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Figure 1-3. Potential applications of modeling and simulation concepts during 
preclinical and clinical drug product development  
 
Source: Reprinted with permission. Meibohm, B. and H. Derendorf, Pharmacokinetic/-
pharmacodynamic studies in drug product development. J Pharm Sci, 2002. 91(1): p. 18-
31. 
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Population-based modeling: sparse and unbalanced sampling 
 
 As we discussed, one of the specific advantages of population-based M&S is the 
capability of handling sparse and unbalanced data from a large, heterogeneous group of 
patients, which is the situation in neonates and infants studies [73]. Because of ethical 
and medical concerns, young children are well protected by minimizing the invasive 
samplings and all blood specimens are usually only collected for a therapeutic or 
diagnostic purpose. Therefore, the number of blood samples from each individual is very 
limited and usually doesn’t follow a fixed sampling schedule. The successful application 
of M&S makes the study of this critically ill population (NICU patients) more feasible. A 
number of PopPK studies were conducted in children using sparse data with unbalanced 
design, or they took advantage of therapeutic drug monitoring (TDM) data, and the 
developed models and results were successfully translated into clinical therapeutic 
decision making, thereby benefitting patients with optimal dosing regimens. Some of the 
examples include vancomycin [82-84], phenytoin [85], midazolam [86], aminoglycosides 
(gentamicin, tobramycin, netilicin, amikacin) [87] and sotalol [24]. Identification of 
significant factors contributing to the variability of parameters can be especially 
important in premature infants where rapid developmental changes occur over relatively 
short periods of time, resulting in a large variability in drug disposition. The developed 
models can be used in the future for dosing regimen optimization by relating PK 
parameters (such as CL) and patient demographic factors (such as body weight and, age) 
to criteria for therapeutic safety and efficacy. 
 
 
Clinical trial simulation 
 

Clinical study designs can be explored by simulation based on PKPD modeling. 
M&S as a powerful tool for rationale decision making provides the capability for careful 
design and planning in pediatric studies. Clinical trial simulations closely depend on 
population pharmacokinetics. They allow researchers and clinicians to explore situations 
that have not been investigated before—thereby gaining insight into a “new world,” for 
example, extrapolating results from animals to humans. Another advantage of clinical 
trial simulations is to help researchers tailor design factors by comparing and 
investigating simulation results as if in the “real world”—including, for example, optimal 
sampling design for a trial, optimized sample size estimation, or optimized dosing 
regimens. M&S provides a scientific framework for efficient decision making, thereby 
increasing the probability of success in clinical studies while minimizing risk and cost. 
 
Optimal study design 
 
 A carefully designed clinical study will improve the probability of “success” by 
comparing and assessing the impact of different design factors that may affect the 
outcome, such as dosing regimen, sample size, number of drop-outs and trial duration, 
with considering uncertainties [88]. Sample size estimation is a key factor for a 
successful study with adequate power and reliable results but involving a minimum 
number of patients (sample size) in order to minimize the trial duration, cost, and the 
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potential risk imposed to the patients. A minimum but adequate sample size is one of the 
most important aspects of optimal study design in pediatric patients due to the ethical 
limitations in this population. However, sample size estimation has not been included in 
most population pharmacokinetic studies. Through the M&S based upon available PKPD 
data and/or prior knowledge, the required number of subjects can be estimated to best 
reflect the study objectives and characterize pharmacokinetics in specific populations. 
We will illustrate this application in Chapter 3.  
 
 Rapid developmental change is another feature associated with pediatric patients, 
especially with neonates and infants, which leads to large between-subject and within-
subject variability in premature neonates and infants. If developmental changes are not 
included during the study design, the clinical trials are likely to fail due to the lack of 
knowledge of drug action during the development process [68, 89]. Simulations coupled 
with PopPK models allow testing the different designs and the impact of uncertainty on 
the outcome of the study in a computer-based, virtual environment; they provide 
researchers chance to gain insight into the results before the study is actually performed. 
Mouksassi et al. [90] used PopPK and clinical trial simulations to select dosing regimens 
for a phase I study of teduglutide in pediatric patients with short-bowel syndrome. In 
their study, realistic covariate input specific to the targeted patient population was 
simulated and used to evaluate dosing strategies under various age-weight, 
pathophysiological conditions thereby determining safety and efficacy in this patient 
population. Thus in the pediatric group, M&S is a useful tool to optimize the study design 
by incorporating the growth effect and maturational changes, and maximize the 
likelihood of achieving target exposure in the real clinical setting. Meanwhile, 
appropriate sample size will ensure a successful study with fewer patients exposed to the 
investigational procedures, which is also meaningful for the ethical and practical 
considerations when conducting a pediatric clinical trial. 
 
Optimal dosing regimen  
 
 Traditionally, approval of a new drug application by FDA was primarily 
determined by reviewing the medical and statistical data. As described previously, an 
important advance in clinical drug investigations is the incorporation of population-based 
M&S into an approval decision [78].  
 

Among all types of decisions making, the majority of cases were relevant to 
dosing selection based on quantitative benefit-risk assessments. Today, pharmacometrics 
allows for dosing regimens to be based on modeling and simulation analyses before they 
are thoroughly studied in phase III clinical trials, or they are supported by 
pharmacometric analyses as confirmatory evidence for supporting labeling information. 

 
 Modeling and simulation can be useful in establishing optimal dosing strategies 
and increasing the successful probability of a clinical study. Empirical Bayes estimation 
of individual pharmacokinetic parameters acquired by modeling analysis, combined with 
individualized measurement, has been successfully applied in pediatric PK studies for 
individual optimal dosing selection. Simulation of PKPD can be performed to predict the 
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drug concentrations or responses under a “real world” condition with different dosing 
regimens. Thus appropriate study design and dosing strategy can be proposed for 
pediatric studies based not only on empirical assumptions but also on a model-based 
approach, Figure 1-4 shows a schematic illustration of this approach. Such approaches 
have been evaluated in multiple studies for regulatory decision making [91-93]. Clinical 
trial simulation allows the utilization of population PK/PD models along with the 
integration of study design, patient demographics and disease status. As a result, optimal 
design can be selected and dosing strategy may be evaluated in various conditions. For 
example, the approval of levofloxacin dosage to treat anthrax in children was based on 
pharmacometric analyses with M&S since no clinical trials could be conducted with the 
recommended dosing regimen [94].  
 
 

Summary and Specific Aims 
 
 Research efforts focused on optimized dosing strategies for safe and effective use 
of medications in premature infants is needed to improve our understanding of drug 
disposition in this population group. The utilization of advanced analytical assays will 
allow for pharmacokinetic studies of drugs commonly used in premature infants. The 
aims of this present work were to investigate research strategies in the pharmacokinetic 
study of drugs used in premature neonates and infants, including bioanalytic assay 
development, trial design factor investigation, PopPK model development and dosing 
regimen assessment. These processes were aimed at developing optimized dosing 
regimens for premature neonates and infants. 
 
 In specific aim 1 (discussed in Chapter 2), to enhance our knowledge on 
pharmacokinetics of commonly used drugs in premature neonates, we developed and 
validated an LC-MS/MS method for the simultaneous determination of commonly used 
medications in the NICU, including acetaminophen, caffeine, phenytoin, ranitidine, and 
theophylline, in small volume human plasma specimens of 50 µL [95]. 
 
