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ABSTRACT 

  

Neurons receive large amount of synaptic inputs n vivo, which may impact the coupling 

between EPSPs and spikes. We mimicked the in vivo synaptic activity of the cell with the 

dynamic clamp system. We recorded from pyramidal cells in neocortical slices in vitro to 

investigate how timing and probability of spike generation in response to an EPSP is affected by 

background synaptic conductance under these conditions.  

We found that near threshold, background synaptic conductance improved the precision 

of spike timing by reducing the depolarization-related prolongation of the EPSP. In cells with 

ongoing spike activity and background synaptic conductances, an EPSP rapidly increased the 

probability of firing. The time window of the spike probability increase was comparable to the 

EPSP rise time and was followed by a long period of reduced firing. We found that the net 

synaptic gain was determined not only by the amplitude of the EPSP, but also by the firing 

frequency of the cell. In addition, a background fluctuating conductance reduced the time 

window of perturbation of spike patterns generated by EPSP related spikes. 

Taken together, these results indicate that in vivo, the level of the background synaptic 

activity may regulate spike-timing precision and affect synaptic gain. 
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CHAPTER I. INTRODUCTION 

 

Strategies for decoding neuronal spike trains 

During the process of synaptic integration, synaptic inputs are combined and generate 

action potential patterns to transmit information. Activity from presynaptic fibers converges onto 

the dendrite and the soma of the neuron generating postsynaptic potentials.  However, the 

membrane potential reaches the action potential threshold of the postsynaptic neuron only if the 

inputs temporally overlap during the integration window. In computational theories, neurons 

have two possible ways to decode the information they receive and create a message. Depending 

on the length of the integration window compared to the average interspike intervals, neurons 

can operate as a rate coding devices (long integration window) or detectors of coincidentally 

arriving synaptic inputs during the short integration window. There is extensive literature on 

coding in different neuronal systems from different perspectives (see references in deCharms and 

Zador (2000)).  

In reality, transmission of information takes place in a noisy channel. This means there is 

always some error superimposed on the top of the “true signal” of the coded message. This error 

is referred as noise. Noise can be systematic or random. Examples for random noise are the 

opening of voltage gated ion channels that is probabilistic in nature and may limit the reliability 

of neuronal responses (White et al., 2000, White et al., 1998), or the low reliability of synaptic 

transmission (Hessler et al., 1993). Systematic noise could originate from processes that affect 

the nervous system in a more general way, like metabolic changes, global anesthesia, sleep and 

awake states or pathological conditions. Theoretically, the organization of the connectivity also 

may contribute to systematic noise in coding. Cortical cells have high degree of convergence and 
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divergence in their synaptic connections. When numerous neurons are activated, a systematic 

noise can be generated from the interactions between responses unrelated to the stimuli.  

In the case of rate coding, a multiple synaptic inputs contribute to a single spike, because 

the integration window is long. Hence, variability in the firing rate of the presynaptic elements 

due to a random noise is filtered out by the averaging process (Shadlen and Newsome, 1994). 

For this reason, rate coding performs robustly in the presence of random noise, but the strength 

of the system is its limitation too. Rate coding neurons have a restricted range of operation in 

terms of frequency, and their input-output transformation is relatively slow, which in turn may 

limit the capacity for transmitting information. Systematic noise in the communication also could 

be accumulated by temporal integration (Konig et al., 1996). 

The view that neurons utilize rate coding gained support very early on with the 

introduction of recording of electric activity from nerve fibers. For example in his classical work 

on frog sciatic nerve, Adrian (1926) found that the frequency of nerve impulses increases as the 

weight (stimulus intensity) used for stimulation of the muscle spindle receptors increases. He 

also made it clear that the content of information transmitted depends on the nature of the axon 

stimulated and not on the nature of stimulus, because the specificity of stimuli evoked similar 

“action currents” only in nerve fibers connected to specific receptors of the given stimulus, but 

not in other axons that were not connected receptor. 

Similar findings were reported for the cochlea, where the increase of the intensity of an 

acoustic stimulus of constant frequency increased the probability of firing within the dynamic 

range of the recorded unit (Rose et al., 1967). Firing rates are locked to the frequency and phase 

of the stimulus.  
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Barlow (1972) provided a more elaborate concept for rate coding of sensory input, in 

which the frequency of firing in the sensory neuron represents the magnitude of the signal-to-

noise ratio. The neuronal element is not noisy itself, but the external noise originates in the 

environment. Consequently, the only efficient way of coding can be achieved is when a single 

neuron integrates input signals over a longer interval, and visual features are represented by a 

minimum number of neurons. Examples of external noise in the visual system are photon 

absorption, a stochastic process, or the “crosstalk” between neurons as a result of their 

concurrent activity. 

Evidence in support of the rate coding model includes the length of the membrane time 

constant, which may be too long to allow detection of coincident signals (Shadlen and Newsome, 

1994). Also, spike trains with similar statistical properties to those recorded in vivo could be 

generated by a simple integrate and fire neuron with balanced inhibition and excitation. Thus, the 

timing of spikes does not have to be meaningful for efficient coding (Shadlen and Newsome, 

1998).  

The concept of the neuron as coincidence detector originated from von der Malsburg 

(1981) and Abeles (1982a and 1982b) to provide a possible model for the “binding problem”. 

Binding refers to grouping sensory features together into a coherent representation of an object 

and separating it from other objects in the field of perception. If neurons are coincidence 

detectors, then the fine structure of the postsynaptic spike pattern represents the temporal pattern 

of its presynaptic inputs (Singer, 1993). In coincidence detectors, the only inputs that participate 

in spike generation are those that arrive during the short (ms) length integration window. The 

number of individual synaptic inputs necessary to generate a spike is lower compared to neurons 

with rate coding; because they are synchronized they produce an EPSP with a shorter rise-time, 
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which promotes a temporally precise input-output transformation (Engel et al., 1992). The 

capacity to convey information is higher than with rate coding. However neurons become more 

susceptible to random error messages (Konig et al., 1996). For that reason, nonlinearities that 

allow the neuron to weigh the synaptic inputs and select the relevant ones could be important in 

the signal processing. Examples of possible mechanisms producing nonlinear summation of 

synaptic inputs are: (1) ion channels or synaptic receptors that can amplify the individual 

synaptic input (Stafstrom et al., 1984, Stuart and Sakmann, 1995, Thomson, 1997, Fricker and 

Miles, 2000,  Stuart, 1999) or modify its time course (Magee, 1998, Magee, 1999, Hoffman et 

al., 1997, Williams and Stuart, 2000); (2) plastic modulation of the synaptic input depending on 

the activity of the neuron, e.g. during long term potentiation or depression (Bliss and Lomo, 

1973, Hausser et al., 2001, Markram et al., 1997, Tsodyks and Markram, 1997, Abbott et al., 

1997);  and (3) local computing in the dendritic branches that in other ways, not mentioned under 

(1) and (2), may contribute to the change in the relevance of the synaptic input, e.g. activation of 

neighboring synaptic inputs that creates a dendritic spike, which has an increased probability of 

propagation to the soma, than an individual synaptic input (Segev and Rall, 1998). 

The issue of coding strategies at neuronal level is still unresolved (Shadlen and 

Newsome, 1998, Softky, 1993, Softky, 1995), and it is also suggested that the two methods for 

coding information coexist or at least they are not mutually exclusive (Tsodyks and Markram, 

1997). For example Singer and Gray (1995) proposed that features of an object in the visual field 

are coded in the firing rate of the neuron, however the different visual features of the same object 

are bound together by the synchronous activity of the neuronal assemblies representing the visual 

features. 
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EPSP-spike coupling in the cortical cells 

Calvin and Stevens (1968) have shown that, in spinal cord motoneurons, the main source 

of randomness in the interspike intervals originates from the fluctuating synaptic input. 

Similarly, the irregularity of spike times in cortical neurons might be explained by the irregularly 

arriving synaptic inputs they receive. Stevens and Zador (1998) suggested that the irregularity of 

spike trains reflects temporal correlation among synaptic inputs (but see Destexhe et al., 2001).  

Pyramidal neurons, which are the most common cells in the cortex (White, 1989), can 

generate very precise spike trains in response to rapidly fluctuating currents (Mainen and 

Sejnowski, 1995), showing that the spike generating mechanism is reliable. When cells from the 

visual cortex were stimulated with current waves containing combinations of lower and/or higher 

frequency sinus waves of the same amplitude that created fluctuations in the membrane potential, 

the cells behave differently in the presence of these frequencies. Lower frequencies were 

sufficient to depolarize the cells, only higher frequencies, which caused large fluctuations in the 

membrane potential, facilitated generation of spikes with high precision (Nowak et al., 1997). 

When the neuron was stimulated with a waveform that was generated from recordings of the 

membrane potential in vivo during visual stimulation and corrected for the filtering due to the 

capacitive and resistive properties of the neuron, produced a similar response in the term of 

reliability and precision than that of evoked with waveforms containing higher frequency sinus 

waves. Spike counts during visual stimulation were correlated with the magnitude of the high 

frequency components in the subthreshold membrane potential (Azouz and Gray, 1999b).  Thus, 

these studies suggest that the kinetics of the individual synaptic inputs, which determines the 

frequency of fluctuation in the membrane potential, may be important for spike timing. 
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Steady depolarization to membrane potentials close to spike threshold prolongs EPSPs in 

pyramidal cells (Stafstrom et al., 1984, Thomson et al., 1988, Stuart and Sakmann, 1995). The 

prolongation may lead to an imprecise timing of spike initiation. The balance between inward 

(mainly sodium) and outward (potassium) currents shifted toward the inward current as the cell 

membrane became more depolarized. The increased level of inward currents was attributed to the 

activation of persistent sodium currents (Deisz et al., 1991, Stuart and Sakmann, 1995, Fricker 

and Miles, 2000, Andreasen and Lambert, 1999), which has its threshold for activation near the 

firing threshold (Alzheimer et al., 1993). EPSP prolongation was not observed in interneurons 

(Fricker and Miles, 2000, Galarreta and Hestrin, 2001). 

In summary, understanding the mechanisms underlying EPSP-spike coupling in cells 

with ongoing activity may provide an insight into the process of coding. 

 

Effect of network activity on EPSP-spike coupling 

In order to make predictions about EPSP-spike coupling in intact brains, we should 

consider that neurons are embedded in a complex neuronal network, and are receiving a 

continuous barrage of synaptic activity in vivo. Consequently, when neurons are more 

depolarized, the input resistance is reduced (Destexhe and Pare, 1999) and their membrane 

potential is continuously fluctuating (Azouz and Gray, 1999a, Lampl et al., 1999) compared to a 

neuron in vitro. 

Pare and co-workers (Pare et al., 1998, Destexhe and Pare, 1999) applied TTX by 

microinjection within the cortex and monitored the changes in the input resistance of pyramidal  

cells in vivo using sharp electrode recordings. TTX inhibited spiking in the presynaptic cells and 
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in this way it prevented the synaptic activity on the postsynaptic cell. As a result, it dampened 

the fluctuations in the membrane potential and produced a 30-70% increase in the cells’ input 

resistance. In contrast, in slice preparations, where the level of spontaneous spiking activity is 

low, the effect of TTX on input resistance was insignificant. They concluded, that the main 

source of conductance originates from the ongoing spike-related synaptic activity in the network. 

