static Achilles load during stance phase of 
walking with decreased in vivo loading conditions.  The role of soft tissue in this model 
was accounted for by preconditioning of the cadaver feet by subjecting them to several 
load and movement cycles before relevant data were captured.  The simulation accounted 
for 20 degrees of plantarflexion and 10 degrees dorsiflexion, whereas the total functional 
range of walking motion of the ankle during stance phase is approximately 15 degrees 
[3,27,37,39].  While force errors were typically controlled within prescribed ±2N 
tolerances throughout testing, they increased towards the end of motion possibly as a 
result of rotating the ankle beyond its functional limit.  The ATLs were limited by the 
upper loading capacity of the gimbal load cell, such that loading conditions were set at 
half body weight (356N) and the Achilles tendon force was set to half the vGRF (178N).  
However, the ground reaction forces produced during the simulation were in agreement 
with a percentage of recorded in vivo forces [1-4,11,39].  Additionally, application of the 
AT force to within four degrees of the long axis of the tibia introduced a minimal force 
error of 0.25%.  
 
 The repeatability of the loading protocol was addressed by assessing the intra-
specimen variability between cycles of motion.  Stability of the ankle joint is determined 
by three main factors: articular congruity, ligamentous structures, and ankle position 
[11,36]. All have been shown to have high variability between specimens [51].  Baxter 
showed a difference in biomechanical properties of sprinters versus non sprinters, 
suggesting physical health plays a major role in mechanics of the ankle [35].  Therefore, 
the goal was to demonstrate a repeatable measurement of the IAR in the sagittal plane.  
This loading protocol showed variability in the mean IAR measurements between cycles 
of motion (as measured by the standard deviation) of less than 1 mm.  The talus 
dimension for the two specimens were approximately 60mm in width and 38mm in 
height, demonstrating small relative variability on a clinical scale.  Current gait 
simulators and BTP protocols are either unable to measure the IAR [14-22,24] or are 
limited to high errors in the calculation of the IAR due to methodology [23,35].  While 
dorsiflexion paths remained within a 4.5mm range, plantarflexion paths showed more 
movement.  However, plantarflexion slopes were not significantly different between 
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cycles of motion in specimen 1 or 2, demonstrating a repeatable measurement of the IAR 
path. 
 
 The second objective of this work was to define relative kinematics of the talus, 
calcaneus, navicular, and articular joint surfaces to better define motion at the ankle 
during stance phase gait.  The novel RTP and protocol were used to simulate loading 
conditions representative of in vivo conditions of early stance phase gait.  The simulation 
accounted for 10 degrees of plantarflexion and dorsiflexion, whereas the total functional 
range of walking motion of the ankle during stance phase is approximately 15 degrees 
[2,4,37,39].  Force errors were controlled within prescribed ±2N tolerances throughout 
testing.  Application of the AT force was within four degrees of the long axis of the tibia 
introduced a minimal force error of 0.25%.  Axial tibia forces used to simulate 
physiologic vGRF through gait were reduced to 534N due to the load capacity of the 
upper load cell.  However, these approximated BW forces were within 18N of the 
physiologic weight of specimens 1 and 2, and within 71N for specimens 3 and 4.  This 
accounts for at most 11.7 percent error in force application (25% AT vGRF loading 
condition for specimens 3 and 4). 

 
 Minimal AT loads (25% vGRF) had a significant effect on the axis of rotation, 
causing a superior shift in the IAR of more than 10mm for all specimens.  Once the AT 
was loaded, no definitive effect of increasing load was demonstrated except for in 
dorsiflexion where the increasing load shifted the XIAR paths posteriorly.  This suggests 
that the foot ankle complex may have intraspecimen variability between cycles of motion 
even when forces and kinematic patterns are tightly controlled.  Additionally, net joint 
loading, once the arch was formed by applying an AT force, had no effect on the IAR of 
the ankle.  Dorsiflexion paths, in general, showed little movement in the talus. In 
plantarflexion, the first degrees of motion started up within the articular surface of the 
talus.  As rotation continued, the IAR path moved downward towards the middle of the 
talus, transitioning from a fixed point rotation at the joint articular surfaces to a sliding 
motion between them, moving closer to the rotational center as defined by the arc of the 
tibiotalar articulating surfaces.  Specimen 1 and 2 showed less movement within the 
talus, whereas specimen 3 and 4 showed a much higher range of movement.  This 
confirms interspecimen variability.  Stability of the ankle joint is determined by three 
main factors: articular congruity, ligamentous structures, and ankle position [11,36].  All 
have been shown to have high variability between specimens [51]. 

 
 Bone motion analyses demonstrated little movement throughout dorsiflexion and 
plantarflexion.  Most rotations and translations were less than a few degrees or 
millimeters and were deemed surgically insignificant.  However, relative translation 
between the calcaneus and talus was minimal in the coronal and sagittal planes.  In vitro 
and in vivo studies have reported relative motion between these bones predominantly 
during heel strike and heel rise [20,25,44,46,58].  This protocol does not account for 
those portions of stance phase gait and thus is in agreement with current literature.  More 
motion in the three bones occurred in the coronal plane (Z-axis).  The navicular 
demonstrated a lateral translation throughout dorsiflexion and a medial translation in 
plantarflexion.  The navicular also demonstrated a slight inferior translation throughout 



 

54 

dorsiflexion and plantarflexion.  This can be interpreted as a confirmation of arch 
formation due to an AT load. 

 
 Some limitations are present in this study.  The proximal fusion of the tibia and 
fibula removed the physiologic joint function where the bones may undergo translations 
and rotations relative to each other.  This has been observed primarily when the knee 
experiences external and internal rotation [28].  Our model accounts for tibial sagittal 
plane motion only.  During force application an out of plane load was produced as a 
mode of lateral stabilization of the joint.  However, a negligible moment build up was 
observed throughout motion (0.5Nm) and did not restrict flexion.  Additionally, the 
current model does not incorporate a dynamic Achilles tendon force profile 
representative of in vivo loading conditions, nor does it account for any of the other 
major plantarflexors, extrinsic dorsiflexors, or intrinsic muscles of the foot.  However, 
these muscles are predominantly active during heel strike, and heel rise to toe off gait 
[36,39].  The force applied via the Achilles tendon has been shown to have the greatest 
role in the biomechanical behavior of the ankle joint during stance phase when the foot is 
flat.  Therefore, it is the only tendon force accounted for in this study.  During normal 
gait, the tibia is driven from maximum plantarflexion to dorsiflexion with a continuous 
load on the joint.  This protocol is limited in that the dorsiflexion and plantarflexion paths 
are generated independently.  Furthermore, plantarflexion is driven in a direction 
uncharacteristic of the target in vivo stance phase motion.  However, the Achilles tendon 
load is applied to the specimen in such a manner to simulate the in vivo loading scenario 
where the joint is plantarflexed.  The independent movement from the neutral orientation 
between dorsi- and plantar-flexion may explain the disconnect between the initial point of 
IAR paths in dorsiflexion and plantarflexion, as well as the high starting point for the 
plantarflexion IAR path forcing the ligaments and tissue to stabilize in the neutral 
orientation.  Another limitation is that our study was two-dimensional whereas the ankle 
joint can move in three dimensions [1,11,50].  Finally, the MMS data were analyzed in 
the anatomical cardinal planes and do not necessarily reflect the axes of rotation of joints.  
However, because motion was primarily in the sagittal plane, this limitation is minor.  
Additionally, because rotations were minimal, transforming the translational data to a 
joint center was unnecessary. 
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CHAPTER 6.    CONCLUSION 
 
