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identity for both V and J mapping; (ii) translated amino acid sequence between V and 

J is in the correct frame and reveals a translated product (no stop codon); (iii) the 

deduced CDR3 amino acid sequences between the V and J sequences begin with the 

conserved C and end with a FGXG, FAXG or HGXG motif. The deduced CDR3 nt 

sequences were then scanned using the Phred quality score cutoffs of 0, 10, 20 or 30, and 

reads with CDR3 nt sequence containing at least one low quality base at a given cutoff 

level were filtered out 

 

 

Retrogenic Mice Models 

 

 

Molecular Subcloning 

 

The backbone construct is MSCV-IRES-GFP
122

, which was further designed for 

the sake of our experiments
101,123

. To generate the TCRβ1-GFP construct which expresses 

single TCR chain, the TRBV13-2
+
 TCR segment was PCR amplified from 

1MOG244.2
123

  (forward primer: 5’-

GCCGAATTCGCCACCATGTCTAACACTGCCTTC-3’; reverse primer: 5’-

GGGTAGCCAACTCGAGAATGAG-3’) and subcloned into EcoRI/XhoI sites in the 

IRES-GFP retroviral vector. The TCRβ1-CDR3-J segment was created by annealing a 

pair of complementary oligos synthesized by St. Jude Hartwell Center (sense oligo: 5’-

TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCTGTGCCAGCGGTGAG

ACTGGGGGAAACTATGCTGAGCAGTTCTTCGGACCAGGGACACGACTCACCG

TCCTAGAA-3’; anti-sense oligo: 5’-

GATCTTCTAGGACGGTGAGTCGTGTCCCTGGTCCGAAGAACTGCTCAGCATA

GTTTCCCCCAGTCTCACCGCTGGCACAGAAGTACACTGATGTCTGAGAGGGG

GTAGCCAAC-3’). This was subcloned into the XhoI/BglII cloning sites of 1MOG244.2 

vector to synthetically recreate TCR1. Other TCRβ constructs were similarly 

constructed synthetically and the oligo sequences were in Table A-1. pMOTII plasmid 

(gift from Dr. D.Vignali; SJCRH) contained the entire OTII TCR (Vα2-2A-Vβ5.1) 

cassette. OTII TCRβ sequence was PCR amplified (forward primer: 5’-

GCCGAATTCGCCACCATGTCTAACACTGCCTTC-3’; reverse primer: 

GTCACATTTCTCAGATCTTCTAG-3’), digested with EcoRI/BglII, and then 

subcloned into the EcoRI/BglII sites of TCRβ1-GFP (Figure B-1a). 

 

To reconstitute a polycistronic MSCV construct expressing the unique TCRof 

1MOG244.2 and theTCRchain, 1MOG244.2 and TCRβ1-GFP constructs were both 

digested with EcoRI/XhoI. The digested fragment from 1MOG244.2, which included an 

entire TCRchain, a T. asigna 2A sequence and the TRBJ 13-2 segment, was ligated 

with the cut TCRβ1-GFP vector, generating a new plasmid named as 244.2-TCRβ1-

GFP (Figure B-1b). The other polycistronic constructs expressing different TCRchain 

but fixed TCRchain were reconstituted on 244.2-TCRβ1-GFP. The secondary 

BglII behind the CDR3was destroyed without disturbing the amino acid sequences by 

using Quick change site directed mutagenesis kit (Agilent Technologies, Santa Clara, 
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CA). Different TCRchains including TRAV and CDR3 were amplified and subcloned 

into the EcoRI/BglII cloning sites of 244.2-TCRβ1-GFP. 

 

 

Retroviral Transduction  

 

Retrovirus was produced as described
123

. Ten micrograms of retroviral construct 

and packing plasmid were cotransfected into 293 T cells using the calcium phosphate 

transfection method, and the cells were incubated in DMEM supplemented with 10% 

fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 100 U mL
-1

 penicillin, 100 

µg mL
-1

 streptomycin, and 292 µg mL
-1

 L-glutamine (Invitrogen Life Technologies) at 

37°C for 36 hr. Supernatant was collected twice a day for 72 hr and used to infect 

GP+E86 retroviral producer cells in the presence of 8 μg ml
-1

 polybrene (Sigma-Aldrich, 

St. Louis, MO).  