In vivo whole cell recording from cortical cells also showed that conductance increases 

substantially during visual stimulation (Borg-Graham et al., 1998, Hirsch et al., 1998, Anderson 

et al., 2000). The purpose of these studies was to elucidate the role of inhibition in the operation 

of visual circuitry and determine how the inhibitory conductances are related to the tuning curves 

of the cell. There was a general agreement that conductance reaches its maximum with optimal 

stimulus features, resulting in an increase of 20-300% in the level of conductance compared to 

the values measured at the resting state before stimulation (Borg-Graham et al., 1998, Hirsch et 

al., 1998, Anderson et al., 2000). The occurrence of excitatory and inhibitory conductances 

overlapped in time and the presence of “push-pull” inhibition was also reported (that is when the 

excitation increased, the inhibition decreased) in simple cells (Anderson et al., 2000, Hirsch et 

al., 1998). The presence of inhibition was also reported to be prominent in all cells (Borg-

Graham et al., 1998, Hirsch et al., 1998, Monier et al., 2003, Anderson et al., 2000), which is in 

contrast with the report by Berman et al., (1991), which stated, that inhibitory conductances did 

not contribute substantially to the cell’s conductance level even during optimal stimulation. 

Inhibitory and excitatory conductance seemed to share preferred orientation selectivity of the cell 

to the stimuli (Martinez et al., 2002, Monier et al., 2003). Inhibition also occurred in the case of 

nonoptimal orientation of the bars used for stimulation (Volgushev et al., 1993, Monier et al., 

2003 but see Berman et al., 1991). The amount of conductance increase depended on receptive 
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field properties (Anderson et al., 2000) and orientation tuning of inhibition also depended on the 

laminar position of the cells (Borg-Graham et al., 1998, Martinez et al., 2002). Results from 

these in vivo studies suggest that large amount of conductance originates from the synaptic 

inputs to the pyramidal cells and the balance between inhibitory and excitatory ongoing synaptic 

activity in cortical cells. 

 

Response variability and ongoing synaptic activity in cortical cells 

Repeated presentation of the same sensory stimuli evokes highly variable spiking activity 

(Heggelund and Albus, 1978, Tolhurst et al., 1981, Tolhurst et al., 1983, Schiller et al., 1976), 

but see (Mountcastle, 1969). There is also a high trial-to-trial variability in the recorded 

membrane potential (Azouz and Gray, 1999a, Arieli et al., 1996). For that reason it was a widely 

accepted view that only spike rates averaged over a longer time period are reproducible and that 

the timing of spikes in the recorded spike train is essentially random. However, some recent in 

vivo recording studies support the notion that timing of spikes can be meaningful. The data 

suggest that cortical cells can generate precisely repeated spike patterns. Visual stimulation with 

a dynamic pattern generated highly precise spike trains (Buracas et al., 1998, Bair and Koch, 

1996, de Ruyter van Steveninck et al., 1997). Short segments of recurrent spike patterns were 

also reported for acoustic stimulation (Villa and Abeles, 1990) or from single unit activity 

collected in the forebrain (Frostig et al., 1990b). Another example for the importance of timing 

are the synfire chains that are precisely timed spikes from sets of neurons connected to fire in a 

feed-forward manner: when neurons from the first pool fires action potential synchronously that 

elicits spiking in the second pool of neurons in the sequence after a certain, precisely set length 
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of time. Synchronous spiking in the second pool is followed by spiking in the neurons of the 

third pool in the sequence, keeping the time window constant with a submillisecond precision. 

The neuron pools participating in the synfire chains are not necessary located anatomically close. 

Synfire chains were detected on several occasions during physiological conditions (Prut et al., 

1998). 

Several studies suggested that variability in the level of ongoing synaptic activity might 

affect spike timing. For example, fluctuation of the membrane potential and spike timing were 

correlated prior to and during the stimulus, suggesting that variability in response to a stimulus is 

related to the basal state of ongoing activity in the neuronal network before stimulation (Arieli et 

al., 1996, Azouz and Gray, 1999a). Another study reported that variability in subthreshold 

activity was reduced in cells that had strong inhibition for the visual stimulation (Monier et al., 

2003). Variability in spike timing during a visual stimulus also depends on the dynamics of the 

stimulus presented. Transient (e.g. drifting edges) but not static stimuli evoke highly precise 

spike trains in V1 neurons (Mechler et al., 1998). Similar observations were reported from the 

H1 neuron, in the fly’s visual system (Warzecha and Egelhaaf, 1999).  

Taken together, these data suggest that the presence of background synaptic activity 

interacts with the stimulus to control the spike output of the cell. The level of synaptic activity 

changes during physiological stimulation, and this itself have an effect on the spiking behavior of 

the cell. 

 9



Functional consequences of ongoing synaptic activity 

Based on modeling studies, it was predicted that ongoing synaptic activity could have a 

profound impact on synaptic integration (Bernander et al., 1991, Tanabe et al., 1999, Ho and 

Destexhe, 2000). Bernander et al., (1991) studied the effect of conductance originating from 

ongoing synaptic activity using a morphologically reconstructed pyramidal cell with passive 

dendritic processes receiving 4000 excitatory and 1000 inhibitory inputs. The background 

synaptic activity generated spontaneous firing and consequently reduced the membrane time 

constant. Hence, the window for synaptic integration time became much shorter and at the same 

time, the electrotonic distance from the soma to the distal part of the cell increased. The 

“strength” of the connection between the soma and dendrite also depended on the kinetics of 

membrane fluctuation and the cell’s membrane potential. In the presence of the ongoing synaptic 

activity a large number of coincidentally activated synapses were necessary to generate a spike, 

which was estimated to be on the order of 100-1000 (Destexhe and Pare, 1999, Bernander et al., 

1991, Segev and Rall, 1998). The shorter integration time also allowed the cell to discriminate 

better between synchronized or asynchronized inputs.  

When voltage dependent conductances, such as Ca++ or Na+-channels, or NMDA 

receptors were inserted in the dendrites of a similar model cell with ongoing spiking activity, 

those voltage dependent conductances amplified distal synaptic input locally, reducing the 

difference between the distal and proximal synaptic inputs (Bernander et al., 1994). 

Depending on the experimental conditions, it was concluded, that increasing the level of 

background synaptic activity could result in a reduced precision (Cope et al., 1987) or reduced 

efficacy (Poliakov et al., 1996) in EPSP-spike coupling (defined as a probability of discharge due 

 10



to the EPSP) compared to lower levels of synaptic activity. In contrast, theoretical studies 

concluded that network activity might improve responsiveness (Ho and Destexhe, 2000, Rudolph 

and Destexhe, 2001b, Destexhe et al., 2001, Rudolph and Destexhe, 2001a), or precision of spike 

timing (Pei et al., 1996, Tanabe et al., 1999) to subthreshold inputs.  

In the theoretical models by Pei et al. and Tanabe et al. (Pei et al., 1996, Tanabe et al., 

1999) the expression “noise” included two components: random background activity, and the 

possible noise originating from the spike generating mechanism (Gutfreund et al., 1995). For 

example, Tanabe et al., (1999) connected single compartments, where the behaviors of the 

compartments were described by Hodgkin-Huxley equations containing Na+- and K+- currents. 

Noise was introduced in this system by randomly setting the values of state variables of 

Hodgkin-Huxley equations of the compartments and the “cell” characterized by the distribution 

of resulting membrane potentials of the compartments. With the introduction of small amplitude 

noise, the average membrane potential was close to the resting potential and had a Gaussian 

distribution. Although the net effect of the low level noise was the depolarization of the cell, this 

depolarization was not large enough to create a higher frequency of discharge. When large 

amplitude noise was introduced, the membrane potential spent a significant time hyperpolarized 

to the resting potential as well as at a more depolarized membrane potential. Increasing the level 

of noise creates more excitation, which is reflected in higher frequency of firing: the response of 

the neuron to suprathreshold stimuli is still enhanced. When the fluctuation was increased 

further, it no only increased the probability of firing, but also the probability that a synaptic input 

activates during the relative refractory period of a spike. Thus, an increase in spiking probability 

may antagonize the response to a stimulus. They concluded that there should be an optimal level 
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of noise to create spike trans to transmit information. The same model similarly explains the 

increase of the precision of spike timing for suprathreshold stimulus (Tanabe et al., 1999). 

 

Rationale of the study 

The neurons fundamental property is how synaptic inputs are integrated and generate 

spike outputs. Although the importance of spike timing in the coding of temporal information is 

unknown, there are arguments supporting both rate coding and temporal coding. Spike 

generation mechanism itself could be very precise and fluctuation in the membrane potential, 

which may originate from the synaptic activity of the presynaptic neurons, may facilitate 

precision of spike timing.  Our knowledge on EPSP-spike coupling based on studies made under 

in vitro conditions, when the synaptic activity in pyramidal cells is low, unlike under in vivo 

conditions. According to modeling studies ongoing activity might influence the integration time 

window of EPSP-spike coupling. It was observed that at near threshold membrane potentials, 

voltage dependent conductances prolong the EPSP and the same conductances might affect how 

the cell responds to temporal information in its spike output. 

In the slice, cells receive their synaptic input in a low rate, and as a consequence, they are 

silent. This condition however provides a better experimental control for the investigator over the 

stimulation parameters. In order to study the mechanism of EPSP-spike coupling at layer 5 

cortical pyramidal cells in vitro, we mimicked the in vivo synaptic activity in the cell by 

injection of conductance waveforms using a dynamic clamp system (Sharp et al., 1993).  

There are several advantages to using the dynamic clamp. It allows studying, how the 

presence of conductance might interact with both the passive and active properties of the cell. It 
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also allows manipulating independently the level of conductance in the background activity. Two 

aspects of EPSP-spike coupling modulation were studied, the precision of spike timing, and the 

efficiency of EPSP-spike coupling. We also considered the effect of a single EPSP on the timing 

of spikes in a spike train.  
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CHAPTER II. EXPERIMENTAL METHODS 

 

Cortical slices 

Animal care and usage for experimental purposes was in accordance with National 

Institutes of Health and Institutional protocols (http://www.nap.edu/readingroom/books/labrats/ 

chaps.html). 18-28 day old Sprague-Dawley rats were deeply anaesthetized with a mixture of 

ketamin-xylasine (80 mg and 6 mg/kg body weight, respectively).  In some experiments mouse 

cells were used. In these cases 20-26 day old mice were anaesthetized with ketamine-xylazine 

mixture of 80 mg and 16 mg/body weight, respectively. When the animal did not show any 

response to a pinch in its tail, it was decapitated and the brain was quickly removed and placed 

into ice-cold oxygenated artificial cerebrospinal fluid (ACSF). ACSF contained (in mM) 125 

NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2, 26 NaHCO3, 20 glucose, 0.4 ascorbic acid, 

1.2 pyruvic acid and 4 lactic acid. The ACSF was bubbled with a mixture of 95% oxygen and 

5% CO2 at pH=7.4 during the dissection, incubation period and experiments. The hemisected 

brain was glued onto the stage of vibrating microtome (Leica, Nussloch, Germany), which had 

an angle of 30º, and parasaggittal slices with a thickness of 300 µm were cut. After the 

dissection, the slices were incubated in a holding chamber at a temperature of 34°C for 30 

minutes, and then stored at room temperature until recording. The recording temperature was 34-

36°C. Slices were transferred to the recording chamber and observed under an upright Zeiss 

microscope (Carl Zeiss Inc., Thornwood, NY, USA) equipped with a 40x water immersion lens, 

infrared differential interference contrast and a video camera (Cohu, Inc. San Diego, CA, USA) 

with a monitor.  
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Selection criteria for recording from layer 5 pyramidal cells 

Layer 5 pyramidal cells (Figure 1A) from the somatosensory or visual (2) cortex were 

identified visually with infrared microscopy and neurons were selected by their morphological 

properties and electrophysiological responses to hyperpolarizing and depolarizing step current 

(McCormick et al., 1985). Cells were selected only from those slices that showed the presence of 

pyramidal cell dendrites running parallel with the surface of the slice. The same procedure was 

used both for rat and mouse cells.  