 In specific aim 2 (discussed in Chapter 3), we explored sample size requirements 
for observational PopPK studies in premature neonates and infants using theophylline as 
a model drug. A full model-based simulation approach was applied with prior 
information and between-subject variability and residual variability. We evaluated the 
accuracy, precision and power of parameter estimation and also investigated the effect of 
sample size on the detection of significant covariates.  
 
 For specific aim 3 (discussed in Chapter 4), we developed a PopPK model of 
caffeine in premature neonates and evaluated the change of PK parameters throughout 
infancy. The developed model was subsequently used for a dose-optimization study by 
simulation, particularly to simulate the distributions of steady state concentrations at 
different dosing regimens for various age/body size groups, which provided the rationale 
for age/weight specific, optimized dosing regimens.  
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Figure 1-4. Application of PopPK modeling and simulation in pediatric 
pharmacotherapy  
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CHAPTER 2.    A TANDEM MASS SPECTROMETRY ASSAY FOR THE 
SIMULTANEOUS DETERMINATION OF ACETAMINOPHEN, CAFFEINE, 
PHENYTOIN, RANITIDINE, AND THEOPHYLLINE IN SMALL VOLUME 

PLASMA SPECIMENS* 
 
 

Introduction 
 
 Premature infants (gestational age less than 37 weeks) are considered a vulnerable 
patient population due to their immaturity at birth. Born at different gestational ages, they 
experience rapid growth and continuous developmental changes in body size and 
composition as well as organ size and function. Different stages of maturation and 
different maturational trajectories for the physiological and biochemical processes that 
govern drug disposition (i.e., absorption, distribution, metabolism, and excretion) result 
in tremendous inter-individual pharmacokinetic variability, leading to very disparate 
responses to drug therapy [96, 97].  
 
 Acetaminophen, caffeine, phenytoin, ranitidine, and theophylline are widely used 
in the pharmacotherapy of premature and term neonates. Acetaminophen, or paracetamol, 
is an effective and widely used analgesic and antipyretic medication in infants [98]. 
Caffeine and theophylline are both used in the treatment of neonatal apnea in premature 
infants [99-101]. Ranitidine is frequently used for the reduction of intragastric acidity in 
conditions such as pathological gastro-oesophageal reflux or stress ulcer prophylaxis in 
critically ill infants, the latter being a common side effect of steroid treatment in 
premature infants with bronchopulmonary dysplasia [102]. Phenytoin is applied as a 
second line medication for the pharmacotherapy of seizures in patients with treatment 
failure on phenobarbital therapy [103]. Only limited information is currently available on 
the pharmacokinetics of these medications in premature neonates. Ethical and practical 
constraints in sample collection from this patient population limit the number and volume 
of blood specimens available for pharmacokinetic evaluations [104].  
 
 In recent years, high performance liquid chromatography with mass spectrometry 
detection (LC-MS/MS) has become the standard analytical methodology in 
pharmacokinetic evaluations due to its robustness and high sensitivity. LC-MS/MS 
allows for reliable drug and metabolite quantification even within the confines of small 
sample volumes in pediatric studies [104]. A number of quantitative assays using 
LC-MS/MS for the above mentioned drugs have been previously described. These 
methods, however, are limited to the quantification of one specific drug per assay, and 
many do not have sufficient sensitivity to quantify therapeutic drug concentrations in 
small volume plasma specimens [61-67]. Due to the limitations in sample volume, only  
 
 
*Adapted with permission. Zhang, Y., et al., A tandem mass spectrometry assay for the 
simultaneous determination of acetaminophen, caffeine, phenytoin, ranitidine, and 
theophylline in small volume pediatric plasma specimens. Clin Chim Acta, 2008. 398(1-
2): p. 105-12.  
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an assay that can simultaneously determine multiple drugs concurrently used in the 
pharmacotherapy of premature neonates was deemed feasible to support pharmacokinetic 
studies in this population. Thus, in the present study, we developed and validated an LC-
MS/MS method for the simultaneous determination of acetaminophen, caffeine, 
phenytoin, ranitidine, and theophylline in small volume human plasma specimens of 
50 µL.  
 
 

Materials and Methods 
 
 
Chemicals and reagents 
 
 All chemicals used including acetaminophen (C8H9NO2, 99.0%, MW 151.2), 
caffeine (C8H10N4O2, 99.9%, MW 194.2), phenytoin (C15H12N2O2, 99%, MW 
252.3), ranitidine hydrochloride (C13H22N4O3S٠HCl, >99%, MW 350.9), theophylline 
(C7H8N4O2, >99%, MW 180.2) and the internal standard, phenacetin (C10H13NO2, 
MW 179.2), were purchased from Sigma-Aldrich, Inc. (St. Louis, MO). Their chemical 
structures are shown in Figure 2-1. HPLC grade water and methanol were acquired from 
Fisher Scientific (Fair Lawn, NJ).  Pooled human plasma was obtained from LifeBlood 
Biological Services (Memphis, TN). All other materials were purchased from standard 
vendors and were of the highest available quality. 
 
 
Instrumentation 
 

The LC system consisted of a Shimadzu high performance liquid 
chromatographic system (Shimadzu Scientific Instruments, Norcross, GA, USA), coupled 
with a HTC PAL autosampler (Leap Technologies, CTC Analytics, Carrboro, NC). 
Chromatographic separation of acetaminophen, caffeine, phenytoin, ranitidine, 
theophylline, and the internal standard was performed on a Phenomenex Luna® 3 μm 
C18(2) column (50 mm x 2.00 mm, Phenomenex, Torrance, CA) with a gradient elution 
using mixtures of water and methanol, mobile phase A (95:5, v/v) and mobile phase B 
(10:90, v/v), both containing 0.05% formic acid. The optimum separation was achieved 
by increasing mobile phase B from 0% to 80% in the time period of 0 to 3 minutes, 
staying at 80% B from 3 to 5 minutes, and then dropping to 0 % B from 5 to 6 minutes. 
The flow rate was 0.3 mL/min. Detection was performed using a MDS Sciex API 3000 
triple quadrupole mass spectrometer (Applied Biosystems, Foster City, CA) that was 
operated in positive ion mode with turbo electrospray ionization. All analyses were 
performed in the multiple reaction monitoring (MRM) mode. Instrument control and data 
acquisition were performed using the Analyst v1.4.2 software package (Applied 
Biosystems, Foster City, CA).  

 
Optimization of the detection conditions was performed by direct infusion of the 

analytes (1 µg/mL, dissolved in methanol) from a syringe pump into the mass 
spectrometer.  The auto tuning function of the Analyst software was used, and the 
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optimized parameters were used for the simultaneous detection of acetaminophen, 
caffeine, phenytoin, ranitidine, and theophylline. The parameter settings were as follows: 
turbo ionspray gas 7 L/min, nebulizer (nitrogen) gas 4.00 psi, curtain gas 8.00 psi, 
collision-activated dissociation gas 6.00 psi, ionspray voltage 5500 V, temperature 
400 ºC, declustering potential 60 V, focusing potential 200 V, entrance potentials 10 V, 
collision energy 30 V, and collision cell exit potential 12 V. 
 