 

 

Generation of Retrogenic Mice  

 

Donor TCRβ
–/–

 mice received 0.15 mg 5-fluorouracil g
−1

 body weight i.p. (APP 

Pharmaceuticals, Schaumburg, IL). After 48 hr, bone marrow cells were harvested from 

the femurs of the mice and cultured in complete Click's medium (Invitrogen, Grand 

Island, NY) supplemented with 20% fetal bovine serum (FBS), 20 ng ml
−1 

mIL-3, 50 ng 

ml
−1 

hIL-6, and 50 ng ml
−1 

mSCF (Pepro Tech, Rocky Hill, NJ) for 48 hr. Next, the 

hematopoietic progenitor cells (HPCs) were collected and cocultured for another 48 hr 

with irradiated (1200 rads) GP+E86 retrovirus producer cells in complete Click's medium 

supplemented as above and with 6 μg ml
-1

polybrene. Then, the HPCs were harvested, re-

suspended in PBS supplemented with heparin (10 U per recipient mouse, Sigma-

Aldrich), and injected i.v. into the sublethally irradiated (450 rad) Rag1
-/-

 recipients at a 

ratio of two recipient mice per bone marrow donor. Transduction efficiency was 

confirmed by flow cytometry for GFP expression. Engraftment was analyzed on day 28 

after HPC transplantation. 

 

 

Clinical Evaluation  

 

Cohorts of retrogenic mice were generated and clinically monitored for ≥120 days 

after HPC transfer. Mice were processed and submitted for histopathologic examination 

either during the peak disease or after 120 days if healthy. Full necropsy including CNS 

tissues was processed on at least three mice for each cohort for concurrent inflammatory 

and degenerative lesions. Paraffin-embedded tissue samples were stained with 

hematoxylin and eosin (H&E) and, where appropriate, CD3. The severity of spontaneous 

EAE was scored by using the predetermined qualitative and semiquantitative criteria: 0, 

lesions absent, 1, minimal to mild inconspicuous lesions, 2, conspicuous lesions, 3, 

prominent multifocal lesions, 4, marked coalescing lesions. 
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Chimeric Mice  

 

HPCs from CD45.1
-
CD45.2

+
 TCRβ

-/-
 mice were transfected with TCRβ1 

retrovirus as described above. Retrogenic HPCs were harvested and diluted with 

CD45.1
+
CD45.2

-
 syngeneic B6 bone marrow cells, and subsequently injected into 

irradiated (450Rads) CD45.1
+
CD45.2

-
 Rag1

-/-
 mice at a ratio of two recipient mice per 

bone marrow donor. Engraftment was analyzed at day 28 after HPC transplantation. 

Disease incidence was monitored for at least 60 days. 

 

 

Cell Proliferation Assay  

 

Splenic cells were isolated from retrogenic mice and CD4+ T cells were purified 

with anti-CD4 Ab (L3T4) coated microbeads (Miltenyi Biotec, San Diego, CA) and 

enriched using MACS separation columns (Miltenyi Biotec). Purified CD4+ T cells were 

co-cultured at 5 × 10
4
 per well in 96-well plates with 2 × 10

5
 irradiated (3500 rad) 

syngeneic splenic APCs and stimulated with 100 μg ml
-1

 MOG35-55 peptide for 72 hr, 

pulsed with 1 μCi 
3
H-thymidine (PerkinElmer, Boston, MA), and harvested 16 hr later 

for scintillation counting. To further assess the dividing cell fraction, the Cell Trace violet 

cell proliferation kit (Invitrogen) was used according to the manufacturer’s instruction. 

Cells were labeled with 5 μM CellTrace
TM

 violet prior to culture with the indicated 

stimuli for 72 hr. The cells were then stained with surface markers and 7-AAD (BD 

Biosciences) and viable CD4 T cell proliferation was measured by dye dilution. As a 

positive control, 1 μL Mouse T-Activator CD3/CD28 Dynabeads (Invitrogen) were added 

to positive control wells to at a 1:1 bead-to-cell ratio. 

 

 

Cytokine Analysis  

 

Culture supernatants were collected at 48 hr and analyzed for IL-2, IL-4, IL-10, 

IFN-g, and IL-17A using the Milliplex MAP mouse cytokine/chemokine immunoassay 

kit (Millipore, Billerica, MA) on a Luminex (Bio-Rad) instrument. For intracellular 

cytokine staining, cells were cultured with 1x Cell Stimulation Cocktail (eBioscience) at 

37°C for 4 hr, stained for surface markers in the presence of 10 μg ml
-1

 monensin 

(eBioscience), followed by fixation and permeabilization, and intracellular staining with 

IL-17A and IFN- Abs. 

 

 

Retroviral Transfection of CD4
+
4G4 Hybridoma Cell 

 

Transfected GP+E86 retroviral producer cell lines were expanded in 75ml flasks. 

Twelve milliliter of retroviral supernatant was harvested from each day confluent 

GP+E86 producer cells. To transfect hybridoma cells, 1x10
6 

TCR-deficient CD4
+
 4G4 

hybridoma cells
101

 were resuspended in 3 ml retroviral supernatant in the presence of 6μ

g/ml polybrene. The cell suspension was centrifuged at 1800 rpm, 8°C for 90 minutes. 