To establish homogeneity in the sample cell population, input resistance, spiking pattern, 

spike properties were assessed. In case of mouse cells, the presence and amount of 

depolarization-induced prolongation of EPSP (see later) were also tested at the beginning of the 

experiments from N=10 cells. However using the selection criteria above, no cells in mice were 

found that did not have the depolarization-induced prolongation of EPSP (measured as 

normalized EPSP half width, when cell was depolarized with a current step) and we did not find 

significant differences in this property between mouse and rat cells (p>0.1, t-test for independent 

samples, N=15 cells for rats, N=10 cells for mice). Therefore the cells were pooled in the 

experiments. Similarly the values from the visual cortex were in the range the values measured 

from the somatosensory cortex of the rat, data from every cell were pooled. 

Input resistance values were 22-62 MOhms measured at resting potential by injection of 

current step (100 pA or –100 pA).  Other selection criteria for including the cells in the sample 

populations were: (1) Resting potential value less than –60 mV, which where not changed more 

than 5 mV throughout the experiment, (2) Spike has an overshoot of 0 mV throughout the 

experiment, (3) Membrane input resistance values did not change more than 10% during the  
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Figure 1. Evoked EPSP in the cortex. (A) Biocytin filled (see later in Experimental Methods) 
layer 5 pyramidal cell from the somatosensory cortex. Scale bar is 100   µm. (B) Mixture of APV 
and DNQX inhibits evoked EPSC. EPSC was measured under voltage clamp conditions at –50 
and +20 mV. Application of APV and DNQX at a concentration of 100 µM and 10 µM, 
respectively, prevented the inward current at –50 mV and the outward current at 20 mV in Cs-
gluconate internal. (C) Evoked EPSP from a separate experiment, recorded in current clamp with 
the standard internal before and during the application of DNQX and APV. Arrows correspond 
to traces on upper panel. 
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experiments (4) Experiments with a series resistance higher than 25 MOhm were not included. 

Experimental data were not compensated for either series resistance or junction potential.  

 

Data acquisition 

Patch electrodes (2-4 MOhm) were filled with an internal solution containing (in mM) 

130 K-methylsulphate, 4 KCl, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

4 MgATP, 20 sodium-phosphocreatine, 0.3 NaGTP, 0.2 EGTA. Osmolarity of the internal 

solution was 295 mOsmol at pH=7.3. In some experiments 6.3 mM KCl was used. Except where 

otherwise noted, the internal solution above was used in all of the experiments, and it is referred 

as standard internal solution in the text.  

The data acquisition system utilized an ITC-18 digitizing board (InstruTECH Co, Port 

Washington, NY, USA) as an interface between the amplifiers and the computer. The amplifiers 

were an Axopatch 200B and an Axoclamp 2A (Axon Instruments, Union City, CA, USA). 

Dynamic clamp experiments were performed with either single or double electrodes. 

When two electrode recordings where made, one electrode was used for data acquisition and the 

other electrode injected the current. Double electrode recording was preferred during the 

experiments and it was always used, whenever EPSPs were generated by injection of current 

(simEPSPs). The reason for using double electrode recording was to eliminate errors in 

measuring membrane potentials related to pipette the series resistance. Most of the experiments 

with evoked EPSPs, however, were made with using single electrode for dynamic clamp, 

because of the use of a third electrode for the inhibition of GABA receptors (see below).  
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Stimulation 

In order to characterize EPSP-spike coupling, we wanted to generate a monosynaptic 

EPSP. There is an advantage of evoking EPSPs by extracellular stimulation over evoking EPSPs 

by current injection, because the effect of reversal potential is considered, thus the level of 

current flow is not constant. The closer the membrane potential to the reversal potential to the 

ions related to synaptic activity, the less amount of current is generated. Another advantage is 

that extracellular stimulation in different layers results in EPSPs with time courses related to the 

dendritic location and receptor composition of the synapses.  

Excitatory synapses are anatomically more prevalent in the cortex than inhibitory ones 

(White, 1989). However extracellular stimulation of afferent fibers elicits multiphase responses 

with an excitatory component mixed with a fast and a slow inhibition. The most common source 

of fast inhibition is GABAA-receptor mediated, but applying GABAA-receptor blockers in the 

bath is not a feasible solution to block GABA receptors, because by changing the balance 

between excitation and inhibition, the recurrent excitatory activation leads to epileptiform 

activity (Gutnick et al., 1982).  

Evoked EPSPs (eEPSP) were characterized by their amplitude, half width and rise time. 

Half width was defined as the time between the rising and decay phase of the EPSP at half the 

amplitude. Rise time was defined as the time span during the rising phase of the EPSP between 

the 10% and 90% levels of the amplitude. 

 

Evoked EPSPs  

Several different techniques are used to evoke monosynaptic EPSPs in the cortex. 

Stimulation of thalamocortical fibers (Agmon and Connors, 1991) in slices cut at a special angle 
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or corticocortical stimulation on coronal slices (e.g., Kumar and Huguenard, 2001) yields a 

monosynaptic EPSP. A vertical cut from the deep layers to layer 1 and placing the stimulating 

electrode in layer 1 (Gonzalez-Burgos and Barrionuevo, 2001) also can generate monosynaptic 

EPSPs. GABAA receptors can be blocked internally by picrotoxin, by 4,4'-

Diisothiocyanostilbene-2,2'-Disulfonic Acid, or by eliminating ATP and GTP from the internal 

solution e.g. in (Nelson et al., 1994). 

After reviewing and eliminating the possibilities discussed above, we developed a 

method based on Feldman (2000) and Castro-Alamancos et al. (1995) to evoke a monosynaptic 

EPSPs with focal application of a GABA-receptor antagonist, near the stimulating electrode. We 

used a theta-type glass electrode for extracellular stimulation. The tip of the theta electrode was 

broken to yield a tip diameter of 3-7 µm and filled with the ACSF used in the bath. A pair of 

Teflon coated platinum wires were stripped at the ends that interfaced with the ACSF, and were 

fitted into the holes of the theta electrode. These were then used for local, bipolar electrical 

stimulation. Stimulation was controlled by an optically isolated stimulation unit (DS2A Isolated 

Stimulator, Digitimer LTD., Welwiyn Garden City, UK). The electrode was positioned along the 

apical dendrite, 50-850 µm from the soma, and 10-100 µm from the apical dendrite horizontally. 

Pulses of  20-500 µs were used for electrical stimulation. These had an amplitude of 30-75 V. 

The distance between recording and stimulating electrodes was estimated from the video 

monitor, which we had previously calibrated for distance measurements. GABA receptor 

blockers were dissolved in ACSF and applied by pressure near the stimulating electrode using a 

third pipette, or the from the stimulating theta electrode itself. GABAA and GABAB receptors 

were blocked by picrotoxin and CGP 55845 at a concentration of 1 mM and 500 µΜ, 

respectively.  
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The conditions necessary to evoke a monosynaptic EPSP in the cortex were tested and 

improved with voltage clamp recording, using a Cs-gluconate internal solution. The Cs-

gluconate internal solution contained (in mM) gluconic acid 120-130, CsCl 6.3, HEPES 10, 

EGTA 10, MgATP 4, sodium-phosphocreatine 20, NaGTP 0.3. The pH was set at 7.3 with 

CsOH , and the osmolarity was 290-295 mOsmol.  

The majority of excitatory transmission in the cortex involves ionotropic glutamate 

receptors (Seeburg, 1993). Under our experimental conditions these receptors have a reversal 

potential around 0 mV, hence the monosynaptic EPSCs is an inward current at negative holding 

potentials and an outward currents at positive to 0 mV. We tested the presence of inhibitory 

synaptic activation during extracellular stimulation with application of a mixture of the 

ionotropic glutamate receptor antagonists, APV and DNQX, at concentrations of 100 µM and 10 

µM, respectively (Figure 1B). These antagonists eliminated both the inward current at –50 mV 

and the outward current at +20 mV (Figure 1) related to the activation of the synapse. Had 

inhibitory conductances been present they would have created an inward current at holding 

potentials positive to 0 mV in a solution containing glutamate receptor antagonists. We 

concluded from these experimental conditions were suitable to evoke a monosynaptic EPSP. 

Presence of inhibition was also tested after individual experiments made in current clamp (Figure 

1C). Experiments with polysynaptic activity were discarded. An EPSP was considered 

polysynaptic, when either its rise time or decay time could not have been described as a smooth 

curve at resting potential.  

EPSPs with amplitudes of 0.6-6.0 mV were evoked by extracellular stimulation for 

studying EPSP-spike coupling. Evoked EPSPs had a rise time of 1.6-7.7 ms, and half width of 

15.6-37.0 ms at resting potential (Figure 2).  

 20



30

20

10

0

N
um

be
r

100806040200
Half width (ms)

30

20

10

0

N
um

be
r

20151050
10-90% Rise time (ms)

Spontaneous EPSP

100 ms

1 mV

simEPSP

eEPSP

0.1 mV

1 mV

A AB

C

Figure 2. Comparison of spontaneous, simulated and evoked EPSPs on layer 5 pyramidal 
cells. (A) Spontaneous EPSPs (N=62) characterized with monotonically increasing rise phases 
and monotonically decreasing decays were collected from N=21 traces of a single cell. EPSPs 
were selected visually and parameters were measured after a boxcar filter smoothing (see later in 
Data analysis). The distribution of half widths (B) and rise time constants (C) of these 
spontaneous EPSPs are shown with bars and the distributions fitted with Gaussian curves. 
Simulated EPSPs (simEPSP; closed squares) were generated in N=19 cells by injection of a 
double exponential shaped current transient with an amplitude of 400 pA, rise and decay time 
constant of 0.1 and 5 ms, respectively. The evoked EPSP (eEPSP; open squares) was generated 
by extracellular stimulation along the apical dendrite at 100 µm from the soma. In comparison to 
the half widths (B) and rise times (C) of the spontaneous EPSPs we also included the average 
half widths and rise times of the simEPSPs (marked with filled squares) and eEPSPs (marked 
with empty squares). Markers for eEPSP and simEPSP were placed at their sample sizes. The 
marker also shows the standard error of mean (horizontal whiskers) and the standard deviation of 
the sample (vertical whiskers). The average half width of the spontaneous EPSP was 15.3 ± 0.2 
ms and average rise time of the spontaneous EPSP 4.5 ± 0.09 ms. 
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Simulated EPSPs 

SimEPSPs were generated by injection of a double exponential shaped EPSC (simEPSC) 

(equation 1). 

 i = imax * (1-exp(-t/τr))*exp(-t/τd)   (1) 

The parameters for the equation are imax, which is the maximal amplitude of the injected 

current, τr is the rise time constant, τd is the decay time constant and t is time. In most of the 

experiments, the same parameters were used: imax=400 pA, tr=0.1 ms, td=5 ms. The resultant 

simEPSPs had amplitude of 2.2-5.2 mV, a half width range of 18.6-24.3 ms, and a rise time 

range of 1.7-4.2 ms at resting potential (Figure 2). Parameters of simEPSP were measured only 

from experiments with double electrode recording. 

When properties of eEPSPs and simEPSPs were compared to the properties of 

spontaneous EPSPs in layer 5 pyramidal cells, it was found that half widths and rise times of 

simEPSPs and evoked EPSPs were in the range of the half-widths and rise-times of spontaneous 

EPSPs (Figure 2). 

