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ABSTRACT 
 
 
The current studies examined the role of medial prefrontal cortical (mPFC) group 

II metabotropic glutamate receptors (mGluR2/3) in the development of cocaine 
sensitization. Initial studies demonstrated that intra-mPFC injection of the mGluR2/3 
receptor agonist, APDC, dose-dependently reduced acute behavioral response to 
cocaine (0.015-15 nmol/side with significant effects starting at 1.5nmol/side). The 
effects of APDC were prevented by intra-mPFC co-injections of an mGluR2/3 
antagonist, LY341495 (1.5 nmol/side). Repeated intra-mPFC APDC (1.5 nmol/side) 
injections also prevented the initiation of behavioral and neurochemical sensitization, 

which is defined as enhanced nucleus accumbens (NAc) dopamine response to 
cocaine. Once sensitization was induced, however, intra-mPFC administration of 
APDC did not block cocaine-induced behavioral and neurochemical responses in 
sensitized animals after 7 days and 30 days withdrawal. In contrast, intra-mPFC 
injections of APDC were found to block the expression of behavioral and 
neurochemical sensitization in sensitized animals after 1 day withdrawal. Additional 
microdialysis studies demonstrated that intra-mPFC infusions of LY341495 increased 
glutamate levels in the mesocorticolimbic brain regions of control animals, while this 
response was enhanced in sensitized animals following short term withdrawal from 
repeated cocaine exposure. The mesocorticolimbic brain regions examined in these 
studies include the mPFC, NAc and VTA, which are well known brain regions 
involved in cocaine sensitization. Nonetheless, this effect was no longer apparent in 
animals after prolonged withdrawal (7 days and 30 days). Furthermore, additional 
results demonstrated that repeated cocaine exposure enhanced the vesicular (K+ 
evoked) and non-vesicular (cystine evoked) glutamate release in the mPFC. It was 
shown that LY379268, an mGluR2/3 receptor agonist, inhibited the K+ induced 
glutamate release and cystine induced glutamate release in the mPFC of animals 
following 1 day of withdrawal from repeated cocaine injections. In contrast to these 
data, LY 379268 did not inhibit the release of glutamate from one of these sources in 
the mPFC of animals following 7 day of withdrawal. Collectively, these data 
suggested that the mPFC mGluR2/3 receptor can reduce the motor response to cocaine. 
The development of cocaine sensitization may be associated with an initial increased 
responsiveness of the mPFC mGluR2/3 receptor, coupled with enhanced glutamate 
transmission in the mPFC. Following prolonged withdrawal, loss of inhibitory control 
of the glutamate release within mPFC by the mGluR2/3 receptor thereafter may result 
in the enhanced excitatory drive, which in turn generates increased excitatory output 
from mPFC to subcortical regions including NAc and VTA.  
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Chapter 1. Introduction 
 
 
Definition of Drug Addiction 

 
Drug abuse has existed to some degree throughout human history that has been 

recorded (Merlin 2003; Aldrich and Barker 1976). This phenomenon has been 
exacerbated significantly during the 20th century due to various reasons, such as 
agricultural improvement, biochemical advancements, increases in clinical drug usage 
and so on, all of which accelerated the spread of the drug addiction problem. Later on 
with the introduction of synthetic compounds, such as methamphetamine, drug 
addiction explosively became a social and medical problem. 

 
The definitions of drug addiction were officially described as early as 1957 by the  

World Health Organization (WHO) Expert Committee on Addiction-Producing Drugs 
that defined addiction and habituation as components of drug abuse: Drug addiction is 
a state of periodic or chronic intoxication produced by the repeated consumption of a 
natural or synthetic drug. Its characteristics include: an overpowering desire or need 
(compulsion) to continue taking the drug and to obtain it by any means; a tendency to 
increase the dose; a psychic (psychological) and generally a physical dependence on 
the effects of the drug; and the detrimental effects on the individual and on society. 
Drug habituation is a condition resulting from the repeated consumption of a drug. Its 
characteristics include a desire (but not a compulsion) to continue taking the drug for 
the sense of improved well-being which it engenders; little or no tendency to increase 
the dose; some degree of psychic dependence on the effect of the drug, but absence of 
physical dependence and hence of an abstinence syndrome (withdrawal); and the 
detrimental effects, if any, primarily on the individual (WHO 1957). 

 
However, confusion in the use of the terms addiction and habituation still existed 

until a new WHO committee suggested using the term "drug dependence" to generally 
describe drug abuse. Therefore, drug dependence including psychic and physical 
dependence were initially clarified although the committee did not clearly define 
dependence. It said that drug abuse was "a state of psychic dependence or physical 
dependence, or both, on a drug, arising in a person following administration of that 
drug on a periodic or continued basis." Psychic dependence was defined as a state in 
which "there is a feeling of satisfaction and psychic drive that requires periodic or 
continuous administration of the drug to produce pleasure or to avoid discomfort" 
(WHO 1964). Based on these definitions, drug addiction has two components: 
physical dependency and psychological dependency. Physical dependency occurs 
when a drug has been used habitually and the body has become accustomed to its 
effects. The person must then continue to use the drug in order to feel normal, or its 
absence will trigger the symptoms of withdrawal. Psychological dependency occurs 
when a drug has been used habitually and the mind has become emotionally reliant on 
its effects, either to elicit pleasure or relieve pain, and the person does not feel capable 
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of functioning without it. Its absence produces intense cravings, which are often 
brought on or magnified by stress (WHO 1964). 

 
These old definitions of addiction, dependence and abuse have deep impacts on 

recent viewpoints of drug addiction. In 2001, the American Academy of Pain 
Medicine, the American Pain Society, and the American Society of Addiction 
Medicine jointly issued "Definitions Related to the Use of Opioids for the Treatment 
of Pain," which defined the following terms: physical dependence, tolerance, 
addiction and pseudo-addiction. More specifically, addiction was defined as a primary, 
chronic, neurobiological disease, with genetic, psychosocial, and environmental 
factors influencing its development and manifestations. It is characterized by 
behaviors that include one or more of the following: impaired control over drug use, 
compulsive use, continued use despite harm, and craving. Generally, drug addiction is 
currently defined as a condition characterized by compulsive drug intake, craving and 
seeking (Goldstein 1994). 
 
 
Theories of Drug Addiction 

 
As described above, the key questions in addiction, therefore, are why some 

individuals undergo a transition from casual drug use to compulsive drug taking, and 
why drug addicts find it so difficult to quit. To answer these questions, researchers 
have generated theories to explain the mechanisms that underlie the development of 
drug addiction. The traditional theory explained that drugs are taken first because of 
pleasure, however, repeated drug use generates neuroadaptations leading to tolerance 
and dependence. The cessation of drug use is prevented by the unpleasant withdrawal 
symptoms. Eventually, compulsive drug taking is maintained to avoid unpleasant 
withdrawal symptoms. Hypotheses such as positive-negative reinforcement, opponent 
processes and reward allostasis are all based on this explanation (Solomon and Corbit 
1973; Koob and Le Moal 1997, 2001; Robinson and Berridge 2003). However, the 
withdrawal theory cannot explain why addicts often relapse even after they are free 
from withdrawal. This limit prompted other explanations to be explored. 
  

Recently, there is a growing viewpoint that drug addiction is a form of 
dysfunctional learning calling habit learning (White 1996; Schultz 2000). For example, 
cues that predict the availability of rewards can powerfully activate NAc-related 
neural circuitry in both animals and humans (Schultz 1998; Knutson et al. 2001). 
Furthermore, repeated exposure to drugs of abuse facilitates some forms of learning 
(Harmer and Phillips 1999), and can activate some of the same types of 
neuroadaptations in reward-related neurons involved in learning (Hyman and Malenka 
2001). Abused drugs can also induce long-term potentiation (LTP) and long-term 
depression (LTD) in neuronal circuits associated with the addiction process, 
suggesting a way for the behavioral consequences of drug-taking to become 
reinforced by learning mechanisms (Koob and Nestler 1997). Therefore, 
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drug-associated cues can trigger a desire for drug use, as well as unconscious or 
compulsive drug-seeking behavior, with the loss of voluntary control over drug use. 
This theory fits well with studies of drug-taking behavior in rats, in which the same 
lever is pressed again and again, a situation that strongly promotes the formation of 
habit learning (Robinson and Berridge 2003).  

 
However some researchers were still not satisfied with this theory, since they 

thought habit learning theories still cannot explain the intrinsic motivational 
compulsion of addictive drugs. They argued that the compulsive pursuit of addictive 
drugs often happens in human drug addicts due to the lack of drug availability, a 
totally different situation compared with lab animals. The flexible and compulsive 
nature of drug-seeking behavior in the addict requires an additional motivational 
explanation, which prompted the rise of the incentive-sensitization theory of 
addiction. 

  
The incentive-sensitization theory of addiction was first raised by Robinson and 

Berridge. This theory focuses on how drug cues trigger excessive incentive 
motivation for drugs, leading to compulsive drug seeking, drug taking, and relapse 
(Robinson and Berridge 1993). The principal idea of this theory is that neural circuits 
that mediate the attribution of incentive salience may become enduringly sensitized to 
specific drug effects as well as drug-associated stimuli. The drug-induced brain 
change is called neural sensitization, which leads psychologically to hypersensitivity 
to drug-related representations, causing compulsive drug seeking, drug taking, and 
relapse (Robinson and Berridge 2000). In pharmacology studies, the term 
sensitization refers to an increase in a drug effect with repeated drug administration as 
apposed to tolerance. There are two major classes of drug effects that are sensitized by 
addictive drugs: psychomotor activating effects and incentive motivational effects. 
Both of these drug effects are mediated at least in part by mesolimbic dopamine 
system associated neuronal circuitry, and therefore sensitization of these behaviors is 
thought to reflect reorganization and sensitization of this neural system (Robinson and 
Berridge 2000, 2001, 2003). These psychomotor-activating effects of addictive drugs 
are mediated by brain systems that overlap with those involved in brain reward 
pathways, such as the mesolimbic dopamine system (Robinson and Becker 1986; 
Robinson and Berridge 1993). In addition these behavioral effects of addictive drugs 
can be easily measured, therefore they provide a great way to study neurobehavioral 
sensitization. Many studies have suggested that there are numerous factors that can 
influence both the initiation and expression of neurobehavioral sensitization, 
including genetics, hormones, drug dose, learning and stress. It has been also shown 
that sensitization is produced by many different drugs of abuse, including 
amphetamines, cocaine, opiates, methylphenidate, ethanol, and nicotine (Robinson 
and Berridge 2003). Sensitization has also revealed one of the most important features 
of addiction due to its remarkable persistence (Paulson et al. 1991; Castner and 
Goldman-Rakic 1999). 
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Animal Models in Drug Addiction Research 
 
Animal models have been established to examine the neurobiological basis of 

drug addiction. One of the important aspects of drug abuse is the positive 
reinforcement, which is the major area in current drug addiction research. Therefore, 
currently used animal models of drug addiction mostly focus on examining the role of 
positive reinforcement process in acquisition, maintenance and reinstatement of drug 
addiction. Many widely utilized animal models are currently well established in 
rodents. The application of these rodent models, combined with the development of 
modern research techniques of neurobiology, has provided important information 
regarding the neurobiology of addiction. Therefore, several popular animal models 
used in drug addiction study are briefly reviewed below. 

 
 

Drug Self-Administration 
 
An important assumption of many drug addiction theories is that abused drugs 

have a reinforcing effect. This reinforcing effect, in part, is responsible for acquisition 
and maintenance of drug-taking behavior. The drug self-administration task provides 
support for this assumption. A detailed review of intravenous self-administration has 
been published (Kalivas et al. 2006). Drugs of abuse are readily self-administered 
intravenously by experimental animals. High abuse potential drugs have high 
self-administered liability, although not all drugs abused by humans are 
self-administered by experimental animals (Markou et al. 1993). As an animal model, 
drug self-administration can also be influenced by species, dose of the drug, the 
presence or absence of environmental stimuli that signal drug infusions, 
post-reinforcement interval, and prior drug history of the subject animals (Mello and 
Negus 1996; Macenski and Meisch 1998; Kuzmin and Johansson 2000; Kalivas et al. 
2006). As for many studies, a given pretreatment should be considered as a potential 
confounding factor, because the pretreatment may affect self-administration by having 
nonspecific effects on behavior such as alterations of locomotion (Kalivas et al. 2006). 
Therefore, the influence of non-drug reinforcing effects should be assessed. 

 
In a typical intravenous self-administration study, the animal subject receives a 

drug infusion by performing a discrete task. Rats are surgically prepared with an 
intravenous (IV) catheter. Then, in an operant conditioning chamber two response 
options (left lever press versus right lever press) are made available to the rat. One 
response is associated with IV infusion of a drug; the other response has no 
consequence of drug infusion. The dependent variables are the number of infusions 
obtained or the rate of responding during a session. The number and pattern of 
responding required for each infusion is determined by the schedule of reinforcement 
imposed by the researcher. In addition to the intravenous route of administration, the 
intragastric or oral route can be employed (Sanchis-Segura and Spanagel 2006). 
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Most abused drugs differentially increase the rate of responding on the 
drug-associated lever. This model can serve as an important preclinical model for the 
effectiveness of pharmacotherapies to decrease drug-taking behavior (Kalivas et al. 
2006; Sanchis-Segura and Spanagel 2006). In addition, by making drug availability 
signaled by an environmental stimulus, this model can also be used to study the 
importance of the response-reinforcer relationship as well as the impact of stimuli 
present during self-administration (Kalivas et al. 2006; Sanchis-Segura and Spanagel 
2006). Recently, there has been a significant increase in interest in the role of these 
stimuli in the maintenance and reinstatement of self-administration (Kalivas et al. 
2006; Sanchis-Segura and Spanagel 2006). 

 
 

Conditioned Place Preference 
 
Conditioned place preference (CPP) is a popular conditioning procedure in which 

administration of a drug is paired with one distinct environment stimulus and 
administration of placebo with another. CPP is aimed at measuring the ability of drugs 
to act as reinforcers. One major characteristic of CPP is the fact that the drug is 
administered by the experimenter regardless of subject’s behavior. Through this 
process, this stimulus acquires the ability to act as a conditioned stimulus (CS). 
Thereafter, this CS will be able to elicit approach/avoidance behavior depending on 
the nature of the drug. By measuring these approach/avoidance behaviors, further 
insight about the drug acting as reinforcers can be gained (Bardo and Bevins 2000). 

 
In a typical CPP experiment, a drug is injected and the subject animal is placed in 

a test chamber with distinctive environmental stimulus. The apparatus used in 
conditioning experiments consists of at least two environments that are differentiated 
from each other on the basis of color, texture, and/or lighting. The distinctiveness of 
the environments is essential for the development of conditioning. This procedure is 
repeated for several days. During these conditioning trials the animal develops an 
association between the subjective state produced by the drug and the environmental 
stimulus present during the drug state. When the noninjected subject animal is tested 
in an apparatus that contains the drug-related environmental stimulus in one 
compartment and neutral stimulus in another, it voluntarily moves toward the 
compartment containing the drug-related stimulus. This learned association between 
environmental stimuli and drug effect provides the basis for conditioned place 
preference (CPP) experiments. The animal’s choice to spend more time in either 
environment provides a measurement of the conditioned reinforcing effect of a drug. 
This procedure not only permits assessment of the conditioning of drug reinforcement 
but also can provide indirect information regarding the positive and negative 
reinforcing effects of drugs (Tzschentke 1998). Many laboratories are now using this 
technique to study the subjective properties of drugs because CPP studies are much 
easier to conduct than intravenous self-administration studies (Risinger et al. 1996; 
Carlezon et al. 1998; Tzschentke 1998).  
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There are two different CPP procedures called unbiased and biased CPP (Bardo et 
al. 1995; Sanchis-Segura and Spanagel 2006). As for the former, the drug injection is 
associated with one randomly chosen compartment and is usually counterbalanced 
across the subjects, whereas regarding the latter, the drug is paired with the 
non-preferred compartment and CPP is measured as overcoming the initial aversion 
for that environment. In the often used biased design, animals exhibit a preference for 
one of the environment prior to conditioning, which is called preconditioning phase, 
in which animals are allowed access to both environments. Preconditioning phase is 
necessary to determine the innate preference of each animal. The drug then is paired 
with the preferred or non-preferred environmental stimulus depending on whether the 
drug is assumed to produce aversive or positive reinforcing effects, respectively.  

 
There are many factors influencing the establishment of CPP. Drugs of abuse 

have a differential ability to produce CPP. Generally, opiates and psychostimulants 
produce robust CPPs, while other drugs such as ethanol, nicotine or cannabinoids 
produce more inconsistent results (Cunningham et al. 1993; Tzschentke 1998; Bardo 
and Bevins 2000). It has been shown that drug administration before context exposure 
ensured a clearer preference, otherwise, when the drug administration occurs after 
context exposure, conditioned place aversion (CPA) rather than CPP was observed 
(Font et al. 2006). The number of drug-environmental stimuli pairings also influences 
CPP. The higher the number of pairings, the higher or the more persistent the 
conditioned preference observed (Bardo and Bevins 2000; Sanchis-Segura and 
Spanagel 2006). Conversely, extinction of a previously acquired conditioned 
preference can be caused by experience with the conditioned stimuli in absence of 
drug exposure, which is termed Pavlovian latent inhibition (Sanchis-Segura and 
Spanagel 2006). CPP has been widely used in conjunction with gene transfer and 
homologous recombination techniques to delineate the molecular basis of drug 
induced reinforcement (Tzschentke 1998; Sanchis-Segura and Spanagel 2006). 

 
 

Intracranial Self-Stimulation 
 
Intracranial self-stimulation (ICSS) experiments were fundamental in the 

establishment of the reward concept and its application to the current views of drug 
addictive behavior (Olds and Milner 1954). It is hypothesized that ICSS produces the 
direct activation of brain circuits usually activated by natural reinforcers or drugs of 
abuse (Esposito et al. 1984; Porrino et al. 1984). In bypassing much of the input side 
of these neuronal circuits, ICSS provides a unique tool to investigate the influence of 
various substances on reward and reinforcement processes. Therefore, ICSS has been 
used in psychopharmacological research to study the brain circuits mediating the 
rewarding effects of drugs of abuse (Sanchis-Segura and Spanagel 2006). 

 
ICSS differs significantly from drug self-administration because in the ICSS 

procedure, the animal is working to directly stimulate presumed reinforcement circuits 
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in the brain, and the effects of the drugs are assessed on these reward thresholds. 
Drugs of abuse decrease thresholds for ICSS, and there is a good correspondence 
between the ability of drugs to decrease ICSS thresholds and their abuse potential 
(Kornetsky and Esposito 1979; Kornetsky et al. 1979). It should be noted that a wide 
variety of ICSS-based procedures have been developed over the years, but at least two 
ICSS-related procedures have been extensively applied to explore the possible effects 
of drugs of abuse: the discrete-trial current-intensity (DT-CI) and the rate-frequency 
curve shift (R-FCS) (Stellar and Stellar 1985; Markou et al. 1993). It has been shown 
that the administration of several drugs of abuse including cocaine, amphetamine, 
morphine, ethanol or nicotine results in a reduction of the ICSS reward threshold in 
some brain areas (Kornetsky and Bain 1992; Wise 1996). On the other hand, an 
elevation of the same threshold has been observed in drug-dependent animals during 
withdrawal (Epping-Jordan et al. 1998; Cryan et al. 2003) or when administering 
drugs with aversive effects (Todtenkopf et al. 2004). This evidence suggested that the 
ICSS-based procedures may be used in identifying substances that could reduce drug 
reward-related processes so as to consequently reduce their consumption. However, 
several disadvantages have limited its usage. For example, animal surgery for 
implantation of electrodes is usually required along with specialized equipment. 
Selection of the brain site is of vital importance, since different brain regions support 
different rates of brain stimulation reward due to different brain circuits. In addition, 
animals need to be trained for several weeks to obtain stable rates of responding or 
stable thresholds. 

 
  

Behavioral Sensitization as a Behavioral Model in Addiction 
Research 

 
One of the classic drug effects observed in laboratory animals is the phenomenon 

that repeated administration of psychomotor stimulants, like cocaine, can generate an 
enduring behavioral augmentation upon subsequent drug administration after a period 
of withdrawal. This phenomenon was called behavioral sensitization, which was 
observed as early as in 1932 (Downs and Eddy 1932). In 1993, Robinson and 
Berridge stated that it is the progressive and persistent neuroadaptations caused by 
repeated drug use that take responsibility for this drug induced behavior (Robinson 
and Berridge 1993). Although different doses of acute administration of these drugs 
may result in different types of behaviors, such as exploratory and stereotype behavior, 
many of these behaviors can be progressively augmented after repeated and 
intermittent exposure (Creese and Iversen 1973; Post and Kopanda 1976; Robinson 
and Becker 1986; Kalivas and Duffy 1990; King et al. 1992; Kalivas and Duffy 1993). 
In addition, these effects can last for a very long time (Paulson et al. 1991). The 
reasons why behavioral sensitization has been proposed as a useful animal model for 
drug addiction study, such as craving and relapse are as followed: First, the behavioral 
effects resemble the maladaptive psychological states in human addicts (Wise and 
Bozarth 1987; Robinson and Berridge 1993; Schmidt and Beninger 2006). Second, 
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adaptations in brain reward circuitry were implicated in human psychopathological 
symptoms precipitated by long-term cocaine use (Robinson and Berridge 1993; 
Kalivas et al. 1998; Bradberry 2007). For instance, in addicts, doses of drugs that are 
too low to produce any conscious experience of pleasure can cause an increase in 
drug-seeking behavior (Lamb et al. 1991; Foltin and Fischman 1992). Clinical 
observations suggested that stimuli previously associated with availability or 
self-administration of the drug can evoke intense subjective feelings of craving and 
can trigger relapse in abstinent cocaine abuse patients (Ehrman et al. 1992). 