The infected cells were then cultured at 37°C for 48hrs and cytometrically sorted twice 
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for the GFP
high

TCR
high

 population and expanded. The purity of the GFP
high

TCR
high

 4G4 

cells was confirmed by flow cytometry (BD FACSCalibur). 

 

 

Enzyme-linked Immunosorbent Assay (ELISA) 

 

In 96 well flat bottom plates, 1x10
5
 hybridoma cells were co-cultured with 3 x 10

5
 

(3500 rad) irradiated syngeneic splenic APCs in the presence of  indicated stimuli for 24 

hr. Purified CD3 antibody was pre-mounted in positive control wells. Culture supernatant 

was harvested for IL-2 ELISA assay (BD PharMingen). Purified anti-IL-2 capture 

antibody (clone MQ1-17H12) was diluted to 2μg/ml in binding solution. 100 μl of the 

diluted antibody solution was added per well of a 96-well ELISA plate (Nunc Maxisorb). 

The plate was sealed and incubated overnight at 4°C. The capture antibody solution was 

discarded, and non-specific binding was blocked by adding 200μl of blocking buffer per 

well (BD Bioscience), and incubated at RT for at least 2hrs. After wash with PBS/Tween 

(PBS and 0.1% Tweens) for 3 times, 100μl of culture supernatants were added to the each 

sample well, meanwhile a series of nine 2-fold dilutions of recombination mouse IL-2 

standard (from 5000pg/ml to 19.5pg/ml) was added to standard curve wells. The plate 

was sealed and incubated at 4°C overnight. After washing with PBS/Tweens for 4 times, 

100μl diluted biotinylated anti-IL-2 detection antibody (1μg/ml) was added and incubated 

at RT for 1 hour. Again after washing with PBS/Tween for 4 times, 100μl diluted 

peroxidase labeled anti-biotin (Vector laboratories, Burlingame, CA) was added and 

incubated at RT for 30 minutes. The plate was washed for 5 times and 100ul of ABTS 

substrate solution with hydrogen peroxide was added for color development. After color 

developed for 5-10 min, the optical density value was read on a microplate reader 

instrument (Bio-Rad) setting to 405nm. 

 

 

5’RACE 

 

T cells were isolated from the CNS of TCRβ1 retrogenic mice with disease scores 

≥ 3. RNA was isolated and 5’ RACE performed using the 5'/3' RACE Kit, 2nd 

Generation (Roche, Indianapolis, IN) following the manufacturer’s instructions. Briefly, 

full strand cDNA was synthesized from mRNA by using specific primer 1 (5’-

GGAGTCAAAGTCGGTGAACAG-3’). The mRNA template was degraded by 

Transcriptor Reverse Transcriptase. PolyA was added to the 3’ end of the cDNA, and the 

tailed cDNA was PCR amplified using the Oligo (dT) anchor primer (5’-

GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV-3’) and a nested specific 

primer 2 (5’-CCTGAGACCGAGGATCTTTTAAC-3’). A second PCR reaction was 

performed with the PCR anchor primer (5’-GACCACGCGTATCGATGTCGAC-3’) and 

a nested specific primer 3 (5’-CAGGTTCTGGGTTCTGGAT-3’). PCR products were 

subsequently cloned with TOPO TA (Invitrogen). Bacterial clones were randomly 

selected for Sanger sequencing, and sequences identified using the IMGT database 

(http://www.imgt.org/).  

 

 

http://www.imgt.org/
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Figure 4-6. Cross reactivity to MOG35-55 mimicry. 

Four different 4G4 CD4 cell lines transduced with TCRwere tested for their 

responsiveness to 100μg/ml MOG35-55 or MOG35-55 mimicry peptides by ELISA.  The IL-

2 production was normalized to MOG35-55 group. Bars indicate from left to right IL-2 

production by clonotype PUN002, PUN003, PUN005 and PUN342. Dashed line was an 

indicator for MOG35-55. Mean ±SD is plotted. 
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CHAPTER 5.    DISCUSSION 

 

 

Public TCR in Skewing Repertoire Response and Autoimmune Susceptibility 

 

In previous chapters, we talked about by linking saturation sequencing of disease-

associated and unassociated repertoires during EAE with the transgenic expression and in 

vivo functional analysis of 15 public and private TCR, we identify a selective and 

prominent role of public TCR in the autoimmune response. Public TCR were 

preferentially incorporated into the CNS-infiltrating repertoire. The frequency of unique 

and total public TCR was markedly elevated when compared with TCR unengaged in 

autoimmunity both from mice with EAE and from pre-immune mice. Three public but no 

private TCR were able to confer unprimed T cells expressing endogenously rearranged 

TCR with overt MOG-reactivity. Enforced expression of two of six CNS-shared TCR 

provoked spontaneous autoimmunity in a mouse strain that does not otherwise develop 

spontaneous autoreactivity. Our findings indicate that public TCR distort repertoire 

response characteristics and foster reactivity to specific autoantigens. 