 

Dynamic clamp 

 The ITC-18 board used as an interface between the computer and amplifiers (Figure 3) 

had a built-in implementation of dynamic clamp using the equation (2),   

))(()())(()()()( tVEtTGtVEtTGtTGtI miiimeeecco −⋅⋅+−⋅⋅+⋅= (2) 
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Figure 3. The data acquisition system used for dynamic clamp experiments. The computer 
was connected to an ITC-18 board and supplied the conductance values (g(t)). The board 
calculated the current using the membrane potential (Vm) that were necessary to inject the 
conductance. The outgoing signal from the board was a voltage value (Vc), which commanded 
the amplifier in current clamp mode to inject current. Note: The same system was used for 
voltage clamp and current clamp experiments.
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where I0(t) is the current injected into the cell in Amperes, Vm(t) is the cell’s membrane potential 

in Volts, Ee is the reversal potential for excitatory conductances in Volts, Ei is the the reversal 

potential for inhibitory conductances in Volts. In all experiments Ee  was set at 0 mV and Ei was 

–60 mV. Tc(t) is the forcing conductance for currents in Siemens (to include the constant current 

in equation (2) as a part of the linearization procedure, but practical value is 1; see below), Te(t) 

is the excitatory conductances in Siemens, Ti(t) is the inhibitory conductances in Siemens, Gc is 

the forcing gain in Volts, Ge is the forcing gain for the excitatory conductance and Gi is the 

forcing gain for the inhibitory conductance. Forcing gains (Gc, Ge, Gi) are related to the voltage 

control of current output on the amplifier in current clamp mode. These numbers are derived 

from the amplifier gain in current clamp mode and the amplification of the digitalizing board. 

Inhibitory and excitatory conductances linearly added to an independent current injection 

(Tc(t)*Gc) during the linearization procedure. According to equation (2), the conductances 

injected by the dynamic clamp does not depend on the membrane potential, similarly to the 

currents flowing trought AMPA and GABAA receptors. Tc(t), Te(t) and Ti(t) conductances were 

controlled by the computer.  

The sampling frequency of 50 kHz was fast enough to control conductance injection with 

the least chance for escape during fast signals, like action potentials. (Figure 4). The basic 

operation of the system was the following: in every sampling period (0.02 ms)  the board 

collected one sample point of the membrane potential, multiplied with the voltage dependent 

parameters and offset it according to the voltage independent parameters in equation (1), then it 

injected the current into the cell.  

 24



464462460458456454452450448
ms

7006005004003002001000

ms

6
4
2
0

(n
S

)

7006005004003002001000
ms

7006005004003002001000
ms

-50

0

50

(m
V

)

7006005004003002001000

Time (ms)

injected excitatory current

desired conductance

measured voltage

100 pA

desired current

6004002000

Time (ms)

A1

A2 B2

B1

measured current

B3

100 pA

5 ms

200 pA

A3

 

Figure 4. Test of the dynamic clamp. Dynamic clamp requires an accurate and continuous 
monitoring of the membrane potential and injection of current to generate the desired amount of 
conductance in the cell according to Ohm’s law. The dynamic clamp system achieves this 
function in discrete steps: it acquires the membrane potential for a short period and injecting 
current. A fast change in the membrane potential may cause an oscillation in the membrane 
potential if the acquisition-current injection phase of the dynamic clamp system is not fast 
enough. To exclude this possibility and test how the dynamic clamp system controls the 
membrane conductance during spiking (A1-A3), we tested our system by evoking a spike (A3) 
by injecting an excitatory current transient (A1), while the cell was depolarized with conductance 
injection (A2). (B1) The desired current necessary to maintain the injected conductance 
according to I=(V-Erev)*g equation. (B2) The time course of current was also measured during 
the experiment, which showed a good fit to the desired current on the expanded trace (B3). (B3) 
blown up version of traces on (B1) and (B2) marked by the bar. 
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Generation of background activity 

We simulated background synaptic activity using the dynamic clamp system. Unitary 

excitatory (Figure 5A1) and inhibitory current transients (Figure 5A2) were obtained from paired 

recording experiments between pyramidal cell presynaptic to another pyramidal cell and from 

fast spiking cell-pyramidal cell pairs, where the fast spiking cell was presynaptic to the 

pyramidal cell (Galarreta and Hestrin, 1998 and 1999). These unitary excitatory and inhibitory 

current transients from single traces were used to calculate conductance transients using Ohm’s 

law and knowing the reversal potentials of the ions underlying the activation of excitatory and 

inhibitory synaptic activity (Figure 5A1 and 5A2 lower panels). The conductance transients were 

convolved with Poisson trains of 3000 Hz for the excitatory and 500 Hz for the inhibitory 

conductance waves (Figure 5B1 and 5B3, respectively), which generated fluctuations in the 

membrane potential (Figure 5B2) and spiking (inset). The injected conductance was offset by a 

current pulse (–200 to +150 pA), or scaled to evoke a desired firing rate in the range of 0-30 Hz. 

In some experiments step conductance was used instead of fluctuating conductance. When 

conductance was scaled, inhibitory and excitatory conductances were multiplied with the same 

number and injected together. The level of injected conductance varied between 2-50 nS and 1-

25 nS for the excitatory and inhibitory conductance levels, respectively. In most cases, the 

injected average conductance was between 20-30 nS for excitatory and 10-15 nS for inhibitory 

conductance. Generally, a step conductance of this value prevented the ongoing firing activity of 

the cell and allowed only spiking evoked by adding an extra EPSP (Figure 4). Fluctuating 

conductance however could evoke spikes even without an additional EPSP, when the cell was 

depolarized enough by the stimulation. 
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Figure 5. Generation of fluctuating background activity. (A) Unitary EPSC (A1 top) and 
IPSC (A2 top) from single traces were measured in paired recording experiment (Galarreta and 
Hestrin, 1998) and were used to calculate the unitary excitatory (A1 bottom) and inhibitory 
conductance transients (A2 bottom). (B) The conductance transients were convolved with 
Poisson-trains into excitatory (3000 Hz) and inhibitory (500 Hz) conductance waves (B1 and B3, 
respectively). Injection of these conductance waves using the dynamic clamp system generated a 
fluctuation in the membrane potential (B2) and initiated spiking activity (inset).  
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In the experiments stimulated with fluctuating current, the stimulation was generated in a 

similar way to the fluctuating conductance stimulation. The average membrane potential was 

estimated to be –50 mV and the unitary conductance transients (Figure 5A1 and 5A2 top panels) 

were used to calculate putative unitary current transients at –50 mV using Ohm’s law. The 

internal and external ionic concentrations were assumed to be equal to the ones used in the 

external and internal solutions during the experiments for the calculations. Then, these putative 

excitatory and inhibitory current transients were combined with the exact Poisson-train that were 

used to calculate excitatory and inhibitory conductance waves (e.g. in Figure 5B1 and B3) and 

the excitatory and inhibitory current waves they were summed and injected into the cell in 

current clamp mode.  

 

Data analysis  

Comparison of data points 

Several hundred interleaving traces containing alternation of control traces and test traces 

were collected using a custom-made acquisition program. For the test traces only a single 

parameter was changed (e. g. the presence of an EPSP or the presence of conductance in the 

stimulation) in the stimulation protocol compared to the control traces in every experiment. 

Because of the simultaneous collection of data from a cell stimulated with these different 

experimental protocols, systematic changes in the cells’ properties (see selection criteria) 

affected the response of the cells to the control and test stimulation in a similar way. Since 

changes in the EPSP properties under a given condition were related to the changes in the EPSP 

 28



properties under a different condition, EPSP parameters originating from the same cells were 

compared by paired t-test.  

Similarly in experiments, where the effects of fluctuating current and fluctuating 

conductance were measured on peristimulus time histogram (PSTH) parameters, data were 

collected in interleaving traces, allowing us to used the same paired t-test. In other cases, where 

the compared sample populations were generated from two different cell populations, 

independent t-test was used. These cases were mentioned in the text. Significance level was 

accepted at, when p<0.05 and marked by “*”. Significance level p<0.01 was marked with “**” 

and p<0.001 was marked with “***”. Nonsignificant difference was marked with “ns”.  Data 

points are reported as means ± standard errors of the mean.  

 

Calculation of peristimulus time histograms and cumulative sums 

To analyze the effects of EPSPs on the discharge of the cell, PSTHs were generated from 

70-400 traces. PSTH is a histogram of spike timing locked to the timing of the stimulus. The 

method is based on that spike trains are independent Poisson trains and the chosen bin size of the 

histograms is small enough to collect either 0 or 1 spike during a sweep (the probability of 

having a multiple spike in a bin during a sweep is 0). Spikes were collected into histograms with 

a bin size of 1 ms. Spike number in every bin was normalized by the number of sweeps (N) and 

the time span corresponding to the bin size. In this way the histogram shows the instantaneous 

frequency corresponding to the individual bins (Abeles, 1982, Perkel et al., 1967). The 

background firing frequency was calculated from instantaneous firing rate of those PSTH that 

were generated without the presence of EPSP, by averaging the bins from 200 ms from the 

starting point to the end of the stimulation. 
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Experiments in these cases contained alternating traces of background stimulation only 

and EPSP superimposed on the same background stimulation. To follow how the probability of 

spike generation changes after an EPSP and measure the transient increases in the discharge 

frequency more accurately, cumulative histograms were calculated in the following way:  Two 

PSTHs were generated from the alternating traces of background stimulation only and 

background stimulation with an EPSP superimposed on it. After subtraction of the first (PSTH 

made with stimulation only) from the second (PSTH made with stimulation and EPSP together), 

the difference was integrated. Peak synaptic gain was defined as the maximum on the cumulative 

sum histogram after the onset of the EPSP. The width of the peak synaptic gain was defined as a 

window between the 10 and 90% of the maximum on the cumulative sum. 

 

Auto renewal function 

After a spike a refractory period follows, that involves inactivation of sodium channels 

and activation of potassium conductances that hyperpolarizes the cell. The refractory period may 

manifests itself by reducing the probability of spiking for a stimulus for a longer period of time. 

For measuring how probability of spiking changes after a spike on cells with ongoing activity, 

auto renewal density functions (Perkel et al., 1967) were calculated (Figure 6). In every trace all 

the spikes were considered as reference points and the timing of spikes following each reference 

spike in a 100 ms window were measured and collected in a histogram with a bin size of 1 ms. 

The time necessary to reach the half the average firing rate was assumed to be related to the 

refractory period of the cell. To quantify this window, a sigmoid curve was fitted (equation (3)) 

to the envelope of the histogram. The parameters are: max is the maximum of the function (the  
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Figure 6. The renewal density function. Timing of every spike in the experiment was 
considered as a reference point (upper panel) and the timing of follower spikes were calculated 
in a 100 ms window. The spike timing was collected to a histogram with a 1 ms bin size. The 
beginning of the histogram was fitted by a sigmoid curve (solid line) and used to quantify the 
refractory period of the cell. 
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asymptote, base is vertical offset from abscissa, in our condition was equaled 0. Rate measured 

the rise time of the sigmoid curve and xhalf was the time window to reach the half the maximum.  

 

    max 
(3)     f(x)=base+------------------------- 

       1+exp((xhalf-x)/rate 

 

Filtering 

Traces for collection of spontaneous EPSPs on Figure 2 were smoothed with a moving 

average filter, called boxcar filter, where 9 points before and after the smoothed value were 

averaged together with the smoothed value. Similar boxcar filtering was used for calculation of 

reliability and precision of spiking.  

 

Anatomy 

Our purpose was to select pyramidal cells (see the selection criteria above), however we 

were also interested in if the chosen population is not homogenous, for example if the sample 

population contained interneurons. For this reason cells (N=10), chosen from the sample 

population randomly, were stained intracellularly by biocytin. 0.2% biocytin was added to the 

intracellular solution and diffused in the cell. After completion of the experiments, slices were 

fixed for 2-4 days at 0-4 °C in 4% paraformaldehyde dissolved in phosphate buffered saline 

(PBS) at pH=7.35-7.45. At the beginning of the staining, slices were rinsed two times in PBS for 

5 minutes, then again, for 10 minutes. Endogenous peroxidase activity was neutralized by 

incubating the slices in PBS containing 10% methanol, 1% H2O2 and 90% PBS for 10 minutes. 
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After the incubation period, slices were washed 3 times for 10 minutes in PBS. Cell membranes 

were permeabilized by washing the slices in a 2% Triton X-100 in PBS for 1 hour, then biocytin 

staining was processed by standard avidin-biotinylated-horseradish peroxidase complex 

(Vecstatin ABC-kit, Vector Laboratories, Burlingame, CA, USA). After a 2 hour incubation in 

the ABC (made from 2 drops of solution A, 2 drops of solution B added to a 1% Triton X-100 

solution), the slices were rinsed 2 times for 10 minutes, a third time for 15 minutes and a fourth 

time for 1 hour in PBS. 0.5% 3-3' Diaminobenzidine (DAB) solution contained 3.34 µl 30% 

H2O2 and 5 mg DAB in 10 ml PBS (Figure 1A). The reaction was followed under the 

microscope and it took about two minutes. After the reaction, slices were rinsed 3 times for 15 

minutes in PBS and placed in 0.1% osmiumtetroxyde in PBS for about 2 minutes then, washed 

overnight in PBS. 