 
Calibration standards and quality control samples 
 
 Primary stock solutions of analytes and IS were prepared at 1 mg/mL in methanol 
and stored at 20 ºC. 200 µg/mL working solution was prepared by combining equal 
volumes of acetaminophen, theophylline, caffeine, phenytoin, and ranitidine stocks. The 
highest calibrator at a concentration of 25,000 ng/mL was prepared by adding 125 µL of 
200 µg/mL working solution into 875 µL of blank human plasma. Serial 1:2 dilutions of 
the highest calibrator in blank human plasma was used to produce 12 standard calibration 
samples with concentrations of 12.2, 24.4, 48.8, 97.7, 195.3, 390.6, 781.3, 1,562.5, 3,125, 
6,250, 12,500, and 25,000 ng/mL. Internal standard working solution was diluted to 
10 µg/mL in methanol. 1 mg/mL quality control (QC) standard solutions were prepared 
separately. Quality controls were prepared by adding small volumes of stock solutions to 
blank plasma. Three quality control levels at 100, 1,000, and 10,000 ng/mL were 
prepared and utilized for all drugs. Calibrators and controls were freshly prepared before 
each analysis.  
 
 
Sample preparation 
 
 Sample preparation was performed by protein precipitation with methanol. 50 μL 
aliquots of plasma from calibration samples, quality control samples, or plasma 
specimens with unknown drug concentrations were transferred to 0.5 mL microcentrifuge 
tubes. 175 μL of ice-cold methanol containing 10 μL of the internal standard (10 μg/mL) 
was added to each tube. Samples were vortex-mixed briefly at high speed and kept on ice 
for 40 minutes.  The samples were then centrifuged at 14,000 g for 10 minutes at 4 oC. 
Approximately 120 μL of the supernatant of each tube was transferred to an amber clean 
autosampler vial with insert for analysis. 10 μL of the aliquot solution was subsequently 
injected into the LC-MS/MS system. 
 
 
Sample quantification 
 
 Concentrations of each analyte were determined based on the ratio of the peak 
area for their monitored mass transition and the peak area of the mass transition 
characteristic for the internal standard. A calibration curve covering the entire 
therapeutically used plasma concentration range was established for each analyte using 
linear regression analysis of the ratio of analyte peak area/internal standard peak area 
versus analyte concentration with a weighting factor of 1/x. Unknown analyte 
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concentrations were calculated from the calibration curve based on the measured peak 
area ratios for the various analytes monitored. 
 
 
Validation 
 
 The developed LC-MS/MS assay was validated for linearity, accuracy, precision 
and recovery [105]. 
 
Linearity  
 
 Linearity was evaluated over the concentration range of 12.2 to 25,000 ng/mL for 
all analytes. Calibration standards were prepared freshly in duplicate for three validation 
runs on three separate days. The assay acceptance criterion for each standard 
concentration was ± 15% deviation of the nominal concentration, except for the lower 
limit of quantification, where a deviation of ± 20% was accepted.  
 
Precision and accuracy  
 
 Precision was expressed as the percent relative standard deviation (%RSD) and 
accuracy was expressed as percent error [18]. The intra-day and inter-day accuracies and 
precisions of the assay were assessed by analyzing QC samples at three concentration 
levels (100, 1,000, 10,000 ng/mL). Five replicates of each QC sample were analyzed in 
the same batch and %RSD and percent error were calculated for each set of replicates per 
batch to determine the intra-day accuracy and precision. This process was performed 
three times over three consecutive days and %RSD and percent error were calculated for 
all 15 replicates per QC sample in order to determine the inter-day accuracy and 
precision.  
 
Recovery and matrix effect  
 
 Recovery and matrix effect were assessed at three concentration levels (100, 
1,000, and 10,000 ng/mL) for each of the analytes, comparing the peak areas of five 
replicates at each concentration for analyte standards in methanol and standards spiked 
before and after protein precipitation in human plasma [106-108]. Relative recovery was 
expressed as the ratio of the mean peak area of an analyte spiked before extraction to the 
mean peak area of the same analyte spiked post extraction in the same matrix multiplied 
by 100. Absolute recovery was calculated as the ratio of the mean peak area of an analyte 
spiked before extraction to the mean peak area of the same analyte spiked in methanol at 
the same concentration multiplied by 100. The matrix effect was evaluated by comparing 
the mean peak area of analyte spiked post extraction to the mean peak area of an 
equivalent concentration of the same analyte standard in methanol. 
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Results and Discussion  
 
 
Method optimization 
 
 The assay development to simultaneously quantify acetaminophen, caffeine, 
phenytoin, ranitidine, and theophylline in small volume plasma specimens included 
optimization of the MS/MS detection, the chromatographic separation and the sample 
preparation procedures.  
 
 Based on the chemical structures of the analytes, an electrospray ionization 
interface (ESI) was used for ion generation. A Q1 full scan of each analyte and IS was 
acquired in both positive and negative mode when tuned under constant infusion at 600 
μL/h of a 1 μg/mL methanol solution of the analytes. The signal-to-noise ratio was used 
as the measure of sensitivity [109]. The positive ion mode of the ESI was selected for all 
analytes and IS due to a greater sensitivity compared to the negative ion mode. The 
protonated form of the analyte molecules [M + H]+ was monitored at m/z 152.2, 195.2, 
253.3, 315.2, 181.3, 180.3 for acetaminophen, caffeine, phenytoin, ranitidine, 
theophylline, and IS, respectively. Similarly, the most abundant product ion of each 
analyte or IS was selected for observation in the multiple reaction monitoring (MRM) 
scan. The mass transitions selected for quantitative analysis were m/z 152.2 to 110.2 for 
acetaminophen, m/z 195.2 to 138.3 for caffeine, m/z 253.3 to182.3 for phenytoin, m/z 
315.2 to 176.2 for ranitidine, m/z 181.3 to 124.0 for theophylline, and m/z 180.3 to 138.3 
for phenacetin as IS. Figure 2-2 depicts the product ion scan spectra of each analyte and 
the IS.  
 
 Due to the wide range in polarity of the five analytes, a single isocratic elution on 
a C18 column did not result in chromatographic separation within an acceptable run time. 
After evaluation of a variety of elution conditions, the separation, sensitivity, peak shapes 
and retention time were found to be satisfactory when using a gradient elution with a 
mobile phase of water and methanol containing 0.05% formic acid. All analytes and the 
IS had retention times of less than 6 minutes and the total assay run time was 8 minutes 
including the solvent equilibration time. Figure 2-3 shows a representative 
chromatogram for a methanol solution containing 500 ng/mL of each analyte. 
 
 
Assay performance 
 
 A chromatogram acquired from a blank human plasma sample spiked with 500 
ng/mL acetaminophen, caffeine, phenytoin, ranitidine, theophylline is shown in 
Figure 2-4. For all analytes, good linearity in the calibration curves was achieved with 
correlation coefficients of R > 0.9985, or coefficients of determination of R2 > 0.997. 
Figure 2-5 depicts calibration curves for each analyte. 
 