 

Recombinatorial biases in preselection thymocytes serve as the primary source for 

the generation of the broad public repertoire
42,143-145

. Predispositions in VDJ usage and 

activity levels of TdT and nucleases modifying junctional sequences increase the 

probability these sequences will form
146

. We implicate similar pre-selection biases in also 

generating the public autoimmune repertoire, and identify substantial ongoing oligoclonal 

production of public autoimmune-associated TCR within the thymus. As previously 

documented by Dyson and colleagues with the larger public repertoire
147

, analyses of the 

frequency of individual receptors in pre- and post-selection thymocytes and splenic T 

cells further failed to indicate that, once formed, disease associated public TCR are 

preferentially selected (data not shown).  

 

Our results do not imply that public TCR possess unique structural properties that 

distinguish them from private TCR. Indeed, despite comprising a small fraction of the 

total repertoire, public sequences remain diverse. It would therefore seem unlikely that 

their preferential recruitment into the autoimmune response when compared with private 

sequences is due to a distinct biochemistry. Rather, because public TCR are pervasive 

across a population, specificity distortions they introduce within the repertoire will be 

introduced into all individuals bearing relevant MHC alleles. Thus, MOG35-55 may serve 

as the dominant autoantigen in C57BL/6 EAE precisely because the public repertoire in 

conjunction with the restricting MHC, IA
b
, augments repertoire reactivity toward this 

autoantigen. Other neuroantigens preferentially engaged by private TCR would only be 

capable of mediating autoimmunity in the small number of individuals that stochastically 

possess adequate numbers and subsets of antigen-specific private T cells. 

 

An alternative hypothesis for the preferential incorporation of public sequences in 

the autoimmune repertoire is that these sequences do predispose TCR toward self-

reactivity. Other repertoire studies, though more limited in scope and definition compared 

with these, have also identified public sequences among autoreactive T cells
123,125,148

. 
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That public TCR may more generically confer responsiveness to self-antigens is also 

suggested by our finding that transgenic expression of the public, EAE-associated TCR3 

chain led to the development of spontaneous alopecia areata and not EAE. Therefore, a 

single TCR may promote reactivity to disease-associated autoantigens from different 

tissues. In this regards, it is noteworthy that a previously isolated though distinct 

TRBV13-2
+
 TCR from a MOG35-55-specific hybridoma, 1MOG244.2, was identified as 

possessing two TCR chains. Transgenic expression of one TCR led to MOG35-55 

reactive T cells. The second provoked spontaneous alopecia areata, suggesting a broader 

association between CNS and skin reactivities
149

. 

 

Public TCR use is not only identifiable in the context of autoimmunity, but has 

also been found in the responses to several pathogens and other antigens
42,127

. One 

possible explanation is that the recombinatorial activities involved in forming the public 

repertoire also creates a public sequence space that more broadly supports TCR 

associations with MHC-antigen complexes. The majority of the TCR interface with 

antigen-MHC binds the MHC rather than antigenic peptide, and MHC-specific 

associations are critical to stabilizing this interaction
6,150

. If the public repertoire 

incorporates TCR better suited to support MHC engagement, these receptors may 

preferentially enter immune responses. Such a model would suggest a co-evolution of the 

public TCR repertoire with restricting MHC, presumably by modulating recombination 

frequencies so as to optimize this component of the response. An element of enhanced 

self-reactivity would be expected to accompany such increased TCR fitness. Indeed, TCR 

mutations that enhance TCR-MHC association also promote self-reactivity and can 

endow TCR with new autoreactivities
151,152

. 

 

We found that 2 of the 6 group 1 (CNS-shared and public) TCR and altogether 3 

shared TCR broadly imposed MOG specificity on TCR. MOG-responsiveness was 

particularly prominent in mice expressing TCR1, where nearly 1/3 the number of CD4
+
 

T cells from disease-free animals responding to CD3 proliferated to MOG35-55. Unlike 

antibody-antigen interactions, which may rely on a single Ig chain, the TCR-MHC 

interface extensively involves both the TCR and  surfaces. Implicitly, TCR1 

dominates interactions defining specificity during MOG35-55-IA
b
 recognition, and this is 

accompanied by more generic interactions with TCR that are simply non-disruptive and 

provide requisite supplemental association energy for effective T cell stimulation. 