 
Many factors have been shown to influence the development of behavioral 

sensitization as described above. Most important in animal experiments, the frequency 
of drug administration should be considered. It has been shown that continuous 
infusion of cocaine may generate tolerance, while intermittent administration can 
produce sensitized behavioral responses (Post 1980; King et al. 1992). Therefore, 
many studies use such treatment schedule that consists of a repeated daily systemic 
injections and a following challenge injection after a period of withdrawal, (Kalivas 
and Duffy 1993; Sorg et al. 1997; Beyer and Steketee 2002; Steketee 2005), although 
single drug injection has been shown to induce behavioral sensitization 
(Vanderschuren et al. 1999). Besides the frequency of drug administration, the 
withdrawal time between the last repeated injection and the challenge injection may 
affect the magnitude of the behavioral sensitization. For example, cocaine challenge 
can induce a greater behavioral response after a long period (2-4 weeks) of 
withdrawal as compared with a short period (1 day) of withdrawal (Kalivas and Duffy 
1993; Henry and White 1995). Also the expression of the behavioral sensitization in 
this study became no longer apparent after 2 months withdrawal (Henry and White 
1995). While other studies showed that behavioral sensitization can persist at least for 
a year (Paulson et al. 1991; Castner and Goldman-Rakic 1999). Thus, the expression 
of behavioral sensitization may consist of long term maintenance and declining phases. 
Taken together, the treatment regimen can significantly affect the development of 
behavioral sensitization. 
  

The development of behavioral sensitization may also be affected by the 
environmental context in which animals received the drug exposure (Badiani et al. 
1995; Badiani et al. 2000; Crombag et al. 2000; Carey et al. 2005). Novel 
environments can induce elevated behavioral response in both saline animals and 
sensitized animals (Badiani et al. 1995). In addition to these above mentioned factors, 
cross-sensitization is another factor that deserves to be mentioned. Cross-sensitization 
occurs when previous drug history influences the development of behavioral 
sensitization to another drug (Vezina and Stewart 1989, 1990). Animals pretreated 
with other stimulants such as nicotine (Schoffelmeer et al. 2002; Collins and 
Izenwasser 2004) and ethanol (Lessov and Phillips 2003) can show a sensitized motor 
response to the subsequent cocaine challenge. Even stress has been shown to 
cross-sensitize to the effects of cocaine (Sorg 1992; Prasad et al. 1998; Lepsch et al. 
2005). Our lab recently reported that repetitive inhalational exposure to toluene can 
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produce an augmentation in motor response to cocaine (Beyer et al. 2001). Therefore, 
this evidence further supports that behavioral sensitization results from the 
neuroadaptations within the common neural substrates that are influenced by the 
various stimuli (Kalivas et al. 1998; Robinson and Berridge 2001). 

 
 

Neural Basis of Behavioral Sensitization 
 
Numerous studies have investigated the mechanisms of behavioral sensitization. 

The majority of these studies concentrated on the mesolimbic dopamine system 
(Steketee et al. 1992; Robinson and Berridge 1993; Pierce and Kalivas 1997; Everitt 
and Wolf 2002). Mesolimbic dopaminergic neurons originate in the ventral tegmental 
area (VTA) and project to various limbic regions such as the nucleus accumbens (NAc) 
(Oades and Halliday 1987) Studies have shown that the development of behavioral 
sensitization is correlated with activity changes within this system (Kalivas and Duffy 
1990, 1993, 1993; Robinson and Berridge 1993) Through these studies, an agreement 
has been reached that the development of behavioral sensitization could have at least 
two distinct phases: initiation and expression. The initiation of behavioral 
sensitization is thought to occur in the VTA and is characterized by transient changes 
in neuronal function responsible for behavioral augmentation (Kalivas et al. 1993; 
Robinson and Berridge 1993; Pierce and Kalivas 1997). Expression is thought to be 
mediated by NAc. In this phase, the neuronal alteration arising from the initiation 
mediates the augmented behavioral response (Robinson and Berridge 1993; Pierce 
and Kalivas 1997). 

 
  

The Ventral Tegmental Area and the Initiation of Behavioral Sensitization 
 
The early functional changes of the dopaminergic neurons in the VTA have been 

suggested as the substrate for the initiation of the behavioral sensitization. Repeated 
cocaine exposure can cause a transient reduction in dopamine D2 autoreceptor 
sensitivity within the early days of withdrawal (Ackerman and White 1990) Since 
activation of D2 autoreceptor can lead to reduction of dopamine release and synthesis, 
as well as the reduction of dopamine neuron firing, (Wolf and Roth 1987, 1990; White 
1996) repeated cocaine injections therefore resulted in enhancement in the number of 
spontaneously active neurons and burst neuron firing (Henry et al. 1989; Gao et al. 
1998).   
  

Besides the functional changes occurring on the dopamine neurons, the temporary 
neural adaptations in the neurotransmitter systems within the VTA have also been 
reported. For instance, repeated cocaine administration resulted in a transient 
enhancement in dopamine transmission within the VTA (Kalivas and Duffy 1993). 
Even the increased expression of tyrosine hydroxylase, the rate limiting enzyme for 
the synthesis of dopamine, has been reported to be associated with cocaine 
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sensitization (Beitner-Johnson et al. 1991; Sorg et al. 1993). Additionally, Intra-VTA 
infusion of DAT(dopamine transporter)-selective reuptake inhibitor GBR12909, 
mimicking some of the effects of psychostimulants like cocaine, can also induce 
behavioral sensitization (Steketee 1998) All these studies linked VTA dopamine 
transmission to the development of sensitization. VTA dopamine receptor, especially 
D1 receptor has been shown to be important in the initiation of sensitization. For 
instances, blockade of the dopaminergic transmission by directly infusing D1 receptor 
antagonist SCH23390 into the VTA blocked the initiation of amphetamine induced 
sensitization (Vezina 1996), although this effect could also be due to activation of 
5-HT2C receptors in the VTA (Millan et al. 2001; Navailles et al. 2007). Repeated 
intra-VTA infusion of D1 receptor agonist SKF 38393 induced behavioral 
sensitization (Pierce et al. 1996) These results suggest that activation of D1 receptor 
by increased dopamine levels in the VTA is a critical component in the initiation of 
sensitization. In addition to the dopaminergic system, alterations of the glutamatergic 
system also occur. Increased AMPA receptor sensitivity and increased AMPA receptor 
GluR1 subunit and NMDA receptor NR1 subunit levels have been reported to be 
associated with cocaine sensitization (Fitzgerald et al. 1996; Zhang et al. 1997; Wolf 
1998). Consistent with this, intra-VTA infusion of NMDA receptor antagonist 
MK-801 was shown to block the development of cocaine sensitization (Kalivas and 
Alesdatter 1993). Besides these two neurotransmitter systems, other neurotransmitter 
systems may also be involved within the VTA. Serotonergic 5-HT1B receptors have 
been shown to be increased in the VTA after repeated cocaine exposure (Przegalinski 
et al. 2003). Repeated intra-VTA infusions of the µ opioid receptor agonist morphine 
or DAMGO have been shown to induce behavioral sensitization (Vezina et al. 1987). 
In vitro application of orexin A induces potentiation of N-methyl-D-aspartate 
(NMDA)receptor -mediated neurotransmission via a PLC/PKC-dependent insertion of 
NMDA receptors in VTA dopamine neuron synapses (Borgland et al. 2006). 
Moreover, in vivo administration of an orexin 1 receptor antagonist blocks locomotor 
sensitization to cocaine and occludes cocaine-induced potentiation of excitatory 
currents in VTA dopamine neurons (Borgland et al. 2006). Furthermore, signaling 
pathways that are indicated to be involved in the development of sensitization have 
been shown to be altered. For example, protein kinase C (PKC) activation has been 
shown to be transiently increased within the VTA (Steketee et al. 1998). Intra-VTA 
infusion of PKC or protein kinase A (PKA) inhibitors has been reported to block the 
initiation of cocaine or amphetamine induced sensitization (Steketee 1997; Tolliver et 
al. 1999). Studies have also reported that the levels of Giα, alpha subunit of the 
inhibitory G protein in the VTA were increased after repeated cocaine administration 
(Nestler et al. 1990). Intra-VTA infusion of G-protein uncoupling agent pertussis toxin 
resulted in behavioral sensitization (Steketee et al. 1991). Taken together, these data 
suggest that VTA is critical to the initiation of sensitization to psychostimulants.  
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The Nucleus Acumbens and the Expression of Behavioral Sensitization 
 
Repeated and intermittent i.p. injections of psychomotor stimulants such as 

cocaine or amphetamine generated behavioral sensitization, while repeated intra-NAc 
infusion of these psychomotor stimulants alone failed to induce sensitization (Kalivas 
and Weber 1988; Hooks et al. 1993). However, intra-NAc infusion of amphetamine 
elicited behavioral sensitization in previously sensitized animals (Perugini and Vezina 
1994). Combined with an earlier report that lesion of the NAc with 6-OHDA resulted 
in a loss of cocaine or amphetamine induced locomotor activation (Kelly and Iversen 
1976), this evidence directly suggested that the NAc might be critical for the 
expression rather than the initiation of behavioral sensitization.  
  

Various neurochemical alterations have been reported by many studies. One of 
the classic neurochemical effects of repeated psychomotor stimulants exposure, such 
as cocaine is the enhancement of mesolimbic dopamine transmission. Repeated 
administration of psychomotor stimulants increased the dopamine response within the 
NAc upon a subsequent challenge exposure (Hurd et al. 1989; Kalivas and Duffy 
1993; Heidbreder et al. 1996). This phenomenon is referred to as neurochemical 
sensitization in many studies and is correlated with the expression of behavioral 
sensitization (Robinson and Berridge 1993; Kalivas et al. 1998). However, agreement 
on whether chronic cocaine exposure alters the basal dopamine levels in NAc has not 
been achieved. (Kalivas and Duffy 1993; Chefer and Shippenberg 2002); (Weiss et al. 
1992; Heidbreder et al. 1996). Similar to enhanced dopamine release, a series of in 
vivo microdialysis studies have revealed that cocaine induced locomotor sensitization 
is also correlated with an enhancement of cocaine induced glutamate release with a 
reduction of basal glutamate levels within the NAc (Bell and Kalivas 1996; Cornish 
and Kalivas 2001; Xi et al. 2002; McFarland et al. 2003). Additionally, sensitization to 
cocaine or amphetamine is correlated with an increase in serotonin level as well as 
5-HT1B binding in the NAc (Przegalinski et al. 2003).  
  

Besides the alterations of neurochemical level, alterations in receptor levels have 
also been observed in NAc of sensitized animals. For example, GluR1 levels were 
enhanced in NAc of cocaine sensitized animals (Churchill et al. 1999). Behavioral 
sensitization to cocaine is associated with increased AMPA receptor surface 
expression in the NAc (Boudreau and Wolf 2005). The DA-induced inhibition of 
AMPA receptor-mediated synaptic responses was enhanced in cocaine-treated mice, 
an effect that was caused by activation of D1-like receptors (Boudreau and Wolf 2005). 
In rats that developed behavioral sensitization to repeated amphetamine, metabotropic 
glutmate receptors (mGluRs) were altered. mGluR1 levels in the dorsal and ventral 
striatum were transiently enhanced while mGluR5 levels were persistently reduced in 
the entire striatum, which may indicate functional implications of Group I mGluRs in 
the regulation of behavioral sensitization to the dopamine stimulant (Mao and Wang 
2001). 

 

 11



Recently several novel proteins have been found to be implicated in regulating 
the expression of sensitization. Orexin receptor type 2 (OXR2) but not type 1 was 
found to be persistently up-regulated in NAc after repeated cocaine exposure (Zhang 
et al. 2007). OXR2 levels in the frontal cortex, the ventral tegmental area, the 
hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine 
(Zhang et al. 2007). In contrast to chronic cocaine administration, an acute cocaine 
injection was insufficient to modify levels of any orexin receptor and peptide(Zhang 
et al. 2007). Therefore, this OXR2 up-regulation may reflect a key adaptation of 
limbic orexinergic transmission to chronic drug exposure and may thus be critical for 
the expression of behavioral sensitization. Another example is that microinjection of 
CART 55-102 (Cocaine- and amphetamine-regulated transcript) peptides, which are 
endogenous peptidergic neurotransmitters, into the NAc dose-dependently blocked the 
expression of locomotor sensitization produced by repeated cocaine exposure (Yoon 
et al. 2007). The increase of ERK1/2 phosphorylation levels in the NAc by repeated 
cocaine was completely blocked by CART 55-102 peptide microinjection in this site. 
These results suggest that CART 55-102 peptide in the NAc may play a compensatory 
inhibitory role in the expression of behavioral sensitization by cocaine and these 
effects may be mediated by its inhibition of ERK1/2 phosphorylation (Yoon et al. 
2007). Finally, regulation of gene expression in NAc via two transcription factors 
CREB and DeltaFosB contribute to the drug induced behaviors. These factors have 
been well reviewed in regulating gene expression mediating drug induced behaviors 
(Nestler 2004).   

 
 

Other Brain Regions and Behavioral Sensitization 
 
So far, many additional brain regions have been shown to be involved in the 

development of behavioral sensitization to psychomotor stimulants (Bardo 1998). 
Initially, investigations of other brain regions were prompted by the findings that 
different mechanisms may exist in the development of amphetamine and cocaine 
sensitization. For example, intra-VTA infusion of the D1 receptor antagonist, 
SCH23390 attenuated the development of sensitization to amphetamine but failed to 
block the development of sensitization to cocaine (Vezina 1996; Steketee 1998). 
Intra-VTA administration of cocaine, as opposed to amphetamine, did not induce 
sensitization (Kalivas and Weber 1988; Vezina 1993). Therefore, several labs 
including our own have begun to investigate additional brain regions that may also be 
involved in the development of sensitization.  

 
 

Medial Prefrontal Cortex: Anatomy and Neurocircuitry 
  

The prefrontal cortex (PFC) is characterized as the cortical region that has strong 
reciprocal interactions with the mediodorsal nucleus of the thalamus (MD). The PFC 
can modulate the activity of the basal ganglia via corticostriatal pathways and receive 
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inputs via the MD (Groenewegen and Uylings 2000; Tzschentke 2000; Steketee 2005). 
The PFC can be subdivided into medial and dorsal subregions. The medial subregion 
of PFC is well studied due to its close association with goal-directed behavior relevant 
to drug reward (Pierce and Kalivas 1997; Schultz et al. 1998; Kalivas and Nakamura 
1999; Tzschentke 2001; Steketee 2003). 

 
A series of studies using anterograde and retrograde tracing techniques in 

combination with immunolabeling and electron microscopy have elucidated the 
principal afferent and efferent projections of the mPFC. The mPFC is a part of the 
meoscortical system in that it receives strong dopaminergic innervation from the VTA 
(Thierry et al. 1973; Oades and Halliday 1987; Goldman-Rakic et al. 1989; Sesack et 
al. 1989; Cowan et al. 1994; Pirot et al. 1996). In addition, the mPFC receives 
glutamate innervation from many subcortical regions such as the thalamus, 
hippocampus, and the amygdala (Lindvall et al. 1977; Conde et al. 1990; Pirot et al. 
1994; Jay et al. 1995; Bacon et al. 1996; Jay et al. 1996; McDonald 1996) as well as 
cortical glutamatergic inputs from contralateral mPFC (Conde et al. 1995; Steketee 
2003).  

 
The mPFC can be further subdivided into several distinct regions including: the 

infralimbic, prelimbic, dorsal and ventral anterior cingulate, and medial precentral 
cortical areas (Groenewegen and Uylings 2000; Ongur and Price 2000; Heidbreder 
and Groenewegen 2003). It should be noted that the prelimbic and infralimbic cortical 
areas receive the strongest dopaminergic input from VTA, as compared with other 
subregions of the mPFC (Thierry et al. 1973; Lindvall et al. 1977; Cowan et al. 1994; 
Sesack et al. 1995). Furthermore, the neuroanatomical connections of the prelimbic 
and infralimbic subregions of mPFC have been shown to be different to some degree. 
For instance, although both areas project to NAc, the prelimbic area tends to 
preferentially innervate the core of NAc, while the infralimbic area projects 
preferentially to the shell of NAc (Groenewegen et al. 1990). Additionally, the 
glutamatergic inputs from MD tend to project to the prelimbic area rather than the 
infralimbic area (Sesack et al. 1989; Groenewegen et al. 1990; Conde et al. 1995).  

 
The mPFC consists of two principal neuron types: pyramidal glutamatergic 

neurons and GABAergic local interneurons (Goldman-Rakic et al. 1989; Cowan et al. 
1994; Sesack et al. 1995). Pyramidal neurons are the major output neurons within 
mPFC, which provide reciprocal innervation to other brain regions that send 
projections to the mPFC, including the VTA, amygdala, thalamus, and hippocampus 
(Sesack et al. 1989; Cowan et al. 1994; Steketee 2003) In addition, mPFC pyramidal 
neurons have axon collaterals that provide innervation across cortical layers so that 
these pyramidal neurons form an “intranet” within mPFC. The dopaminergic efferents 
from VTA synapse on both the pyramidal glutamatergic neurons and GABAergic 
local interneurons. Dopamine has been shown to stimulate GABA release in mPFC 
(Sesack et al. 1989; Law-Tho et al. 1994; Grobin and Deutch 1998; Carr and Sesack 
2000). Finally, it should be noted that the mPFC also receives GABAergic innervation 
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directly from the VTA, which can directly inhibit the pyramidal neurons (Carr and 
Sesack 2000). 

 
 

Role of Medial Prefrontal Cortex in Behavioral Sensitization 
 
The medial prefrontal cortex (mPFC) has been well reviewed for its critical role in 

the development of psychomotor stimulant induced sensitization (Steketee 2003, 
2005). It has been shown that repeated exposure to cocaine was associated with an 
increase in mPFC pyramidal neuron excitability (Dong et al. 2005; Nasif et al. 2005) 
Also, excitotoxic lesions of the mPFC, including both the prelimbic and infralimbic 
regions, disrupted the induction of sensitization to cocaine (Li et al. 1999). 
Furthermore, discrete excitotoxic lesions of the prelimbic region of the mPFC also 
blocked the induction of cocaine-induced sensitization (Tzschentke and Schmidt 1998, 
2000). Once sensitization had been induced, ibotenic acid lesions of the mPFC failed 
to prevent the expression of cocaine induced sensitization (Li et al. 1999). In contrast 
to this finding, a previous report demonstrated that dorsal, but not ventral, mPFC 
ibotenate lesions prevented the expression of cocaine-induced behavioral sensitization 
(Pierce et al. 1998). Taken together, these data suggest that lesions of regions of the 
ventral mPFC projecting to the VTA and shell of the NAc alter the initiation of 
sensitization, while lesions of dorsal part that provides dense projections to the core of 
the NAc disrupt the expression of sensitization (Pierce et al. 1998; Li et al. 1999; Li et 
al. 1999; Steketee 2005). 

 
The anatomy and neurocircuitry within mPFC as described above make it in a 

position to modulate regions that have been previously linked to sensitization. In 
addition, changes in interactions between glutamate, dopamine and GABA in the 
mPFC have been hypothesized to play a critical role in the development of 
sensitization (Steketee 2003), thereby, indicating a potential role for these mPFC 
neurotransmitters in cocaine-induced sensitization. Therefore, from now on, the rest 
of this introduction will continue to review the role of the mPFC in the development 
of cocaine sensitization in terms of the major neurotransmitter systems within mPFC. 

 
   

Role of mPFC Dopaminergic System in Sensitization 
 
Some earlier reports demonstrated a reduced dopamine response to cocaine in the 

mPFC (Sorg et al. 1997; Chefer et al. 2000) rather than the enhanced response 
observed in other brain regions such as the NAc and VTA in cocaine sensitized animal 
(Kalivas and Duffy 1993). In contrast to these findings, a recent study found that 
sensitization is associated with enhanced dopamine transmission in the mPFC (Wu et 
al. 2003). However, a time course study from our lab demonstrated that when 
challenged 1 day or 1 week following repeated cocaine treatment, sensitized animals 
exhibited a decrease in cocaine-induced increases in dopamine overflow in the mPFC 
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(Williams and Steketee 2005), while a sensitized mPFC dopamine response to cocaine 
was observed in sensitized animals after 30 days withdrawal (Williams and Steketee 
2005). Generally, these data suggest that repeated cocaine produced time dependent 
alterations in mPFC dopamine transmission. The reduced dopamine response to 
cocaine in sensitized animals after a relatively short term withdrawal was suggested to 
result from a reduction in dopamine releasability rather than an increase in reuptake 
(Williams and Steketee 2004, 2005). The early reduced dopamine transmission in 
mPFC may contribute to the enhanced glutamate overflow in mPFC of cocaine 
sensitized animals (Williams and Steketee 2004).  