 For acetaminophen, phenytoin, and ranitidine, the assay allowed quantification in 
a range of 12.2 to 25,000 ng/mL, for theophylline in the range of 24.4 to 25,000 ng/mL,  
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Figure 2-2. MS/MS product ion spectra of five analytes and internal standard 
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Figure 2-3. LC-MS/MS chromatograms acquired from a standard methanol 
solution containing 500 ng/mL analytes 
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Figure 2-4. LC-MS/MS chromatograms acquired from blank human plasma 
spiked with 500 ng/mL of analyte drugs 
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Figure 2-5. Calibration curves of analytes 
 
(1) acetaminophen, (2) caffeine, (3) phenytoin, (4) ranitidine, (5) theophylline.  
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and for caffeine in the range of 48.8–25,000 ng/mL. These ranges cover each drug’s 
therapeutically used concentrations in the neonatal age group described as 4,000–20,000 
for acetaminophen [110, 111], 5,000–12,000 ng/mL for theophylline [112, 113], 8,000–
20,000 ng/mL for caffeine [113], 6,000–15,000 ng/mL for phenytoin [103, 114], and 
100–2,000 ng/mL for ranitidine [115-117].  
 
 The lower limit of quantification for each analyte was defined as the lowest 
concentration on the calibration curve with the signal-to-noise ratio (S/N) > 10 and is 
listed in Table 2-1. The upper limit of quantification was defined as the highest 
concentration on the calibration curve. Precision and accuracy for each analyte are 
summarized in Table 2-2. The mean accuracy ranged from 87.5 to 115.0% and the intra-
day and inter-day precision was between 2.8–11.8% and 4.5–13.5%, respectively. 
 
 As some of the clinically measured concentrations may exceed the upper limits of 
quantification, a sample dilution procedure was also evaluated.  The dilution procedure 
was conducted in five replicates for acetaminophen, theophylline, caffeine and phenytoin 
by using one half (25 µL) of the standard sample volume of plasma spiked with 50,000 
ng/mL and 10,000 ng/mL of the analytes. All samples were diluted to 50 µL with blank 
plasma and underwent the same sample processing procedure as previously described.  
The intra-batch (within batch) accuracy and precision for the 1-to-2 dilution at both 
concentration levels ranged from 89.8–110.9% and 1.6–10.4%, respectively (Table 2-3), 
indicating that this dilution procedure can be applied to samples with very high analyte 
concentrations.  
 
 Table 2-4 presents the summarized data for absolute recovery, relative recovery 
and matrix effect. Since trace amounts of caffeine and theophylline were detected in all 
blank plasma batches available to us, the matrix effect and absolute recovery for the low 
and medium concentration range were not evaluated for these drugs. There was no 
significant interference detected from the plasma for any of the other analytes or the 
internal standard. Relative recoveries ranged from 85.6-118.3%, absolute recoveries 
ranged from 67.3–103.5%, and matrix effect assessments ranged from 61.7–112.0% for 
all of the analytes and the IS except ranitidine. Ranitidine showed a range of 105.4–
118.5% for relative recovery, 26.3–41.9% for absolute recovery, and 23.5–35.3% for 
matrix effect. The high relative recovery suggests a good extraction efficiency of the 
protein precipitation method for all analytes and the IS. Similarly, percentage values for 
absolute recovery and matrix effect assessment were relatively high for all analytes 
except ranitidine, suggesting only a minor effect on the signal intensity by ion 
suppression from the matrix. Although ranitidine showed a relatively low absolute 
recovery and a pronounced matrix effect for human plasma, the analytical method was 
deemed acceptable for the intended purpose due to the satisfactory accuracy and 
precision obtained within the quantification range of ranitidine.  
 
 We also evaluated the effects of hemolysis, lipemia and hyperbilirubinemia 
(TBIL > 25 mg/dL and > 50 mg/dL) on the quantification of each drug at low (100 
ng/mL), medium (1,000 ng/mL), and high concentration (10,000 ng/mL) levels. No 
interference in the analysis was noted when these factors existed separately or combined.   
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Table 2-1. Calibration range and lower limit of quantification (LLOQ) for each 
analyte 
 
Analyte Calibration Range (ng/mL) LLOQ (ng/mL) 
Acetaminophen 12.2 - 25000 12.2 
Caffeine 48.8 - 25000 48.8 
Phenytoin 12.2 - 25000 12.2 
Ranitidine 12.2 - 25000 12.2 
Theophylline 24.4 - 25000 24.4 
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Table 2-2. The accuracy and precision of the LC-MS/MS method for each analyte 
 

Analyte 
Nominal 

Concentration 
Accuracy                                               

(%) 
Intra-day 
Precision 

Inter-day 
Precision 

(ng/mL) Day 1 Day 2 Day 3  (%RSD)  (%RSD) 
 100 97.8 96.9 102.6 10.2 10.0 
Acetaminophen 1000 90.7 109.8 102.6 10.8 13.0 
 10,000 87.5 108.8 94.6 5.3 10.9 
       
 100 104.3 107.9 104.2 6.9 6.8 
Caffeine 1000 95.8 103.5 100.7 11.8 11.5 
 10,000 103.0 111.6 105.6 6.0 6.6 
       
 100 90.6 105.8 105.6 10.7 13.2 
Phenytoin 1000 93.9 115.0 99.8 4.1 9.2 
 10,000 109.0 111.2 102.0 2.8 4.5 
       
 100 112.4 113.3 99.6 4.5 7.1 
Ranitidine 1000 106.4 110.4 105.3 5.7 5.6 
 10,000 102.8 108.1 106 6.5 6.4 
       
 100 101.6 98.6 103.7 8.3 8.3 
Theophylline 1000 90.2 108.9 112.4 8.8 13.5 

 10000 108.6 111.6 95.4 7.3 10.0 
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Table 2-3. Performance of a dilution procedure 
 

Analyte Dilution Factor 10000 ng/mL  50000 ng/mL 

   Accuracy Precision  Accuracy Precision 
Acetaminophen 1 to 2 107.5 7.1  89.8 2.6 
Caffeine 1 to 2 110.9 8.7  93.1 2.0 
Phenytoin 1 to 2 109.6 4.7  107.3 1.6 
Theophylline 1 to 2 97.9 10.4  103.7 2.0 

 
 
 
 
Table 2-4. Recovery and matrix effect 
 

Analyte Relative Recovery  
(%) 

Matrix Effect 
(%) 

Absolute Recovery 
(%) 

Acetaminophen 109.1-116.6 61.7-88.8 67.3-103.5 
Caffeine 107.0-112.8 89.4* 96.2* 
Phenytoin 92.5-109.6 72.7-110.5 68.5-102.2 
Ranitidine 105.4-118.5 23.5-35.3 26.3-41.9 
Theophylline 85.6-118.3 80.7* 87.1* 
IS (Phenacetin) 94.3-97.9 100.0-112.0 94.2-102.0 

 
* Since traces of caffeine and theophylline were detectable in blank plasma, matrix effect 
and absolute recovery were evaluated only at the highest concentration level for these 
analytes. 
 
  



33 
 

In addition, we investigated the potential interference of high concentration differences 
for analytes that are incompletely separated in the chromatographic process, particularly 
acetaminophen, caffeine and theophylline. Tested molar ratios of up to 13:1 did not result 
in any interference. 
 