However, in the absence of structural definition, it cannot be excluded that TCR1 and 

other public TCR chains bind autoantigens in non-conventional manners that minimize 

reliance on the TCR


. 

 

The capacity to interrogate the repertoire continues to increase with improving 

sequencing technologies
26

. Data sets are being collected in several disease models and 

these may be linked to functional analyses of individual TCR, similar to those we 

describe here, to identify the relevance of specific sequences. Indeed, the identification of 

preferential TRBV and TRAV usage in several diseases may imply that public TCR or 

TCR sequences bearing pre-defined V, J, and CDR3 sequences will strongly skew 

response characteristics. If so, specific public sequences may prove useful for the 
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longitudinal monitoring of immune responses during autoimmune diseases. Likewise if 

public TCR ultimately prove not only to be over-represented and risk factors for the 

autoimmune response as indicated here, but drivers of it as originally hypothesized by 

Sercaz and colleagues
153

, it may be possible to broadly modulate the autoimmune 

response by specifically guiding the selection or activity of T cells bearing public TCR 

sequences. 

 

 

Functional Characterization of TCR Repertoire in TCR1 Retrogenic Mice Model 

 

Meanwhile, we performed preliminary experiments to characterize the 

TCRrepertoire by using the TCR1 mice model, which generated narrowed repertoire 

diversity with fixed TCR1 paring with endogenous TCRWe favor this mice model 

for the following consideration. First, it is the most commonly shared TCR in 

immunized mice and pre-immune mice. Second, it is presented on both Treg and Tconv 

population, narrowing our TCR fine specificity analysis on the paring TCRrepertoire. 

Third, TCRβ1 mice develop spontaneous EAE by imposing a high frequency of MOG-

reactive TCR repertoire, implying the close association between TCRβ1 derived 

repertoire with MOG-EAE. Investigation on the composition of TCR chain repertoire 

will potentially yield valuable information for the TCR structural features, specificity, 

responsiveness, and lineage commitment of Treg and Tconv in the context of 

autoimmune disease. 

 

We were able to identify 52 unique clonotypes from CNS of 3 TCR1 retrogenic 

mice. Though only a small number, these clonotypes were heterogeneous and did not 

overlap between mice, indicating that TCR1 can associate with diverse TCR. TCR 

were reconstituted and transduced into 4G4 CD4 hybridoma cells for MOG35-55 reactivity 

test in vitro. Fourteen unique TCR showed low to high responses to MOG35-55 stimulation.  
In order to investigate their potential pathogenesis against autoantigen in retrogenic mice, 

we made retrogenic mice which express single TCR. All the Tconv derived TCR were 

able to promote early spontaneous EAE, which seemed irrelevant to MOG specificity. 

However, PUN342, a Treg derived TCR with high MOG35-55 reactivity, promoted early 

spontaneous EAE even in the presence of Treg cells. While PUN355 and PUN376, Treg 

derived TCR with low MOG35-55 reactivity, failed to promote any disease. This result 

implicated that the presence of Treg cells were not able to protect the EAE induced by the 

high MOG35-55 reactive T cells. Meanwhile, some retrogenic mice expressing PUN308 

and several Treg derived TCRs (Br11, Br17, Br25, Br41, Br47) were noticed with poor 

engraftment. A possible explanation would be that these TCR clonotypes under the 

surveillance of central tolerance might hardly leak into the periphery. In C57BL/6 mice, 

Delarasse et al. have shown that MOG transcripts are expressed in thymus
154

. 

Nevertheless, the expression of MOG protein in human and mouse thymus has never 

been reported so far. Therefore, the MOG specificity of clonotypes may not simply 

correlated with the pathogenesis. Interestingly, we noticed that CDR3 sequences of two 

clonotypes are similar except one additional “S” residue on the 3
rd

 position of Treg 

derived TCR. They are belonging to distinct T cell type, but sharing similar MOG 

specificity and pathogenesis. This “S” residue can be tolerated due to the degeneracy of 
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TCR specificity against MOG35-55-MHC ligand, but it seems critical for T cell lineage 

commitment in the thymus. Due to the limited number and poor engraftment capability of 

some TCR clonotypes, it is too early to come to any final conclusion that how fine 

specificity of TCR is relevant to T cell commitment or pathogenesis. 

 

 

Cross Reactivity, Gut and CNS 

 

Since the retrogenic mice develop spontaneous EAE with very early T cell 

engraftment, we are curious about what stimuli are recognized by those cells in vivo. We 

examined the responsiveness of four MOG reactive TCR to MOG35-55 mimicry peptides. 