 
The effects of mesocortical dopamine released in mPFC are produced by 

stimulating dopamine receptors including two families of receptors, D1-like and D2-like, 
which are both G protein coupled receptors (Jackson and Westlind-Danielsson 1994). 
It has been suggested that both D1-like and D2-like receptors are located primarily on 
pyramidal glutamatergic neurons and GABAergic interneurons (al-Tikriti et al. 1992). 
D1-like dopamine receptors include D1 and D5 subtypes. Stimulation of these receptors 
can increase cAMP formation via Gs/o proteins (Dearry et al. 1990). In addition, these 
receptors can modulate intracellular calcium levels by stimulation of phospholipase C 
(Undie and Friedman 1990), and can increase L-type calcium channel current via 
PKA dependent phosphorylation pathways (Schiffmann et al. 1995; Surmeier et al. 
1995). As for the D2-like dopamine receptors, they include D2, D3 and D4 subtypes 
(Jackson and Westlind-Danielsson 1994; Missale et al. 1998). D2-like dopamine 
receptors are coupled to inhibitory Gi proteins, so as to inhibit the cAMP formation 
(Tang et al. 1994; McAllister et al. 1995). Additionally, D2-like dopamine receptors can 
inhibit the inward calcium current (Valentijn et al. 1993) and are indicated to be linked 
to inositol triphosphate production thereby modulating the intracellular calcium 
(Vallar et al. 1990) It should be noted that D2-like receptors can also be autoreceptors, 
which may modulate the release, synthesis and/or neuronal firing of the presynaptic 
neurons (Roth 1984). It should be noted that a recent finding showed that cocaine 
induced extracellular dopamine can suppress the activity of inwardly rectifying 
potassium channels in mPFC pyramidal neurons via D1 or D2 receptor dependent 
pathways so as to enhance the pyramidal neuron excitability (Dong et al. 2004). 
Generally, modulation of pyramidal neuron activity by dopamine receptors is very 
complex. There are concentration and receptor subtype dependent actions of 
dopamine in the PFC. Dopamine at low concentrations appears to act via D1 receptors 
to enhance NMDA EPSCs and GABAA IPSCs, yet at higher concentrations acts via 
D2 receptors to reduce these currents (Trantham-Davidson et al. 2004) A recent 
review (Seamans and Yang 2004) discussed regulation of PFC pyramidal neuron by 
dopamine. The mechanisms of regulation were summed up as follows: Activation of 
D1 and D2 receptors inhibits spontaneous firing of PFC neurons. Activation of D1 
receptor stimulates interneurons, thereby inhibiting pyramidal neuron activity. When 
strong depolarization removes the voltage-dependent Mg2+ block of NMDA channels, 
activation of D1 receptor enhances the D1-mediated enhancement of NMDA receptors 
by enhancing persistent Na+ and inactivating K+ current through a PKA 
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phosphorylation-independent process. Thus, dopamine is neither a classic excitatory 
nor inhibitory neurotransmitter (Lapish et al. 2007). Furthermore, activation of D2 
receptors, located on interneurons, stimulates GABA release (Grobin and Deutch 
1998) that can then serve to inhibit glutamatergic neurons (Pirot et al. 1992). 
Therefore, dopamine is capable of directly and indirectly inhibiting pyramidal output 
neurons.  

 
Dopamine receptors in the mPFC have been implicated in the development of 

cocaine induced sensitization. It has been shown that intra-ventral mPFC infusion of 
D1 receptors agonist SKF 81297 did not block the initiation of cocaine sensitization 
(Beyer and Steketee 2002). But some study indicated that D1 receptors in dorsal 
regions of the mPFC may be involved in expression of cocaine sensitization (Sorg et 
al. 2001). Also infusions of the dopamine D2 agonist quinpirole into the mPFC 
blocked the initiation of sensitization to cocaine (Beyer and Steketee 2002). Once 
sensitization was induced, quinpirole was only able to attenuate, rather than 
completely block the motor stimulant response to cocaine (Beyer and Steketee 2002). 
Repeated intra-mPFC injection of the D2 antagonist sulpiride even induced 
sensitization to cocaine. (Steketee and Walsh 2005) Taken together, the results of these 
studies suggest that sensitization may result from attenuated dopamine D2 receptor 
function in the ventral mPFC. Also, a recent study demonstrated that quinpirole 
induced GTPγS binding was reduced in the mPFC of sensitized animals (Bowers et al. 
2004). These studies suggested that a decrease in mPFC D2 function can enhance 
excitatory transmission to subcortical regions. And the reduction in mPFC D2 function 
is correlated with long term expression of cocaine induced behavioral sensitization 
(Beyer and Steketee 2002; Bowers et al. 2004). 

 
 

Role of mPFC GABAergic System in Sensitization 
  

As described above, mPFC GABA is released from mPFC interneurons and 
terminals of VTA projections. There are two receptor subtypes in the mPFC: GABAA 
and GABAB. GABAA receptors are ionotropic receptors that gate chloride while 
GABAB receptors are metabotropic receptors coupled to Ca2+ and K+ channels by Gi 
proteins (Nutt 2006; Olsen et al. 2007). It has been demonstrated that stress induced 
increases in NAc dopamine overflow was blocked by intra-mPFC injections of the 
GABAB agonist baclofen (Doherty and Gratton 1999). Sensitization to amphetamine 
was associated with an increase in GABAB receptor coupling to G proteins but not 
GABAB receptor number in mPFC (Zhang et al. 2000; Kushner and Unterwald 2001). 
In contrast to this, repeated exposure to cocaine was not found to alter GABAB 
receptor coupling in the frontal cortex (Kushner and Unterwald 2001). Intra-mPFC 
injection of baclofen blocked the acute motor-stimulant response to cocaine in a 
dose-dependent manner. When paired with the daily injections of systemic cocaine, 
intra-mPFC baclofen blocked the initiation of sensitization. However, once 
sensitization was induced, intra-mPFC baclofen was not able to block the expression 
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of sensitization (Steketee and Beyer 2005). These data suggest that GABAB receptor 
function is lost following repeated cocaine exposure. Furthermore, infusions of 
baclofen into the mPFC generated trends towards decreased glutamate levels in the 
mPFC, nucleus accumbens and VTA in control animals, while increasing levels of 
glutamate in each of these same regions in cocaine-sensitized animals (Jayaram and 
Steketee 2004). Since GABAB autoreceptor function appears to be intact because 
baclofen reduces GABA to a similar extent in both control and sensitized animals 
(Jayaram and Steketee 2004), it is hypothesized that postsynaptic/heterosynaptic 
GABAB receptor function is lost following repeated cocaine, thus mPFC infusions of 
baclofen removed postsynaptic and heterosynaptic inhibitory tone produced by the 
action of GABA on GABAA receptors, thereby increasing excitatory transmission in 
the mesocorticolimbic system (Jayaram and Steketee 2004; Steketee and Beyer 2005). 
Although the mechanisms by which repeated cocaine reduced GABAB receptor 
function are not clear, it is possible that decreased GABAB receptor function is a 
compensatory response to increased GABA transmission. Our lab reported that acute 
cocaine did not affect the GABA levels in mPFC, but a challenge injection of cocaine 
in sensitized animals induced an increase in mPFC GABA levels after 1 or 7 days 
withdrawal but not 30 days withdrawal from repeated cocaine exposure (Jayaram and 
Steketee 2005). While it is not clear how repeated cocaine alters mPFC GABA levels, 
recent studies suggest that the transient increase in mPFC GABA response to cocaine 
may be due to the enhanced glutamate transmission via AMPA receptors associated 
with cocaine sensitization (Jayaram and Steketee 2006).  
 
 
Role of mPFC Glutamatergic System in Cocaine 

 
Numerous studies have demonstrated an important role for mPFC glutamate 

systems in the development of sensitization (Wolf 1998; Kalivas 2004; Steketee 2005). 
Glutamate neurons and terminals located in the mPFC provide the excitatory drive for 
pyramidal output that project to many subcortical regions. Several recent reports 
suggested that cocaine mediated behaviors can also be modulated, in part, by 
excitatory transmission from the mPFC to subcortical dopaminergic regions (Wolf 
1998; Tzschentke 2000; Steketee 2003). Since the pyramidal neurons are the major 
output neurons in mPFC, modulation of pyramidal neurons could potentially be 
involved in regulation of cocaine mediated behaviors. Acute cocaine has been 
reported to increase extracellular glutamate levels in the mPFC (Reid et al. 1997). 
Repeated cocaine administration increases membrane excitability of pyramidal 
neurons in the rat mPFC via a reduction in voltage-gated K+ currents (VGKCs) and a 
possible increase in voltage-sensitive Ca2+ currents (Nasif et al. 2005; Nasif et al. 
2005). Consistent with this study, evidence has suggested that glutamate transmission 
in the mPFC may be altered in sensitized animals. Neurons in the mPFC show an 
increased responsiveness to glutamate following repeated exposure to amphetamine 
(Peterson et al. 2000). K+-stimulated glutamate efflux in the mPFC was enhanced in 
animals following repeated methamphetamine exposure (Stephans and Yamamoto 
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1995). Time courses study of the effects of repeated cocaine exposure on subsequent 
mPFC glutamate responses to cocaine from our lab has shown time-dependent (1 day 
or 7 days but not 30 days withdrawal) increases in cocaine mediated mPFC glutamate 
overflow after repeated cocaine exposure, although an acute injection of cocaine 
failed to increase mPFC extracellular glutamate levels (Williams and Steketee 2004). 
Therefore, alterations in mPFC glutamate neurotransmission may be involved in the 
development of sensitization. 

 
As discussed earlier, sensitization is believed to result from an increase in 

excitatory transmission from the mPFC to subcortical regions. Enhanced excitatory 
outputs from the mPFC can result from either an increase in excitatory drive or a 
decrease in inhibitory regulation of pyramidal neurons (Steketee 2005). As described 
above, a reduction in D2 and GABAB receptor function could produce a decrease in 
inhibition of glutamate transmission in mPFC. Glutamate can regulate pyramidal 
neuron activation by stimulation of both ionotropic and metabotropic glutamate 
receptors. Ionotropic glutamate receptors basically are glutamate gated cation 
channels, which are permeable to Ca2+, Na+ and K+ (Dingledine et al. 1999). 
Generally, activation of ionotropic glutamate receptors enhances the neuronal 
excitability. Moreover, it has been reported that ionotropic glutamate receptors, 
including NMDA, AMPA and kainate receptors are located on both pyramidal neurons 
and GABA interneurons within mPFC (Huntley et al. 1994).  

 
In addition to ionotropic glutamate receptors, metabotropic glutamate receptors 

(mGluRs) are also important. Currently, there are eight subtypes of mGluRs (shown in 
Table 1-1), classified into three groups of receptors based on sequence homology, 
preferred signal transduction pathway and pharmacology (Conn and Pin 1997; Kenny 
and Markou 2004). Group I (mGluR1/5) can increase the cleavage of 
phosphoinositidyl inositol biphosphate (PIP2) by activation of PLC. Group II 
(mGluR2/3) and Group III (mGluR4/6/7/8) both can inhibit the adenylyl 
cyclase-mediated formation of cAMP (Cartmell and Schoepp 2000). Within the cortex, 
there are many subtypes of mGluRs, however, the Group I and II receptors are 
abundant in the mPFC area (Watkins 2000). As for the specific localization of these 
receptors, Group I receptors tend to be located postsynaptically on both pyramidal 
neurons and GABA interneurons within mPFC (Muly et al. 2003). Group II mGluRs 
were indicated to play an inhibitory role in regulating glutamate release. (Conn and 
Pin 1997) Group II receptors can also be localized postsynaptically and on glia cells 
as inhibitory receptors (Petralia et al. 1996). Importantly, Group II receptors can also 
function as presynaptic heteroceptors on monoaminergic terminals in the mPFC or as 
autoreceptors inhibiting presynaptic glutamate release (Petralia et al. 1996; Conn and 
Pin 1997; Xi et al. 2002). mGluR2 and mGluR3 are found in various combinations of 
presynaptic, postsynaptic and glial localizations that may reflect differential 
modulation of excitatory amino acid transmission (Petralia et al. 1996; Conn and Pin 
1997). Postsynaptic group II mGluRs in rat prefrontal cortex can induce LTD through 
postsynaptic PKC activation and IP3 receptor-mediated postsynaptic increases of Ca2+  

 18



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1-1. Classification of metabotropic glutamate receptor subtypes. 
 
 Subtype Receptor Coupled G Proteins 

 
Group I 

 
mGluR1

mGluR5

 
Gq 
Gq 

 
Group II 

 
mGluR2

mGluR3

 
Gi/o 
Gi/o 

 
Group III 

 
mGluR4

mGluR6

mGluR7

mGluR8

 
Gi/o 
Gi/o 
Gi/o 
Gi/o 
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concentration via phospholipase C and probably also phospholipase D (Otani et al. 
2002). LY314582, an agonist at inhibitory Group II mGluRs, was recently shown to 
elevate ICSS thresholds (Kenny et al. 2003). This observation suggests that Group II 
mGluRs negatively regulate brain reward function. Blockade of Group II mGluRs in 
the NAc produced hyperlocomotion in rats previously exposed to amphetamine (Chi 
et al. 2006). A recent study using mGluR2-/- knockout (KO) mice was conducted to 
explore the physiological role of mGluR2 in brain function. Although these knockout 
mice appeared to have no behavioral abnormalities, they showed a significant increase 
in locomotor sensitization and conditioned place preference in association with 
repeated cocaine administration (Morishima et al. 2005). This evidence prompted us 
to design studies to examine the role of Group II mGluRs in the development of 
cocaine sensitization in support of our hypothesis that repeated exposure to cocaine 
changes inhibitory modulation of pyramidal neurons, leading to increased excitatory 
outputs to other subcortical brain regions including VTA and NAc, which are 
associated with the development of cocaine sensitization (Steketee 2003). Reduction 
in Group II mGluRs function within either NAc or mPFC has also been suggested to 
be associated with the long term expression of cocaine sensitization, although few 
studies have demonstrated the potential role of Group II mGluRs of mPFC in the 
development of sensitization (Xi et al. 2002; Bowers et al. 2004). 
 
 
Summary 

 
Although the long term neuroadaptive effects of psychomotor stimulants on the 

brain have been studied for many years, much is still left to learn. Behavioral 
sensitization as a classic animal model has been well used in investigating these 
neuronal changes in the brain. Behavioral sensitization is referred to the augmented 
locomotor response to drug challenge after repeated drug exposure. Many studies 
including those from our lab have shown the importance of medial prefrontal cortex 
(mPFC) in the development of cocaine induced behavioral sensitization, which is 
thought to play an important role in craving and relapse in drug addiction (Steketee 
2003; Kalivas 2004). The mPFC is the major source of excitatory output to the VTA 
and NAc, regions previously linked to sensitization (Wolf 1998; Kalivas 2004; 
Steketee 2005). Recent studies in our lab suggest that cocaine-induced sensitization 
results from a reduction in inhibitory modulation of these pyramidal neurons, which 
possibly results from the reduced function of several G protein coupled receptors in 
mPFC, including D2, GABAB as well as mGluR2/3 receptors, acting as both 
autoreceptors and inhibitory postsynaptic receptors (Steketee 2005). Therefore, further 
understanding of the modulation of glutamate output during the development of 
sensitization may not only help to further understand the mechanism of sensitization 
but also provide new pharmacotherapy for drug addiction. 

 
 

 

 20



Specific Aims 
 
Previous studies have implicated an important role for mGluR2/3 receptors in the 

NAc in cocaine mediated responses (Xi et al. 2002; Peters and Kalivas 2006). Similar 
support has yet to be presented for mGluR2/3 receptors in the mPFC, although a study 
has indicated reduced mGluR2/3 receptor function in mPFC after repeated cocaine 
exposure (Bowers et al. 2004). Therefore it is expected that this reduced inhibitory 
transmission in the mPFC may contribute to the increased excitatory output from 
glutamate pyramidal neurons to NAc and VTA seen in cocaine-sensitized animals. 
The increased excitatory output will increase mesolimbic dopamine neuron activity 
and enhance dopamine release in NAc, previously thought to be a critical brain area 
for expression of sensitization. Furthermore, repeated cocaine exposure may reduce 
the inhibitory tone on the mPFC glutamate pyramidal cells so as to change 
neurotransmission, since infusion of an mGluR2/3 receptor antagonist increased mPFC 
glutamate levels, but not an agonist (Melendez and Kalivas 2003), indicating that 
mGluR2/3 has an inhibitory tone on the mPFC glutamate levels.Thus, it is necessary to 
examine whether activation of mPFC mGluR2/3 receptors can prevent the initiation of 
behavioral sensitization, and whether the effect of mPFC mGluR2/3 receptors on 
regulating behavioral sensitization will be reduced following repeated exposure to 
cocaine and also demonstrate how the alteration of glutamate neurotransmission 
within mesocorticolimbic brain regions by mGluR2/3 receptor is correlated with 
behavioral responses induced by repeated cocaine exposure.  

 
Studies have demonstrated a transient cocaine induced increase in mPFC 

glutamate overflow in sensitized animals (Williams and Steketee 2004), however the 
source of the glutamate was not determined. Glutamate can be released from both 
mPFC afferent terminals and axon collaterals of pyramidal neurons. K+-stimulated 
glutamate efflux in the mPFC was enhanced in animals following repeated 
methamphetamine exposure (Stephans and Yamamoto 1995). However, it has yet to 
be known whether repeated cocaine exposure can alter this K+ evoked glutamate 
release in the mPFC and whether a reduction of mGluR2/3 receptor function may be 
one of the possible mechanisms involved in the alteration of glutamate release from 
this vesicular pool in cocaine sensitized animals. Moreover, there is at least one other 
glutamate pool. Recent studies in the nucleus accumbens suggest that cocaine 
influences a pool of glutamate regulated by the cystine/glutamate antiporter (Baker et 
al. 2002; Baker et al. 2002). This antiporter, which is located mainly on glia cells, is a 
Na+-dependent anionic amino acid antiporter that exchanges intracellular glutamate 
for extracellular cystine (Baker et al. 2002). In addition to acting as an autoreceptor, 
mGluR2/3 receptors can decrease extracellular glutamate levels by inhibiting the 
cystine/glutamate antiporter (Baker et al. 2003). Therefore, it is necessary to examine 
whether repeated cocaine exposure can alter release of glutamate from this pool in 
mPFC and whether the reduction of mGluR2/3 receptor function may also be one of 
the possible mechanisms involved in alterated glutamate release from this pool in 
cocaine sensitized animals.  
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In summary, it is hypothesized that repeated exposure to cocaine changes 
neurotransmitter-mediated modulation of pyramidal neurons, leading to increased 
excitatory output to the VTA and NAc. The specific aims of this project will examine 
the role for mPFC mGluR2/3 in the development of cocaine sensitization and 
determine how repeated cocaine exposure alters mesocorticolimbic glutamate 
transmission via alterations of mGluR2/3 receptor function. This project will also 
determine the pools of mPFC glutamate affected by cocaine, as well as the potential 
mechanisms by which glutamate transmission is altered. The following is the 
description of the specific aims of this dissertation research project, which were 
examined in next two chapters.   
 
 
Aim 1 
 

 Aim 1 is to study the role of mGluR2/3 in the development of behavioral and 
neurochemical sensitization. Aim 1 will determine whether intra-mPFC injection of 
the mGluR2/3 agonist 2R, 4R-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) prevents 
the initiation and/or expression of the development of cocaine sensitization. 
 
 
Aim 2  
 

Aim 2 is to study effects of repeated cocaine exposure on mPFC mGluR2/3 
receptor function. Studies will determine whether repeated cocaine exposure 
decreases intra-mPFC APDC modulation of mesocorticolimbic glutamate levels. 
 