The slices were then mounted on slides in Mowiol (Calbiochem, San Diego, CA, USA) 

containing mounting medium to prevent fading, covered with a cover slip, and left out to dry 

overnight. Slices were observed with a binocular microscope under 10x and 40x magnification. 

Picture on Figure 1A was taken with a CCD camera mounted on a Zeiss microscope (Axiophot, 

Zeiss Inc., Thornwood, NY, USA). 

 All the recovered (N=10) were layer 5 pyramidal cells. 
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CHAPTER III. RESULTS 

 

The effect of conductance on the properties of the cell 

Injection of conductance in the soma of pyramidal cells affected the input resistance and 

membrane time constant of the cell. The reduction of the membrane input resistance by 

conductance was measured with a small (50 pA) depolarizing or hyperpolarizing current at the 

maximal value of the voltage deflection. (Figure 7A). These experiments also confirmed that 

changes in the membrane input resistance can be estimated from the value of input resistance of 

the cell and the amount of conductance injected. In all the following experiments this reduction 

is reported as a percentage reduction in the value of input resistance measured at resting potential 

with no conductance injected in the cell. For example, if the overall input resistance was reduced 

by 60% that means that the membrane potential deflection due to the hyperpolarizing current was 

40% of the original membrane potential deflection after the application of the conductance. 

The membrane time constant was measured at resting potential by injection of 5ms 

current pulses, whose amplitude was –100 pA (Fig. 7B). To restore the resting potential of the 

cell when conductance was present, a hyperpolarizing current step was also injected. The decay 

of the deflection in the membrane potential due to the current pulse was fitted with a single 

exponential curve. (Figure 7B). The membrane time constant was between 19-25 ms with no 

background conductance and the amount of conductance we injected in most of the experiment 

reduced it to 7-9 ms (N=5 cells). 20-30 nS excitatory and 10-15 nS inhibitory conductance were 

injected in most of the experiments.  

Spike properties were also affected by the conductance (Table 1.) 
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Figure 7. Effect of injection of conductance on the membrane properties of the cell. (A) 
Injection of conductance reduces the membrane input resistance. Arrows show the points for 
measurement of the input resistance. (B) Injection of conductance reduces the membrane time 
constant. Sample traces on (A) and (B) are from the same cell. Membrane potential in response 
to an injection a 5 ms, –100 pA current pulse was fitted with a single exponential curve to 
characterize the membrane time constants (tau). Different levels of conductance were injected in 
the cells and all tau values from the exponential fits were pooled together. Measurements are 
from 5 cells and every cell contributes to at least 2 data points. Arrows depict actual 
measurements from a single cell (dashed lines) on first panel. 
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Table 1. Spike properties and the presence of background conductance. Several number of 
spikes (at least 50 for every data point from every cell) were averaged from N=7 cells under two 
conditions: when the cells were stimulated with fluctuating current (Current) or fluctuating 
conductance (Conductance). Stimulation was executed in interleaving traces, stimulation with 
fluctuating conductance was followed by stimulation with fluctuating current and vice versa. Data 
from experiments with double electrode recording (3) and single electrode recording (4) showed no 
difference, and all are pooled and included in the table. Spike amplitude was measured between the 
spike threshold and maximum of the spike. Half width was measured between the points defined the 
spike amplitude at 50% size between the rise phase and decay phase of the spike. The AHP was 
defined as the voltage difference between the threshold and the minimum of afterhyperpolarization 
after the spike. “*” marks significant differences tested with paired t-test (p<0.05). 

 
 
 

  Current Conductance 

Threshold (mV) -41.6 ± 1.62 -42.7 ± 1.25 

Amplitude (mV)* 83.8 ± 2.55 74.2 ± 2.91 

Half width (ms)* 0.70 ± 0.05 0.62 ± 0.04 

AHP (mV)* -16.8 ± 1.55 -11.0 ± 1.43 
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Conductance reduces depolarization induced prolongation of EPSP 

Depolarization to potentials near firing threshold in response to current injection results 

in an increase in the amplitude and prolongation of the half width of EPSPs in layer 5 pyramidal 

cells (Stafstrom et al., 1984, Deisz et al., 1991, Stuart and Sakmann, 1995, Thomson, 1997) and 

hippocampal pyramidal cells (Fricker and Miles, 2000). However under in vivo conditions, the 

depolarization is caused by synaptic conductances, and the interaction of the EPSPs with the 

background activity could influence the prolongation and increase in the amplitude of EPSPs. To 

test this hypothesis we evoked monosynaptic EPSPs with extracellular stimulation, while the cell 

was depolarized by injection of a conductance step (Figure 8). The level of conductance was 

chosen to reduce the input resistance of the cell by about 49-73% with an average of 63 .1 ± 

3.1% (N=7 cells). Depolarized state was measured at close to firing threshold where probability 

of firing was about 50%. The amount of reduction in the input resistance had a range that was 

reported in the cortical cells in vivo (Destexhe and Pare, 1999, Pare et al., 1998, Borg-Graham et 

al., 1998). To compare the EPSP properties at resting potential and at membrane potentials close 

to firing threshold, we injected the same conductance together with a hyperpolarizing current to 

restore the original resting potential. Half widths of eEPSPs had a range of 18.2-34.6 ms with an 

average of 26.5 ± 2.3 ms (N=7 cells) at resting potential and depolarization near firing threshold 

by a current step increased this value 2.0-4.1 –fold. We defined normalized half width as the 

ratio of half widths measured at depolarized potentials and measured at resting potentials when 

the same amount of conductance were injected. The average normalized half width was of 3.0 ± 

0.3 (N=7 cells) with no conductance injected.  However depolarization by a conductance step 

from resting membrane potential to near the firing threshold dramatically reduced the  
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Figure 8. Effect of background synaptic conductance on the properties of eEPSP. (A) 
EPSPs with amplitude in the range of 0.6-3.1 mV at resting potential were evoked by stimulation 
with a glass electrode placed 50-700 µm from the soma along the apical dendrite. The cell was 
depolarized by a step current (A1) or a step conductance (A2). Averages from 3-50 traces. Note 
the scale difference between traces with current or conductance background on the upper panels. 
(B) Depolarization by conductance reduced the depolarization-induced prolongation of the EPSP 
(N=7). (C) Depolarization increased the amplitude of eEPSP under both conditions (N=7 cells).  
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prolongation of the EPSP half width and the normalized half width was 1.4 ± 0.2 on the same  

cells (N=7).  The difference in the prolongation of the EPSP half width when the cell was 

depolarized with conductance or depolarized with a step current was significantly different 

(p=0.001, N=7, Figure 8B). 

Depolarization was also reported to increase the EPSP amplitude together with the 

prolongation of half width (Stuart and Sakmann, 1995, Fricker and Miles, 2000, Stafstrom et al., 

1984, Thomson, 1997, Deisz et al., 1991). Because of the extra conductances, the amplitude of 

EPSP is expected to be reduced, when compared to the amplitude obtained without the presence 

of conductance (Figure 8A1 and A2). Amplitudes of the eEPSPs at resting potential values 

ranged from 0.6 to 3.6 mV without the presence of conductance and they ranged from 0.3 to 2.7 

mV with the presence of conductance on the same cells (N=7). We defined the normalized 

amplitude as a relative increase in the EPSP amplitude due to depolarization from the resting 

potential to membrane potential values close to firing threshold. When we measured the 

normalized amplitude there was no significant difference under the two conditions. The average 

value of the normalized amplitude was 1.5 ± 0.1 and 1.5 ± 0.1 for current and conductance, 

respectively (p=0.773, N=7 cells).  

The previous experiment was repeated with simulated EPSPs (simEPSP) instead of 

eEPSPs. To evoke simEPSPs with similar amplitude with and without the presence of the 

background conductance, the size of the injected double exponential shaped current (simEPSC) 

was scaled to compensate for the effect of background conductance. The amplitude of the 

simEPSPs was in the range of 4.0-4.6 mV with an average of 4.2 ± 0.1 mV at the resting 

potential (Figure 9; N=9 cells).  The injected conductance reduced the input resistance in the   
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Figure 9. Effect of background synaptic conductance on the properties of simulated EPSP. 
(A) The experiments on Figure 8. were repeated with simEPSPs. The amplitude of the simEPSC 
was scaled to yield a simEPSP with similar size at resting potential with and without the 
background conductance. (B) Membrane potential determines the EPSP half width prolongation 
in a different way with (filled circles) and without (empty squares) conductance in the 
background. Same cell as on (A). (C) Effect of conductance on the EPSP half width at membrane 
potential close to firing threshold relative to that of at resting potential (N=9, p<0.001). (D) 
Amplitude of the EPSP with and without conductance (N=9, p>0.117). 
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range of 27.9-65.7 with an average of 48.4 ± 5.3% (N=9 cells). Small changes in the membrane 

potential in the range close to firing threshold generated large differences in the prolongation in 

the simEPSP half width (Figure 9B).  Stuart and Sakmann (1995) reported similar results. 

Depolarization by conductance changed the nature of this dependence (Figure 9B), resulting in a 

diminished prolongation of the EPSP half width near threshold membrane potentials. 

The average of normalized half width (depolarized/rest) was of 2.8 ± 0.3 without the 

presence of conductance (range=2.1-5.2, N=9). Depolarization by a conductance step from 

resting membrane potential to near the firing threshold significantly reduced the prolongation of 

the simEPSP half width and the normalized half width became 1.2 ± 0.1-fold (Figure 9C; 

range=0.9-1.6, p<0.001, N=9 cells).  

The increase in the simEPSP amplitudes due to the depolarization from the resting 

potential was not significantly different under the two conditions (Figure 9D; p=0.117, N=9), 

similarly to the eEPSP amplitudes. Depolarization also increased the rise time of the EPSPs, but 

this effect was reduced when background conductance was injected. We assessed with 

calculating the normalized EPSP rise time, which was defined as the ratio (depolarized/resting) 

of the EPSP rise time obtained at membrane potentials near spike threshold and at resting 

potentials. The normalized EPSP rise time was 1.6 ± 0.2 when the neuron was depolarized with 

current from resting potential. The presence of a background conductance reduced normalized 

EPSP rise time to 1.3 ± 0.2 The comparison showed that the background conductance 

significantly affected the rise time of the eEPSPs (p=0.039, N=7 cells). Normalized rise time of 

simEPSPs was 1.9 ± 0.2 (range: 1.3-2.7), when conductance was not present and it was reduced 

to 1.3 ± 0.1 with conductance in the background (The range was: 0.9-1.5). This difference was 

also significant (p=0.003, N=9 cells).  
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There was no significant difference between the normalized half widths of evoked EPSPs 

and the normalized half widths of simulated EPSP obtained in the presence of conductance or 

between the ones, obtained without the presence of conductance (p=0.478 with conductance and 

and p= 0.188 without conductance, respectively; N=7 for eEPSP and N=9 for simEPSPs). 