Different TCR demonstrated variability, but common patterns of reactivity when tested 

with alanine-substituted MOG35-55 peptides was evident. MOG35-55 mimicry peptides such 

as F44A, R46A, V47A and V48A greatly blunted the reactivity compared to MOG35-55 

stimulation, suggesting that these residues are critical to sustain the specificity of the 

MOG35-55 peptide. Alternatively speaking, it may allow MOG35-55 -specific T cells to 

cross-react to various MOG35-55 mimicry peptides with these four critical residues 

unchanged. Here we propose these MOG35-55 mimicry peptide may come from the 

antigens of commensal bacteria. 

 

Due to the large number of clonotypically unique TCRs that can be generated by 

V(D)J somatic recombination, it was initially believed that the immune system might be 

capable of generating a TCR repertoire for virtually every antigenic peptide. However, 

subsequent estimates of the size of the peptide pool recognized by TCRs revealed that 

potentially immunogenic peptides in the environment of an individual greatly outnumber 

the amount of T cells. Each T-cell is estimated to react with >10
6
 different MHC-

associated peptide epitopes
155

, for which the concept of TCR cross-reactivity has been 

evoked as an essential mechanism to expand the effective size of the TCR 

repertoire
156,157

. However, the degeneracy of TCR specificity will increase the pathogenic 

potential T cells as it augments the likelihood of self-pMHC recognition. Indeed, several 

studies have reported that TCR cross-reactivity and molecular mimicry is associated with 

autoimmune disease, whereby the viral or bacterial peptides mimic autoantigens and 

provoke the autoimmunity
158,159

. Moreover, structural studies provided substantial 

evidence to reveal the recognition features of several autoreactive TCR-pMHC 

complexes
151,160-164

. These features were summarized as altered TCR docking topologies, 

paucity of hydrogen bonds between the TCR and self-peptide, peptide recognition by the 

CDR3 loops alone, limited interactions between the TCR and MHC, suboptimal fit of the 

self-peptide in the MHC binding groove and partial occupancy of the groove by the self-

peptide
141

. What these cross-reactive TCR actually recognize in vivo is unknown.  Since 

the mammalian gastrointestinal track can harbor a highly heterogeneous microbial 

population comprising over 1x10
13

-10
14

 resident bacteria, commensal bacteria may 

provide the most abundant foreign antigens that may mimic autoantigens in vivo. 

Evidence has demonstrated the relationship between CNS demyelinating diseases and 

commensal bacteria. For instance, in EAE mice model, alteration of the bacterial 

populations of the gut has been demonstrated to alter the clinical outcome
165

. Oral 

administration of antibiotics protected against EAE
166

. 
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Based on this hypothesis, we proposed that microbial antigens may take 

advantage of the similar molecular mimicries and activate the early engrafted retrogenic 

T cells in the periphery. To test that in our pilot experiments, we were able to continually 

treat our retrogenic mice with combined antibiotics. Those mice were either enforced 

expressing fixed TCR chain (TCR1, TCR3) or enforced expressing single 

TCR(PUN342). The autoimmune disease was completely prevented (Nguyen, 

unpublished data). Retrogenic mice of control group were treated with syrup only, they 

still developed spontaneous autoimmune disease and a substantial number of highly 

activated CD4 T cells could be isolated from gut tissue and the mesenteric lymph nodes 

(Nguyen, unpublished data). 

 

In order to further clarify the mechanism, future experiments are necessary to 

screen out the bacteria and the bacterial antigen if possible. Admittedly, the variation in 

intestinal microbiota communities of the laboratory mice is dependent on the 

environmental factors at each institutional facility. To circumvent this problem, germ-free 

mice line is necessary to identify the association among the gut-microbiota antigen and 

the CNS demyelinating diseases. 

 

 

Retrogenic Mice Models versus Transgenic Mice Models 

 

TCR transgenic mice are widely used and have had a large in current 

immunological research. Several studies focusing on TCR repertoire analyses also 

successfully utilized transgenic mice enforced the TCR chain with or without a TCR 
chain minilocus

97,100
. This approach is much stable and natural since the T cell first 

develop in the neonatal condition, but it is time consuming and costly, needs careful pre-

experiment design. Due to the time and cost inconvenience, this approach doesn’t fit a 

comprehensive functional assessment of multiple public TCRβs. 

 

To circumvent these problems, we utilized another commonly used mice model, 

retrogenic mice, in which specific TCRs were retrovirally transduced into hematopoietic 

stem cells
136

. This approach is substantially faster than making trangegnic mice, (6 weeks 

versus 6 months), making a comprehensive functional assessment of multiple public 

TCRβs possible. Compared with transgenic mice, there still exists some disadvantage, 

such as less T lymphocytes, laborious effort to generate each mouse, unnatural phenotype 

of peripheral T cells with an increased memory-like phenotype in a lymphopenic host 

condition. In addition, we sublethally irradiated recipient mice to facilitate stem cell 

engraftment, and how sublethal irradiation itself may affect the mice is hard to judge. 