 
Aim 3 

  
Aim 3 is to study the releasable pools of glutamate within mPFC affected by 

cocaine and examine the possible mechanisms underlying the alteration by mPFC 
mGluR2/3 receptor. The effects of intra-mPFC APDC infusion on cystine and/or K+ 
induced glutamate release in control and sensitized animals will be determined. 
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Chapter 2. Repeated Exposure to Cocaine Reduces the 
Ability of Medial Prefrontal Cortical Group II Metabotropic 
Glutamate Receptors to Modulate Behavioral and 
Neurochemical Responses to Cocaine 
 
 
Introduction 

 
Repeated administration of psychostimulants such as cocaine can generate a 

progressive enhancement in locomotor activity that can last for months to years. This 
phenomenon is termed behavioral sensitization (Kalivas and Duffy 1990; Kalivas et al. 
1993; Steketee 2003). The gradual neuroadaptations that render the animals 
hypersensitive to psychostimulants are thought to underlie relapse and compulsive 
drug-seeking and drug-taking behaviors (Robinson and Berridge 1993; Kalivas et al. 
1998). Therefore, sensitization is used as a model to study drug addiction. It has been 
widely suggested that alterations of dopamine (DA) transmission in the ventral 
tegmental area (VTA) and nucleus accumbens (NAc) are responsible for the initiation 
and expression, respectively, of behavioral sensitization induced by psychostimulants 
(Kalivas et al. 1993; Robinson and Berridge 1993; Vanderschuren and Kalivas 2000; 
Cornish and Kalivas 2001; Carlezon and Nestler 2002). However, recent studies have 
suggested that additional brain regions such as the medial prefrontal cortex are also 
involved in the development of sensitization (Steketee 2005). 

 
The medial prefrontal cortex (mPFC), which is a component of the 

mesocorticolimbic dopamine system, contains glutamatergic pyramidal neurons, the 
major output neurons, which innervate numerous brain regions, including the nucleus 
accumbens (NAc) and ventral tegmental area (VTA) (Sesack et al. 1989; Takagishi 
and Chiba 1991; Pierce and Kalivas 1997). Lesion studies initially implicated a 
critical role of the mPFC in the development of cocaine-induced sensitization. For 
instance, bilateral lesions of the mPFC with ibotenic acid before repeated cocaine 
treatment prevented the induction of cocaine sensitization and the associated 
neuroadaptations (Li et al. 1999). Glutamate transmission from the mPFC has been 
shown to be increased in sensitized animals (Wolf 1998; Steketee 2003; Kalivas 2004). 
The increased excitatory mPFC output may at least partially result from a reduction in 
inhibitory modulation of mPFC pyramidal neurons. For instance, it has been 
demonstrated that infusions of the dopamine D2 agonist quinpirole or the GABAB 
agonist baclofen into the mPFC blocked the initiation of sensitization to cocaine. 
However, once sensitization was induced, intra-mPFC quinpirole was only able to 
attenuate, while baclofen failed to alter the expression of sensitization (Beyer and 
Steketee 2002; Steketee and Beyer 2005). 

 
There are eight mGluRs, which are classified into three groups of receptors based 

on sequence homology, preferred signal transduction pathway and pharmacology 
(Vezina and Kim 1999; Gerber et al. 2007). Immunohistochemical studies have 
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revealed the distribution of mGluR2/3 receptors. The neocortex and various limbic 
cortical regions contain high receptor levels (Conn and Pin 1997). mGluR2/3 is a Gi 
protein coupled receptor that inhibits cAMP formation. mGluR2/3 receptor can act as 
both postsynaptic inhibitory receptor and autoreceptors. mGluR2/3 receptors are found 
in various combinations of presynaptic, postsynaptic and glial localizations that reflect 
differential modulation of excitatory amino acid transmission (Cartmell and Schoepp 
2000; Kenny and Markou 2004). Previous studies have indicated that Group II 
metabotropic glutamate receptors (mGluRs), which include mGluR2 and mGluR3 
(mGluR2/3) can also play an inhibitory role in regulating mPFC glutamate release. For 
instance, mGluR2/3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) can 
activate K+ currents to reduce the presynaptic action potential amplitude, which is 
ideal for the decrement of synaptic transmission. (Cartmell and Schoepp 2000) The 
selective mGluR2/3 agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine 
(DCG-IV) reduced excitatory synaptic transmission in the mPFC (Otani et al. 2002). 
Based on the information described above, it is expected that like GABAB and 
dopamine D2 receptors, mPFC mGluR2/3 receptors could modulate behavioral 
responses to cocaine. While this has yet to be explored, previous studies showed that 
both systemic and intra-NAc core pretreatment with 
(1R,4R,5S,6R)-4-Amino-2-oxabicyclo[3.1.0]hexane-4,6-dic arboxylic acid 
(LY379268), a mGluR2/3 agonist, inhibited cocaine seeking behavior (Peters and 
Kalivas 2006). Pretreatment with systemic LY379268 reduced cocaine 
self-administration and cocaine-induced reinstatement of drug seeking behavior in a 
dose-dependent manner, an affect that could be reversed by 
(2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid 
(LY341495), an mGluR2/3 antagonist (Adewale et al. 2006). However, the potential 
role of mPFC mGluR2/3 receptors in mediating drug related behavior remains to be 
examined. 

 
Based on the discussion above, the studies described below were designed to test 

the hypothesis that the ability of activation of mPFC mGluR2/3 receptors to reduce 
behavioral and neurochemical responses to cocaine is lost in cocaine sensitized 
animals. The present studies will test this hypothesis by examining the effects of 
intra-mPFC injection of mGluR2/3 receptor agonist, APDC on the acute and sensitized 
locomotor and dopamine responses to cocaine in the NAc. 

 
 

Materials and Methods  
 
 
Animals and Surgery 

 
Male Spraque-Dawley rats that weighed 275–300 g at the time of surgery, were 

housed under 12 hr light/dark cycle and had free access to food and water. Rats were 
housed in groups of four before surgery and were individually housed after surgery. 
Prior to surgery, rats were anaesthetized with Equithesin (3.3 ml/kg) and their heads 
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were mounted in a stereotaxic frame (Kopf Instruments). The scalp was incised to 
expose the skull, and bregma and lambda were aligned in the same horizontal plane. 
Rats received bilateral implants of 20 gauge (14 mm) microdialysis guide cannulae 
3.0 mm above the NAc (+1.4 mm posterior to bregma and +1.4 mm lateral to the 
midline, and -5.0 mm ventral from dura), and/or 26 gauge (14 mm) microinjection 
guide cannulae 1.0 mm above the mPFC (+3.2 mm posterior to bregma and +0.6 mm 
lateral to the midline, and –3.5 mm ventral from dura). (Paxinos and Watson, 1997) 
Cannulae were anchored with 3 stainless steel screws and dental acrylic. Obturators 
(25 or 33 gauge, 14 mm) were inserted into the cannulae in order to prevent their 
occlusion. Animals were allowed at least one week for recovery from surgery. All 
procedures were conducted in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals. The University of Tennessee Health 
Science Center Animal Resources Advisory Committee approved all experimental 
procedures. 

 
 

Microinjections 
 
The rats were manually restrained and obturators were removed from the guide 

cannulae. Stainless steel injectors (15 mm, 33 gauge) attached to 1 µl syringes via PE 
20 tubing mounted on a Sage syringe pump were then inserted into the guide cannulae. 
The tip of the injectors protruded 1 mm beyond the tip of the guide cannulae into the 
mPFC. Animals were not restrained during injection. The infusion rate was 0.5 µl/min 
and a total of 0.5 µl was injected on each side. After infusion, injectors were left in 
place for 30 seconds to allow for diffusion of the infused solution and obturators were 
reinserted into guide cannulae after injections. If animals were receiving 
microinjections as a pretreatment, they were typically given 5 min before systemic 
injections. In acute cocaine response studies, animals were injected a maximum of 4 
times with a minimum 3-day interval. 
 
 
Behavior 

 
A Digiscan Micro Monitoring system connected to a personal computer was used 

to measure motor activity. This system consists of individual activity boxes resting on 
sensor-placed aluminum frames. The frames are equipped with 16 light beams and 
detectors, which are connected through an analyzer to the computer. Photocell counts 
are recorded when the animal breaks the individual beams. For acute cocaine dose 
response studies, animals were adapted to the activity boxes for 60 min before 
injection. Motor activity was monitored for 2 h with 15 min intervals following 
injection. Separate groups of animals were used to test four different doses of APDC 
and each group of animals received each of four possible treatment combinations 
(saline/saline, saline/cocaine, APDC/saline, and APDC/cocaine) in a random order 
with a minimum 3-day intertrial interval. For APDC and LY341495 co-injection 
studies, animals were exposed to four of eight possible treatment combinations 
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(saline/saline, saline/cocaine, APDC/saline, APDC/cocaine, LY341495/saline, 
LY341495/cocaine, APDC+LY341495/saline and APDC+LY341495/cocaine) in a 
random order with a minimum 3-day intertrial interval. Treatment procedures that 
determined the effects of intra-mPFC APDC on the initiation and expression of 
sensitization to cocaine are shown in Table 2-1. 
 
 
In vivo Microdialysis 

 
Microdialysis experiments were conducted with conscious, freely moving rats. 

On day 1 of the microdialysis studies the animals underwent ‘sham dialysis’ in which 
they were given microinjections in the chambers but were not dialyzed. For the next 3 
days, animals received the same treatment in their home cages. Microdialysis probes 
with a membrane length of 2 mm were inserted into guide cannulae the night before 
(at least 16 hr) conduction of the experiment in order to minimize damage-induced 
release of neurotransmitters and metabolites. The probe was continuously perfused 
with dialysis buffer (KCl 2.7 mM, NaCl 140 mM, CaCl2 1.2 mM, MgCl2 1.2 mM, 
plus 0.2 mMphosphate-buffered saline to achieve a pH=7.4) at a flow rate of 2 µl/min 
during sample collection. The flow rate was reduced to 0.003 µl/min during the 
overnight period and was adjusted back to 2 µl/min at least 1 hr before the beginning 
of sample collection. Four 20 min baseline samples were collected before animals 
received intracranial and systemic injections. Nine 20 min samples were collected 
after injections. Motor activity data were collected in conjunction with dialysis sample 
collection as described above. Samples were collected into 20 µl of 0.05 mM HCl in 
0.5 ml microcentrifuge tubes. Samples either immediately underwent high 
performance liquid chromatography (HPLC) analysis of dopamine or were stored at 
-80oC. Samples were stored no more than 2 weeks (Beyer and Steketee 2002). 
 
 
High Performance Liquid Chromatography 

 
The dopamine HPLC system consists of an octadecasilane reversed-phase column 

(2 mm x 15 cm narrowbore, 3 µm, ESA Inc., Chelmsford, MA), an ESA Model 582 
solvent delivery module, an ESA Model 542 refrigerated autosampler and an 
electrochemical system including a guard cell (+400 mV) and an amperometric cell 
(+150 mV). Mobile phase (50 mM NaH2PO4, 2 mM decanesulfonic acid, 0.7 mM 
EDTA, 11% acetonitrile v/v and 11% methanol v/v, pH=6.0 with 6 N NaOH) was 
pumped at a rate of 0.25 ml/min. Dopamine detected by the electrochemical system 
was compared to an external standard curve (1-300 fmol) for quantification. 
 
 
Histology 

 
After completion of studies that involve intracranial cannula implantation, 

animals were deeply anesthetized with sodium pentobarbital and were perfused by 
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Table 2-1. Treatment regimen for sensitization to cocaine. 
 

 
Initiation of cocaine sensitization                              

 
Day 
 

1 2 3 4 11 

 
Saline/Saline 
 

 
s/s 

 
s/s 

 
s/s 

 
s/s 

 
C 

Saline/Cocaine 
 

s/c s/c s/c s/c C 

APDC/Saline 
 

a/s a/s a/s a/s C 

APDC/Cocaine a/c a/c a/c a/c C 
 

Expression of cocaine sensitization                            
 

Day 
 

1 2 3 4 5,11,34 

 
Saline/Saline 
 

 
s 

 
s 

 
s 

 
s 

 
S/C 

Saline/Cocaine 
 

c c c c S/C 

APDC/Saline 
 

s s s s A/C 

APDC/Cocaine 
 

c c c c A/C 

 
 
s=saline, a=APDC (APDC injected into the mPFC) and c=cocaine (15 mg/kg, ip). 
Uppercase letters represent days when motor activity data were collected following 
injection and lowercase letters represent days when animals received injections in 
their home cages.  
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intracardiac infusion of phosphate-buffered saline (50 ml) and 10% formaldehyde (50 
ml). Brains were stored in vials with 10% formaldehyde for at least 3 days before 
sectioning. Brains were sectioned (100 µm) on a vibratome and sections were 
mounted onto gelatin-coated slides. Sections were stained with cresyl violet and 
injection sites and/or dialysis probe placements were visualized by light microscopy 
and verified according to Paxinos and Watson (1997). 
 
 
Drugs 

 
Cocaine hydrochloride was purchased from Sigma Chemical Company. (St Louis, 

MO) APDC and LY341495 were purchased from TOCRIS Bioscience. (Ellisville, 
MO) APDC was diluted with isotonic saline. (0.9% sodium chloride) LY341495 was 
diluted with 1.2eq. NaOH.    
 
 
Statistics 

 
A two-way analysis of variance (ANOVA) with one repeated measure (time) was 

used to analyze time courses of behavioral and neurochemical data. The microdialysis 
data were converted to percentage of baseline in order to avoid variability associated 
with differences in probe placement and probe recovery. Multiple comparisons were 
made with a modified least significant differences test (Milliken and Johnson 1984). 
For dose-response studies total activity data were analyzed by a one-way ANOVA 
with repeated measures. Multiple comparisons were made with a student 
Newman-Keuls test. 

 
 

Results 
 
 
Histology 

 
Figure 2-1 shows typical injection sites and dialysis probe placements in the 

mPFC and NAc respectively. Generally, injections sites were located in the ventral 
portions of the mPFC, specifically in the infralimbic and ventral prelimbic subregions. 
For the microdialysis studies, the tracks of dialysis probes were found to be at or 
medial to the anterior commissure and most of the probe was contained within the 
core and/or shell of the nucleus accumbens. Animals with incorrect injection sites or 
dialysis probe placements were removed from the study. 
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Figure 2-1. Injection sites and dialysis probe placements in the mPFC and NAc. 
Generally, injections sites were located in the ventral portions of the mPFC (a), 
specifically in the infralimbic and ventral prelimbic subregions. For the microdialysis 
studies, the tracks of dialysis probes were found to be at or medial to the anterior 
commissure and most of the probe was contained within the core and/or shell of the 
NAc (b). Animals with incorrect injection sites or dialysis probe placements were 
removed from the study. 
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Intra-mPFC APDC and Acute Behavioral Response to Cocaine 
 
Figure 2-2A illustrates the dose response effect of intracortical APDC injection on 

the acute motor-stimulant response to cocaine (15 mg/kg i.p.). Acute cocaine 
administration (saline/cocaine) significantly increased locomotor activity, an effect 
that was reduced by intra-mPFC pre-treatment with the mGluR2/3 agonist APDC 
(APDC/cocaine). It is shown in Figure 2-2A that the lowest dose of intra-mPFC 
APDC that significantly reduced cocaine induced locomotor activity was 1.5 
nmol/side. Intracortical injection of APDC did not alter the locomotor response to a 
peripheral saline (1 ml/kg i.p.) injection (APDC/saline), suggesting that the inhibitory 
effects of APDC were specific to cocaine-induced behavioral effects. Base on the 
results of these dose response studies, 1.5 nmol/side was used in the following studies. 

 
Figure 2-2B illustrates the effects of intracortical co-injection of APDC and 

LY341495, which is an antagonist of mGluR2/3 receptor on the acute motor-stimulant 
response to cocaine (15 mg/kg i.p.). Acute cocaine administration (saline/cocaine) 
significantly increased locomotor activity, an effect that was significantly reduced by 
intra-mPFC pre-treatment with the mGluR2/3 agonist APDC (APDC/cocaine 1.5 
nmol/side), but not altered by LY341495 alone (LY341495/cocaine 1.5 nmol/side). 
However, when co-injected into the mPFC, LY341495 prevented the inhibitory effects 
of APDC on the acute motor-stimulant response to cocaine 
(APDC+LY341495/cocaine). Like APDC, intracortical injection of LY341495 did not 
alter the locomotor response to a peripheral saline (1 ml/kg i.p.) injection 
(LY341495/saline). 

 
 

Intra-mPFC APDC Injections and Initiation of Cocaine Sensitization 
 
Following the acute cocaine study, we examined the role of mGluR2/3 receptor in 

the development of cocaine sensitization. First, the initiation of cocaine-induced 
behavioral sensitization was determined. (Figure 2-3A) On day 1, animals received 
‘sham dialysis’ in the experimental chambers. Following day 1, animals received the 
same treatment for three consecutive days in their home cages (see Table 2-1). Seven 

days later (day 11) in vivo microdialysis studies were conducted, during which all 
animals received cocaine challenge injection. The results showed that cocaine 
challenge injection induced a sensitized locomotor response during the first 60 min 
after intracortical saline injection in animals previously exposed to cocaine 
(saline/cocaine) as compared to animals receiving cocaine for the first time 

(saline/saline). However, the animals that received repeated intracortical APDC 
injections before each of their daily cocaine injections (APDC/cocaine) did not show 
an enhanced behavioral response to a challenge injection of cocaine. Furthermore, the 
behavioral responses of these animals were not significantly different from the 
animals receiving cocaine for the first time [(saline/saline) or (APDC/saline)]. 
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Figure 2-2. The effects of intra-mPFC injection of APDC on the acute motor response 
to cocaine (15 mg/kg i.p.). The data are expressed as mean photocell counts ± SEM 
for (A) dose response study and (B) APDC and LY341495 co-injection. 
Mix=APDC+LY341495. The significance of the differences between treatment groups 
was determined by one-way ANOVA with repeated-measures followed by a student 
Newman-Keuls test. (A) *P < 0.05 compared to saline/saline and +P < 0.05 compared 
to saline/cocaine. (B) *P < 0.05 compared to saline/saline and +P < 0.05 compared to 
cocaine saline/cocaine. The F scores from one way ANOVA were as followed: (A) 
0.015 nmol/side F(3,23)=117.5 P<0.0001; 0.5 nmol/side F(3,31)=12.87 P<0.0001; 1.5 
nmol/side F(3,30)=33.93 P<0.0001; 5 nmol/side F(3,31)=23.88 P<0.0001; 15 
nmol/side F(3,30)=27.25 P<0.0001. (B) F(7,92)=20.09 P<0.0001. 
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Figure 2-3. The effects of intra-mPFC APDC (1.5 nmol/side) injection on the 
initiation of behavioral and neurochemical sensitization to cocaine (15 mg/kg i.p.). 
The data are expressed as mean photocell counts ± SEM for (A) last day of exposure 
to cocaine. The measurements of DA were made following the cocaine challenge and 
are expressed as mean percent of baseline ± SEM. (B). The significance of the 
differences between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (A) 
Treatment effect F(3,25)=4.498, p=0.0122; Time effect F(11,25)=33.993, p<0.0001; 
and Interaction effect F(33,275)=3.944, p<0.0001. (B) Treatment effect F(3,25)=4.635, 
p=0.0104; Time effect F(11,25)=8.21, p<0.0001; and Interaction effect 
F(33,275)=1.688, p=0.0135. (A) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to saline/cocaine. (B) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to cocaine saline/cocaine. 
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The effects of intracortical APDC injection on the initiation of neurochemical 
sensitization are illustrated in Figure 2-3B. Baseline dopamine concentrations were 
not significantly different between any of the groups. [F(3,25)=0.557, p=0.6482] The 
baseline for the four groups are as followed: (saline/saline)=40 ± 5 fmol/20 min; 
(saline/cocaine)=34 ± 6 fmol/20 min; (APDC/saline)=34 ± 5 fmol/20 min; 
(APDC/cocaine)=43 ± 5 fmol/20 min. A peripheral challenge injection of cocaine 
significantly increased DA concentrations in the NAc of animals previously exposed 
to cocaine (saline/cocaine) as compared to animals receiving cocaine for the first time 
(saline/saline). However, the animals that received repeated intra-mPFC APDC 
injections before each of their daily injections of cocaine (APDC/cocaine) did not 
show a significantly augmented dopaminergic response to a cocaine challenge.  
Furthermore, this response was not significantly different from animals receiving 
cocaine for the first time [(saline/saline) and (APDC/saline)]. 
 
 
Intra-mPFC APDC Injections and Expression of Cocaine Sensitization 

 
These studies were designed to demonstrate the ability of intra-mPFC APDC to 

modulate the expression of cocaine sensitization after 1 day, 7 day and 30 day 
withdrawal. On day 1, animals received ‘sham dialysis’ in the experimental chambers. 
Over the next three consecutive days, animals received same treatment in their home 
cages. The treatment regimen is described in Table 2-1. 

 
Figures 2-4, 2-5 and 2-6 illustrate the effects of APDC on the expression of 

cocaine-induced behavioral and neurochemical sensitization following repeated 
cocaine pretreatment after 1 day, 7 days and 30 days respectively. In all the 
withdrawal time points, a cocaine challenge injection evoked a sensitized locomotor 
response in animals (saline/cocaine) previously exposed to cocaine after saline 
intracortical injection when compared to control animals (saline/saline) receiving their 
first cocaine injection. Intra-mPFC APDC injection before a cocaine challenge 
injection (APDC/cocaine) blocked the expression of the sensitized response in 
animals previously exposed to cocaine after 1 day withdrawal (Figure 2-4A). 
However, this effect was no longer apparent following 7 days (Figure 2-5A) and 30 
days (Figure 2-6A) withdrawal. Interestingly, it was not consistently observed that 
intra-mPFC APDC injection significantly reduced the locomotor response in animals 
receiving cocaine for the first time (APDC/saline) as compared to control animals 
(saline/saline), an effect that we observed in the previous acute cocaine study. 
Intra-mPFC APDC injection attenuated the acute cocaine response in animals of 7 
days and 30 days withdrawal groups but not 1 day withdrawal group.  