Similarly, there were no significant differences in the samples of eEPSP and simEPSP for 

normalized amplitudes and normalized rise times either in the presence or in the absence of 

background conductance (p=0.214 for normalized amplitude with the presence of conductance, 

p=774 for normalized amplitude depolarized with a step current, p=0.883 for normalized rise 

times in the presence of conductance and p=0.294 for normalized rise times depolarized with a 

step current).  

These results indicated that background conductance reduces EPSP prolongation related 

to membrane potential depolarization without affecting the increase of the EPSP amplitude in a 

similar way both on evoked and simulated EPSPs.  

 

Effect of membrane potential fluctuation and the amount of conductance on EPSP 

properties 

The previous experiments were carried out with a conductance step as a background 

activity, instead of fluctuating conductance. Ho and Destexhe (2000) suggest that it is important 

to study separately the effect of tonic conductance from the fluctuating membrane potential, 

because these two conditions could influence physiological parameters in an opposite manner. 

While conductance attenuates subthreshold activity, a fluctuation in the membrane potential 

might increase the sensitivity of the cell to subthreshold stimuli compared to the conditions with 
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no fluctuation, resulting in higher probability of firing for stimuli of the same size. One 

explanation could be that tonic conductance simply affects the passive properties of cell. 

However, a fluctuation in the membrane potential may influence the activation and inactivation 

of voltage-dependent ionic channels, which in turn can amplify or reduce EPSP amplitude or half 

width. To test whether a fluctuation in the background activity elicits any additional change in 

the reduction of depolarization-induced prolongation of simEPSPs, the same amount of 

conductance was injected as a step or fluctuation (20 nS excitatory and 10 nS inhibitory 

conductance, N=6, Figure 10A and B). To obtain the parameters of the EPSP at resting potential, 

a hyperpolarizing current was injected while depolarizing with the step conductance or the 

fluctuating conductance wave. In the case of fluctuating conductance, traces with both 

background and a simEPSP was interleaved with traces in which only the background 

conductance was simulated. The same fluctuating conductance wave was used in every trace 

throughout the experiments (see Figure 5). To measure the properties of the simEPSP more 

reliably, background only traces were subtracted offline from the traces stimulated with 

simEPSP and background together, then these trace differences were averaged from 5-20 traces 

for every data points from each cell. 

Membrane potential values were calculated as an average membrane potential of those 

traces stimulated with background conductance only during a 5 ms interval that was related to 

the first 5 ms of the simEPSP on traces stimulated with simEPSP superimposed on background 

activity. The 5 ms interval was chosen, because in most cases simEPSP rise times were smaller 

than 5 ms, and background stimulation did not show abrupt changes during this short window. 

The amplitude of simEPSP increased by depolarization. However, there were no significant 

differences in the normalized amplitude of simEPSPs or half widths measured at depolarized  
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Figure 10. Effect of tonic and fluctuating conductance on EPSP half width. (A) A simEPSC 
was superimposed either on a conductance step or on a fluctuating conductance wave of the 
same averages. (B1)  Normalized amplitude of EPSP compared to that of at resting potential. 
(B2) Normalized half width of EPSP compared to that obtained at resting potential. Parameters 
of EPSP were not significantly different under these conditions (p>0.1, N=6; data from rats (3) 
and mice (3)). (C) Normalized EPSP half width vs. reduction in the input resistance. SimEPSC 
was applied together with different levels of tonic conductance and normalized half width of 
EPSP (depolarized/resting) was measured (N=5 cells; data from rats (3) and mice (2)).  
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membrane potentials and at resting potential under the two conditions. (1.4 ± 0.3 -fold with step 

conductance vs. 1.4 ± 0.3 -fold with fluctuating conductance for the amplitude (Figure 10A and  

B; p=0.329, N=6) and 1.6 ± 0.2 -fold with step conductance vs. 1.5 ± 0.3 -fold with fluctuating  

conductance for the half width (p=0.233, N=6).  

Moreover to ensure that the results above are not related to the amount of conductance 

used for comparison (20 nS of excitatory and 10 nS of inhibitory conductances) or the specific 

samples of fluctuating excitatory and inhibitory conductance traces used for stimulation during 

the experiment. The properties of EPSPs (the sample contained both simEPSPs and eEPSPs) in 

(N=7) cells were depolarized with step and fluctuating conductance in interleaving traces were 

compared. Different fluctuating conductance waves were used for stimulation for each trace 

when stimulated with fluctuating conductance. The average conductance injected as fluctuating 

and step conductance was the same in the cell, but the level varied from one cell to another. 

These included 13 nS excitatory and 4 nS inhibitory or 20 nS excitatory and 10 nS inhibitory or 

30 nS excitatory conductance paired with 15 nS inhibitory conductances. Similarly to the 

previous experiment, there were no significant differences detected between the amplitude, half-

width and rise-times of EPSP under these two conditions (p=0.186 for the half width, p=0.537 

for the amplitude and p=0.149 for rise time, N=7 cells; pair-wise comparison with t-test).  

We also studied how the level of conductance interacts with the properties of simEPSPs. 

Increasing the level of conductance reduces the half width (Figure 10C), amplitude and rise-

times  (Table 2) of simEPSPs. Concerning the half-width of the EPSP about 35% reduction in 

the input resistance was sufficient to reduce the depolarization-induced EPSP prolongation, and 

additional conductance could even entirely prevent it (Figure 10C). These results indicate that 

the level of the background conductance is the main factor in the diminishing of the EPSP half 
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Table 2. Effect of conductance on EPSP amplitude and EPSP half-width. E marks 
excitatory, I marks inhibitory conductances injected. Parallel measurements are from N=5 
cells. 
 
 

  E I E I E I E I 

Conductance (nS) 0 0 2 1 10 5 20 10 

Reduction in input resistance (%) 0.0 10.2 35.7 52.9 

Resting 4.6± 0.3 4.1±0.3 3.2± 0.2 2.5± 0.2 EPSP amplitude (mV) 
Depolarized 8.0± 0.4 7.0± 0.6 5.7± 0.5 4.5± 0.7 
Resting 3.5± 0.1 3.1±0.6 2.4± 0.1 2.3± 0.2 EPSP rise-time (ms) 
Depolarized 6.2± 0.6 5.1± 0.8 3.7± 0.6 2.7± 0.5 

          

  E I E I E I   

Conductance (nS) 30 15 40 20 50 25   

Reduction in input resistance (%) 59.0 65.8 73.0  

Resting 2.0± 0.3 1.9±0.2 1.5± 0.2  EPSP amplitude (mV) 
Depolarized 4.2± 0.3 3.4± 0.5 3.1± 0.4  
Resting 2.0± 0.1 1.9±0.1 1.8± 0.0  EPSP rise-time (ms) 
Depolarized 2.6± 0.4 2.8± 0.6 2.6± 0.4  

 



  

width prolongation, rather than the membrane potential fluctuation associated with ongoing 

activity.  

We also concluded that the depolarization-induced amplitude increase is present in the 

layer V pyramidal cells independently from the amount of conductance injected. 

 

Mechanism of prolongation 

It has been shown that depolarization-induced EPSP prolongation is related to 

axosomatic sodium channel activation, and the activation of persistent sodium currents (Stuart 

and Sakmann, 1995, Fricker and Miles, 2000, Andreasen and Lambert, 1999). To test the 

involvement of the voltage-dependent sodium channels in the simEPSP prolongation and 

amplitude increase, we measured simEPSP parameters at resting and at membrane potentials 

close to firing threshold, with and without the presence of TTX. In these experiments tonic 

conductance was used and the levels of conductance were set at 30 nS for the excitatory and at 

10 nS for inhibitory conductances. This amount of conductance almost completely prevented the 

simEPSP prolongation at depolarized membrane potentials (the normalized EPSP half width was 

close to 1), but it did not change the normalized amplitude (Figure 10C and Table 2). 

Application of TTX at a concentration of 1 µM prevented both the increase of simEPSP 

amplitude and the prolongation of simEPSP half width when the cell was depolarized to 

membrane potentials close to firing threshold by either a step current or the tonic conductance 

(Figure 11). The parameters of resulted EPSP were not different from that of measured at resting 

potential under control conditions (Figure 11). At resting potential the simEPSP amplitude was 

4.5 ± 0.2 mV and 4.2 ± 0.2 mV without TTX and when TTX was present and there was no   
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Figure 11. Prolongation of simEPSP is related to the activation of sodium channels. 
Parameters of simEPSP were measured at resting potential, and at membrane potentials close to 
the firing threshold. The cell was depolarized by either a current step or static conductance. 
SimEPSP was scaled to generate EPSPs of similar size at resting potential under both conditions. 
Application of TTX at a concentration of 10 mM prevented both prolongation and amplitude 
increase of EPSPs due to depolarization. 
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conductance injected (p=0.285, N=4 cells). Under similar conditions, the EPSP half with was 

22.9 ± 0.8 ms and 22.5 ± 0.7 ms without TTX and TTX, respectively (p=0.264, N=4). 

When conductance was present at resting potential, EPSP amplitude was 3.9 ± 0.1 mV 

and 3.7 ± 0.2 without and with TTX applied, respectively (p=0.0.219, N=4). The EPSP half 

widths were 14.9 ± 0.4 without TTX and 14.7 ± 0.4 with TTX (p=0.078, N=4) in the presence of 

the given conductance. We also measured what happens with the EPSP when the cell was 

depolarized. The normalized amplitudes were 1.6  ± 0.1 and 1.0 ± 0.04 without TTX and with 

TTX, respectively, when the cell was depolarized with a step current (p=0.004, N=4). The 

normalized half widths of EPSPs were 2.4 ± 0.3 and 1.0 ± 0.03 without and with TTX, 

respectively, for the same conditions (p=0.021, N=4). When the cell was depolarized with 

conductance, the normalized amplitudes were 1.4 ± 0.1 and 1.0 ± 0.07, without and with 

conductance, respectively (p=0.001, N=4). Depolarization with conductance resulted in 

normalized EPSP half widths of 1.0 ± 0.1 and 1.0 ± 0.1 (p=0.246, N=4).  

These results show that the increase in the amplitude and in half width of simEPSP due to 

depolarization is related to the activation of voltage-dependent sodium channels, because 

blocking these channels removes the effect.   

 

Background conductance improve spike timing precision 

We hypothesized that the presence of depolarization-dependent prolongation of EPSPs at 

membrane potentials close to firing threshold prevents pyramidal cells from responding to EPSPs 

with precise firing (Fricker and Miles, 2000, Maccaferri and Dingledine, 2002).  If this 
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hypothesis is true, then a condition, which reduces EPSP prolongation close the firing threshold, 

may improve the precision of spike timing.  