 
 In conclusion, this work has provided description and validation of a novel 
loading protocol developed to support in vitro cadaveric testing of the foot and ankle 
complex.  This protocol provided a two-dimensional analysis of the IAR of the ankle 
joint using tightly controlled loads in conjunction with a passive AT force.  The low force 
error tolerance and consistent axial force values demonstrated the RTP’s ability to 
accurately simulate forces.  The results of the study are one of a handful to address the 
instantaneous axis of rotation of the ankle joint and provide the most accurate 
measurement to date.  The IAR measurement was repeatable within one millimeter, 
smaller than what is feasibly measurable in a clinical setting.  This yielded great insight 
into the biomechanical properties of the foot and ankle, including the tibiotalar 
relationship on the axis of rotation and the effect of load on foot-ankle kinematics.  
Because the IAR measurement was a direct representation of soft tissue structures and 
articular geometry, future in vitro studies may yield great insight into the biomechanical 
properties of the foot and ankle within the sagittal plane, including arch formation and 
effects of orthotics and footwear on ankle kinematics.  As new information describing the 
dynamic loading characteristics of the foot and ankle is obtained from in vivo gait studies 
(stair climbing, orthotics, footwear), this novel RTP and test protocol can readily simulate 
these conditions.  Current development includes incorporating a dynamic Achilles tendon 
load, and demonstrating the effects of shoe support or tendon pathologies on ankle 
biomechanics.  
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APPENDIX A. RADIOGRAPHS AND TRANSFORMATIONS 
 
 
 Specimen radiographs are shown in Figure A-1.  Specimen 1 and 2 were the left 
and right lower legs of a male age 37, and specimen 3 and 4 were of a female age 44.  
Body weight was 552N (124 lbs) for the male subject and 605N (136 lbs) for the female.  
The extended tool tip and generic axes transformations have been previously discussed 
(Chapter 3).  Figure A-2 shows the possible offset of the ETT from the generic axes.  
Table A-1 shows the ETT and generic axis transformations for all specimens with 
respect to the bisector at the top of the potting material.  The z offset from the NTT to the 
top of the potting material is -187.2mm for the 445N (100lb) load cell and -172.2mm for 
the 578.5N (130lb) load cell.  This is added to the generic axis offset and together they 
are subtracted from the IAR data to obtain the IAR values on the generic axis.  Figure  
A-3 shows radiographic measurements of the specimen for comparison.  Table A-2 
shows the measurements of the talus, including lengths, widths, and radii of the talar 
dome with respective ratios to a generic model talus.
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Figure A-1. Specimen Radiographs. 
Radiographs of A) specimen 1, B) specimen 2, C) specimen 3, and D) specimen 4. Not to 
scale.  However, calipers were set to 10mm and placed in field of view for scaling. All 
measurements were done in ImageJ (NIH).  Additional radiographs were taken after 
navicular k-wires were inserted. 

A) B) 

C) D) 
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Figure A-2. Example of Extended Tool Tip and Generic Axis Transformations. 
The ETT transform is designated as the vertical offset from the potting material bisector 
located in the center of the talus (blue solid line, yellow dot).  The generic axes are 
located at the meeting point of the bisector of the tibia and highest point on the tibial 
plafond (red dashed axes). 
 
 
Table A-1. Transformation Values for Program Input and Generic Axis Offsets 
 

 ETT Transforms  Generic Axis Transforms 
Specimen X Offset 

(mm) 
Z Offset  

(mm) 
 X Offset  

(mm) 
Z Offset  

(mm) 
1 0 -171  2.47 -148.02 
2 0 -177  3.16 -155.23 
3 0 -235  6.93 -219.9 
4 0 -209  6.38 -190.43 

Note: Transformations are with respect to the top of the bisector of the potting material. 
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Figure A-3. Talus Measurements. 
Generic axis point is shown.  Maximum tibia with is shown with the red solid arrow 
spanning between the dotted red lines.  Diameter was measured by placing a circle that 
matched the arc of the talar dome.  Lengths and widths of the talus are direct 
measurements of maximum measurements. 
 
 
Table A-2. Talus Measurements and Ratio Comparison to Generic Model 
 

Specimen Width 
(mm) 

Height 
(mm) 

Circular  
Diameter  

(mm) 

Maximum 
Tibia Width 

(mm) 

Circular  
Ratio 

Tibia 
Width 
Ratio 

Generic 60.21 26.97 46.45 42.96 1.00 1.00 
1 60.14 25.10 44.35 45.35 0.96 1.06 
2 61.57 24.91 45.25 47.18 0.97 1.10 
3 47.60 20.91 30.28 39.69 0.65 0.92 
4 47.37 20.75 29.54 39.54 0.64 0.92 
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APPENDIX B. MOTION MEASURING SYSTEM TRANSFORMATIONS 
 
 
 Camera/target reference frames followed a left handed system where the X-axis 
aligned with the world coordinate system (WCS), the Y-axis aligned with the Z-axis of 
the WCS, and the Z-axis aligns with the negative Y-axis of the WCS.  This discussion 
will follow the convention of the camera system.  Camera 1 and 2 were placed 180 
degrees apart on either side of the RTP with the X-axis aligned in the sagittal plane.  Data 
were transformed to have coincident reference frames where the positive and negative 
values match the WCS convention.  X rotations follow a clockwise convention, whereas 
the Y and Z axes follow a counterclockwise convention.  Targets were initially mounted 
on both sides of the mounting block in the sagittal plane 180 degrees apart for zeroing.  
Targets were placed with LED 1 aligned with the Y axis of the camera system (upright).  
Targets locations were recorded to obtain exact reference locations of the cameras to each 
other and also to zero the camera coordinate system about the sagittal plane.  Once this 
data were acquired, targets were mounted on the K-wires in the aforementioned bones 
(Chapter 4).  
 