 
The expression of neurochemical sensitization after 1 day, 7 days and 30 days 

withdrawal are shown in Figure 2-4B, Figure 2-5B and Figure 2-6B respectively. 
Baseline dopamine concentrations were not significantly different between any of the 
groups.  
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Figure 2-4. The effects of intra-mPFC APDC (1.5 nmol/side) injection on the 
expression of behavioral and neurochemical sensitization to cocaine (15 mg/kg i.p.) 
after 1 day withdrawal. The data are expressed as mean photocell counts ± SEM for 
(A) last day of exposure to cocaine. The measurements of DA were made following 
the cocaine challenge and are expressed as mean percent of baseline ± SEM. (B). The 
significance of the differences between treatment groups was determined by two-way 
ANOVA with repeated-measures followed by post hoc analysis using a modified least 
significant differences test (Milliken and Johnson, 1984). F scores were as follows: (A) 
Treatment effect F(3,21)=7.012, p=0.0019; Time effect F(11,21)=31.332, p<0.0001; 
and Interaction effect F(33,231)=5.632, p<0.0001. (B) Treatment effect F(3,21)=6.451, 
p=0.0029; Time effect F(11,21)=7.879, p<0.0001; and Interaction effect 
F(33,231)=1.887, p=0.0038. (A) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to saline/cocaine. (B) *P < 0.05 compared to saline/saline and +P < 0.05  
compared to cocaine saline/cocaine. 
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Figure 2-5. The effects of intra-mPFC APDC (1.5 nmol/side) injection on the 
expression of behavioral and neurochemical sensitization to cocaine (15 mg/kg i.p.) 
after 7 day withdrawal. The data are expressed as mean photocell counts ± SEM for 
(A) last day of exposure to cocaine. The measurements of DA were made following 
the cocaine challenge and are expressed as mean percent of baseline ± SEM. (B). The 
significance of the differences between treatment groups was determined by two-way 
ANOVA with repeated-measures followed by post hoc analysis using a modified least 
significant differences test (Milliken and Johnson, 1984). F scores were as follows: (A) 
Treatment effect F(3,20)=5.161, p=0.0084; Time effect F(11,20)=45.261, p<0.0001; 
and Interaction effect F(33,220)=4.964, p<0.0001. (B) Treatment effect F(3,20)=4.914, 
p=0.0102; Time effect F(11,20)=18.099, p<0.0001; and Interaction effect 
F(33,220)=3.096, p<0.0001. (A) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to saline/cocaine. (B) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to cocaine saline/cocaine. 

 35



 

 
 
 

Figure 2-6. The effects of intra-mPFC APDC (1.5 nmol/side) injection on the 
expression of behavioral and neurochemical sensitization to cocaine (15 mg/kg i.p.) 
after 30 day withdrawal. The data are expressed as mean photocell counts ± SEM for 
(A) last day of exposure to cocaine. The measurements of DA were made following 
the cocaine challenge and are expressed as mean percent of baseline ± SEM. (B). The 
significance of the differences between treatment groups was determined by two-way 
ANOVA with repeated-measures followed by post hoc analysis using a modified least 
significant differences test (Milliken and Johnson, 1984). F scores were as follows: (A) 
Treatment effect F(3,18)=8.062, p=0.0013; Time effect F(11,18)=34.892, p<0.0001; 
and Interaction effect F(33,198)=4.088, p<0.0001. (B) Treatment effect F(3,18)=6.512, 
p=0.0036; Time effect F(11,18)=15.143, p<0.0001; and Interaction effect 
F(33,198)=3.441, p<0.0001. (A) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to saline/cocaine. (B) *P < 0.05 compared to saline/saline and +P < 0.05 
compared to cocaine saline/cocaine. 
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The baseline for the four groups in three experimental groups are as follows: 1 
day withdrawal [F(3,21)=0.657, p=0.5876] (saline/saline)=36 ± 5 fmol/20 min; 
(saline/cocaine)=30 ± 5 fmol/20 min; (APDC/saline)=29 ± 6 fmol/20 min; 
(APDC/cocaine)=39 ± 7 fmol/20 min. 7 days withdrawal [F(3,20)=0.132, p=0.94] 
(saline/saline)=46 ± 5 fmol/20 min; (saline/cocaine)=47 ± 5 fmol/20 min; 
(APDC/saline)=49 ± 8 fmol/20 min; (APDC/cocaine)=44 ± 8 fmol/20 min. 30 days 
withdrawal [F(3,21)=2.141, p=0.1254] (saline/saline)=32 ± 7 fmol/2 0min; 
(saline/cocaine)=22 ± 5 fmol/20 min; (APDC/saline)=48 ± 12 fmol/20 min; 
(APDC/cocaine)=28 ± 5 fmol/20 min. Consistent with the behavioral study, a cocaine 
challenge produced a sensitized DA response in the NAc (saline/cocaine) in animals 
previously exposed to cocaine. This effect was attenuated in rats that received an 
intra-mPFC APDC injection before their peripheral challenge injection of cocaine 
after 1 day withdrawal (APDC/cocaine) (Figure 2-4B).However, this effect was no 
longer apparent following 7 days and 30 days withdrawal (Figure 2-5B and 
Figure2-6B respectively). It should be noted that intra-mPFC APDC injection 
produced a non-significant trend towards reducing acute cocaine-induced DA 
concentrations in the NAc (APDC/saline) of all three experimental groups. 
 
 
Discussion 

 
The present study demonstrated that intra-mPFC microinjection of APDC reduced 

the acute motor-stimulant response as well as the initiation of behavioral and 
neurochemical sensitization to cocaine. Once sensitization was induced, intracortical 
administration of APDC blocked cocaine-induced behavioral and neurochemical 
responses in sensitized animals after 1 day of withdrawal, but not after 7 or 30 days of 
withdrawal. Therefore, the main conclusion from the present study is that the ability 
of mGluR2/3 receptors in the mPFC to modulate behavioral and neurochemical 
responses to cocaine is reduced in cocaine-sensitized animals.  
 
 
Medial Prefrontal Cortex and Acute Motor Activity 

 
The glutamatergic pyramidal neurons are the major output neurons in the mPFC. 

It has been demonstrated that these pyramidal neurons send significant afferents to 
many subcortical brain regions including the NAc and VTA. (Sesack et al. 1989; 
Takagishi and Chiba 1991; Pierce and Kalivas 1997) Electrical stimulation of the 
medial prefrontal cortex induces glutamate release in the ventral tegmental area (VTA) 
of freely moving animals (Rossetti et al. 1998). In addition, electrical stimulation of 
the medial prefrontal cortex increases dopamine release in the striatum (Taber and 
Fibiger 1993). Previous studies have shown a significant positive correlation between 
DA in the NAc and locomotor activity after systemic administration of cocaine 
(Hedou et al. 1999). Therefore, by providing drive to subcortical brain regions in the 
mesolimbic DA system, which plays an important role in governing locomotor 
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activity, (Steketee et al. 1992; Tzschentke 2001) the mPFC is obviously in a position 
to modulate motor behavior.  

 
Studies have reported the neurotransmission in the mPFC can affect acute motor 

activity induced by psychostimulants. Intra-mPFC microinjections of quinpirole, a 
DA D2-like agonist and baclofen, which is a GABAB agonist can dose-dependently 
block acute cocaine induced motor activity (Beyer and Steketee 2000; Steketee and 
Beyer 2005). Besides DA and GABA, glutamate modulation of pyramidal neurons is 
also well studied in mPFC. Glutamate terminals mainly come from mediodorsal 
nucleus of the thalamus, the hippocampus and the amygdala. In addition, mPFC 
pyramidal neurons have recurrent collaterals that synapse on other pyramidal neurons 
located within this region (Sesack et al. 1989; Pirot et al. 1994; Bacon et al. 1996; Jay 
et al. 1996; Steketee 2005). Glutamate released from these terminals may act on 
glutamate receptors to influence neurotransmission in the mPFC. Thus, 
pharmacological agents may influence the acute motor response to psychostimulants 
by directly affecting these glutamate receptors. In the present study, it was found that 
intra-mPFC injection of mGluR2/3 agonist APDC reduced the acute motor response to 
cocaine. The selectivity of APDC was verified by co-injection of APDC plus 
LY341495, which is an antagonist of mGluR2/3 receptor. Therefore, activation of 
mGluR2/3 receptors in the mPFC reduces the acute motor response to cocaine. It was 
also found that intra-mPFC injection of APDC or LY341495 did not significantly alter 
the motor responses to saline, suggesting that the spontaneous locomotor activity 
differs markedly from that induced by psychostimulants, such as cocaine.  

 
Notably, intra-mPFC APDC (1.5 nmol/side) was able to significantly reduce the 

acute motor-stimulant response to cocaine in the initial dose-response studies, 
however this result was not consistently replicated in the studies of the effects of 
intra-mPFC APDC on the expression of sensitization. Desensitization of mPFC 
mGluR2/3 receptors caused by stress associated with daily pretreatment of saline 
injections and restraints could be one possible explanation for this effect. Acute stress 
can induce glutamate release in mPFC. (Moghaddam 2002) Therefore, repeated 
increases in glutamate transmission induced by repeated stress exposures could induce 
mGluR2/3 receptor desensitization, which may explain the reduced effects of 
intra-mPFC APDC in sensitization studies.  

 
Taken together, these studies, combined with other recent reports, suggest that 

excitatory transmission from the mPFC to subcortical dopaminergic brain regions 
play an important role in psychostimulant-mediated behaviors, and activation of 
mGluR2/3 can reduce the acute motor response to psychostimulant, such as cocaine. 
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Cortical Excitatory Transmission and Behavioral Sensitization 
 
The critical role of the medial prefrontal cortex (mPFC) in the development of 

cocaine-induced sensitization has been shown in many research reports. Moreover, 
accumulating evidence has shown that the alterations of various mPFC 
neurotransmitter systems, including dopamine, serotonin, glutamate, noradrenaline, 
acetylcholine, GABA, and neuropeptides, including their receptors may contribute to 
the development of cocaine sensitization and addiction. (Steketee 2003) More 
specifically, previous studies suggested that altered modulation of mPFC pyramidal 
neurons is involved in the mechanisms for sensitization. Repeated cocaine 
administration increased the excitability of mPFC neurons possibly via reducing the 
activity of the potassium inward rectifiers and voltage-gated K+ currents as long as 3 
weeks after withdrawal. (Nasif et al. 2005) In addition, chronic exposure to cocaine 
facilitates the responsiveness of Ca2+ currents, particularly via the activated L-type 
Ca2+ channels, to excitatory stimuli in rat mPFC pyramidal neurons (Nasif et al. 2005). 
Consistent with these findings, it has been shown that repeated cocaine exposure 
produced time-dependent increases in cocaine-mediated mPFC glutamate overflow, 
suggesting that transient increases in cocaine-induced glutamate levels in the mPFC 
during the first week of withdrawal may play an important role in the development of 
behavioral sensitization to cocaine. (Williams and Steketee 2004) Excitatory output 
from the mPFC could result from an increase in excitatory transmission via ionotropic 
receptors, such as increased Ser845 phosphorylation of the GluR1 subunit in 
prefrontal cortex. (Zhang et al. 2007) Also a decrease in inhibitory glutamate 
transmission via group II metabotropic glutamate receptors (mGluR2/3) may result in 
enhanced excitatory output from the mPFC. Therefore, our study was designed to 
demonstrate the potential role of mPFC mGluR2/3 receptor in sensitization.  
 
 
Cortical mGluR2/3 Receptors and Behavioral Sensitization 

 
Specific locations for mGluR2/3 receptors remain to be identified in the mPFC, 

however, it is reasonable to assume that mGluR2/3 receptors are localized on the 
glutamatergic terminals and on pyramidal neurons, which is supported by an 
electrophysiological study that has shown postsynaptic prefrontal cortical mGluR2/3 
receptor activation can induce LTD of pyramidal neurons. (Otani et al. 2002) 
Therefore, it is possible that intra-mPFC injection of mGluR2/3 receptor agonist APDC, 
by inhibiting excitatory output from this region, could prevent cocaine-induced motor 
activity as well as the initiation of sensitization as was seen in the present study. 
However, once sensitization was induced, APDC was no longer capable of 
modulating the behavioral response to cocaine following prolonged withdrawal from 
cocaine. These data suggest that repeated exposure to cocaine decreases mGluR2/3 
receptor function, consistent with previous studies suggesting the functional loss of 
mGluR2/3 receptors in NAc and mPFC after repeated cocaine exposure (Xi et al. 2002; 
Bowers et al. 2004). Taken together, these results suggest that the loss of function of 
mGluR2/3 receptor is not restricted to one brain region, but most possibly distributed 
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within the mesocorticolimbic area.  
 
The loss of function of mGluR2/3 receptor is due to the reduction of receptor 

coupling rather than receptor numbers. (Xi et al. 2002) Moreover, chronic cocaine 
administration reduces G protein signaling efficacy in PFC at least in part by 
increasing the expression of AGS3, which binds to GiαGDP and inhibits GDP 
dissociation. The cocaine-induced reduction in Giα coupling to mGluR2/3 could be 
reversed by infusing AGS3 antisense into PFC. (Bowers et al. 2004) In addition, 
AGS3 expression was not elevated during early withdrawal, (Bowers et al. 2004) 
which might in part explain why APDC blocked the expression of sensitization after 1 
day withdrawal in the present study. 
 
 
Summary 

 
In conclusion, the present study demonstrated that intra-mPFC APDC prevented 

the acute cocaine induced motor response and initiation of the sensitized motor 
stimulant responses to cocaine. However the ability of intra-mPFC APDC to block 
cocaine induced behavior was lost in sensitized animals after prolonged, but not short 
term withdrawal. These data provide additional support for the idea that sensitization 
to cocaine results from an increase in excitatory output from the mPFC to subcortical 
regions, which in part results from the disinhibition of mPFC pyramidal neurons. 
(Steketee 2005) The results from the present study are similar to previous studies 
examining the role of mPFC dopamine D2 and GABAB receptors in the development 
of sensitization. Infusions of the dopamine D2 agonist quinpirole or the GABAB 
agonist baclofen into the mPFC blocked the initiation of sensitization to cocaine. 
However, once sensitization was induced, intra-mPFC quinpirole was only able to 
attenuate, while baclofen failed to alter, the expression of sensitization. (Beyer and 
Steketee 2002; Steketee and Beyer 2005) This finding is supported by recent findings 
which demonstrated that repeated cocaine exposure reduces mGluR2/3 responsiveness 
at mPFC excitatory synapses after 5 day withdrawal (Huang et al. 2007).  
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Chapter 3. Repeated Exposure to Cocaine Alters the 
Modulation of Mesocorticolimbic Glutamate Transmission 
by Medial Prefrontal Cortex Group II Metabotropic 
Glutamate Receptors 
 
 
Introduction 

 
Repeated cocaine exposure enhances glutamatergic output from medial prefrontal 

cortex (mPFC) to subcortical brain regions, including the nucleus accumbens (NAc) 
and ventral tegmental area (VTA). The enhanced glutamatergic output is associated 
with augmented behavioral responses to cocaine challenge, which is referred as 
behavioral sensitization (Pierce et al. 1996; Wolf 1998; Tzschentke 2000; Steketee 
2003; Kalivas 2004). It has been suggested that the enhanced glutamatergic output 
may result from increased excitatory drive in the mPFC. For example, a transient 
increase of glutamate overflow was observed in cocaine sensitized animals after 1 day 
and 7 days of withdrawal but not 30 days of withdrawal (Williams and Steketee 2004). 
Repeated cocaine administration increased membrane excitability of pyramidal 
neurons in the rat medial prefrontal cortex via an increase in voltage-sensitive calcium 
currents (Nasif et al. 2005). Besides the enhancement of excitatory drive, it has been 
hypothesized that loss of inhibitory control may also be responsible for the 
enhancement of glutamatergic output from mPFC (Steketee 2003). Previous studies 
have indicated the reduction of receptor function including dopamine D2 and GABAB, 

in the mPFC of cocaine sensitized animals (Beyer and Steketee 2002; Steketee and 
Beyer 2005). In addition, repeated cocaine administration has been shown to promote 
long-term potentiation induction in rat mPFC (Huang et al. 2007). Both GABAA 
receptor-mediated synaptic currents and GABAA alpha1 subunit expression in mPFC 
pyramidal neurons were reduced following repeated cocaine exposure (Huang et al. 
2007). Thus, it was suggested that this promotion was caused by cocaine-induced 
reduction of GABAA receptor-mediated inhibition of mPFC pyramidal neurons 
(Huang et al. 2007). Consistent with previous studies, study in Chapter 2 indicated 
that repeated cocaine exposure reduced the ability of Group II metabotropic glutamate 
receptors (mGluR2/3) to modulate the behavioral and neurochemical responses to 
cocaine after a long period of withdrawal, suggesting that the functional reduction of 
this inhibitory receptor is correlated with the long term expression of cocaine induced 
behavioral sensitization. Therefore, the functional reduction of these inhibitory 
receptors may cause the enhancement of mesocorticolimbic glutamate transmission in 
sensitized animals upon cocaine challenge.  

 
mGluR2/3 receptors were indicated to play an inhibitory role in regulating 

glutamate release. mGluR2 and mGluR3 are found in various combinations of 
presynaptic, postsynaptic and glial localizations that may reflect differential 
modulation of excitatory amino acid transmission (Petralia et al. 1996; Conn and Pin 
1997). Inhibition of presynaptic mGluR2/3 receptors elevates extracellular glutamate 
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level in the NAc (Xi et al. 2002). In addition to acting as an autoreceptor and/or 
postsynaptic inhibitory receptor, mGluR2/3 receptors can decrease extracellular 
glutamate levels in the NAc by inhibiting the Na+-independent cystine/glutamate 
antiporter (Baker et al. 2002; Baker et al. 2002; Baker et al. 2003). It has been shown 
that repeated cocaine administration reduced the function of mGluR2/3 receptors in the 
NAc (Xi et al. 2002). The functional reduction of mGluR2/3 receptors in the NAc may 
partly result in the enahanced glutamate release within this region associated with 
cocaine sensitization. However, few studies have been conducted to reveal the 
modulation of mesocorticolimbic glutamate transmission by mPFC mGluR2/3 
receptors. Thus, we designed experiments to examine the role of mGluR2/3 receptors 
in modulation of mesocorticolimbic glutamate transmission in both repeated saline 
and cocaine pretreated animals.  

 
Studies have demonstrated a transient cocaine induced increase in mPFC 

glutamate overflow in sensitized animals (Williams and Steketee 2004) However, the 
source of the glutamate was not determined. Cystine/glutamate antiporters are also 
located on the cells in the mPFC (Melendez et al. 2005). Thus, glutamate released 
from both mPFC afferent terminals and axon collaterals of pyramidal neurons can 
include both vesicular and non-vesicular pools of glutamate. Intra-mPFC infusion of 
an mGluR2/3 receptor antagonist but not an agonist elevated the glutamate level in the 
mPFC (Melendez et al. 2005), suggesting that mGluR2/3 receptors may negatively 
regulate the glutamate release in the mPFC. It has been shown that K+-stimulated 
glutamate efflux in the mPFC was enhanced in animals following repeated 
methamphetamine exposure (Stephans and Yamamoto 1995), suggesting that repeated 
cocaine exposure may influence the vesicular pool of glutamate. Recent evidence 
suggested that the non-vesicular releasable pool of glutamate regulated by the 
cystine/glutamate antiporter in the NAc was modulated by repeated cocaine 
administration (Baker et al. 2003). However, it has yet to be determined whether 
repeated cocaine exposure can alter the release of this pool of glutamate in the mPFC 
and whether the reduction of mGluR2/3 receptor may be one of the possible factors 
involved in alteration of this glutamate releasing pool in cocaine sensitized animals. 
Therefore, it is necessary to examine them. 

  
Therefore, pharmacological agents of mGluR2/3 receptors including an agonist, 

LY379268 and/or an antagonist, LY341495 were chosen to functionally assess effects 
of repeated cocaine exposure on mPFC mGluR2/3 receptors’ modulation of 
mesocorticolimbic glutamate transmission during the development of cocaine 
sensitization. 