Cells were depolarized with a current step a conductance step (Figure 12A and B) in 

interleaved traces, and the average latency of spikes generated in response to the simEPSP was 

measured (Figure 12A2 and B2). The level of depolarization (both with current and conductance) 

and the applied simEPSC together produced spikes with a probability between 0.3-0.8 after the 

onset of simEPSP in every experiment. To quantify the distribution of spike timing under the two 

conditions, we defined a spike time window. Cumulative probabilities of firing (Figure 12C1) 

were calculated from the latencies of spikes from the onset of the EPSP and the spike time 

window was measured between the points corresponding to 0.1 and 0.9 probabilities in the 

cumulative histogram of the probability of firing (Figure 12C). In all experiments, pyramidal 

cells showed a shorter spike time window when depolarized with background conductance 

(Figure 12C2 and D). Also, when the cell was depolarized with conductance, the EPSP half 

width was shorter, similarly to Figure 8. and 9. (data not shown). The data together with the data 

shown previously supports the hypothesis that increased precision correlates with a reduction in 

the half width of the simEPSP at more depolarized membrane potential values. Spike windows 

were 44.9 ±9.6 ms and 14.9 ± 3.6 ms for the current and conductance, respectively (p=0.004, 

N=8 cells). In a separate set of experiments (N=9 cells), which was stimulated in interleaving 

traces with fluctuating conductance and step current, the effect of fluctuating conductance was 

evaluated on the spike time window and was compared to the spike time window generated from 

traces depolarized by a current step and tonic conductance step. The average spike time window 

was 9.2 ±3.6 ms in the presence of fluctuating background conductance, which was not  
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Figure 12. Effect of background conductance on the precision of spike timing. (A) Cells 
were depolarized close to firing threshold by a current step and a simEPSP was superimposed on 
the background activity. (B) Same as (A), except cells were depolarized with a step conductance.  
(A2) and (B2) Latency of spikes due to the simEPSP was measured (histogram bin width is 1 
ms). (C) Cumulative probabilities from the latency of spike histograms: rise times of cumulative 
histograms measured as time-span between 0.1 and 0.9 probabilities (C1) is defined as the spike 
time window. (C2) Spike time window is always shorter, when the cell is stimulated with 
conductance compared to when stimulated with current. Experiment pairs on the same cells are 
marked with the same symbols. (D) Length of spike time windows when stimulated with step 
current (empty bar), tonic conductance (bar with stripes) and fluctuating conductance (filled bar). 
(E) Reduction in spike time window vs. the amount of reduction in the input resistance. Sample 
traces on (A), latency histograms on (B1) and cumulative probabilities on (C1) are from the same 
cell. 
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significantly different from that measured in the presence of the step conductance, (independent 

t-test, p=0.273, N=9).  

We also tested the relationship between the reduction of the spike time window and the 

reduction of input resistance of the cell by the injection of tonic conductance in the experiment 

pairs on Figure 12C2. When the values of reduction, defined as Spike time windowCURRENT STEP-

Spike time windowCONDUCTANCE STEP)/Spike time windowCURRENT STEP*100 was plotted against 

the reduction in the input resistance the points showed a step decrease with the increasing input 

resistance. When fitted with a single exponential curve the tau value was about 23%, meaning 

that a 23% reduction in the input resistance caused a 66% reduction in the spike time window.   

Thus, these data indicate, that background conductance improves temporal precision of 

EPSP-spike coupling in pyramidal cells by reducing the depolarization-induced prolongation of 

EPSP time course.   

 

Relationship between PSTH and EPSP properties 

Background synaptic activity might increase spike-timing precision in cells with no 

ongoing spiking activity (Figure 12). However cortical cells fire continuously due to their 

constant synaptic drive reflecting the activity of the presynaptic neurons in the network. The 

reported discharge frequency in awake animals has a range of 5-50 Hz, as reported from 

experiments made with single unit (Mountcastle et al., 1969, Hubel, 1959) and intracellular 

(Steriade et al., 2001) recordings. In anesthetized animals the discharge frequency is somewhat 

lower, but it is never ceased (see references above). A recent study, however, using in vivo whole 
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cell patch-clamp recording, reported much lower values for both in awake and anaesthetized 

animals (Margrie et al., 2002). 

It has been suggested based on the results on spinal cord motoneurons with ongoing 

activity that a single EPSP transiently increases the probability of discharge, and the time-course 

of this increased firing probability is shorter than the time-course of the EPSP itself (Cope et al., 

1987, Fetz and Gustafsson, 1983, Kirkwood and Sears, 1982, Poliakov et al., 1997). The 

probability of firing related to the stimulus can be plotted in the peristimulus time histogram 

(PSTH; see Experimental Methods). Therefore the relationship between PSTH and EPSP 

properties of cortical pyramidal cells was experimentally determined similar to Fetz et al. (1991) 

and  Matsumura et al. (1996).  

We injected background activity of fluctuating conductance that created a firing 

frequency of 15-30 Hz (background firing frequency), and an eEPSP was superimposed on the 

top of it. EPSP amplitude and half width were measured at resting potential with no conductance 

in the background. The amount of injected conductance was the same in these experiments. Peak 

synaptic gain was defined as an increase in the probability of spike generation due to an EPSP 

(see Experimental Methods). In order to calculate peak synaptic gain, we compiled two PSTHs: 

from traces stimulated with background activity only (Figure 13A1 upper panel) and from traces 

stimulated with an eEPSP superimposed on the fluctuating activity (Figure 13A1, lower panel). 

The peak synaptic gain and the time window of the peak synaptic gain was measured using the 

cumulative sum from the two PSTHs: one is generated from traces with background stimulation 

only and the other is generated from traces where background stimulation was applied together 

with an EPSP  (See Experimental Methods about the generation of cumulative sums.). The rising 

phase on the cumulative sum corresponded to the peak synaptic gain. The maximum of the 
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Figure 13. Effect of eEPSP amplitude on peak synaptic gain. (A) Peristimulus time 
histograms (PSTH) were compiled from N=307 traces stimulated with an eEPSPs (A1) middle 
panel. Background stimulation without applying an eEPSP is shown on the upper panel and the 
timing of eEPSP is shown on (A1) lower panel. (A2) Peristimulus time histogram from traces 
with eEPSP stimulation. (A3) PSTH and eEPSP at high resolution. Dashed line symbolizes 
average baseline activity. (PSTH with no eEPSP stimulation is not shown.) (B) Peak synaptic 
gain versus EPSP (eEPSP: filled circle, N=19 cells; simEPSP: empty circle, N=5 cells). 
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cumulative sum gave the number of the peak synaptic gain, because the baseline values were 

zero after the subtraction of two PSTHs. The time window of the peak synaptic gain was defined 

as a period between 10% and 90% of the maximum value of the cumulative sum.  

There were two characteristics of the spike timing observed from the comparison the two 

kinds of PSTH (Figure 13A2 and A3):  

(1) EPSPs evoked spikes only during the rise time of EPSPs, which is in agreement with 

the previous findings (Cope et al., 1987, Fetz and Gustafsson, 1983, Kirkwood and Sears, 1982, 

Poliakov et al., 1997).  

(2) Spiking probability was reduced after the PSTH peak, and we observed a “loss” in the 

number of spikes relative to the control traces when compared to the value of baseline activity 

(dashed line, Figure 13A3). Since the reduced activity differ only a small value from the baseline 

activity, we used cumulative histograms to study its properties in following part of the study.  

The peak synaptic gain was plotted versus EPSP amplitude, both for eEPSP and simEPSP 

(Figure 13B). The EPSP amplitude and peak synaptic gain had a linear relationship with about 

10% increase in the probability of spiking with every 1 mV increase in the amplitude of EPSP. 

These results were similar to those reported in cat spinal cord motoneurons (Gustafsson and 

McCrea, 1984, Cope et al., 1987), and cortical neurons measured in vitro (see reference in Fetz 

et al. (Fetz et al., 1991), but lower than in monkey cortex measured in vivo (Matsumura et al., 

1996).  

Evoked EPSPs had a rise time range of 1.6-6.6 ms, and resulted in peak synaptic gain 

with time windows of 0.8-7.3 ms. Average time window of the peak synaptic gain was 1.4 ± 5.8 

ms (N=19). The large variability of the average time window may be attributed to the variability 

in eEPSP rise times. The rise time of eEPSP and the time window of the peak synaptic gain was 
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correlated with a r=0.67, (p<0.05, N=19). These results show that EPSP amplitude and rise time 

are critical in determining the peak synaptic gain. 

Neurons are characterized by a refractory period after a spike, which is related to the 

inactivation of sodium channels and activation of potassium channels (Hodgkin and Huxley, 

1952). It is not possible to generate a spike during the absolute refractory period, which follows  

the spike immediately. During the relative refractory period only a stronger stimulus can evoke 

an action potential. If we use a stimulus just strong enough to generate a spike with a probability 

of 1, then a stimulus of the same size would trigger an action potential with less likelihood if it 

arrives during the relative refractory period. Using the definition above, auto renewal functions 

of firing were calculated (See Experimental methods). The auto renewal function was fitted with 

a sigmoid curve (See description of the fitting in the Experimental Method). The refractory 

period was characterized as the period necessary to reach half of the average firing rate after 

spikes (xhalf).  The range of values of the refractory period was 18-45 ms with an average of 

26.7 ± 7.8 ms (Figure 6; N=11).  

Next the possible perturbation of action potential patterns arising from an EPSP-

generated spike was examined. Suppose that a spike train was generated by a given background 

stimulation. A new spike due to an EPSP that was not part of the original background stimulation 

may disturb the probability of occurrence of the spikes following the perturbation. The term 

“loss of spikes” was defined to measure the probability that the spike count of a spike train does 

not increase after a transient increase due to the EPSP (peak synaptic gain). It is calculated as the 

average value of the longer, stabilized part of the cumulative sum after the initial peak due to the 

EPSP, normalized to the peak synaptic gain. The “new” spike generated by the EPSP may cause 

a realignment of the timing of the subsequent spikes resulting in a disappearance of a subsequent 
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spike generated by the background activity. Or, the spike generated due to the EPSP causes a 

period of limited excitability during its refractory period. 

An important condition for this analysis is that spike generation mechanism can be 

precise and reliable in pyramidal cells (Mainen and Sejnowski, 1995) in response to stimulations 

that generate high frequency fluctuations in the membrane potential (Mainen and Sejnowski, 

1995, Nowak et al., 1997). For that reason, the reliability of spike trains was measured as was 

described by (Mainen and Sejnowski, 1995), with slight modifications. Briefly, fluctuating 

background conductance was used to generated a discharge frequency of 4-25 Hz, and a 

histogram was calculated from the timing of spikes from 50 traces with a bin width of 1 ms. 

After smoothing (9 step boxcar filter, see Experimental Methods), the reliability was measured 

as the probability of getting the spikes in the peaks as opposed to outside the peaks of PSTH. 

Peaks were defined as an increased probability of discharge above a threshold, which was 3-fold 

the average background frequency. The two immediate neighboring bins of from each side of the 

peak that contained a probability of discharge below the threshold was also included.  The 

reliability ranged from 0.68 to 0.98 with an average of 0.85 ± 0.04 (N=10). In comparison when 

reliability was measured with step current stimulation, the average reliability was 0.35 ± 0.05 

with a range of 0.18-0.52 (N=6). The difference between the two groups was significantly 

different (t-test for independent samples, p<0.001). 

We concluded from these data that fluctuating conductance generates spike trains 

occurring with high reliability.  

The refractory period depends on the properties of the cell, it limits the frequency of 

firing, and reduces the variability of spike timing, imposing a more regular spiking activity 

(Gray, 1967, Gaumond et al., 1982). Refractory period also offers a possible mechanism for the 

 58



  

regulation of the net synaptic gain, because in a cell discharging with high frequency the chance 

that an additional spike due to the EPSP arrives during the refractory period of a spike is higher, 

which would decrease the probability of spike generation.  An additional synaptic input to a cell 

with ongoing spiking activity shortens the interspike interval transiently.  If this input is strong 

enough to generate a spike, then a peak will occur on the PSTH. Then a spike on the stimulated 

train will occur at the time of the peak synaptic gain and at the same time a spike which 

otherwise would occur due to background synaptic activity disappear, as it seen on the control 

trace. Such a stimulus cannot add to the net gain, but adds to peak synaptic gain. To analyze the 

relationship between firing frequency and the “loss of spikes”, fluctuating conductance waves 

were used to evoke spiking with a frequency range of 1-25 Hz (Figure 14A and B) and simEPSP 

parameters kept constant in every experiment (amplitude: 400 pA, rise time constant: 0.1 ms, 

decay time constant: 5 ms). To generate the desired frequencies, a constant hyperpolarizing or 

depolarizing current step was added to the background conductance. Cumulative histograms 

were calculated (see in Experimental Methods) to measure the distribution of simEPSP-related 

spikes in time (Figure 14A3 and B3). The dependence of “loss of spikes” and the frequency was 

determined. At lower frequencies the “loss of spikes” was close to 0, and the relationship 

between the “loss of spikes” and background firing frequency was steep, and close to 1 at higher 

frequencies. At the same time, background frequency showed no relationship to the peak 

synaptic gain (Figure 14D; r=0.03). 