 K-wire transforms were from the center of the target to the tip of the K-wire. This 
method has been previously described in detail [59].  Briefly, LED 1 of the target was 
aligned with the K-wire orientation.  “a,” was the X offset of the target center from the K-
wire in the target reference frame, “l” was the length of the K-wire from the target center 
to the tip of the K-wire implanted in the bony segment, and “p” was the z offset of the 
target center from the k-wire in the target reference frame.  The length, “l,” of the K-
wires was determined post-experiment by removing and measuring the marked location 
of target.  Rotational offsets were with respect to the camera reference frame aligned in 
the sagittal plane.  
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APPENDIX C. BONE TRANSLATIONS AND ROTATIONS 
 
 
 Individual specimen bone kinematic data were presented previously to 
demonstrate inter-specimen variability and show patterns in bony motion. Table C-1 and 
Figures C-1 and C-2 show the mean combined translational and rotational data for all 
four specimens. Motion data axes were flipped for left feet to align with a right foot 
specimen such that positive values reflected the same type of motion for all specimens. 
Positive rotations in the X, Y, and Z axes corresponded to eversion, adduction, and 
dorsiflexion. Positive translations in the X, Y, and Z axes corresponded to anterior, 
superior, and lateral translations. 
 
 Translations were minimal. Maximum values reached 4.5mm, but remained 
predominantly under 2mm. No patterns were exhibited except slight motion of the 
calcaneus in the X axis and slight motion of the navicular in the Z-axis. The calcaneus 
translated posteriorly in dorsiflexion, and anteriorly in plantarflexion. In the mean values, 
the calcaneus and talus exhibited minor relative motion of a few millimeters. Because of 
the variability between specimens, the minimal relative motion between the calcaneus 
and talus was lost in the mean values. The navicular translated laterally in dorsiflexion 
and medially in plantarflexion. Rotational values had a maximum of 2.3 degrees. In most 
cases the rotations remained within one degree. 
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Table C-1. Mean Translations for All Specimens. 
 
% 

vGRF 
AT 

Load 

Translation (mm) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 0.946±1.794 0.425±0.835 -1.519±1.759  -0.222±0.754 0.137±0.453 -1.834±1.747  -0.346±0.990 -0.578±1.269 -1.108±4.842 
25 -3.323±0.773 -0.616±2.756 -2.317±3.737  -0.784±3.993 0.534±0.542 0.081±2.275  1.417±3.215 -0.881±1.614 1.733±2.960 
50 -4.426±1.007 0.815±0.502 -1.136±1.271  -0.748±4.633 -0.686±0.797 -0.487±2.682  1.179±4.445 -1.037±2.827 4.124±6.269 
75 -3.132±1.110 0.090±0.650 -0.519±0.695  -1.640±3.771 0.441±0.614 0.093±4.294  0.669±2.607 -0.684±2.267 2.791±2.298 
100 -4.162±0.789 -1.392±1.447 -1.154±4.761   1.646±2.975 0.049±0.414 -0.258±1.592   0.592±2.087 -0.322±2.157 3.697±4.970 

 Plantarflexion 
0 0.166±0.652 0.374±1.279 1.948±0.487   0.016±0.799 0.557±0.453 2.121±1.753   -1.797±3.811 -1.224±0.711 -2.402±3.230 

25 1.0995±1.107 0.134±0.535 0.773±2.436  1.288±2.417 -0.202±1.274 0.918±6.169  0.198±1.205 -0.444±2.052 -2.406±5.046 
50 2.585±0.298 0.607±0.629 1.290±2.320  1.157±4.066 -0.203±0.933 2.536±2.848  -1.082±1.102 -0.960±1.189 -1.607±3.783 
75 2.838±1.870 1.333±0.968 0.560±4.472  1.302±1.200 -0.534±1.221 -0.842±1.872  1.774±1.918 -0.484±0.613 -1.055±3.445 
100 2.052±1.986 0.782±0.880 0.849±3.353   2.600±1.437 -0.810±0.498 0.455±1.639   0.281±1.240 -1.097±0.795 -3.196±2.635 

            
% 

vGRF 
AT 

Load 

Rotation (degrees) ± Standard Deviation 
Dorsiflexion 

Calcaneus  Talus  Navicular 
X Y Z  X Y Z  X Y Z 

0 0.803±0.635 -0.443±1.110 0.003±0.680  0.196±1.255 -0.501±1.034 -0.170±0.811  0.132±0.435 -0.952±2.234 0.266±0.272 
25 2.274±2.488 -0.642±2.131 0.288±0.339  -1.204±0.452 -1.678±2.542 0.431±0.309  -1.120±0.744 -0.568±0.424 0.581±0.584 
50 -0.161±1.315 0.144±1.596 -0.091±0.801  -1.413±1.881 -0.767±3.021 0.859±0.492  -1.236±2.497 -0.351±0.441 0.735±0.656 
75 -0.652±1.379 -0.538±1.642 -0.008±0.667  -0.527±1.691 0.219±2.016 -0.020±0.364  -0.551±1.786 -0.507±0.448 0.321±0.578 
100 1.195±1.174 -0.101±0.290 0.359±0.087   -0.002±1.487 0.052±0.801 0.305±0.464   -1.377±0.810 -0.450±1.421 0.312±0.560 

 Plantarflexion 
0 -0.223±1.298 0.510±1.202 0.154±0.764   0.208±0.437 1.642±3.257 -0.065±1.018   1.094±0.639 0.244±0.465 -0.380±0.651 

25 -0.243±1.125 0.600±1.232 0.531±0.727  1.297±3.569 0.674±1.155 -0.313±0.339  0.778±0.904 1.725±1.332 -0.586±0.727 
50 -1.319±1.599 0.572±1.953 0.257±0.544  -0.199±0.448 2.291±0.490 -0.674±0.086  0.384±1.873 0.287±0.636 -0.273±0.462 
75 -0.482±1.421 -1.135±0.903 0.540±0.124  0.812±1.873 1.009±0.902 -0.177±0.627  0.908±0.371 0.741±1.299 -0.583±0.405 
100 -1.589±0.936 -0.677±1.373 0.814±0.230   -0.883±1.722 -0.201±1.330 0.077±0.286   0.843±0.810 0.161±1.519 -0.446±0.441 
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Figure C-1. Bone Translations (Means and Standard Deviations) for All 
Specimens. 
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Figure C-2. Bone Rotations (Means and Standard Deviations) for All Specimens.  
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APPENDIX D. RAW DATA 
 
 

Table D-1. Forces (N) during Motion. 
 