 
 

 
 
 
 

 42



Materials and Methods 
  
 
Animals and Surgery 

 
Male Spraque-Dawley rats that weighed 275–300 g at the time of surgery, were 

housed under 12 hr light/dark cycle and had free access to food and water. Rats were 
housed in groups of four before surgery and were individually housed after surgery. 
Prior to surgery, rats were anaesthetized with anesthetic (ketamine hydrochloride and 
xylazine: 80/12.5 mg/kg respectively; i.p.) and their heads were mounted in a 
stereotaxic frame (Kopf Instruments). The scalp was incised to expose the skull, and 
bregma and lambda were aligned in the same horizontal plane. All animals received 
microdialysis guide cannulae implanted 3.0 mm above the mPFC (A/P, + 3.2 mm; 
M/L, ± 0.6 mm and D/V, -1.5 mm) for dual probe-microdialysis experiments, in 
which animals also ipslaterally received implants of guide cannulae 3.0 mm above the 
NAc (A/P, + 1.4 mm; M/L, ± 1.4 mm and D/V, -5.0 mm) or VTA (A/P, -4.8 mm; M/L, 
± 0.6 mm and D/V, -5.4 mm). For single probe-microdialysis experiments of the 
present study, animals only received implant of 20 gauge (14 mm) microdialysis guide 
cannula 3.0 mm above the mPFC. The A/P, M/L and D/V coordinates are based on 
bregma, midline and dura, respectively (Paxinos and Watson, 1997). Cannulae were 
anchored with 3 stainless steel screws and dental acrylic. Obturators (25 gauge, 14 
mm) were inserted into the cannulae in order to prevent their occlusion. Animals were 
allowed at least one week to recover from surgery. All procedures were conducted in 
accordance with the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals. The University of Tennessee Health Science Center Animal 
Resources Advisory Committee approved all experimental procedures. 
 
 
In vivo Microdialysis 

 
Microdialysis experiments were conducted in conscious, freely moving rats. 

Animals received daily injections of saline (1.0 ml/kg) or cocaine (15 mg/kg) over 4 
consecutive days in their home cages. In vivo microdialysis experiments were 
conducted 1, 7 or 30 days following the last of the daily injections of cocaine. Dialysis 
probes (2 mm active membrane) were introduced into the guide cannulae 16 hr prior 
to the beginning of the dialysis experiments, in order to minimize damage-induced 
release of neurotransmitters and metabolites. 
 

Experiment 1: mGluR2/3 receptor and mesocorticolimbic glutamate transmission 
The experiment was designed as follows: The probe was continuously perfused with 
dialysis buffer (KCl 2.7 mM, NaCl 140 mM, CaCl2 1.2 mM, MgCl2 1.2 mM, plus 0.2 
mM phosphate-buffered saline to achieve a pH=7.4) at a flow rate of 2 µl/min during 
sample collection. The flow rate was reduced to 0.003 µl/min during the overnight 
period and was adjusted back to 2 µl/min at least 1hr before the beginning of sample 
collection. Following collection of four baseline samples, 
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(2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid 
(LY341495), a mGluR2/3 receptor antagonist, in escalating concentrations (0.1, 1 and 
10 µM), was infused into the mPFC via reverse dialysis Four samples were collected 
from the mPFC, nucleus accumbens and/or VTA after each change in concentration. 
Samples were collected into 10 µl of 0.05 mM HCl in 0.5 ml microcentrifuge tubes. 
Samples either immediately underwent high performance liquid chromatography 
(HPLC) analysis of glutamate or were stored at -80oC. Samples were stored no more 
than 2 weeks. 

 
Experiment 2: mGluR2/3 receptor and mPFC glutamate release 

The experiment was designed as follows: All the animals received single probe in the 
mPFC. All the procedures were the same as the above except that animals received 
infusions of KCl (80 mM) or cystine (50 µM) following collection of baseline 
samples. After collection of 4 additional samples, animals received intra-mPFC 
infusions of (1R,4R,5S,6R)-4-Amino-2-oxabicyclo[3.1.0]hexane-4,6-dic arboxylic 
acid (LY379268), an agonist of mGluR2/3 receptor with KCl (80 mM) or cystine (50 
µM) buffer via reverse dialysis for another 4 samples. Then, animals continued to 
receive infusions of dialysis buffer alone for the last 4 samples. In general, samples 
were collected every 20 minutes. Samples were collected into 10 µl of 0.05 M HCl in 
0.5 ml microcentrifuge tubes. Samples either immediately underwent high 
performance liquid chromatography (HPLC) analysis of glutamate or were stored at 
-80oC. Samples were stored no more than 2 weeks. 
 
 
High Performance Liquid Chromatography 

 
The glutamate HPLC system consists of a 25 cm (5 µm) octadecasilane column, a 

Shimadzu LC-10AD solvent delivery system (Shimadzu corporation, Kyoto, Japan), a 
Shimadzu SIL-10AD autosampler and a fluorescence spectrophotometer (Shimadzu 
RF-10AXL). Samples underwent derivatization (20 µl sample + 20 µl fluoraldehyde) 
before being injected onto the column via the autosampler. The flow rate of the 
mobile phase (62 mM NaH2PO4, 0.5% v/v tetrahydrofuran and 40% v/v methanol, pH 
=6.3 with 6 N NaOH) was 1.0 ml/min. The fluorescence spectrophotometer detected 
glutamate with excitation wavelength of 260 nm and emission wavelength of 455 nm. 
The external standard curve ranged from 0.5-25 pmol for quantification. 
 
 
Behavior 

 
Animals’ locomotor activity was measured in a micromax monitoring system 

(Accuscan Instruments, Columbus, OH, USA) as previously described (Beyer and 
Steketee 2002) to verify the treatment regimen produced sensitization. Within 3 days 
after the in vivo microdialysis experiments, animals were adapted to activity boxes 
(45 × 24 × 19 cm), which were set into individual sound attenuating chambers, for 
60 min. Then, all animals received systemic injections of cocaine (15 mg/kg, i.p.) and 
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locomotor activity was monitored for 2 h, in 15 min bins, following injection. 
 
 
Histology 

 
After completion of studies that involve intracranial cannula implantation, 

animals were deeply anesthetized with sodium pentobarbital and were perfused by 
intracardiac infusion of phosphate-buffered saline (50 ml) and 10% formaldehyde (50 
ml). Brains were stored in vials with 10% formaldehyde for at least 3 days before 
sectioning. Brains were sectioned (100 µm) on a vibratome and sections were 
mounted onto gelatin-coated slides. Sections were stained with cresyl violet and 
dialysis probe placements were visualized by light microscopy and verified according 
to The Rat Brain in Stereotaxic Coordinates (Paxinos and Watson, 1997). 
 
 
Drugs 

 
Cocaine hydrochloride was purchased from Sigma Chemical Company. (St Louis, 

MO) LY379268 (mGluR2/3 selective agonist) and LY341495 (mGluR2/3 selective 
antagonist) were purchased from TOCRIS Bioscience. (Ellisville, MO) LY379268 
was diluted with isotonic saline. (0.9% sodium chloride) LY341495 was diluted with 
1.2 eq. NaOH. KCl (80 mM) buffer was prepared as followed: KCl 82.7 mM, NaCl 
60 mM, CaCl2 1.2 mM, MgCl2 1.2 mM, plus 0.2 mM phosphate-buffered saline to 
achieve a pH= 7.4. Cystine (50 µM) was diluted with dialysis buffer. 
 
 
Statistics 

 
A two-way analysis of variance (ANOVA) with one repeated measure (time) was 

used to analyze time courses of neurochemical data. The microdialysis data were 
converted to percentage of baseline in order to avoid variability associated with 
differences in probe placement and probe recovery. Multiple comparisons were made 
with a modified least significant differences test (Milliken and Johnson 1984). Total 
motor activity data and difference in baseline neurotransmitter levels between saline 
and cocaine pre-treated animals were analyzed using unpaired Student's t-test. 
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Results 
 
 
Experiment 1: mGluR2/3 Receptor and Mesocorticolimbic Glutamate Transmission 
 
 
Behavior 

 
Figure 3-1 shows that the motor response to cocaine was significantly enhanced 

in animals that had previously received the daily repeated cocaine injections. After at 
least 1 week recovery from surgery, animals received once daily systemic injections  
of saline or cocaine (15 mg/kg) over 4 consecutive days. After one day, one week or 
one month withdrawal, saline and cocaine pre-treated animals were subjected to 
reverse dialysis of LY341495 (0.1, 1 and 10 µM) in ascending concentration into the 
mPFC. Within 3 days following microdialysis experiments, animals were challenged 
with a systemic injection of cocaine. 

 
 

Effects of mGluR2/3 Receptor Antagonist LY341495 on Glutamate Levels in the mPFC 
 
Figure 3-2 shows the effects of the infusion of LY341495 (0.1, 1 and 10 µM) on 

extracellular glutamate levels within the mPFC in animals that previously received 
repeated cocaine exposure. LY341495 produced a trend towards increased glutamate 
levels in saline control animals following 1 day withdrawal. This effect achieved 
significance in control animals following prolonged withdrawal (7 days and 30 days). 
After 1 day withdrawal from the repeated cocaine injections, infusions of three 
different doses of LY341495 into the mPFC produced significantly enhanced 
extracellular glutamate levels in this region in cocaine pre-treated animals as 
compared to saline pre-treated animals (Figure 3-2 a). However, LY341495 failed to 
induce an enhancement of glutamate levels in cocaine pre-treated animals as 
compared to saline animals following 7 days and 30 days of withdrawal (Figure 3-2b 
and Figure 3-2c respectively). In contrast, LY341495 produced a significant reduced 
glutamate level in cocaine pretreated animals following 7 days of withdrawal, when 
LY341495 achieved the highest concentration (10 µM). Furthermore, no significant 
differences in basal extracellular glutamate levels (pmol/20 min; mean ± SEM) were 
observed between saline and cocaine pre-treated animals. (a) After 1 day withdrawal: 
Repeated Cocaine, 3.6 ± 0.8; Saline, 4.6 ± 0.6; (t=1.048 d.f.=21 p=0.3067) (b) After 7 
days withdrawal: Repeated Cocaine, 5.8 ± 1.5; Saline, 6.6 ± 0.8; (t=0.4350 d.f.=19 
p=0.6685) (c) After 30 days withdrawal: Repeated Cocaine, 8.0 ± 1.3; Saline, 6.2 ± 
0.6; (t=1.338 d.f.=20 p=0.1958). 
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Figure 3-1. Motor stimulant response to cocaine in animals that had previously 
received the daily repeated cocaine injections in experiment 1. (a) 1 day withdrawal. 
(b) 7 day withdrawal. (c) 30 day withdrawal. Data represented as mean ± SEM 
photocell counts. *P < 0.05 compared to saline pretreatment (a) t=4.699 d.f.=27 (b) 
t=3.703 d.f.=26 (c) t=2.573 d.f.=25. 
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Figure 3-2. The effects of the intra-mPFC infusion of LY341495 (0.1, 1 and 10 µM) 
on extracellular glutamate levels within the mPFC region withdrawn from repeated 
cocaine exposure. 1 day (a), 7 days (b) and 30 days (c). The significance of the 
differences between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (a) Treatment 
effect F(1,21)=10.078, p=0.0046; Time effect F(14,21)=12.387, p<0.0001; and 
Interaction effect F(14,294)=6.352, p<0.0001. (b) Treatment effect F(1,19)=3.748, 
p=0.0679; Time effect F(14,19)=21.419, p<0.0001; and Interaction effect 
F(14,266)=2.753, p=0.0008. (c) Treatment effect F(1,20)=0.8, p=0.3819; Time effect 
F(14,20)=25.431, p<0.0001; and Interaction effect F(14,280)=0.41, p=0.9713. *P < 
0.05 compared to saline pre-treated animals. #P < 0.05 compared to baseline. 
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Effects of mGluR2/3 Receptor Antagonist LY341495 on Glutamate Levels in the NAc 
 
The effects of the infusion of LY341495 (0.1, 1 and 10 µM) into the mPFC on 

extracellular glutamate levels in NAc of animals that previously received repeated 
cocaine exposure are shown in Figure 3-3. Intra-mPFC infusions of LY341495 
produced a trend towards increased of glutamate levels in the NAc of saline 
pre-treated animals. While this effect achieved significance in control animals 
following prolonged withdrawal (7 days and 30 days). Infusions of LY341495 into the 
mPFC produced a significant increase of extracellular glutamate concentrations in 
NAc of cocaine pre-treated animals after 1 day of withdrawal, compared with saline 
animals (Figure 3-3a). In contrast to results in mPFC shown in Figure 3-2a, this 
significant effect was only observed when the dose of LY341495 reached at 1 and 10 
µM. However, following 7 days or 30 days of withdrawal (Figure 3-3b and Figure 
3-3c respectively), cocaine pre-treated animals did not show a significant increase in 
NAc glutamate levels following intra-mPFC infusion of LY341495 as compared with 
saline pre-treated animals. Also, significant differences in basal extracellular 
glutamate levels (pmol/20 min; mean ± SEM) were not observed between saline and 
cocaine pre-treated animals. (a) After 1 day withdrawal: Repeated Cocaine, 3.2 ± 0.7; 
Saline, 4.7 ± 0.8; (t=1.396 d.f.=13 p= 0.1860) (b) After 7 days withdrawal: Repeated 
Cocaine, 5.3 ± 2.3; Saline, 2.9 ± 0.7; (t=1.081 d.f.=11 p= 0.3030) (c) After 30 days 
withdrawal: Repeated Cocaine, 7.2 ± 1.8; Saline, 4.1 ± 1.3; (t=1.392 d.f.=12 
p=0.1891).   

 
 

Effects of mGluR2/3 Receptor Antagonist LY341495 on Glutamate Levels in the VTA 
 
Figure 3-4 shows the effects of the intra-mPFC infusion of LY341495 (0.1, 1 and 

10 µM) on extracellular glutamate levels in VTA after withdrawal from the repeated 
cocaine injections. Similar to the results in mPFC and NAc, intra-mPFC infusions of 
LY341495 induced a trend towards increased extracellular glutamate concentrations 
in VTA in saline pre-treated animals following 1 day withdrawal. This effect achieved 
significance in control animals following prolonged withdrawal (7 days and 30 days). 
Intra-mPFC infusions of LY341495 produced a significant increase of glutamate 
levels in VTA of cocaine pre-treated animals after 1 day of withdrawal, compared 
with saline pre-treated animals, but the significant effect was only shown at the 
highest concentrations of LY341495 (10 µM) (Figure 3-4a). Furthermore, cocaine 
pre-treated animals did not show a significant increase in VTA glutamate levels 
following intra-mPFC infusion of LY341495 after 7 days and 30 days of withdrawal 
(Figure 3-4b and Figure 3-4c respectively). Also, significant differences in basal 
extracellular glutamate levels (pmol/20 min; mean ± SEM) were not observed 
between saline and cocaine pre-treated animals. (a) After 1 day withdrawal: Repeated 
Cocaine, 3.5 ± 0.8; Saline, 3.7 ± 0.8; (t=0.1386 d.f.=12 p=0.8921) (b) After 7 days 
withdrawal: Repeated Cocaine, 6.3 ± 2.2; Saline, 4.1 ± 1.2; (t=0.8804 d.f.=13 
p=0.3946). 
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Figure 3-3. The effects of the intra-mPFC infusion of LY341495 (0.1, 1 and 10 µM) 
on extracellular glutamate levels within the NAc region withdrawn from repeated 
cocaine exposure. 1 day (a), 7 days (b) and 30 days (c). The significance of the 
differences between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (a) Treatment 
effect F(1,12)=10.416, p=0.0073; Time effect F(14,12)=9.104, p<0.0001; and 
Interaction effect F(14,168)=3.812, p<0.0001. (b) Treatment effect F(1,11)=0.06, 
p=0.811; Time effect F(14,11)=10.719, p<0.0001; and Interaction effect 
F(14,154)=0.335, p=0.9884. (c) Treatment effect F(1,12)=0.756, p=0.4016; Time 
effect F(14,12)=14.574, p<0.0001; and Interaction effect F(14,168)=0.508, p=0.9264. 
*P < 0.05 compared to saline pre-treated animals. #P < 0.05 compared to baseline. 
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Figure 3-4. The effects of the intra-mPFC infusion of LY341495 (0.1, 1 and 10 µM) 
on extracellular glutamate levels within the VTA region withdrawn from repeated 
cocaine exposure. 1 day (a), 7 days (b) and 30 days (c). The significance of the 
differences between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (a) Treatment 
effect F(1,12)=6.689, p=0.0239; Time effect F(14,12)=6.978, p<0.0001; and 
Interaction effect F(14,168)=4.041, p<0.0001. (b) Treatment effect F(1,13)=0.379, 
p=0.549; Time effect F(14,13)=13.269, p<0.0001; and Interaction effect 
F(14,182)=0.49, p=0.9363. (c) Treatment effect F(1,11)=1.136, p=0.3094; Time effect 
F(14,11)=11.093, p<0.0001; and Interaction effect F(14,154)=1.842, p=0.0371. *P < 
0.05 compared to saline pre-treated animals. #P < 0.05 compared to baseline. 
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(c) After 30 days withdrawal: Repeated Cocaine, 6.7 ± 1.3; Saline, 4.4 ± 0.6; (t=1.599 
d.f.=11 p=0.1381). 
 

 
Experiment 2: mGluR2/3 Receptor and mPFC Glutamate Release 
 
 
Behavior 

 
After at least 1 week of recovery from surgery, animals received once daily 

systemic injections of saline or cocaine (15 mg/kg) over 4 consecutive days. After one 
day or one week withdrawal, saline and cocaine pre-treated animals were subjected to 
reverse dialysis with either KCl or cystine into the mPFC. Studies were conducted at 
those time points since previous studies have shown that repeated cocaine exposure 
enhanced the cocaine induced glutamate overflow in the mPFC after 1 day and 7 days  
of withdrawal, but not 30 days of withdrawal (Williams and Steketee 2004). Within 
3 days following microdialysis experiments, animals were challenged with a systemic 
injection of cocaine. Figure 3-5 shows that the motor stimulant response to cocaine 
was significantly enhanced in animals that had previously received the daily repeated 
cocaine injections. 
 
 
Effects of mGluR2/3 Receptor Agonist LY379268 on K+ Induced Glutamate Release in 
the mPFC 

 
Figure 3-6 shows the effects of the infusion of KCl (80 mM) into the mPFC on 

extracellular glutamate levels within this region. Infusions of KCl into the mPFC 
produced significantly increased extracellular glutamate concentrations in this region 
in saline pre-treated animals (Figure 3-6a and 6b). This effect was inhibited by 
intra-mPFC co-infusion of LY379268 (1 µM), an agonist of mGluR2/3 receptor (Figure 
3-6a and 6b). The K+ induced glutamate release was significantly enhanced in cocaine 
pre-treated animals compared with saline pre-treated animals (Figure 3-6a and 6b). 
When KCl and LY379268 were co-infused into mPFC, LY379268 significantly 
reduced the K+ induced glutamate release cocaine pre-treated animals following 1 day 
withdrawal (Figure 3-6a) but not 7 days withdrawal (Figure 3-6b). Moreover, no 
significant differences in basal extracellular glutamate levels (pmol/20 min; mean ± 
SEM) were observed between saline and cocaine pre-treated animals. (a) After 1 day 
withdrawal: Repeated Cocaine, 4.4 ± 0.6; Saline, 5.7 ± 0.7; (t=1.409 d.f.=11 p=0.1866) 
(b) After 7 days withdrawal: Repeated Cocaine, 3.6 ± 0.7; Saline, 3.0 ± 0.9; (t=0.5576 
d.f.=10 p=0.5894). 
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Figure 3-5. Motor stimulant response to cocaine in animals had previously received 
the daily repeated cocaine injections in experiment 2. The motor stimulant response to 
cocaine was significantly enhanced in animals withdrawn from the daily repeated 
cocaine injections for 1day (a) and 7days (b) in Experiment 2 of the study of 
mGluR2/3 receptor and mPFC glutamate releasing. Data represented as mean ± SEM 
photocell counts. *P < 0.05 compared to saline pretreatment. (a) t=5.064 d.f.=24 (b) 
t=4.206 d.f.=23. 
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Figure 3-6. The effects of the infusion of KCl (80 mM) into the mPFC on 
extracellular glutamate levels within this region in animals withdrawn from repeated 
cocaine injections. 1 day (a) and 7 days (b). The significance of the differences 
between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (a) Treatment 
effect F(1,11)=12.581, p=0.0046; Time effect F(14,11)=68.227, p<0.0001; and 
Interaction effect F(14,154)=7.501, p<0.0001. (b) Treatment effect F(1,10)=15.88, 
p=0.0026; Time effect F(14,10)=8.987, p<0.0001; and Interaction effect 
F(14,140)=2.725, p=0.0014. *P < 0.05 compared to saline pre-treated animals. #P < 
0.05 compared with everage of baseline. +P < 0.05 compared with pre-treatment of 
LY379268.  
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Effects of mGluR2/3 Receptor Agonist LY379268 on Cystine Induced Glutamate 
Release in the mPFC 

 
Figure 3-7 shows the effects of the infusion of cystine (50 µM) into the mPFC on 

extracellular glutamate levels within this region. Infusions of cystine into the mPFC  
produced a significant increase in extracellular glutamate concentrations in this region 
in saline pre-treated animals, an effect that was reduced by co-infusion of LY379268 
(1 µM) an agonist of mGluR2/3 receptor into the mPFC (Figure 3-7a and 7b) 
Cystine-induced glutamate release was significantly increased in cocaine pre-treated 
animals compared with saline pre-treated animals (Figure 3-7a and 7b). When cystine 
and LY379268, were co-infused into mPFC, LY379268 significantly reduced the 
cystine induced glutamate release in cocaine pre-treated animals following 1 day 
withdrawal (Figure 3-7a), but not 7 days withdrawal (Figure 3-7b). Moreover, 
significant differences in basal extracellular glutamate levels (pmol/20 min; mean ± 
SEM) were not observed between saline and cocaine pre-treated animals. (a) After 1 
day withdrawal: Repeated Cocaine, 5.9 ±0.4; Saline, 9.1 ± 1.9; (t=1.509 d.f.=11 
p=0.1596) (b) After 7 days withdrawal: Repeated Cocaine, 6.8 ± 1.2; Saline, 4.6 ± 0.3; 
(t=1.797 d.f.=12 p=0.0975). 
 