 Figure 2-6 shows a representative LC-MS/MS chromatogram acquired from the 
plasma sample of a human subject taking four of the drugs captured by our assay. The 
analyzed concentrations were acetaminophen 7,010 ng/mL, theophylline 4,570 ng/mL, 
caffeine 401 ng/mL, and ranitidine 432 ng/mL.  
 
 

Conclusions 
 
 In summary, we developed a rapid, accurate, sensitive, and reliable LC-MS/MS 
method to simultaneously quantify five drugs frequently used in the pharmacotherapy of 
preterm neonates. The analyte quantification can be performed from small volume human 
plasma specimens of only 50 μL, thereby facilitating an efficient use of limited blood 
samples in pediatric patients. This bioanalytical assay is highly useful in supporting 
clinical pharmacokinetic studies of these drugs in premature infants when combined with 
population-based modeling and simulation techniques [9]. 
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Figure 2-6. A representative LC-MS/MS chromatogram acquired from a 
subject’s plasma  
 
(1) acetaminophen 7,010 ng/mL, (2) theophylline 4,570 ng/mL, (3) caffeine 401 ng/mL, 
(4) ranitidine 432 ng/mL. 
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CHAPTER 3.    SIMULATION-BASED SAMPLE SIZE OPTIMIZATION TO 
SUPPORT THEOPHYLLINE POPULATION PHARMACOKINETIC STUDY 

DESIGN IN PREMATURE NEONATES 
 
 

Introduction 
 
 In Chapter 1, we discussed the major challenges in conducting pharmacokinetic 
(PK) studies in a pediatric population. Generally, ethical and practical concerns hamper 
clinical studies in premature infants as compared to adults and older children. The core 
problem is a lack of sufficient data for PK analysis due to the limited number of blood 
samples available per patient and the limited number of available patients. Chapter 2 
describes an accurate and sensitive LC-MS/MS assay that was developed and validated 
for PK studies in premature infants. The presented bioanalytical assay allows for 
simultaneous quantification of five frequently used drugs from a single plasma sample as 
small as 50 μL. Therefore, this assay provides an opportunity for clinicians to assess the 
PK of multiple drugs in premature infants simultaneously, which is valuable in expanding 
our knowledge of PK in this population. Modeling and simulation is another effective 
tool in pediatric PK studies. It allows researchers to explore “what if” scenarios and 
therefore facilitates the optimization of study design in drug development and applied 
pharmacotherapy in terms of sampling scheme (the time and number of blood samples 
collected per patient) and sample size estimation (minimal number of subjects needed 
under the given sampling scheme), resulting in a reduced need for experiments and 
invasive study procedures. In this chapter, a full model-based, optimal-sample-size 
estimation for a population pharmacokinetic (PopPK) study is presented. Theophylline 
was used as a model drug in the current study. The results may be applied in future 
PopPK studies in premature infants with drugs commonly used in the neonatal intensive 
care unit (NICU). 
 
 
Specific sampling design in pediatric studies 
 
 The aim of a pediatric study to characterize the PK disposition of drugs 
commonly used in preterm infants is to ultimately use this information to guide an 
individualized dosing strategy. To minimize the number of needed patients and the 
procedures needed with each individual in this vulnerable population, an optimum 
clinical trial design is desirable. However, a well-designed clinical study with an optimal 
preplanned blood sampling schedule may not be practical and ethical in the NICU setting, 
since research in this study population can only be performed within the context of 
therapeutically necessary interventions, thereby limiting the available volume, frequency 
and timing of PK blood sampling. Thus, the data collected from routine therapeutic drug 
monitoring (TDM) have been suggested as an alternative for a PK study [118, 119]. One 
major restriction using the data from routine TDM is that most concentration 
measurements are from trough levels, therefore lacking information for the estimation of 
volume of distribution [120], which mainly determines the loading dose of a drug 
treatment. Since a small quantity of (50 μL) plasma is sufficient for an assay quantitation 
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of drug concentrations, the open question is whether an aliquot from leftover routinely 
obtained blood samples can be utilized in PK studies. A NICU patient usually undergoes 
frequent routine laboratory assessments for complete blood count and biochemical tests. 
In some critical situations, blood gas, electrolytes, and blood glucose are also monitored 
as frequently as every one hour for the purpose of therapeutic guidance. We thus 
hypothesized that any available leftover samples from those diagnostic blood samples 
plus TDM data could be used for PK evaluations. One of the advantages of this study 
design, which uses an opportunistic sampling approach as opposed to a more traditional 
preplanned PK approach, is that no extra blood draw will need to be imposed on the 
patients, therefore minimizing patient risk. Meanwhile the potential gain in knowledge of 
specific drug disposition will significantly extend our understanding of drug therapy in 
extremely premature infants. It is expected that over the course of the study, the sampling 
times are variable among the patients and the number of concentration measurements per 
subject will vary as well due to the different clinical requirements for blood specimens. 
Therefore, both sparse and dense samplings with random sampling time allocations for 
different drugs are expected in this study. In this particular case, we asked the question 
how many patients are minimally required for a PopPK study to ensure accurate 
estimation of the relevant model parameters to reliably detect clinically meaningful 
differences. 
 
 
Sample size and population pharmacokinetics 
 
Population pharmacokinetics (nonlinear mixed effect modeling) 
 
 The population pharmacokinetic (PopPK) approach, using nonlinear mixed 
effects modeling, allows for the simultaneous analysis of pooled data from multiple 
patients and provides population-typical as well as individual PK parameter estimates. 
One popular tool for PopPK analyses is the NONMEM® software. The term PopPK is 
used synonymously with nonlinear mixed effects modeling today. It has been frequently 
applied in pediatric studies due to the ability to extract information from sparse and 
unbalanced sampling data [11, 76, 121].  
 
Sample size for PopPK 
 
 Inefficient sampling design and unsuitable sample size may lead to a failed 
population pharmacokinetic study [122]. Although it is always favorable to acquire 
parameter estimations from a large sample size, the key is to determine the minimum but 
adequate number of subjects needed to balance the study cost and duration, and to ensure 
a study with adequate power. Sample size has been demonstrated to be one critical 
determinant. Its calculation for analyses in nonlinear mixed effects modeling has not been 
clearly defined. A number of publications suggested sample size determinations for 
PopPK studies. Those proposed methodologies were either formulae based by using the 
Wald statistic with first-order linearization of the nonlinear mixed effects model [123, 
124] or simulation based on the likelihood ratio test or a confidence interval (CI) 
approach [125, 126]. All of these studies determined the minimum sample size needed 
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for detecting some level of difference for a parameter between two subpopulation groups 
based on a prespecified hypothesis test, i.e., determining sample size as a function of 
statistical power and clinically meaningful effect size (together with a given type I error 
probability). For example, the hypothesis to be tested could be: is clearance in group one 
15% lower than that in group two? How many subjects do I need to detect this 
difference? How many subjects do I need if the difference in clearance is 30% or 40%? 
Usually only the primary model might be involved, and some categorical covariates (such 
as gender groups, two or more age groups) might be investigated as a subgroup.  
 