Furthermore, bone marrow transfer is required for making retrogenic mice model, the 

more steps for manipulation, the more risk to expose to environmental antigens, meaning 

studies about the spontaneous disease imposed by public TCR chains in germ free 

condition is difficult. 
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Admittedly, although we have not seen any deleterious consequences per se, these 

effects can potentially influence experimental results and should be considered in 

interpreting data from the system. 

 

 

Summary 

 

In summary, in this project, we were able to couple the high-throughput 

sequencing of the TCR repertoire in EAE mice model, with functional studies 

demonstrating the role of public TCR chains in disease susceptibility in retrogenic mice. 

Analyses of >18 million TCR from Foxp3
+
 regulatory and Foxp3

-
 conventional T cells 

from different organs and time points, we identified a high prevalence of public TCR 

within the autoimmune response. The public TCR are more likely to be formed in pre-

selection thymocytes, which also reside in the pre immune repertoire and is preferentially 

employed in autoimmune responses, suggesting the hidden “foes” may impose disease 

risk once if the immune system is out of control. We also performed some pilot 

experiments by treating the retrogenic mice with antibiotics, thus the autoimmune 

diseases were totally protected, and suggesting the cross-reactivity towards the 

commensal microbial antigens might activate the retrogenic CD4 T dells in periphery. 

This experiment provides insights for the relationship between commensal bacteria and 

the CNS demyelinating diseases. Though the underlying mechanism and the particular 

antigens are not well understood, this study still provides a potential therapeutic insight. 

Coupling high-throughput immunosequencing, specific public sequences may prove useful 

for the longitudinal monitoring of immune responses during autoimmune diseases. 
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APPENDIX A. SUPPLEMENTAL TABLES 

 

 

Table A-1. Annealing oligo sequences for CDR3
 

 Oligo 5’ to 3’ nucleotide sequence 

TCR1 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGAGACTGGGGGAAACTATGCTGAGCAG

TTCTTCGGACCAGGGACACGACTCACCGTCCTAGAA 

anti-

sense 

GATCTTCTAGGACGGTGAGTCGTGTCCCTGGTCCGAAGA

ACTGCTCAGCATAGTTTCCCCCAGTCTCACCGCTGGCAC

AGAAGTACACTGATGTCTGAGAGGGGGTAGCCAAC 

TCR2 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGACAGGTATGAACAGTACTTCGGTCCC

GGCACCAGGCTCACGGTTTTAGAA 

anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCATACCTGTCACCGCTGGCACAGAAGTACACT

GATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR3 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGCTATGAACAGTACTTCGGTCCCGGCACCA

GGCTCACGGTTTTAGAAGATCT 

anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCATAGCCGCTGGCACAGAAGTACACTGATGTC

TGAGAGGGGGTAGCCAACTCGAG 

TCR4 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGAAACAGCAAACTCCGACTACACCTTC

GGCTCAGGGACCAGGCTTTTGGTAATAGAAGATCT 

anti-

sense 

GATCTTCTATTACCAAAAGCCTGGTCCCTGAGCCGAAGG

TGTAGTCGGAGTTTGCTGTTTCACCGCTGGCACAGAAGT

ACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR5 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGCTGGGGGGTCCTATGAACAGTAC

TTCGGTCCCGGCACCAGGCTCACGGTTTTAGAAGATCT 

anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCATAGGACCCCCCAGCATCACCGCTGGCACAG

AAGTACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR6 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGGTGAACAGTACTTCGGTCCCGGC

ACCAGGCTCACGGTTTTAGAAGATCT 

anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCACCATCACCGCTGGCACAGAAGTACACTGAT

GTCTGAGAGGGGGTAGCCAACTCGAG 

TCR7 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGAGCAACAGGGGACTGAGCAGTTCTTC

GGACCAGGGACACGACTCACCGTCCTAGAAGATCT 
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Table A-1. (Continued). 