 
Histology 

 
Figure 3-8 shows a representative photo-micrograph of dialysis probe sites in the 

mPFC, NAc and VTA. Dialysis probes were located medial to the forceps minor 
corpus callosum (fmi) with the dialysis membrane encompassing the infralimbic and 
prelimbic subregions of the mPFC (a). In the NAc, the probe placements were medial 
to the anterior commissure (ac) with the majority of the membrane located in the core 
of the nucleus accumbens (Figure 3-8b). The probes in VTA were in the region of the 
paranigral nuclei (PN) (c). Animals with incorrect dialysis probe placements were 
removed from the study. 
 
 
Discussion 

 
The present study demonstrated that intra-mPFC infusions of LY341495, an 

antagonist of mGluR2/3 receptors increased glutamate levels in mesocorticolimbic 
brain regions including mPFC, NAc and VTA. Results from the present study 
suggested that the mPFC mGluR2/3 receptor plays an inhibitory role in modulating the 
mesocorticolimbic glutamate transmission. LY341495 enhanced the glutamate levels 
in these brain regions in cocaine sensitized animals after 1 day of withdrawal. 
However, it was not capable of enhancing glutamate transmission within these regions 
in animals withdrawn from repeated cocaine injections for a relatively long period (7 
days and 30 days). These results therefore suggested that the inhibitory tone by mPFC 
mGluR2/3 receptor was transiently increased following a short term of cocaine  
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Figure 3-7. The effects of the infusion of cystine (50 µM) into the mPFC on 
extracellular glutamate levels within this region in animals withdrawn from repeated 
cocaine injections. 1 day (a) and 7 days (b). The significance of the differences 
between treatment groups was determined by two-way ANOVA with 
repeated-measures followed by post hoc analysis using a modified least significant 
differences test (Milliken and Johnson, 1984). F scores were as follows: (a) Treatment 
effect F(1,11)=25.504, p=0.0004; Time effect F(14,11)=103.994, p<0.0001; and 
Interaction effect F(14,154)=20.471, p<0.0001. (b) Treatment effect F(1,12)=51.326, 
p<0.0001; Time effect F(14,12)=69.644, p<0.0001; and Interaction effect 
F(14,168)=24.636, p<0.0001. *P < 0.05 compared to saline pre-treated animals. #P < 
0.05 compared with everage of baseline. +P < 0.05 compared with pre-treatment of 
LY379268.  
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Figure 3-8. Representative micrographs of dialysis probe sites in the mPFC, NAc and 
VTA. Dialysis probes were located medial to the forceps minor corpus callosum (fmi) 
with the dialysis membrane encompassing the infralimbic and prelimbic subregions of 
the mPFC (a). In the NAc, the probe placements were medial to the anterior 
commissure (ac) with the majority of the membrane located in the core of the nucleus 
accumbens (b). The probes in VTA were in the region of the paranigral nuclei (PN) 
(c).  
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withdrawal, but no longer enhanced following prolonged withdrawal. Further results 
in the second experiment of the present study demonstrated that repeated cocaine 
exposure enhanced the vesicular glutamate release (K+ induced glutamate release) and 
non-vesicular glutamate release (cystine induced glutamate release) in the mPFC. It 
was shown that mPFC mGluR2/3 receptor was able to inhibit the vesicular glutamate 
release and non-vesicular glutamate release in animals withdrawn from repeated 
cocaine injections after 1 day but not 7 days. Generally, the functional reduction of 
mPFC mGluR2/3 receptor caused loss of inhibitory control of the excitatory drive 
within mPFC and thereafter at least partly resulted in the enhanced excitatory outputs 
from mPFC to other subcortical regions including NAc and VTA. 

 
Previous studies have shown that infusion of mGluR2/3 antagonist into mPFC 

elevated the glutamate levels, while agonist did not alter the glutamate levels 
(Melendez and Kalivas 2003), suggesting that there is an inhibitory tone regulating 
mPFC glutamate levels. Therefore, LY341495, an antagonist of mGluR2/3 was chosen 
for the present study. It was expected that functional reduction of mGluR2/3 receptor 
caused by repeated cocaine exposure could remove this inhibitory tone. However, the 
results from the present study actually showed that the inhibitory tone via mGluR2/3 
receptor was transiently enhanced. This is supported by the results showing that 
intra-mPFC infusions of LY341495 generated an enhanced glutamate level in mPFC 
of animals that received repeated cocaine exposure following 1 day of withdrawal. It 
is unclear what mechanisms underlie the transiently increased inhibitory tone 
provided by mGluR2/3 receptors. One of the possible explanations is that the transient 
increase in inhibitory tone was a result of cocaine-mediated increases in mPFC 
glutamate transmission. Nonetheless, our results do demonstrate that the transiently 
increased inhibitory tone via mGluR2/3 receptor was absent with long term expression 
of cocaine sensitization. Following 7 days but not 30 days of withdrawal, LY341495 
produced a significant derease in glutamate level in the mPFC of cocaine pre-treated 
animals. These data suggested the inhibitory tone on mGluR2/3 receptor was reduced. 
This result is correlated with additional findings that the mGluR2/3 receptor lost its 
ability to inhibit vesicular and non-vesicular release of glutamate in cocaine 
pre-treated animals following 7 days of withdrawal. This reduction of mGluR2/3 
inhibitory tone could be due to the functional reduction of mGluR2/3 receptor. To 
clarify this issue, an experiment using mGluR2/3 receptor agonists might be able to 
demonstrate whether repeated cocaine exposure reduces the ability of mPFC 
mGluR2/3 receptor to inhibit the mesocorticloimbic glutamate transmission. 

 
It is well known that glutamatergic transmission from mPFC to NAc and VTA is 

an important component in the expression of cocaine sensitization (Wolf 1998; 
Kalivas 2004). The results from the present study demonstrated that repeated cocaine 
exposure can alter mesocorticolimbic glutamate transmission at least partly by mPFC 
mGluR2/3 receptor. However, the effects of this alteration via acting on mPFC 
mGluR2/3 receptors on specific glutamate transmission pathways within 
mesocorticolimbic dopamine system appear to be different. This is supported by the 
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results from the present study that intra-mPFC infusions of mGluR2/3 receptor 
antagonist LY341495 at the highest concentration produced enhanced glutamate 
levels in the VTA of cocaine sensitized animals shown in Figure 3-4a, but the 
enhanced glutamate levels in the NAc was initially induced at an intermediate 
concentration of LY341495. This can be explained by the difference in the neuronal 
circuitry. For example, the glutamatergic projections from the mPFC to the VTA can 
be both direct and indirect via the pedunculopontine tegmentum (Sesack et al. 1989; 
Hurley et al. 1991).It is well known that extracellular glutamate within mPFC comes 
from glutamatergic nerve terminals via vesicular release as well as from glial cells via 
cystine/glutamate antiporter (Melendez et al. 2005). It has been suggested that 
extracellular concentrations of glutamate measured via microdialysis actually reflect 
both of these sources of glutamate (Baker et al. 2002). Thus, we were prompted to 
examine whether repeated cocaine exposure produces specific alterations in the 
modulation of extracellular glutamate sources within the mPFC. One of the alterations 
demonstrated in the present study is the functional reduction of mPFC mGluR2/3 
receptor. Our results clearly showed that repeated cocaine exposure reduced the 
ability of mGluR2/3 receptor to inhibit the vesicular glutamate release (K+ induced 
glutamate release) and non-vesicular glutamate release (cystine induced glutamate 
release). Interestingly, our data also indicated that repeated cocaine exposure 
enhanced the ability of K+ and cystine to increase glutamate levels in the mPFC 
(Figure 3-6 and 3-7).  

 
In accordance with these findings, K+ induced glutamate release has been shown 

to be increased by repeated amphetamine exposure (Stephans and Yamamoto 1995). 
Thus, the enhanced ability of cystine to increase glutamate levels in the mPFC of 
cocaine sensitized animals could also be due to the overall enhanced glutamate 
releasability and hyperactivity of the pyramidal neuron that have recurrent collaterals 
to form a positive feedback within the mPFC. Although, it been shown in a previous 
study that repeated cocaine treatment reduced activity of the cystine/glutamate 
antiporter in the NAc (Baker et al. 2003), comparison of the results from Figure 3-7a 
and 3-7b suggested that the ability of mPFC cystine/glutamate antiporter appears to be 
intact following a long term withdrawal due to a similar percentage of enhancement. 

 
mGluR2 and mGluR3 are found in various combinations of presynaptic, 

postsynaptic and glial localizations that may reflect differential modulation of 
excitatory amino acid transmission (Petralia et al. 1996; Conn and Pin 1997). 
Although, the present study did not demonstrate a role of specifically localized 
mGluR2/3 receptor in the development of cocaine sensitization, previous studies may 
provide some clues. For example, the functional reduction of mGluR2/3 receptor, 
acting as autoreceptor in NAc, has been shown in animals that received repeated 
cocaine pretreatment (Xi et al. 2002). A more recent study demonstrated that the 
mGluR2/3 receptor induced postsynaptic LTD was impaired in mPFC pyramidal 
neurons after repeated cocaine exposure (Huang et al. 2007). And our present study 
also showed the functional reduction of mPFC mGluR2/3 receptor that can inhibit the 

 59



cystine/glutamate antiporter, which is mainly localized on glia cells. Taken together, it 
is reasonable to hypothesize that the functional reduction of mPFC mGluR2/3 receptor 
is “universal” within this brain region.  

 
There are not many studies that have been done to demonstrate the mechanisms 

underlying the functional reduction of mPFC mGluR2/3 receptor. Recently, expression 
of AGS3 protein was found to be enhanced in the mPFC of cocaine-sensitized animals 
(Bowers et al. 2004). AGS3, an activator of G protein signaling has been shown to 
interact with Giα subunits and disrupt G protein signaling by interfering with receptor 
coupling (De Vries et al. 2000; Natochin et al. 2000) Hence, this would prevent 
actions of receptors that couple to Gi proteins, such as mGluR2/3 receptors. It should 
be noted that previous studies have also suggested that repeated cocaine exposure can 
reduce the function of other Gi protein coupled receptors, including D2 and GABAB 
receptors (Beyer and Steketee 2002; Steketee and Beyer 2005). It has been found that 
repeated cocaine exposure decreased G protein levels such as Gi and Go but had no 
effect on the levels of Gs alpha and G beta in other subcortical regions including NAc 
and VTA (Nestler et al. 1990). Therefore, disruption of Gi protein coupling via 
increased AGS3 expression will possibly enhance Gs protein coupling to some extent, 
which may partly be one of the reasons that repeated cocaine exposure enhanced the 
cAMP signaling pathways (Nestler et al. 2001). Therefore, the possible balance for Gi 
vs Gs coupled receptor signaling might be an important component in modulation of 
mPFC excitatory transmission in the development of cocaine sensitization.   

 
In conclusion, the present study demonstrated that long term expression of 

sensitization to cocaine is associated with an altered modulation of the 
mesocorticolimbic glutamatergic transmission by mPFC mGluR2/3 receptor. This was 
supported by the results that intra-mPFC infusions of mGluR2/3 antagonist LY341495 
transiently produced a significant enhancement in glutamatergic transmission within 
mesocorticolimbic brain regions, including mPFC, NAc and VTA. This effect is 
associated with an enhancement of vesicular and non-vesicular release of glutamate in 
the mPFC. Functional reduction of mGluR2/3 receptor may in part underlie the 
mechanisms increasing the vesicular and non-vesicular release of glutamate following 
prolonged withdrawal from repeated cocaine exposre. To our knowledge, our study 
firstly demonstrated that repeated cocaine exposure altered the modulations of 
releasable sources of glutamate within the mPFC, which provide the excitatory drive 
for the glutamatergic outputs from the mPFC. Thus, the present results support the 
hypotheses that functional reduction of mGluR2/3 receptor regulation of excitatory 
transmission from the mPFC to the VTA and NAc may play an important role in the 
development of sensitization to cocaine. 
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Chapter 4. General Discussion 
 
 
Data Summary 
 
 
Results in Chapter 2 

 
The initial studies were designed to determine the effects of intra-mPFC 

injections of the mGluR2/3 agonist APDC on cocaine-induced motor activity and on 
the development of sensitization to cocaine. First, we examined the dose-response 
effects of injection of APDC (0.015-15 nmol/side) into the mPFC on the acute 
motor-stimulant response to cocaine (15 mg/kg, i.p.). Intra-mPFC APDC 
dose-dependently reduced acute cocaine-induced motor activity. The lowest dose in 
the present studies that significantly reduced the acute motor-stimulant response to 
cocaine was 1.5nmol/side. Additionally, the effects of APDC were prevented by 
co-injections of intra-mPFC LY341495 (1.5 nmol/side), an mGluR2/3 antagonist. 
Additional studies demonstrated that intra-mPFC microinjection of APDC also 
reduced the initiation of behavioral and neurochemical sensitization to cocaine. Once 
sensitization was induced, however, intracortical administration of APDC did not 
block the cocaine-induced behavioral and neurochemical responses in sensitized 
animals after 7 days and 30 days withdrawal. In contrast, intra-mPFC injections of 
APDC were found to block the expression of behavioral and neurochemical 
sensitization in sensitized animals after 1 day withdrawal.  

 
In conclusion, the data in Chapter 2 demonstrated that repeated intra-mPFC 

APDC prevented cocaine-induced behavioral sensitization. However the ability of 
intra-mPFC APDC to block the cocaine induced behavioral response was lost in 
sensitized animals after more prolonged withdrawal. The data provide additional 
support for the idea that sensitization to cocaine results from an increase in excitatory 
output from the mPFC to subcortical regions, which in part results from the 
disinhibition of mPFC pyramidal neurons. (Steketee 2005) This conclusion is 
supported by recent findings which demonstrated that repeated cocaine exposure 
reduces mGluR2/3 responsiveness at mPFC excitatory synapses after 5 days 
withdrawal. (Huang et al. 2007) The molecular and cellular mechanisms underlying 
the loss of receptor function still remains to be clarified. Findings on the mechanism 
will be helpful to generate new treatment targets for cocaine addiction.  
 
 
Results in Chapter 3 

 
The present study demonstrated that intra-mPFC infusions of LY341495, an 

antagonist of mGluR2/3 receptor increased glutamate levels in the mesocorticolimbic 
brain regions including mPFC, NAc and VTA, which are well known brain regions 
involved in cocaine sensitization. Results from the present study suggested that mPFC 
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mGluR2/3 receptor plays an inhibitory role in modulating the mesocorticolimbic 
glutamate transmission. Nonetheless, this effect was enhanced in animals following 1 
day withdrawal but not 7 days and 30 days withdrawn from repeated cocaine 
injections. These results therefore suggested that the transiently increased inhibitory 
tone of mPFC mGluR2/3 receptor was no longer apparent following a long term 
withdrawal from cocaine. This effect could be due to the functional reduction of 
mPFC mGluR2/3 receptor or decreased inhibitory tone. To clarify this issue, 
experiments using mGluR2/3 receptor agonist could examine whether the agonist 
could reduce mesocorticolimbic glutamate transmission and whether its ability would 
be reduced following a prolonged cocaine withdrawal. Additional studies showed that 
enhanced vesicular (K+ evoked) and non-vesicular (cystine evoked) glutamate release 
in the mPFC of cocaine sensitized animals. Furthermore, results in the present study 
also demonstrated that repeated cocaine exposure altered the modulation of the 
releasable pools of glutamate via mPFC mGluR2/3 receptor within this brain region. It 
was shown in the present study that mPFC mGluR2/3 receptor lost its ability to inhibit 
the vesicular glutamate release (K+ induced glutamate release) and non-vesicular 
glutamate release (cystine induced glutamate release) in animals withdrawn from 
repeated cocaine injections after 7 days but not 1 day. Generally, the functional 
reduction of mPFC mGluR2/3 receptor caused loss of inhibitory control of glutamate 
release within mPFC and thereafter at least partly resulted in the enhanced excitatory 
drive, which in turn generated increased excitatory outputs from mPFC to other 
subcortical regions including NAc and VTA.  

 
In conclusion, repeated cocaine exposure alters the modulation of the 

mesocorticolimbic glutamatergic transmission by mPFC mGluR2/3 receptor. This was 
supported by the results that intra-mPFC infusions of mGluR2/3 antagonist LY341495 
produced a significant, transient enhancement in glutamatergic transmission within 
mesocorticolimbic brain regions, including mPFC, NAc and VTA following a short 
term of cocaine withdrawal. This effect was no longer apparent following more 
prolonged withdrawal. Moreover, our study showed enhanced vesicular (K+ evoked) 
and non-vesicular (cystine evoked) glutamate release in cocaine sensitized animals. 
Repeated cocaine exposure altered the modulations of releasable pools of glutamate 
within the mPFC by mGluR2/3 receptor. Thus, the present results support the 
hypotheses that repeated cocaine exposure alters the mesocorticolimbic glutamate 
transmission by medial prefrontal cortex mGluR2/3 receptor. 

 
 

Potential Mechanisms Underlying the Alterations of Medial 
Prefrontal Excitatory Transmission by Repeated Cocaine Exposure 

 
Recently, several research groups have focused on the role of mesocorticolimbic 

glutamate transmission in drug dependence. The excitatory output from the mPFC to 
other brain regions has been demonstrated as an important component associated with 
psychomotor stimulant mediated behaviors (Wolf 1998; Tzschentke 2000; Kalivas 
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2004; Steketee 2005). Consistent with previous findings, the present studies 
demonstrated that pharmacological manipulation of mPFC neurotransmission via 
activation of Group II mGluRs had a great impact on the development of cocaine 
sensitization. Moreover, initial studies suggested that long term expression of cocaine 
sensitization is correlated with the loss of ability of mPFC Group II mGluRs to 
modulate behavioral and neurochemical responses to cocaine. Similar results that 
demonstrated that dopamine D2 receptor and GABAB receptor function were reduced 
following prolonged cocaine withdrawal have been reported by our group. It should 
be noted that while these Gi protein coupled receptors may function in different 
neurotransmitter system, they generally can play an inhibitory role in modulating the 
mPFC excitatory output. Therefore, combined with previous studies, the current 
studies support our hypotheses that sensitization to cocaine results from an increase in 
excitatory output from the mPFC to subcortical regions, which in part results from the 
disinhibition of mPFC pyramidal neurons. Furthermore, we were prompted to 
examine the modulations of mesocortiolimbic glutamate transmission by repeated 
cocaine exposure. What we found was that repeated cocaine exposure transiently 
increased the inhibitory tone maintained via mGluR2/3 receptor following a short term 
withdrawal. These results may help to explain why intra-mPFC injections of mGluR2/3 
receptor agonist, APDC prevent the short term expression of cocaine sensitization but 
not the long term expression. However, this inhibitory tone was back to normal 
(similar to saline pre-treated animals) following prolonged withdrawal. Furthermore, 
our data showed that repeated cocaine exposure enhanced the vesicular and 
non-vesicular release of glutamate in the mPFC. This modulation, however, is altered 
in part by mGluR2/3 receptor following prolonged withdrawal, suggesting loss of 
inhibitory control over mPFC glutamate release. Therefore, the potential mechanisms 
underlying the alterations of medial prefrontal excitatory transmission by repeated 
cocaine exposure will be discussed in the followings. 