Dorsiflexion 
Specimen 1  Specimen 2 

Cycle 1 Cycle 2 Cycle 3  Cycle 1 Cycle 2 Cycle 3 
-524.536 -523.836 -515.265  -524.361 -520.775 -521.956 
-526.107 -526.064 -513.470  -520.773 -515.481 -525.758 
-513.595 -514.295 -525.621  -515.957 -525.927 -526.189 
-526.968 -513.15 -526.137  -525.656 -526.356 -515.249 
-513.007 -514.100 -514.669  -521.359 -515.587 -515.937 
-526.549 -513.605 -514.174  -521.389 -526.024 -516.01 
-513.501 -514.463 -525.045  -523.515 -526.051 -516.562 
-511.557 -513.568 -514.093  -517.023 -518.597 -526.512 
-513.108 -513.939 -513.283  -517.394 -515.995 -516.038 
-511.640 -514.657 -513.651  -527.338 -515.707 -515.925 
-525.736 -513.579 -514.104  -517.602 -515.897 -515.897 
-520.107 -514.422 -514.379  -516.784 -515.734 -515.516 
-521.866 -525.364 -514.039  -517.187 -515.963 -515.788 
-511.946 -513.564 -514.964  -524.628 -515.532 -515.445 
-513.568 -513.918 -514.049  -517.154 -515.667 -525.681 
-513.482 -514.269 -524.545  -518.336 -515.144 -515.581 
-512.912 -514.748 -514.398  -517.503 -526.03 -516.323 
-513.694 -515.181 -514.044  -517.892 -516.318 -515.662 
-525.800 -514.037 -514.255  -517.885 -516.748 -526.805 
-514.158 -513.633 -514.376  -523.69 -516.038 -516.256 
-514.144 -517.337 -517.555  -518.299 -525.951 -516.987 

Plantarflexion 
Specimen 1  Specimen 2 

Cycle 1 Cycle 2 Cycle 3  Cycle 1 Cycle 2 Cycle 3 
-513.520 -513.340 -506.000  -518.107 -518.982 -519.070 
-515.350 -514.300 -503.460  -520.510 -520.117 -520.554 
-515.170 -510.450 -503.230  -519.717 -519.543 -520.811 
-504.800 -504.890 -515.690  -520.89 -520.758 -520.977 
-503.870 -504.570 -516.030  -520.135 -521.272 -520.835 
-514.700 -515.490 -502.240  -520.777 -521.258 -510.807 
-515.690 -515.430 -517.520  -520.804 -511.096 -510.702 
-515.540 -503.860 -516.670  -510.639 -520.521 -521.177 
-514.510 -514.460 -502.960  -520.63 -521.198 -520.673 
-504.560 -504.290 -515.310  -510.197 -520.779 -510.372 
-514.500 -515.460 -502.600  -520.182 -510.562 -510.125 
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Table D-1. (Continued). 
 

Plantarflexion 
Specimen 1  Specimen 2 

Cycle 1 Cycle 2 Cycle 3  Cycle 1 Cycle 2 Cycle 3 
-506.900 -506.110 -503.580  -510.268 -510.574 -521.113 
-514.650 -514.960 -503.590  -520.336 -521.166 -521.341 
-504.120 -503.860 -511.510  -520.036 -521.217 -509.979 
-504.120 -515.230 -502.240  -521.002 -509.983 -517.067 
-504.390 -503.600 -502.460  -510.465 -509.809 -510.290 
-503.600 -514.490 -515.710  -513.699 -520.389 -513.174 
-509.060 -515.620 -503.330  -509.802 -520.035 -513.782 
-507.700 -503.800 -503.060  -512.419 -509.795 -512.287 
-505.940 -514.950 -502.090  -509.872 -514.070 -512.233 
-504.040 -503.300 -503.170  -510.471 -509.859 -510.253 
-503.680 -514.440 -502.190  -510.062 -510.674 -509.974 
-503.400 -503.050 -501.250  -521.019 -508.906 -509.518 
-503.900 -514.220 -501.670  -520.473 -509.628 -509.715 
-504.140 -503.350 -500.860  -509.079 -509.385 -508.685 
-503.500 -502.620 -501.790  -519.809 -510.057 -509.095 
-502.860 -514.180 -502.420  -509.109 -509.677 -508.978 
-503.440 -502.910 -502.950  -509.163 -509.601 -519.964 
-502.880 -503.790 -502.880  -510.396 -510.440 -509.303 
-503.060 -503.270 -500.430  -509.089 -509.833 -508.608 
-502.840 -503.540 -502.840  -509.179 -513.596 -509.179 
-503.670 -502.580 -502.620  -508.742 -509.135 -508.042 
-503.270 -503.620 -514.900  -518.534 -509.088 -519.452 
-503.090 -503.570 -501.430  -508.689 -513.324 -508.733 
-504.350 -502.560 -501.860  -514.802 -513.315 -508.855 
-502.590 -503.730 -500.930  -508.887 -509.937 -517.021 
-502.270 -502.970 -501.830  -509.354 -509.354 -509.529 
-502.340 -502.300 -501.290  -509.556 -510.255 -509.381 
-509.580 -502.450 -500.920  -509.798 -510.542 -510.498 
-503.170 -502.950 -501.730  -509.907 -510.738 -509.251 
-502.540 -502.230 -500.920  -509.138 -509.750 -509.444 
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Table D-2. Validation Study IAR Values (mm) (Chapter 3). 
 

Dorsiflexion 
Specimen 1  Specimen 2 

Cycle 1  Cycle 2  Cycle 3  Cycle 1  Cycle 2  Cycle 3 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
-2.82 -9.20  -2.72 -9.78  -2.80 -9.35  -3.32 -8.07  -3.63 -8.95  -4.00 -7.99 
-2.82 -9.04  -2.72 -9.60  -2.80 -9.20  -3.39 -7.76  -3.68 -8.55  -4.01 -7.72 
-2.83 -8.88  -2.74 -9.43  -2.80 -9.04  -3.47 -7.45  -3.73 -8.12  -4.03 -7.44 
-2.83 -8.75  -2.75 -9.28  -2.80 -8.92  -3.56 -7.16  -3.78 -7.73  -4.05 -7.19 
-2.84 -8.65  -2.76 -9.16  -2.80 -8.82  -3.64 -6.90  -3.84 -7.36  -4.07 -6.97 
-2.85 -8.57  -2.78 -9.07  -2.80 -8.75  -3.73 -6.66  -3.90 -7.02  -4.10 -6.77 
-2.87 -8.52  -2.80 -9.00  -2.81 -8.70  -3.82 -6.46  -3.97 -6.71  -4.12 -6.60 
-2.88 -8.49  -2.82 -8.96  -2.81 -8.68  -3.92 -6.28  -4.04 -6.42  -4.16 -6.46 
-2.90 -8.50  -2.85 -8.94  -2.82 -8.69  -4.02 -6.12  -4.12 -6.16  -4.19 -6.35 
-2.91 -8.52  -2.87 -8.95  -2.83 -8.72  -4.12 -6.00  -4.20 -5.93  -4.23 -6.26 
-2.93 -8.58  -2.90 -8.99  -2.85 -8.78  -4.23 -5.90  -4.28 -5.72  -4.27 -6.19 
-2.95 -8.66  -2.93 -9.05  -2.86 -8.87  -4.34 -5.83  -4.37 -5.54  -4.31 -6.16 
-2.98 -8.76  -2.96 -9.14  -2.87 -8.98  -4.45 -5.79  -4.46 -5.39  -4.36 -6.15 
-3.00 -8.90  -2.99 -9.25  -2.89 -9.12  -4.56 -5.77  -4.56 -5.27  -4.41 -6.17 
-3.03 -9.05  -3.03 -9.40  -2.91 -9.28  -4.68 -5.79  -4.66 -5.17  -4.46 -6.21 
-3.06 -9.24  -3.06 -9.56  -2.93 -9.47  -4.80 -5.83  -4.76 -5.10  -4.51 -6.28 
-3.09 -9.45  -3.10 -9.76  -2.95 -9.68  -4.93 -5.89  -4.87 -5.06  -4.57 -6.38 
-3.12 -9.69  -3.14 -9.98  -2.98 -9.93  -5.06 -5.99  -4.99 -5.04  -4.63 -6.51 
-3.15 -9.95  -3.18 -10.23  -3.00 -10.20  -5.19 -6.11  -5.10 -5.06  -4.70 -6.66 
-3.19 -10.24  -3.23 -10.50  -3.03 -10.49  -5.32 -6.26  -5.23 -5.09  -4.76 -6.84 
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Table D-2. (Continued). 
 