 

 Oligo 5’ to 3’ nucleotide sequence 

 anti-

sense 

GATCTTCTAGGACGGTGAGTCGTGTCCCTGGTCCGAAGA

ACTGCTCAGTCCCCTGTTGCTCACCGCTGGCACAGAAGT

ACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR8 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGGACTGGGGGGCTCCTATGAGCAG

TACTTCGGTCCCGGCACCAGGCTCACGGTTTTAGAAGAT

CT 

 anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGCTCATAGGAGCCCCCCAGTCCATCACCGCTGGCA

CAGAAGTACACTGATGTCTGAGAGGGGGTAGCCAACTC

GAG 

TCR9 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGTCCGGGGCTATAATTCGCCCCTCT

ACTTTGCGGCAGGCACCCGGCTCACTGTGACAGAAGAT

CT 

 anti-

sense 

GATCTTCTGTCACAGTGAGCCGGGTGCCTGCCGCAAAGT

AGAGGGGCGAATTATAGCCCCGGACATCACCGCTGGCA

CAGAAGTACACTGATGTCTGAGAGGGGGTAGCCAACTC

GAG 

TCR10 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGGAACATCAAACTCCGACTACACC

TTTGGGCCAGGCACTCGGCTCCTCGTGTTAGAAGATCT 

 anti-

sense 

GATCTTCTAACACGAGGAGCCGAGTGCCTGGCCCAAAG

GTGTAGTCGGAGTTTGATGTTCCATCACCGCTGGCACAG

AAGTACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR11 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGGATAGGGGACACCCAGTACTTTGGGCCA

GGCACTCGGCTCCTCGTGTTAGAAGATCT 

 anti-

sense 

GATCTTCTAACACGAGGAGCCGAGTGCCTGGCCCAAAG

TACTGGGTGTCCCCTATCCCGCTGGCACAGAAGTACACT

GATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR12 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGACGCCGGGACAGGGTATGAACAGTAC

TTCGGTCCCGGCACCAGGCTCACGGTTTTAGAAGATCT 

 anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCATACCCTGTCCCGGCGTCACCGCTGGCACAG

AAGTACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 

TCR13 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGGGACTGGGGGGGCGAAGACACCTTGTAC

TTTGGTGCGGGCACCCGACTATCGGTGCTAGAAGATCT 

 anti-

sense 

GATCTTCTAGCACCGATAGTCGGGTGCCCGCACCAAAGT

ACAAGGTGTCTTCGCCCCCCCAGTCCCCGCTGGCACAGA

AGTACACTGATGTCTGAGAGGGGGTAGCCAACTCGAG 
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Table A-1. (Continued). 

 

 Oligo 5’ to 3’ nucleotide sequence 

TCR14 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGATGAGACTGGGGGGGCCTATGAACAG

TACTTCGGTCCCGGCACCAGGCTCACGGTTTTAGAAGAT

CT 

anti-

sense 

GATCTTCTAAAACCGTGAGCCTGGTGCCGGGACCGAAG

TACTGTTCATAGGCCCCCCCAGTCTCATCACCGCTGGCA

CAGAAGTACACTGATGTCTGAGAGGGGGTAGCCAACTC

GAG 

TCR15 sense TCGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCT

GTGCCAGCGGTGGGGGACTGGGGGGTACTAGTGCAGAA

ACGCTGTATTTTGGCTCAGGAACCAGACTGACTGTTCTC

GAAGATCT 

anti-

sense 

GATCTTCGAGAACAGTCAGTCTGGTTCCTGAGCCAAAAT

ACAGCGTTTCTGCACTAGTACCCCCCAGTCCCCCACCGC

TGGCACAGAAGTACACTGATGTCTGAGAGGGGGTAGCC

AACTCGAG 

Nucleotide sequences of sense and anti-sense oligos for 15 CDR3are listed. 
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APPENDIX B. SUPPLEMENTAL FIGURES 

 

 

 
 

Figure B-1. Diagram of two main plasmids. 

(a). MSCV-TCR1-GFP. (b). MSCV-244.2-TCR1-GFP 
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Figure B-2. Gating strategy for surface staining on TCR1 retrogenic mice. 

Cells were isolated from spleen and CNS and stained with specific antibodies. Flow 

cytometric analysis was performed on an LSRFortessa and analyzed by using FlowJo 

software. The cells were first gated on lymphocytes, gated out autofluorescent cells, 

doublets, and gated on CD4
+
TCR

+
 or CD8

+
TCR

+ 
lymphocytes. CD4

+
TCR

+
 lymphocytes 

were further analyzed based on their CD44 (memory/effector), CD45Rb (naïve), and 

CD69 (activation) markers. 
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Figure B-3. Gating strategy for Foxp3 intracellular staining on TCR1 retrogenic 

mice. 

Cells were isolated from spleen and CNS and stained with specific antibodies. Cells were 

first stained with surface markers, fixed, permeabilized and stained for intracellular 

Foxp3 with the Foxp3 Staining Buffer Set. The cells were first gated on lymphocytes, 

gated out autofluorescent cells, doublets, and gated on CD4
+
TCR

+
 lymphocytes. 

CD4
+
TCR

+
 lymphocytes were further analyzed based on their Foxp3 marker. 
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