 
 

Medial Prefrontal Extracellular Glutamate Level 
 
Medial prefrontal cortical glutamate release provides the excitatory drive for the 

outputs from the mPFC. Various factors, such as neurotransmitters and/or their 
receptors are potentially involved in modulation of mPFC glutamate release. Thus, 
studies have been largely focused on how repeated cocaine exposure alters the 
modulations of these factors. Previous studies demonstrated that repeated 
methamphetamine exposure can increase neuronal glutamate release (Stephans and 
Yamamoto 1995), which is supported by the current findings that K+ induced mPFC 
glutamate release was increased following repeated cocaine exposure shown in 
Chapter 3. Glutamate terminals exist on projections mainly from the amygdala, 
hippocampus, and mediodorsal nucleus of the thalamus, as well as axon collaterals of 
pyramidal neurons within mPFC (Sesack et al. 1989). It has been shown that repeated 
cocaine administration increases membrane excitability of pyramidal neurons in the 
rat medial prefrontal cortex (Nasif et al. 2005). Therefore, increased excitability of 
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mPFC pyramidal neurons could result in enhanced glutamate releases via axon 
collaterals within the mPFC region. Besides ionotropic glutamate receptors, 
metabotropic glutamate receptors have been suggested to play a potential role in 
regulating glutamate release (Conn and Pin 1997; Melendez and Kalivas 2003; 
Melendez et al. 2005). Therefore, functional alterations of these receptors could also 
play a potential role underlying the enhanced glutamate release induced by repeated 
cocaine exposure. Currently, there are eight mGluRs, classified into three groups of 
receptors based on sequence homology, preferred signal transduction pathway and 
pharmacology. Group I (mGluR1/5) can enhance phosphoinositide hydrolysis. Group 
II (mGluR2/3) and Group III (mGluR4/6/7/8) both can inhibit the adenylyl 
cyclase-mediated formation of cAMP (Conn and Pin 1997; Kenny and Markou 2004). 
Within cortex, there are many subtypes of mGluRs, however, the Group I and II 
receptors are abundant in the mPFC area (Watkins 2000).  

 
A previous study demonstrated that reverse dialysis of the group I agonist 

(RS)-3,5-dihydroxyphenylglycine (DHPG) into the NAc resulted in an increase in 
extracellular glutamate levels. However, the capacity of DHPG to induce glutamate 
release was markedly reduced following 3 weeks withdrawal from cocaine. Similarly, 
locomotor activity induced by intra-NAc microinjection of DHPG was significantly 
blunted 3 weeks after repeated cocaine administration. This diminished function is 

associated with decreased levels of mGluR5 and Homer1b/c protein (Swanson et al. 
2001). One possible mechanism underlying the functional reduction of Group I 
mGluRs is a reduction in Homer1b/c protein that is of importance in regulating the 
signaling through Group I mGluRs (Kane et al. 2005; Mao et al. 2005; Tappe and 
Kuner 2006). Also the Group I mGluRs induced PKC phosphorylation of GluR2 
parallels downregulation of AMPA receptors (Nakazawa et al. 1997). Thus, reduced 
levels of Group I mGluRs may facilitate the sensitization of AMPA-induced behaviors 
produced by repeated cocaine administration (Pierce et al. 1996). Taken together, 
these results indicated that functional reduction of Group I mGluRs in the NAc is 
associated with the long term expression of cocaine sensitization. However, a recent 
study found that pre-treatment of Group I mGluR antagonists prevented the 
expression of behavioral sensitization to cocaine (Dravolina et al. 2006). Thereby, it 
suggested that effects of repeated cocaine on the alteration of Group I mGluRs may be 
different in specific brain regions. This effect might not be due to the antagonism on 
Group I mGluRs in the NAc, since functional reduction of Group I mGluRs in the 
NAc is associated with the long term expression of cocaine sensitization. In fact, 
intra-mPFC infusion of Group I mGluR agonist was found to elevate the glutamate 
level in this region (Melendez and Kalivas 2003). Thus, Group I mGluRs in the mPFC 
might be involved in regulation of expression of cocaine sensitization. Unfortunately, 
few studies have been done to examine the effects of repeated cocaine exposure on the 
modulations of mesocorticolimbic glutamate transmission by medial prefrontal Group 
I mGluRs.  

 
Group II mGluRs are also important in regulating glutamate levels in the mPFC. 
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mGluR2/3 receptors were indicated to play an inhibitory role in regulating glutamate 
release (Conn and Pin 1997; Kenny and Markou 2004), which was also shown in the 
present study. mGluR2/3 receptors can also be localized postsynaptically. Postsynaptic 
mGluR2/3 receptors in rat prefrontal cortex can induce LTD through postsynaptic PKC 
activation and IP3 receptor-mediated postsynaptic increases of Ca2+ concentration via 
phospholipase C and probably also phospholipase D (Otani et al. 2002). Also 
mGluR2/3 receptors can be localized on glia cells, where they can inhibit the activity 
of cystine/glutamate exchanger (Baker et al. 2002). Importantly, mGluR2/3 receptors 
can also function as presynaptic heteroceptors on monoaminergic terminals in the 
mPFC or as autoreceptors inhibiting the presynaptic glutamate release (Cartmell and 
Schoepp 2000; Xi et al. 2002). mGluR2 and mGluR3 are found in various 
combinations of presynaptic, postsynaptic and glial localizations that may reflect 
differential modulation of excitatory amino acid transmission (Conn and Pin 1997; 
Kenny and Markou 2004). Although, the present studies did not demonstrate the role 
of specifically localized mGluR2/3 receptor in the development of cocaine 
sensitization, previous studies may provide some clues. For example, the functional 
reduction of mGluR2/3 receptor, acting as autoreceptor in the NAc has been shown in 
animals that received repeated cocaine pretreatment (Xi et al. 2002). A more recent 
study demonstrated that the mGluR2/3 receptor induced postsynaptic LTD was 
impaired in mPFC pyramidal neurons after repeated cocaine exposure (Huang et al. 
2007). Similar with previous studies (Baker et al. 2002), our present study also 
showed the loss of ability of mPFC mGluR2/3 receptor to inhibit the cystine/glutamate 
antiporter. Taken together, it is reasonable to hypothesize that the functional reduction 
of mPFC mGluR2/3 receptor is “universal” within this brain region. One of the 
possible mechanisms underlying the functional reduction of mGluR2/3 receptor was 
the increased levels of the activators of G protein signaling-3 (AGS3) (Bowers et al. 
2004), which could diminishe prefrontal cortical receptor signaling that is coupled to 
inhibitory G proteins, including mGluR2/3 receptor. Another research group recently 
suggested a new model (Huang et al. 2007). Repeated cocaine administration 
increases levels of dopamine (DA) in the mPFC that leads to increased formation of 
cAMP via the activation of D1 receptors. Extracellular cAMP is then metabolized to 
adenosine by phosphodiesterase and ecto5'-nucleotidase and acts on the adenosine A3 
receptors. The activation of adenosine A3 receptors would increase PKC activity and 
thereby trigger an impairment of group II mGluR function, resulting in an impairment 
of LTD induced by DCG-IV or LY379268. Although the mechanisms described above 
have differences, the joint point in these mechanisms is the enhanced cAMP signaling. 
Decreased Giα signaling may promote signaling through other G proteins, such as 
Gsα. For example, Gsα-coupled D1 dopamine receptors have been shown to increase 
membrane excitability in a PKA-dependent manner in pyramidal neurons of the PFC 
(Wang and O'Donnell 2001). Thus, the mechanisms discussed above are consistent 
with the critical role of dopamine D1 receptors in the PFC in cocaine-induced drug 
seeking and conditioned place preference (Capriles et al. 2003; Sanchez et al. 2003). 

 
One thing that should be discussed here is that a functional reduction of mGluR2/3 
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receptor was suggested to be correlated with the long term expression of cocaine 
sensitization in studies shown in Chapter 2, but studies in Chapter 3 actually 
demonstrated a transient enhancement of inhibitory tone via mGluR2/3 following a 
short term withdrawal from cocaine. Moreover, this transient increase in inhibitory 
tone was no longer apparent following long term withdrawal. We explained that this 
transient increase in inhibitory tone could be a compensatory response to 
cocaine-mediated increases in mPFC glutamate transmission, while the loss of this 
transient increase in inhibitory tone could be due to either the reduction of mGluR2/3 
receptor signaling or simply the reduction of the inhibitory tone. The basal glutamate 
levels can influence the inhibitory tone of mGluR2/3 receptor. However, basal 
glutamate levels in the mPFC appear to be intact after repeated cocaine exposure 
(Williams and Steketee 2004). But, we cannot rule out other possibilities such as 
repeated cocaine may increase the glutamate reuptake rate to allow less glutamate to 
diffuse to the location of mGluR2/3 receptor. Generally, to clarify the issues here, 
mGluR2/3 receptor agonist could be used to demonstrate whether repeated cocaine 
exposure can reduce the ability of the agonist to modulate the glutamate transmission 
within the mesocorticolimbic brain regions. 

 
Results in Chapter 3 suggested that cocaine influences a non-neuronal pool of 

glutamate regulated by the cystine/glutamate antiporter. As shown in Chapter 3, 
repeated cocaine exposure enhanced the cystine induced glutamate release in the 
mPFC. However, the ability of mGluR2/3 receptor agonist, LY379268 to inhibit this 
non-neuronal glutamate release was no longer apparent following a prolonged cocaine 
withdrawal. These results indicate the dis-inhibition of the non-neuronal glutamate 
release induced by repeated cocaine exposure may partly contribute to enhanced 
glutamate release seeing during early sensitization. However, the enhanced 
non-neuronal glutamate release induced by repeated cocaine exposure following a 
short term withdrawal is not correlated with the loss of inhibition of mGluR2/3 
receptor. Thus, mGluR2/3 receptor agonist, LY379268 still can inhibit the cystine 
induced glutamate release. These results further suggested other mechanisms many 
control the activity of cystine/glutamate antiporter. Studies have demonstrated that the 
activity of cystine/glutamate antiporter is regulated by cAMP-dependent protein 
kinase and PKA stimulated activity of the antiporter (Tang and Kalivas 2003). 
Moreover, in contrast to previous studies that repeated cocaine exposure has been 
shown to reduce the activity of this antiporter in the NAc (Baker et al. 2003), the 
present studies shown in Chapter 3 suggested that reduction of the activity of this 
antiporter might not happen in the mPFC following a long term cocaine withdrawal. It 
has been shown that this antiporter plays an important role in maintaining endogenous 
tone on mGluR2/3 receptor in the NAc (Baker et al. 2002). Probably, the reduction of 
activity of this antiporter may only help to reduce the inhibitory tone via mGluR2/3 
receptor so as to enhance the synaptic glutamate release. While inhibitors of this 
antiporter did not alter the basal glutamate level in the mPFC (Melendez et al. 2005), 
suggesting that there are may be other mechanisms underlying maintaining 
endogenous tone on mGluR2/3 receptor in the mPFC.   
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The dynamic glutamate level in the mPFC is not only influenced by the glutamate 
release, but also regulated by the glutamate synthesis and clearance. Glutamine is a 
common precursor for the biosynthesis of both glutamate and GABA. Glutamine can 
be transported in and out of neurons and astrocytes utilizing different glutamine 
carriers. Three such carriers have recently been cloned and characterized, referred to 
as ASCT2, GlnT and SN1. They are differentially expressed in brain cells; ASCT2 
and SN1 being astrocytic and GlnT being neuronal (Schoepfer et al. 1994; Hediger 
and Welbourne 1999). They play different roles in glutamine influx and efflux and 
hence control the availability of glutamine. The neurotransmitter glutamate can be 
mainly synthesized from glutamine by the action of phosphate-activated glutaminase 
(Hediger and Welbourne 1999). Then, cytoplasmic glutamate is transported into 
vesicles by the vesicular glutamate transporter. After synaptic release, glutamate is 
taken up by excitatory amino acid transporters (EAATs) into either nerve terminals or 
glia cells (Bridges and Esslinger 2005). Following entry into the nerve terminal, 
glutamate is pumped into synaptic vesicles by a vesicular transport system. Three 
different vesicular glutamate transporter proteins (VGLUT1-3) representing unique 
markers for glutamatergic neurons were recently characterized (Hisano 2003; Shigeri 
et al. 2004). Glutamate metabolism, which to a large extent takes place in glial cells, 
is catalyzed either by glutamine synthetase or glutamate dehydrogenase (Bridges and 
Esslinger 2005). Probably because cocaine is the blocker of monoamine transporter, 
previous studies have focused on the effects of chronic cocaine on the monoamine 
transporter, such as DAT, NET and SERT as well as the vesicular monoamine 
transporter: VMAT. Although some studies reported the alterations of these 
transporters following chronic cocaine exposure with regard to either function or 
expression (Wilson and Kish 1996), no agreement has been achieved. Therefore, 
studies on glutamate transporters have not been conducted, although it has been 
reported that chronic amphetamine treatment increased tissue levels of glutamate in 
frontal cortex (Kim et al. 1981) and decreased aspartate turnover was found in the 
frontal cortex of cocaine self-administering rats compared to yoked-vehicle controls, 
but not yoked-cocaine rats (Smith et al. 2003). Few studies have been done to 
demonstrate the effects of chronic psychomotor stimulants, such as cocaine on the key 
proteins regulating glutamate biosynthesis and clearance. However, a recent study has 
shown that the colocalization of postsynaptic glutamate transporters and mGluRs 
limits mGluR-mediated signals and mGluR-dependent forms of plasticity by 
up-taking glutamate in cerebellar slices (Brasnjo and Otis 2001). Thus, it is possible 
that chronic psychomotor stimulants exposure could alter the glutamate receptor 
signaling by affecting the EAATs.  

 
 

Medial Prefrontal Glutamate Outputs and Mesolimbic Dopamine System 
 
When combined with previous research (Steketee 2005), the studies shown in 

Chapter 2 demonstrated that pharmacological manipulation of the mPFC could alter 
the development of cocaine sensitization. Cocaine induced behavioral sensitization is 
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well correlated with the augmented cocaine-mediated dopamine response in the NAc. 
This is the reason we monitored dopamine levels in the NAc in the studies in Chapter 
2, and defined it as the neurochemical sensitization. Since enhanced glutamate output 
is associated with the augmented behavioral response and neurochemical response to 
cocaine challenge, it seems necessary to discuss the glutamate output in regulating the 
mesolimbic dopamine system in the development of sensitization.  

 
It has been reported that systemic cocaine injection (15 mg/kg) or intra-VTA 

administration of the D1 receptor agonist SKF-82958, but not the D2 receptor agonist 
quinpirole increased glutamate efflux in the VTA of naive rats (Kalivas and Duffy 
1995). It also has been demonstrated that PFC neurons projecting to VTA express 
mRNA for D1 receptors (Lu et al. 1997). Therefore it has been proposed that 
psychomotor stimulant, such as cocaine augments somatodendritic DA efflux, which 
increases the D1 receptor-mediated stimulation of glutamate release from the 
glutamatergic terminals projecting from PFC to VTA. Therefore, it is hypothesized 
that repeated elevation of VTA glutamate levels, caused by repeated cocaine injections, 
leads to adaptive changes in the VTA that contribute to the induction and maintenance 
of sensitization (Kalivas 1995). This hypothesis might support that repeated 
intra-mPFC injections of mGluR2/3 receptor agonist, APDC might inhibit the 
pyramidal neurons and decrease the repeated elevation of VTA glutamate levels so as 
to prevent the initiation of cocaine sensitization. By using extracellular single unit 
recording and microiontophoresis, it has been shown that the responsiveness of VTA 
DA neurons to the excitatory effects of glutamate is significantly enhanced in 
cocaine-pretreated animals (White et al. 1995), an effect associated with increased 
sensitivity of AMPA receptors (Zhang et al. 1997). By using the AMPA/NMDA ratio 
as a marker for LTP, LTP in VTA dopamine neurons has been reported (Ungless et al. 
2001; Saal et al. 2003). Furthermore, it has been found that the AMPA/NMDA ratio 
was increased in brain slices prepared one day after a single injection of amphetamine, 
cocaine, morphine, ethanol, or nicotine (Saal et al. 2003). Thus, there is a growing 
evidence that the initiation of sensitization involves LTP at excitatory synapses onto 
VTA dopamine neurons (Wolf 1998). 

 
It has been reported that a challenge injection of 15 mg/kg cocaine, given 3 weeks 

after discontinuing 1 week of daily cocaine injections (30 mg/kg), elicited increased 
glutamate efflux in core but not shell of the NAc in cocaine sensitized animals (Pierce 
et al. 1996). The results suggested increased glutamate efflux in the NAc is associated 
with expression of cocaine sensitization. In addition, the augmented DA efflux in the 
NAc is correlated with the expression of cocaine sensitization. Although it is not clear 
which neurotransmitter system change is secondary to the other, it seems that both 
systems are involved in the modulation of medium spiny NAc neurons following 
repeated cocaine exposure. Anatomical studies have shown that medium spiny NAc 
neurons receive inputs from DA terminals from VTA as well as cortical terminals 
(Sesack and Pickel 1992). Basically dopamine inhibits the medium spiny NAc 
neurons by acting on the dopamine receptors such as D1 receptor, while glutamate can 
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excite these neurons by acting on glutamate neurons such as AMPA receptor. It has 
been found that GluR1, GluR2, and NR1 mRNA levels and immunoreactivity in the 
NAc were decreased following a long term withdrawal from amphetamine (Lu et al. 
1997; Lu and Wolf 1999). It has also been shown that D1 receptor exhibits 
supersensitivity after repeated cocaine or amphetamine exposure (Henry and White 
1991). Therefore, these changes would result in more efficient inhibition of medium 
spiny neurons. Since inhibition of medium spiny neurons in the NAc has been 
associated with enhanced locomotor activity (Pennartz et al. 1994), both the reduced 
glutamate response and enhanced dopamine inhibition may contribute synergistically 
to the expression of behavioral sensitization. However, some studies have shown an 
increase in GluR1 and NR1 immunoreactivity in the NAc 3 weeks after 
discontinuation of repeated cocaine (Pierce et al. 1996). These results suggest 
increased AMPA receptor responsiveness in cocaine sensitized rats. One possible 
explanation is that the increased AMPA receptor expression may be mainly on 
dopamine terminals, which would enhance dopamine release in the NAc. Group II 
mGluRs may also play a role in negatively regulating dopamine release in the NAc. 
KCl stimulated release of dopamine from the slices of the rat NAc was reduced by 
mGluR2/3 receptor agonist (Chaki et al. 2006). An mGluR2/3 receptor antagonist, 
MGS0039, increases extracellular dopamine levels in the NAc shell (Karasawa et al. 
2006). Thus, repeated cocaine exposure induced functional reduction of mGluR2/3 
receptor in the NAc (Xi et al. 2002) might contribute to the enhanced dopamine 
release in the NAc of cocaine sensitized animals. However, whether physiological 
levels of glutamate in the NAc can increase the release of DA by acting on 
presynaptic glutamate receptors located on dopaminergic terminals is still in debate, 
since it has been reported that DA release could be induced by a relatively high dose 
of glutamate or glutamate receptor agonists (Svensson et al. 1994), which did not 
represent physiological levels of glutamate in the NAc. Probably, the regulation of 
dopamine release by glutamate in the NAc may become efficient only in conditions 
such as enhanced glutamate transmission in cocaine sensitized animals. This could be 
partly explained by the anatomical data, which have shown that the terminals of 
mPFC efferents in the NAc are often in close apposition with dopaminergic terminals, 
but they do not form direct synapses with dopaminergic terminals (Sesack and Pickel 
1992). Therefore, high glutamate level may be needed to allow glutamate to diffuse to 
the dopaminergic terminals and activate the glutamate receptors.  

 
Generally, although glutamate may directly increase dopamine release from the 

dopaminergic terminals in the NAc, the enhanced dopamine release associated with 
sensitization seems mainly due to the enhanced dopamine neuron activity in the VTA. 
The enhanced VTA dopamine neuron activity could be maintained through the LTP 
on the excitatory synapse, which was described above. Moreover, it has been found 
that the ratio of AMPA/NMDA receptor-mediated EPSCs was decreased at synapses 
made by prefrontal cortical afferents onto medium spiny neurons in the shell of the 
NAc (Thomas et al. 2001) This is supported by previous studies that have shown that 
all drugs of abuse decrease the firing of NAc neurons (Wise 1998). Thus, the 
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GABAergic inputs into the VTA dopamine neurons could be reduced. Therefore, 
disinhibition of VTA dopamine neurons by the long term depression of excitatory 
synaptic transmission on medium spiny neurons (MSN) in the NAc could be possible. 
This could be supported by a recent finding that repeated cocaine exposure increased 
the probability of spike initiation facilitating the LTP in VTA dopamine neuron by 
reduced the amplitude of GABA-mediated synaptic currents (Liu et al. 2005). 

 
 

Conclusions 
 
Given the involvement of glutamate circuits in reward-related brain regions and 

evidence of cocaine-induced glutamatergic dysregulation, as a glutamate rich brain 
region, mPFC serves as a very important glutamate output source, which is a critical 
component in drug induced brain disorders, including withdrawal, relapse and craving. 
The current studies have attempted to identify some of the factors that are involved in 
the development of cocaine sensitization, which is thought to play an important role in 
craving and relapse in drug addiction. The actions of mPFC Group II mGluRs 
demonstrated in this project include modulation of glutamate release from vesicular 
and non-vesicular pools within this brain region, modulation of the mesocorticolimbic 
glutamate transmission and influence on the dopamine response in the NAc. In 
addition, the role of Group II mGluRs in the development of cocaine sensitization 
could be more complicated due to the potential loss of the fuctionality of this receptor. 
The principal finding from the current project was that the development of cocaine 
sensitization is associated with the alteration of mesocorticolimbic glutamate 
transmission by Group II mGluRs. Generally, these findings support the hypothesis 
that sensitization results, in part, from a decrease in inhibitory modulation of 
pyramidal neurons, allowing for an increase in excitatory transmission in the 
mesocorticolimbic brain regions. 
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