 In contrast, our study focused on two issues. The first was to estimate the typical 
population pharmacokinetic parameters and their between-subject variability with certain 
levels of accuracy and precision. Secondly, we wanted to assess and identify potential 
covariates, that are significant predictors of pharmacokinetic parameters, such as CL and 
volume of distribution [72]. Accordingly, the major concerns of sample size 
determination in such studies should not focus on testing hypothesis or detecting the 
differences in parameters between subgroups. Instead, sample size estimations would be 
carried out for the purpose of a successful PopPK study: how many subjects should be 
recruited so as to (1) obtain parameter estimations in the model with adequate accuracy 
and precision; (2) reliably determine covariate effects by separating a covariate model 
from the base model or its nested covariate model. Ogungbenro and Aarons [127] 
proposed a confidence interval approach for the sample size determination of a PopPK 
study when there is no clear hypothesis to be tested. In the current study, we attempted to 
extend the application of this approach to explore the impact of sample size on the 
quantification of continuous covariate effects (weight and age) in premature infants. In 
our study, given a more complicated study design in premature infants, time-dependent 
covariates and randomized sampling design were included; dose levels, sampling times 
and number of concentrations per subjects were different for different patients. We here 
present a full model-based sample size estimation using a simulation approach.  
 
 
Objective 
 
 This simulation study was to explore sample size requirements for observational 
PopPK studies in premature infants using theophylline as a model drug. It took prior 
information (model, parameter estimates, between-subject variability and residual 
variability) to identify a sample size that could provide unbiased and precise estimates for 
the fixed and random effect parameters and covariate effect determination.  
 
 

Methods 
 
 
Overview of methodology 
 
 Figure 3-1 illustrates how the simulations were conducted to assess different 
sample sizes for their ability to yield meaningful results given the same PopPK study   
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Figure 3-1. Overview of the methodology of the simulation and estimation steps 

This figure details how the simulations were conducted to assess the designs and their 
results. 
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design. Main steps included:  
 

• SAS 9.1 was used to generate the datasets, including covariates and dosing 
history. 
 

• 200 independent datasets for each sample size (9-200 subjects per study) were 
simulated. 
 

• A previously established population pharmacokinetic model and model 
parameters were employed to simulate all concentration datasets. The step was 
accomplished by using NONMEM version VI, Level 2.0 (ICON Development 
Solutions, Ellicott City, Maryland) with GNU Fortran 77 (g77) version 2.95 (Free 
Software Foundation, Cambridge, Massachusetts). 

  
• The PopPK model used for concentration simulation was applied to perform 

re-estimation. Parameter estimates were then obtained for each dataset. 
 

• The process was repeated with 200 independent datasets. Median and 95% 
confidence intervals (CIs) were then obtained for each parameter from 200 
estimates.  
 

• The bias (accuracy) and precision in the estimates of the population mean PK 
parameters and variance components were evaluated.  
 

• The impact of sample size on the parameter estimations in the model was 
evaluated based on the proportion of the total number of simulations where the 
estimated parameter values would fall inside a pre-specified interval considered 
“close enough” to their respective true value. 
 

• Power to detect two continuous covariates, body weight and postnatal age, was 
calculated as a fraction of tested statistics obtained in total number of simulations.   

 
 From the literature review, drugs of interest, such as caffeine, theophylline, 
acetaminophen and phenytoin, all exhibited one compartment disposition model, with age 
and weight being the two most important covariates of clearance and volume of 
distribution [85, 128-130]. Therefore, a one-compartment model was considered to 
examine the influence of sample sizes on the parameter estimation; weight and age were 
used to illustrate the covariate effect determination in the PopPK study.  
 
 
Datasets and simulating study design 
 
 Simulated datasets containing demographic data, dosing histories and sampling 
times were generated using SAS version 9.1 (SAS Institute, Cary, North Carolina).  
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Covariate simulation: demographic variables 
 
 Demographic variables, including birth weight (BW) and postnatal age (PNA) at 
the entry time (PNA0), were generated by randomized uniform distribution based on 
defined ranges in published data [131]. Postnatal age ranged between 1 and 25 days at 
entry time into the study. Birth weight ranged from 400 g to 1500 g. Considering the fact 
that premature neonates might be born at different gestational ages, no correlation was 
given between PNA0 and BW. PNA was then derived from PNA0, and body weight 
(WT) derived from BW and PNA according to biologically rationale development curves 
through the 14-day sampling window, using published growth behavior [132]. Thus 
 

PNA0 (days) ~ U (1, 25) BW (g) ~ U (400, 1500) 
 

 Where U (a, b) refers to a uniform distribution with lower (a) and upper (b) limits. 
 
Dosing history 
 
  All subjects were simulated to receive orally administered theophylline with a 
loading dose of 6 mg/kg followed by maintenance doses of 3 mg/kg every 12 hours for 
14 days.  
 
Pharmacokinetic samplings  
 
 The simulations assumed that future population studies in premature infants will 
be conducted with an opportunistic sampling approach as opposed to a more traditional 
pharmacokinetic approach. A mixed and unbalanced sampling design (both sparse and 
rich sampling) was included. All sampling times were simulated as random occurrences 
rather than a pre-planned sampling scheme as only blood samples drawn for clinical 
purposes would be used in the study. For each design (sample size), one third of 
individuals supplied 2 sampling measurements, one third supplied 4 measurements, and 
the remaining one third provided 8 sampling points. 
 
Simulation scenarios 
 
 Sample sizes of 9, 15, 20, 40, 60, 80, 100, and 200 patients per study were 
simulated. For each sample size, 200 independent datasets were generated under the same 
condition. 
 
 
Pharmacokinetic model and statistical model 
 
 Theophylline was used as a model drug to illustrate the method described in this 
section. A previously established population pharmacokinetic model with model 
parameters for both fixed and random effects was used in the evaluation [131]. The PK 
model was described by a one compartment model with first order absorption and first 
order elimination. The population pharmacokinetic model, parameterized in terms of  
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clearance (CL), volume of distribution (V) and bioavailability (F1), was as follows: 
  

TVCL (mL/hr) = θ1 * WT (g) + θ2 * PNA (days) 
 

TVV (L) = θ3 * WT (g) 
 

TVF1 = θ4 
 

 Where TVCL is the population typical value of clearance, TVV is the population 
typical value for volume of distribution, and TVF1 is the typical population value for 
bioavailability. θ1 is the coefficient for the effect of WT on CL. θ2 is the coefficient for 
the effect of PNA on CL and θ3 is the coefficient for the effect of WT on V. Following 
literature, we assume these parameters to be θ1= 0.0123, θ2= 0.377, θ3= 0.000937 and  
θ4 = 0.918 [131].  
 
 The between-subject variability (BSV) of the population typical value of CL and 
V was expressed by proportional error models as follows: 
 

CLj = TVCL * (1+ηCL,j) 
 

Vj = TVV * (1+ηV,j) 
 

ηCL,j, ηV,j ~N (0, ω2) 
 
 Where CLj and Vj are parameter estimations for the jth individual in the study. 
ηCL,j and ηV,j represent random variables normally distributed with zero means and 
variances of ωCL

2 and ωV
2, respectively. ωCL

2 and ωV
2 can be estimated by NONMEM 

and represent the between-subject variability in the population. 
 