Plantarflexion 
Specimen 1  Specimen 2 

Cycle 1  Cycle 2  Cycle 3  Cycle 1  Cycle 2  Cycle 3 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
-0.98 -3.90  -1.08 -5.24  -0.99 -3.44  -2.30 0.95  -2.40 3.51  -2.41 1.49 
-0.90 -3.83  -1.02 -5.12  -0.91 -3.38  -2.22 1.04  -2.29 3.51  -2.31 1.56 
-0.80 -3.77  -0.95 -5.02  -0.82 -3.34  -2.13 1.13  -2.16 3.49  -2.21 1.62 
-0.71 -3.74  -0.88 -4.94  -0.72 -3.33  -2.03 1.18  -2.04 3.44  -2.10 1.64 
-0.62 -3.73  -0.81 -4.89  -0.63 -3.34  -1.94 1.21  -1.91 3.36  -1.99 1.64 
-0.53 -3.76  -0.74 -4.87  -0.53 -3.38  -1.84 1.22  -1.78 3.25  -1.87 1.62 
-0.43 -3.81  -0.67 -4.88  -0.43 -3.45  -1.74 1.19  -1.66 3.12  -1.76 1.57 
-0.34 -3.88  -0.60 -4.91  -0.33 -3.54  -1.65 1.14  -1.53 2.96  -1.65 1.49 
-0.24 -3.98  -0.52 -4.96  -0.23 -3.66  -1.55 1.07  -1.40 2.78  -1.53 1.38 
-0.15 -4.11  -0.44 -5.05  -0.13 -3.80  -1.44 0.96  -1.28 2.57  -1.42 1.25 
-0.05 -4.27  -0.36 -5.15  -0.03 -3.98  -1.34 0.83  -1.15 2.33  -1.30 1.09 
0.05 -4.45  -0.28 -5.29  0.07 -4.18  -1.24 0.67  -1.02 2.06  -1.19 0.90 
0.15 -4.66  -0.20 -5.45  0.17 -4.40  -1.13 0.49  -0.89 1.77  -1.07 0.69 
0.25 -4.89  -0.12 -5.64  0.28 -4.66  -1.03 0.28  -0.77 1.45  -0.95 0.45 
0.35 -5.15  -0.03 -5.86  0.38 -4.93  -0.92 0.04  -0.64 1.10  -0.83 0.18 
0.46 -5.44  0.05 -6.10  0.48 -5.24  -0.81 -0.22  -0.51 0.73  -0.71 -0.12 
0.56 -5.76  0.14 -6.37  0.59 -5.57  -0.70 -0.52  -0.38 0.33  -0.59 -0.44 
0.67 -6.10  0.23 -6.66  0.70 -5.93  -0.59 -0.83  -0.25 -0.10  -0.46 -0.79 
0.77 -6.46  0.32 -6.98  0.81 -6.32  -0.48 -1.18  -0.12 -0.56  -0.34 -1.16 
0.88 -6.86  0.41 -7.33  0.91 -6.73  -0.37 -1.55  0.01 -1.04  -0.21 -1.56 
0.99 -7.28  0.50 -7.71  1.02 -7.17  -0.25 -1.95  0.14 -1.55  -0.09 -1.99 
1.10 -7.73  0.60 -8.11  1.13 -7.63  -0.14 -2.38  0.27 -2.08  0.04 -2.45 
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Table D-2. (Continued). 
 

Plantarflexion 
Specimen 1  Specimen 2 

Cycle 1  Cycle 2  Cycle 3  Cycle 1  Cycle 2  Cycle 3 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.21 -8.20  0.69 -8.54  1.25 -8.13  -0.02 -2.83  0.40 -2.64  0.17 -2.93 
1.32 -8.70  0.79 -8.99  1.36 -8.64  0.10 -3.31  0.53 -3.23  0.29 -3.44 
1.43 -9.23  0.89 -9.47  1.47 -9.19  0.22 -3.81  0.66 -3.85  0.42 -3.98 
1.54 -9.78  0.99 -9.98  1.58 -9.76  0.34 -4.35  0.79 -4.49  0.55 -4.54 
1.66 -10.37  1.09 -10.51  1.70 -10.36  0.46 -4.91  0.92 -5.16  0.68 -5.13 
1.77 -10.97  1.19 -11.07  1.81 -10.98  0.58 -5.49  1.05 -5.86  0.82 -5.75 
1.89 -11.61  1.29 -11.66  1.93 -11.64  0.70 -6.10  1.18 -6.58  0.95 -6.39 
2.01 -12.27  1.40 -12.27  2.05 -12.31  0.83 -6.74  1.32 -7.33  1.08 -7.06 
2.12 -12.95  1.51 -12.91  2.16 -13.02  0.96 -7.41  1.45 -8.11  1.22 -7.76 
2.24 -13.67  1.61 -13.58  2.28 -13.75  1.08 -8.11  1.58 -8.91  1.36 -8.49 
2.36 -14.41  1.72 -14.27  2.40 -14.51  1.21 -8.83  1.71 -9.75  1.49 -9.24 
2.48 -15.18  1.83 -14.99  2.52 -15.29  1.34 -9.57  1.85 -10.60  1.63 -10.02 
2.61 -15.97  1.95 -15.73  2.64 -16.10  1.47 -10.35  1.98 -11.49  1.77 -10.82 
2.73 -16.79  2.06 -16.51  2.77 -16.94  1.60 -11.15  2.11 -12.40  1.91 -11.66 
2.85 -17.64  2.18 -17.30  2.89 -17.81  1.74 -11.97  2.25 -13.34  2.05 -12.52 
2.98 -18.51  2.29 -18.13  3.01 -18.70  1.87 -12.83  2.38 -14.30  2.19 -13.40 
3.11 -19.41  2.41 -18.98  3.14 -19.61  2.01 -13.71  2.51 -15.30  2.34 -14.32 
3.23 -20.34  2.53 -19.86  3.26 -20.56  2.15 -14.62  2.65 -16.32  2.48 -15.26 
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Table D-3. Kinematic Study IAR Values (mm) for Specimen 1. 
 

Dorsiflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.25 -19.92  -2.72 -6.61  -2.80 -5.08  -3.32 -6.55  -3.24 -6.47 
1.33 -19.70  -2.72 -6.43  -2.80 -4.93  -3.41 -6.27  -3.33 -6.29 
1.42 -19.48  -2.74 -6.26  -2.80 -4.77  -3.52 -5.98  -3.43 -6.13 
1.50 -19.29  -2.75 -6.11  -2.80 -4.65  -3.62 -5.72  -3.53 -5.99 
1.59 -19.12  -2.76 -5.99  -2.80 -4.55  -3.73 -5.48  -3.63 -5.87 
1.67 -18.98  -2.78 -5.90  -2.80 -4.48  -3.84 -5.28  -3.74 -5.79 
1.75 -18.87  -2.80 -5.83  -2.81 -4.43  -3.96 -5.10  -3.84 -5.73 
1.82 -18.78  -2.82 -5.79  -2.81 -4.41  -4.08 -4.95  -3.95 -5.70 
1.90 -18.72  -2.85 -5.77  -2.82 -4.42  -4.20 -4.82  -4.06 -5.70 
1.97 -18.68  -2.87 -5.78  -2.83 -4.45  -4.33 -4.73  -4.17 -5.72 
2.04 -18.67  -2.90 -5.82  -2.85 -4.51  -4.45 -4.66  -4.29 -5.77 
2.11 -18.69  -2.93 -5.88  -2.86 -4.60  -4.58 -4.61  -4.40 -5.85 
2.18 -18.74  -2.96 -5.97  -2.87 -4.71  -4.72 -4.60  -4.52 -5.96 
2.24 -18.81  -2.99 -6.08  -2.89 -4.85  -4.85 -4.61  -4.64 -6.09 
2.30 -18.90  -3.03 -6.23  -2.91 -5.01  -4.99 -4.65  -4.76 -6.25 
2.36 -19.03  -3.06 -6.39  -2.93 -5.20  -5.14 -4.71  -4.89 -6.44 
2.42 -19.18  -3.10 -6.59  -2.95 -5.41  -5.28 -4.81  -5.01 -6.66 
2.48 -19.35  -3.14 -6.81  -2.98 -5.66  -5.43 -4.93  -5.14 -6.90 
2.53 -19.55  -3.18 -7.06  -3.00 -5.93  -5.58 -5.08  -5.27 -7.17 
2.58 -19.78  -3.23 -7.33  -3.03 -6.22  -5.74 -5.25  -5.40 -7.47 

              
Plantarflexion 

Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.19 -25.64  -1.08 -4.07  0.11 -1.17  -0.99 -2.27  0.36 -1.32 
1.13 -25.23  -1.02 -3.95  0.19 -1.21  -0.91 -2.21  0.38 -1.38 
1.08 -24.79  -0.95 -3.85  0.28 -1.27  -0.82 -2.17  0.40 -1.48 
1.02 -24.39  -0.88 -3.77  0.38 -1.36  -0.72 -2.16  0.42 -1.60 
0.97 -24.00  -0.81 -3.72  0.47 -1.47  -0.63 -2.17  0.44 -1.75 
0.92 -23.65  -0.74 -3.70  0.57 -1.61  -0.53 -2.21  0.46 -1.92 
0.88 -23.32  -0.67 -3.71  0.67 -1.78  -0.43 -2.28  0.48 -2.13 
0.85 -23.02  -0.60 -3.74  0.77 -1.97  -0.33 -2.37  0.51 -2.36 
0.81 -22.75  -0.52 -3.79  0.87 -2.19  -0.23 -2.49  0.53 -2.62 
0.79 -22.50  -0.44 -3.88  0.97 -2.43  -0.13 -2.63  0.55 -2.90 
0.76 -22.28  -0.36 -3.98  1.07 -2.71  -0.03 -2.81  0.58 -3.21 
0.74 -22.09  -0.28 -4.12  1.17 -3.01  0.07 -3.01  0.60 -3.55 
0.73 -21.92  -0.20 -4.28  1.27 -3.33  0.17 -3.23  0.63 -3.92 
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Table D-3. (Continued). 
 

Plantarflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.19 -25.64  -1.08 -4.07  0.11 -1.17  -0.99 -2.27  0.36 -1.32 
1.13 -25.23  -1.02 -3.95  0.19 -1.21  -0.91 -2.21  0.38 -1.38 
0.72 -21.78  -0.12 -4.47  1.38 -3.68  0.28 -3.48  0.65 -4.31 
0.72 -21.67  -0.03 -4.69  1.48 -4.06  0.38 -3.76  0.68 -4.73 
0.71 -21.58  0.05 -4.93  1.59 -4.47  0.48 -4.07  0.71 -5.18 
0.72 -21.53  0.14 -5.20  1.69 -4.90  0.59 -4.40  0.74 -5.66 
0.73 -21.50  0.23 -5.49  1.80 -5.36  0.70 -4.76  0.76 -6.16 
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Table D-4. Kinematic Study IAR Values (mm) for Specimen 2. 
 

Dorsiflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.16 -18.28  -2.86 -6.58  -3.00 -5.57  -3.42 -5.99  -4.04 -5.91 
1.21 -18.03  -2.98 -6.18  -3.01 -5.39  -3.45 -5.86  -4.17 -5.64 
1.26 -17.76  -3.12 -5.75  -3.03 -5.22  -3.47 -5.75  -4.30 -5.37 
1.32 -17.52  -3.26 -5.34  -3.05 -5.07  -3.50 -5.66  -4.43 -5.12 
1.37 -17.31  -3.41 -4.97  -3.07 -4.95  -3.53 -5.60  -4.56 -4.90 
1.42 -17.12  -3.56 -4.63  -3.10 -4.86  -3.56 -5.57  -4.70 -4.71 
1.47 -16.96  -3.71 -4.31  -3.12 -4.79  -3.60 -5.57  -4.84 -4.54 
1.51 -16.82  -3.87 -4.03  -3.16 -4.75  -3.63 -5.59  -4.99 -4.40 
1.55 -16.71  -4.04 -3.77  -3.19 -4.73  -3.67 -5.63  -5.14 -4.28 
1.59 -16.63  -4.20 -3.54  -3.23 -4.74  -3.70 -5.71  -5.29 -4.19 
1.63 -16.57  -4.37 -3.34  -3.27 -4.78  -3.74 -5.81  -5.44 -4.13 
1.67 -16.54  -4.55 -3.17  -3.31 -4.84  -3.78 -5.94  -5.60 -4.09 
1.70 -16.53  -4.72 -3.04  -3.36 -4.93  -3.82 -6.09  -5.76 -4.07 
1.73 -16.55  -4.91 -2.92  -3.41 -5.04  -3.87 -6.28  -5.93 -4.08 
1.76 -16.59  -5.09 -2.84  -3.46 -5.19  -3.91 -6.48  -6.09 -4.11 
1.78 -16.66  -5.28 -2.79  -3.51 -5.35  -3.96 -6.72  -6.26 -4.17 
1.80 -16.76  -5.47 -2.77  -3.57 -5.55  -4.01 -6.98  -6.44 -4.26 
1.82 -16.88  -5.67 -2.78  -3.63 -5.77  -4.06 -7.27  -6.62 -4.37 
1.84 -17.03  -5.87 -2.81  -3.70 -6.02  -4.11 -7.58  -6.80 -4.51 
1.86 -17.20  -6.08 -2.88  -3.76 -6.29  -4.16 -7.93  -6.96 -4.67 