 Residual variability was described by an additive error model as follows: 
 

Cobs,ij = Cpred,ij + εij 
 

εij ~N (0, σ2) 
 
 Where Cobs,ij is the ith observed concentration in the jth subject, Cpred,ij is the ith 
model predict concentration in the jth subject and  εij is the deviation of Cobs,ij from 
Cpred,ij. εij is a normally distributed random variable with an average value of 0 and 
variance of σ2. 
  
 Simulation values of between-subject variability of CL and V in terms of 
coefficient of variation (CV %) were set at 15% on clearance and 43.5% on volume of 
distribution --the same as the estimates reported in the original publication [20]. The BSV 
on bioavailability F1 was set at 0. Residual variability in terms of standard deviation was 
set at 1.93 mg/L, representing the differences between the observed and predicted  
concentrations in the study population [131]. 



42 
 

 
 
Simulating concentration profile 
 
 Using the pharmacokinetic model described above and all the parameters for both 
fixed and random effects, concentration profiles for theophylline in premature infants 
were simulated with nonlinear mixed effect modeling, as implemented in NONMEM VI, 
using the first order conditional estimation (FOCE) method.  
 
 
Data Analysis 
 
Parameter estimation 
 
 For each specified sample size, 200 replicates (or independent datasets) were 
analyzed. The model described earlier was fitted to all the datasets. For each replicate 
dataset, fixed effect parameters θ1, θ2, θ3 and variability parameters ωCL, ωV and σ were 
re-estimated by NONMEM VI using the same model. Bioavailability parameter θ4 was 
fixed since exclusive oral data was simulated in this study. First-order conditional 
estimation method was used in all cases throughout the study. Approximately 2-15% of 
estimation runs in each study experienced terminated minimization with reported 
parameter estimates; these model-fitting processes were repeated with adjusted initial 
estimates. This procedure did not necessarily lead to successful convergence. However, at 
least 90% of the 200 simulation runs converged successfully for each study. All reported 
parameter estimates, including those from terminated minimizations, were used in the 
analysis. This procedure was carried out in each study design, with a sample size of 9, 20, 
40, 60, 80, 100, and 200 subjects per study.  
 
 The parameters obtained from the 200 simulation datasets for each sample size 
were compared with the numbers used in the concentration simulation step to assess the 
bias and precision in the estimates of the population mean PK parameters and variance 
components. Median parameter estimates were compared to the ‘true’ parameters of the 
originating model, and 95% CIs for 200 replicates of each study were determined and 
evaluated by visual inspection [122] to detect trends in the results. Mean prediction error 
(%MPE) and root mean square error (RMSE) were computed as indices of accuracy and 
precision using the following formula:  
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 Where n = number of simulations (n = 200), 𝑃𝑃�𝑗𝑗𝑗𝑗  is the value of parameter Pk 
estimated in the jth simulation and Pk is the criterion value of parameters, representing 
both fixed- and random-effect parameters. 
 
 In order to assess whether a certain number of subjects (sample size) is enough to 
capture the true value of the parameter Pk in the PopPK study under the given 
opportunistic sampling design (blood samples collected per subject), the propensity of the 
resulting parameter estimates to fall within pre-specified narrow intervals containing the 
true parameter values was also investigated for each sample size. Typically, the statistical 
power of a hypothesis test is defined as the probability that we correctly reject the null 
hypothesis when a certain minimal effect size (deviation of the true value from the value 
assumed under the null hypothesis) is indeed present (equivalent to 1- β = 1- probability 
of a Type II error). In a simulation study, statistical power is typically not determined by 
formula-based computations but determined by the percentage of correctly rejected null 
hypotheses in repeated computer experiments that emulate certain realistic study settings 
[133]. In the current study, we compare the estimated parameter 𝑃𝑃�𝑗𝑗𝑗𝑗  to the criterion 
parameter from the literature, Pk, (the ideal ratio of 𝑃𝑃�𝑗𝑗𝑗𝑗  to Pk is 1 if 𝑃𝑃�𝑗𝑗𝑗𝑗  coincides with the 
true parameter value). If a difference > 20% (20% precision level) is determined to be 
significantly different, a range of 0.80-1.25 for the ratio is an acceptable criteria based on 
the two one-sided tests procedure [134]. That means if the ratio of 𝑃𝑃�𝑗𝑗𝑗𝑗 / Pk falls in the 
range of [0.80, 1.25], we considered the true parameter could be accurately estimated at 
the 20% precision level (i.e., would be reproducible for practical purposes). Note that this 
procedure is somewhat similar to the traditional “power” concept but has important 
distinctions; most notably we compare the obtained ratio to a pre-specified interval of 
acceptable values, and hence do not compute a confidence interval that would vary in 
each iteration of the simulation as is the case in statistical hypothesis testing. 
Furthermore, we are interested in how often we estimate the parameter “close enough” to 
the true value when simulating from this true model and do not evaluate how often we 
reject a certain value when the true model indeed differs in a particular way as would be 
the case when determining traditional power of a study. We proceeded as follows: For 
each investigated sample size, 200 ratios were obtained from the 200 simulations. The 
relative success of our computer experiments (”power”) were computed as the number of 
times we “correctly” identified the parameter value (estimate within the pre-specified 
values) divided by 200. Namely, the percentage of the 200 ratios that fell within the 
limits of 0.80-1.25 is referred to as the relative success (“power”) of the study. This 
procedure was also repeated at precision levels of 30% and 40% for parameter 
estimations with the corresponding ranges of [0.70, 1.43] and [0.60, 1.67] for the 𝑃𝑃�𝑗𝑗𝑗𝑗 /Pk 
ratios. 
 
 
Covariates effect determination 
 
 The impact of sample size on covariate effect determination was investigated 
through comparison of objective function values (OFV) of a covariate model and its 
nested model in 200 replicate datasets. OFV is proportional to -2 log likelihood of the 
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data and is a global measure of goodness of fit. Postnatal age and body weight were 
selected as the predictors of clearance, and body weight was selected as the predictor of 
volume of distribution [131]. Model improvement when including one covariate was 
evaluated based on chi-square distribution with one degree of freedom. A statistically 
significant model improvement was associated with a decrease of OFV by 3.84 when  
P = 0.05. More stringent criteria commonly used are χ2

1, 0.01 = 6.64 and χ2
1, 0.001 = 10.83. To 

be conservative, estimation runs with failed convergence were repeated with adjusted 
initial estimates until successful minimization was gained in all 200 replicates. Model 
separation was based on the decrease of objective function values (∆OFV) at 3 levels 
(i.e., P = 0.05, P = 0.01 and P = 0.001).  
 
 For each proposed sample size design, power was determined by calculating the 
fraction of simulations that ∆OFV achieved or exceeded the prespecified criteria for at 
the three significance levels.     
 
 

Results 
 
 
Dataset generation  
 
 Based on a reported longitudinal postnatal growth study in very low birth weight 
infants [132], average daily weight gain in g/day varied across 100-g birth weight 
intervals, ranging from 15.27 to 27.77 g/day. Gestational age, race and gender had no 
significant influence on the growth rate within each 100-g birth weight interval. So the 
average daily increments stratified by 100 g birth weight interval (Table 3-1) were 
employed to compute the body weight gain in the simulation.  
 