              
Plantarflexion 

Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
2.55 -22.83  0.62 -2.91  -0.77 -2.51  0.34 -5.23  -0.83 -3.82 
2.51 -22.39  0.65 -2.84  -0.71 -2.44  0.44 -5.17  -0.76 -3.83 
2.46 -21.93  0.67 -2.80  -0.64 -2.38  0.55 -5.13  -0.68 -3.86 
2.43 -21.48  0.70 -2.78  -0.57 -2.36  0.67 -5.12  -0.60 -3.92 
2.39 -21.07  0.74 -2.79  -0.50 -2.36  0.80 -5.13  -0.51 -4.01 
2.37 -20.68  0.78 -2.83  -0.43 -2.38  0.94 -5.17  -0.42 -4.12 
2.35 -20.32  0.82 -2.89  -0.36 -2.43  1.09 -5.24  -0.33 -4.26 
2.33 -19.98  0.87 -2.98  -0.29 -2.51  1.25 -5.33  -0.24 -4.42 
2.32 -19.67  0.92 -3.10  -0.21 -2.62  1.41 -5.45  -0.14 -4.61 
2.31 -19.39  0.98 -3.24  -0.13 -2.75  1.59 -5.59  -0.04 -4.83 
2.30 -19.13  1.03 -3.40  -0.05 -2.91  1.77 -5.77  0.07 -5.08 
2.31 -18.90  1.10 -3.60  0.03 -3.10  1.96 -5.97  0.17 -5.35 
2.31 -18.70  1.16 -3.82  0.11 -3.31  2.16 -6.19  0.28 -5.64 
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Table D-4. (Continued). 
 

Plantarflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
2.32 -18.52  1.23 -4.06  0.19 -3.55  2.37 -6.45  0.39 -5.97 
2.34 -18.36  1.31 -4.34  0.28 -3.82  2.59 -6.72  0.51 -6.32 
2.36 -18.24  1.38 -4.63  0.36 -4.12  2.82 -7.03  0.63 -6.69 
2.39 -18.14  1.47 -4.96  0.45 -4.44  3.05 -7.36  0.75 -7.10 
2.42 -18.07  1.55 -5.31  0.54 -4.79  3.30 -7.72  0.87 -7.53 
2.46 -18.02  1.64 -5.69  0.63 -5.16  3.55 -8.11  1.00 -7.98 
2.50 -18.00  1.73 -6.05  0.72 -5.56  3.81 -8.52  1.13 -8.42 
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Table D-5. Kinematic Study IAR Values (mm) for Specimen 3. 
 

Dorsiflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.73 -13.24  -2.73 -9.75  -4.99 -2.87  -6.13 -4.59  -6.61 0.79 
1.80 -13.50  -2.84 -8.97  -4.99 -2.69  -6.08 -4.38  -6.63 0.69 
1.89 -13.81  -2.97 -8.11  -4.99 -2.51  -6.04 -4.19  -6.66 0.55 
1.98 -14.16  -3.11 -7.27  -4.99 -2.36  -5.99 -4.03  -6.69 0.39 
2.07 -14.54  -3.26 -6.47  -4.99 -2.24  -5.94 -3.90  -6.71 0.19 
2.16 -14.95  -3.41 -5.69  -5.00 -2.15  -5.90 -3.80  -6.74 -0.04 
2.26 -15.38  -3.57 -4.95  -5.01 -2.09  -5.86 -3.73  -6.77 -0.29 
2.36 -15.85  -3.74 -4.24  -5.02 -2.06  -5.82 -3.68  -6.79 -0.58 
2.46 -16.35  -3.92 -3.57  -5.03 -2.06  -5.79 -3.67  -6.82 -0.90 
2.57 -16.88  -4.11 -2.92  -5.04 -2.09  -5.76 -3.69  -6.84 -1.24 
2.68 -17.44  -4.30 -2.30  -5.06 -2.15  -5.73 -3.74  -6.87 -1.62 
2.79 -18.03  -4.51 -1.72  -5.08 -2.24  -5.70 -3.81  -6.89 -2.03 
2.90 -18.65  -4.72 -1.17  -5.10 -2.37  -5.67 -3.92  -6.91 -2.47 
3.02 -19.30  -4.94 -0.65  -5.12 -2.52  -5.65 -4.06  -6.93 -2.93 
3.14 -19.97  -5.16 -0.16  -5.15 -2.70  -5.63 -4.22  -6.96 -3.43 
3.26 -20.68  -5.40 0.29  -5.17 -2.91  -5.61 -4.42  -6.98 -3.96 
3.38 -21.42  -5.64 0.72  -5.20 -3.15  -5.59 -4.65  -7.00 -4.52 
3.51 -22.19  -5.89 1.11  -5.23 -3.42  -5.57 -4.90  -7.02 -5.10 
3.64 -22.99  -6.15 1.47  -5.27 -3.72  -5.56 -5.19  -7.04 -5.72 
3.77 -23.82  -6.42 1.80  -5.30 -4.06  -5.55 -5.50  -7.06 -6.37 

              
Plantarflexion 

Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
4.96 -9.14  -0.19 1.74  -1.19 -3.82  -2.72 -1.00  -3.66 -2.71 
4.87 -9.80  -0.08 1.54  -1.15 -3.64  -2.65 -1.09  -3.64 -2.71 
4.76 -10.57  0.03 1.30  -1.10 -3.47  -2.57 -1.21  -3.62 -2.74 
4.65 -11.36  0.15 1.02  -1.05 -3.32  -2.50 -1.37  -3.60 -2.81 
4.53 -12.19  0.26 0.71  -0.99 -3.21  -2.42 -1.56  -3.58 -2.90 
4.41 -13.04  0.37 0.37  -0.94 -3.13  -2.35 -1.78  -3.56 -3.03 
4.28 -13.93  0.48 0.00  -0.88 -3.08  -2.28 -2.03  -3.54 -3.18 
4.15 -14.84  0.59 -0.40  -0.82 -3.06  -2.20 -2.31  -3.51 -3.37 
4.01 -15.79  0.70 -0.83  -0.76 -3.07  -2.13 -2.62  -3.49 -3.58 
3.87 -16.76  0.80 -1.29  -0.69 -3.11  -2.06 -2.96  -3.47 -3.83 
3.72 -17.76  0.91 -1.78  -0.63 -3.18  -1.99 -3.33  -3.45 -4.10 
3.56 -18.80  1.01 -2.30  -0.56 -3.28  -1.92 -3.74  -3.42 -4.41 
3.40 -19.86  1.11 -2.86  -0.49 -3.41  -1.85 -4.17  -3.40 -4.75 
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Table D-5. (Continued). 
 

Plantarflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
3.24 -20.95  1.21 -3.44  -0.42 -3.57  -1.78 -4.63  -3.38 -5.11 
3.06 -22.08  1.31 -4.06  -0.34 -3.77  -1.71 -5.13  -3.35 -5.51 
2.89 -23.23  1.41 -4.70  -0.26 -3.99  -1.64 -5.65  -3.33 -5.94 
2.70 -24.41  1.50 -5.38  -0.18 -4.25  -1.58 -6.21  -3.30 -6.39 
2.51 -25.62  1.60 -6.09  -0.10 -4.53  -1.51 -6.80  -3.28 -6.88 
2.32 -26.86  1.69 -6.83  -0.02 -4.85  -1.44 -7.41  -3.26 -7.40 
2.12 -28.14  1.78 -7.59  0.07 -5.19  -1.38 -8.06  -3.23 -7.95 
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Table D-6. Kinematic Study IAR Values (mm) for Specimen 4. 
 

Dorsiflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
-0.30 -19.68  0.52 -5.38  -1.01 -0.12  -0.91 -8.58  -2.38 -4.71 
-0.26 -19.45  0.40 -4.98  -1.09 -0.10  -1.06 -7.95  -2.43 -4.32 
-0.22 -19.22  0.26 -4.55  -1.18 -0.09  -1.22 -7.28  -2.49 -3.92 
-0.18 -19.01  0.12 -4.14  -1.27 -0.11  -1.40 -6.64  -2.56 -3.55 
-0.13 -18.84  -0.03 -3.77  -1.35 -0.16  -1.57 -6.03  -2.62 -3.21 
-0.10 -18.69  -0.18 -3.43  -1.44 -0.24  -1.76 -5.45  -2.69 -2.89 
-0.06 -18.57  -0.33 -3.11  -1.53 -0.35  -1.95 -4.90  -2.77 -2.61 
-0.03 -18.47  -0.49 -2.83  -1.62 -0.48  -2.15 -4.37  -2.85 -2.35 
0.00 -18.41  -0.66 -2.57  -1.71 -0.65  -2.35 -3.88  -2.93 -2.12 
0.03 -18.38  -0.82 -2.34  -1.80 -0.84  -2.56 -3.42  -3.01 -1.92 
0.06 -18.37  -0.99 -2.14  -1.90 -1.06  -2.77 -2.99  -3.10 -1.74 
0.09 -18.40  -1.17 -1.97  -1.99 -1.31  -2.99 -2.58  -3.20 -1.60 
0.11 -18.45  -1.34 -1.84  -2.08 -1.58  -3.22 -2.21  -3.30 -1.48 
0.13 -18.53  -1.53 -1.72  -2.17 -1.89  -3.45 -1.86  -3.40 -1.40 
0.15 -18.64  -1.71 -1.64  -2.26 -2.22  -3.69 -1.55  -3.50 -1.34 
0.16 -18.78  -1.90 -1.59  -2.35 -2.59  -3.94 -1.26  -3.61 -1.31 
0.18 -18.94  -2.09 -1.57  -2.44 -2.98  -4.19 -1.01  -3.72 -1.30 
0.19 -19.14  -2.29 -1.58  -2.54 -3.40  -4.45 -0.78  -3.84 -1.33 
0.20 -19.36  -2.49 -1.61  -2.63 -3.84  -4.71 -0.59  -3.96 -1.39 
0.21 -19.62  -2.70 -1.68  -2.72 -4.32  -4.98 -0.42  -4.08 -1.47 

              
Plantarflexion 

Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.83 -19.52  2.95 3.09  1.42 -3.19  1.82 -0.32  -0.45 -3.63 
1.80 -19.37  3.09 2.80  1.53 -3.11  1.91 -0.24  -0.38 -3.38 
1.77 -19.23  3.25 2.45  1.65 -3.06  2.02 -0.19  -0.30 -3.12 
1.74 -19.13  3.40 2.08  1.77 -3.03  2.13 -0.16  -0.22 -2.90 
1.71 -19.05  3.55 1.67  1.89 -3.03  2.24 -0.16  -0.13 -2.70 
1.69 -19.00  3.70 1.24  2.02 -3.06  2.35 -0.18  -0.04 -2.53 
1.67 -18.97  3.85 0.78  2.15 -3.12  2.46 -0.24  0.05 -2.39 
1.65 -18.98  3.99 0.29  2.28 -3.21  2.57 -0.32  0.14 -2.28 
1.63 -19.02  4.13 -0.23  2.41 -3.33  2.69 -0.44  0.24 -2.19 
1.61 -19.08  4.27 -0.78  2.54 -3.48  2.80 -0.58  0.34 -2.14 
1.60 -19.18  4.41 -1.35  2.67 -3.65  2.92 -0.75  0.45 -2.11 
1.58 -19.30  4.55 -1.96  2.80 -3.85  3.04 -0.95  0.55 -2.11 
1.57 -19.45  4.68 -2.59  2.94 -4.09  3.16 -1.18  0.66 -2.14 
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Table D-6. (Continued). 
 

Plantarflexion 
Passive (0%)  25%  50%  75%  100% 
XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR  XIAR ZIAR 
1.57 -19.63  4.81 -3.26  3.08 -4.35  3.29 -1.43  0.77 -2.20 
1.56 -19.84  4.94 -3.95  3.21 -4.64  3.41 -1.72  0.89 -2.29 
1.56 -20.08  5.07 -4.67  3.35 -4.96  3.53 -2.03  1.01 -2.40 
1.56 -20.34  5.20 -5.42  3.50 -5.31  3.66 -2.37  1.13 -2.55 
1.56 -20.64  5.32 -6.20  3.64 -5.69  3.79 -2.74  1.25 -2.72 
1.56 -20.96  5.45 -7.00  3.78 -6.09  3.92 -3.14  1.38 -2.92 
1.57 -21.31  5.57 -7.84  3.93 -6.53  4.05 -3.57  1.51 -3.15 
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