 An example for the mixed, unbalanced and randomized sampling design is shown 
in Figure 3-2. The representative study had included 9 simulated subjects with 42 
concentrations; of them, 3 subjects contributed 2 concentration measurements, 3 subjects 
contributed 4 concentration measurements, and the other 3 subjects contributed 8 
concentration measurements. The sampling allocation time ranged from 0.5 hr to 329 hr 
post loading dose within 14 days (336 hr) treatment. The sampling time spread between 
any two concentration measurements for each subject ranged from 2 hr to 237 hr, with a 
median of 32 hr. All sampling times were simulated as random occurrences over a 14-day 
sampling window, representing the paradigm of flexible blood sampling performed at any 
time. It should be noted that all datasets were generated independently so that the 
descriptive statistics for sampling time and demographic information, such as PNA and 
birth weight, varied in the simulations of the 200 different studies. 
 
 
Precision and accuracy of parameter estimation 
 
 The mean parameter estimates of the 200 simulations using sample sizes of 9, 15, 
20, 40, 60, 80, 100 and 200 subjects are presented in Table 3-2. Under the given study   
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Table 3-1. Average daily increments (g/day) used for body weight calculation 
stratified by birth weight interval 
 

Birth Weight Interval (g) Weight Gain (g/day) 
≤ 600 15.27 

601-700 16.81 
701-800 18.6 
801-900 20.06 
901-1000 21.04 
1001-1100 22.83 
1101-1200 24.73 
1201-1300 26.34 
1301-1400 27.15 
1401-1500 27.77 

 
Source: Modified with permission. Ehrenkranz, R.A., et al., Longitudinal growth of 
hospitalized very low birth weight infants. Pediatrics, 1999. 104 (2 Pt 1): p. 280-9. 
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Figure 3-2. A representative study showing the mixed, unbalanced and 
randomized samplings from a 9-subject study  
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Table 3-2. Central tendency (median parameter) of estimates for the simulations 
at different sample size 
 

Sample Size θ1 θ2 θ3 ωCL ωV σ 
Criterion 

Value 0.0123 0.000377 0.000937 0.0226 0.189 3.72 

9 0.0120 0.000366 0.000909 0.0110 0.099 3.69 
15 0.0124 0.000365 0.000931 0.0174 0.149 3.57 
20 0.0121 0.000381 0.000911 0.0181 0.150 3.65 
40 0.0126 0.000358 0.000931 0.0196 0.156 3.74 
60 0.0128 0.000357 0.000909 0.0216 0.156 3.72 
80 0.0126 0.000365 0.000927 0.0209 0.161 3.75 
100 0.0126 0.000370 0.000912 0.0223 0.157 3.76 
200 0.0127 0.000357 0.000918 0.0220 0.161 3.77 
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design, median parameters were well estimated across all sample size groups. When 
visually inspected, 95% CIs of PopPK parameters as measure of precision converged as 
sample size increased and became much narrower and remained stable when the sample 
size was > 60 (Figure 3-3).  
 
 The %MPE results are shown in Table 3-3 and illustrated in Figure 3-4. A 
smaller %MPE value indicates an on average smaller (relative) deviation of the estimated 
parameter value from the true value (preferable). All sample sizes gave unbiased 
estimates for all parameters except for two variability parameters, BSV on clearance 
estimation (ωCL) and BSV on volume of distribution estimation (ωV). %MPE was below 
5% for θ1~3, and σ estimations at all investigated sample sizes except for one estimate of 
θ2 showing as -6.2%. Substantial bias in variance of between-subject variability for V and 
CL (ωCL ωV) is noted for small sample sizes. %MPE as large as -33% for ωCL, and -32% 
for ωV was observed at sample size of 9; but dropped to -6.5% and -6.2%, respectively, 
when sample size increased to 40, indicating a marked increase in accuracy with 
increasing sample size. The bias for ωCL and ωV estimations was entirely negative, while 
both positive and negative biases were observed for other parameters in the model. 
Optimal sample size was evaluated by assuming a percentage coefficient of variation 
(CV%) at 15% for CL and 43.5% for V. Histograms of CV % for CL and V by different 
sample size are shown in Figure 3-5 and Figure 3-6. The results suggest that a 
substantial improvement in the estimation of variance parameters is correlated with an 
increased sample size. 
 
 The results of RMSE for the simulations are presented in Table 3-4, and its CV% 
is illustrated in Figure 3-7. RMSE generally decreases in all parameter estimations as the 
sample size increases, indicating increasing precision with increasing sample size. For a 
given sample size, the estimations of fixed effect parameters are better than those of the 
random effect parameters. The number of subjects does not seem to have as significant an 
influence on the precision of parameter estimations as long as it reaches 40 for fixed 
effect parameters and 60 for covariance parameters. 
 
 The influence of the number of subjects on the relative success of the study as 
defined here (“power”) was also investigated. Plots of relative success against sample 
size at various precision levels are presented in Figure 3-8. With our randomized 
sampling design, the relative success of our parameter estimation was deeply influenced 
by sample size, parameter of interest and the selected precision level. For example, 
assuming 20% difference was allowed in parameter estimation, a study would require 20 
subjects to give in 80% of the cases “close enough” estimates for θ1, while at least 100 
subjects would be required to achieve the same performance for θ2 under the current 
sampling and study design. A relatively high success rate (≥ 0.8) was shown in all sample 
sizes for 30% (ratio limit 0.70-1.43) and 40% (ratio limit 0.60-1.67) precision levels for 
θ1, θ3 and σ. The number of subjects required for θ2 also dropped to 40 and 20, 
respectively, at those two levels. The success rate of estimating the BSV parameters ωCL 
and ωV was much lower compared to the other parameters (Figure 3-9). To obtain 
successful estimation with a probability > 0.6, 20, 40 and 200 subjects in each study were 
considered to be sufficient at a precision level of 40%, 30% and 20%, respectively.  
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Figure 3-3. Median and 95% CIs for PopPK parameters and variance 
parameters from 200 simulated datasets 
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Table 3-3. %MPE of parameter estimates with various sample sizes 
 

Sample Size θ1 θ2 θ3 ωCL ωV σ 
9 -1.884 4.265 0.684 -33.054 -32.119 1.036 
15 1.153 -1.638 0.432 -19.287 -10.914 -1.813 
20 -0.373 4.229 -0.584 -15.043 -13.471 -0.370 
40 1.799 -2.621 -0.755 -6.486 -12.401 3.739 
60 3.463 -6.229 -3.126 -2.591 -12.428 0.780 
80 2.898 -3.789 -1.170 -2.525 -6.966 0.667 
100 2.600 -2.385 -3.152 2.212 -9.565 1.816 
200 3.172 -4.711 -1.767 -1.473 -7.221 2.829 

 
 
 
 

 
 
 
Figure 3-4. Accuracy of parameter estimates in different sample size groups 
 
Bias is expressed in terms of %MPE. 
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Figure 3-5. Estimated BSV on population CL in terms of CV% vs. numbers of 
subjects 
 
The red dash line indicates the CV% = 15%.  