Our results show that two major factors contribute to the efficacy of EPSP-spike 

coupling, synaptic gain and synaptic background activity. The EPSP amplitude determines the 

peak synaptic gain, while its time course is related to the time window of the peak synaptic gain; 
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Figure 14. Relationship between firing frequency and spike loss. (A) and (B) Background 
activity of fluctuating conductance created a discharge frequency of 1-24 Hz. A simEPSC with 
amplitude of 400 pA was added and PSTHs were compiled from traces with simEPSPs (A1 and 
B1).  (A1) PSTH from an experiment with a low background firing frequency (2.1 Hz, PSTH 
made from N=381 traces). (B1) PSTH from an experiment with a higher background firing 
frequency (14.6 Hz; PSTH is from N=400 traces). (A2) and (B2) shows PSTHs on (A1) and 
(A2) with higher resolution, respectively. (A3) and (B3) Cumulative sum of PSTHs from the 
experiments to follow the time course of probability changes in spike generation due to 
simEPSP. (C) Relationship between the loss of spikes and background frequency (N=29 cells). 
(D) Peak synaptic gain and background frequency from the cell on (C), (r=0.03). 
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and the synaptic background activity that generates ongoing discharge, which in turn reduces the 

probability of spiking after the peak synaptic gain. 

 

The role of fluctuation in the background activity 

Background stimulation with low variability produces a regular discharge pattern, in 

which the timing of spikes depends mainly upon the timing of the previous spikes (Figure 15A1 

and A2). We characterized the regularity of spiking by calculating the coefficient of variation 

(CV) of the interspike intervals. We defined a spike train as regular, if the coefficient of variation 

was under 0.15. Spike trains evoked by step current were always regular, with an average CV of 

0.1 ± 0.01.  

How the regularity in the interspike interval related to the “loss of spikes” and 

consequently, if an irregularity in the spike timing can prevent the “loss of spikes” remained an 

open question: This was hypothesized that regularity in spiking related to the loss of spikes on 

the PSTH and any mechanism that introduces irregularity in spike timing may increase the 

efficacy of EPSP-spike coupling. To address this question, the cells were stimulated in 

interleaving traces of step current or fluctuating conductance that produced a firing frequency of 

2-10 Hz. The protocol was the following in every experiment: first trace was a stimulation with 

step current (Figure 15A1 and A2, solid lines), which was followed by the same step current with 

and simEPSP evoked on the top of it (Figure 15A1 and A2 dashed lines). The third trace was 

stimulated with fluctuating conductance (Figure 15B1 and B2 solid lines) and the forth contained 

the same fluctuating conductance with a simEPSP evoked on the top of it (Figure 15B1 and B2 

dashed lines). During the experiment the same fluctuating conductance was repeated.  
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Figure 15. Effect of fluctuating conductance on spike loss. Spiking was evoked either by step 
current (A) or fluctuating conductance (B) and the effect of a simEPSP related spikes (simEPSP-
spike) were studied on the cell’s firing. Traces on (A) and (B) are single examples. Interleaving 
traces of background stimulation only (solid) and stimulation with EPSP (gray dashed line) were 
collected. With current step simEPSP-spike resulted in either no change at all (A1) or in a shift in 
the timing of all spikes (A2) occurring after the simEPSP-spike. With fluctuation, an extra spike 
could be generated with no loss (B1) or simEPSP-spike suppressed another spike somewhere 
later in the spike train. (C) Comparison of the absolute time shift in spike timing related to 
simEPSP-spike under the conditions in the experiment marked with 1 and 2 on panels (A) and 
(B). (D) Comparison of loss of spikes under the two conditions (p<0.05, N=6 cells). 
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In all experiments, when stimulated with step current, the firing frequency was lower or equal to 

the level of that stimulated with fluctuating conductance. When the EPSP arrived in the middle 

of an interspike interval, it shortened it and increased the discharge frequency transiently (Reyes 

and Fetz , 1993). Because the amount of current that evoked spiking did not change in the longer 

time scale, the cell continued firing with the same frequency after this transient increase. 

Consequently, the timing of all the subsequent spikes was also affected (Figure 15C). We should 

note here, that in certain cases the EPSP prolonged the interspike interval instead of shortening 

it. In these cases the membrane potential deflection due to the EPSP looked similar to those on 

Figure 12A1, measured under at below spike threshold depolarization. Nevertheless, a change in 

the interspike interval length due to the EPSP was preserved in the following interspike intervals. 

An extra spike due to the simEPSP, which was not part of the spike train in the control 

traces, caused a delay in the first following spike (Figure 15B1), which in turn could influence 

the timing of following spikes (Figure 15A2 and C). However, the amount of delay decreased 

monotonically towards the end of the spike train (see below a more quantitative analysis). About 

50% of the traces showed spike loss under this experimental condition: a spike was suppressed 

relative to the control, due to the simEPSP related spike, but not necessarily during the relative 

refractory period of that spike (Figure 15B2). The probability that a spike in the train disappeared 

after a single spike was generated due to the EPSP (called the loss of spikes) was 0.9 ± 0.1 when 

stimulated with a step current, and 0.5 ± 0.1 (p=0.036, N=6), with fluctuating conductance. 

In summary, the presence of fluctuation in the background activity regulated how an 

EPSP-evoked spike affected spike timing in the spike train. This in turn affects the how spikes 

are accumulated in the spike train and determines the net synaptic gain. 
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Effect of fluctuating background conductance on perturbation of spike timing 

It is assumed that the messages conveyed through the axon are contained in a series of 

time intervals. This gives rise to two important questions: (1) How long should these time 

intervals need to be to convey the information reliably, and (2) do these epochs contain 

independently encoded information, or does the neuron keep a “memory” about the previous 

messages and use it for coding further messages. In many studies spike timing is considered to 

be a Poisson process in which the individual spikes are independent from other spikes. However, 

in a neuron with ongoing discharge, the timing of spikes may be determined not only by the 

stimulus but also the presence and timing of the previous spike(s). We can imagine a cell in 

which the timing of a single spike is affected by some perturbation, and in which this 

perturbation generates a perturbation in the next spike, which in turn creates a perturbation in all 

the subsequent spikes. It is hypothesized that the interplay of slowly activating and non- or 

slowly inactivating sodium and potassium conductances that are underlying spontaneous 

oscillation at membrane potential levels close to firing threshold allow the influence of a spike in 

a train to extend several hundred milliseconds by causing a “jitter” in the spike timing 

(Gutfreund et al., 1995).  

Another coding related question is how neurons handle noise from EPSPs arriving with 

stochastic patterns. If the integration time window is short, the inputs participating in spike 

generation should arrive synchronously. It is hypothesized that a system utilizing temporal 

coding is more susceptible to the transmission of erroneous input than one that uses rate coding, 

because the number of inputs for spike generation is more limited with temporal coding. As 

conductance improves the precision of spike timing, but arrival of a single spike can influence 

 65



  

the timing of other spikes. It remained to be determined as to how long can a single spike perturb 

the spike train, and whether conductance has an influence on that process? 

We injected fluctuating current or fluctuating conductance in interleaving traces to evoke 

spike trains in N=7 experiments. The purpose of the analysis was to assess whether the presence 

of conductance in the stimulation shortens the recovery of spike trains from perturbation 

compared to stimulation with fluctuating current. In this way the role of conductance could be 

addressed separately from the role of membrane potential fluctuation (Figure 16A and B). To 

preserve the kinetic properties of the background stimulation we used the same unitary transients 

for generation of fluctuating current waves (see Experimental Methods for the description of the 

procedure). With the alternating stimulation of fluctuating current and fluctuating conductance, 

the corresponding traces of fluctuating current and conductance generated spike trains with 

similar frequency of discharge, in a range of 3.9-5 and about 15.6 Hz in the experiment pairs 

(N=7 cells). Alternating traces of background stimulation only and with a simEPSP 

superimposed on the background stimulation were used. 

Two kinds of perturbation were tested: (1) an EPSPs did not result in a spike and (2) 

EPSP that resulted in spikes during the peak synaptic gain. The effect of simEPSPs that did not 

generate a spike, was examined by measuring how much the timing of spikes subsequent to the 

simEPSP advanced compared to the control traces. Since simEPSP did not generate a spike in 

the first case, but a depolarization in the membrane potential compared to traces stimulated with 

the background conductance only, spikes were hypothesized to advance on the trace with 

simEPSP when compared with the trace with the background stimulation.  This advancement 

was measured as a difference between the timing of spikes on the traces with simEPSP and the 

timing of spikes with background stimulation only, then the advancement values were grouped 
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Figure 16. Perturbation of spike timing following an action potential generated by an 
EPSP. (A) The cell was depolarized to near threshold by an injection of a fluctuating current 
wave. The action potential train in control (dark trace) and when a simEPSP generated an action 
potential (gray dashed trace; indicated by the arrow). Note the delayed action potential generated 
by the simEPSP (gray dashed trace) and the perturbation of the following action potential 
relative to the control action potential train (dark trace). (B) The cell was depolarized with an 
injection of a fluctuating conductance wave. A simEPSP generated a spike, which a caused 
relatively small perturbation in the spike timing.  (A1) and (B1) show full traces, and (A2) and 
(B2) are blown-up versions, marked by the horizontal lines on (A1) and (B1). (C) Recovery of 
spike trains from perturbation in the experiments on (A) and (B), as shown by the cumulative 
delays in the in spike timing. Arrows mark the perturbation window: a spike, arriving after this 
point had less than 5% chance to be affected by the presence of simEPSC related spike. (D) 
Perturbation window in spike trains generated by fluctuating current and fluctuating conductance 
(p<0.05, N=6). (E) Comparison of loss of spikes in the presence of fluctuating current and 
fluctuating conductance on individual experiments (N=7). Values generated with stimulation of 
fluctuating current and fluctuating conductance on the same cell are connected with the line.  
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in histograms of 10 ms bins according to the position of the timing of spikes in the control traces. 

In N=10 cells the advancement of spikes completely diminished after 20 ms (after the second 

bin), and most of the cells even after 10 ms (the second bin) was no significant difference (p 

values were larger than 0.1) tested with t-test for independent samples between every bin pairs. 

When data was pooled from all the cells (N=10) from the bins between 0-10 ms, the range of 

advancement was between 0 ms and 5.6 ms with an average of 1.2 ± 0.8 ms. 

When an EPSP resulted in a spike, it delayed other spikes in the spike train. The length of 

the delay depended on the position of the spike on the spike train, the presence of the preceding 

spikes and the underlying stimulation (Figure 16A and B). The reliability and precision of the 

spike train was measured when the spikes preceded the simEPSP and started 100 ms after the 

stimulus onset. Reliability was measured as the percentage of single spikes that had no pairs in 

the corresponding trace within 25 ms of presentation. Precision was calculated as a standard 

deviation of the time differences from the corresponding spike pairs that occurred within 25 ms 

range in the alternating trace pairs. Precision values were not significantly different with 

fluctuating current and fluctuating conductance stimulation (p=0.592, N=6 cells). Reliability 

values were also not different in the pairs of the experiments stimulated with fluctuating current 

and fluctuating conductance, and they ranged from 3 to 11% (p=0.677, N=6).  

To evaluate how much an EPSP-related spike perturbed the pattern of spike trains, we 

generated a recovery function (called Cumulative delay in spike timing; Figure 16C) from those 

traces in which an EPSP contributed a spike to the peak synaptic gain (simEPSP-spike). All the 

spikes on the control traces that could have been influenced by the simEPSP-spike were 

characterized by two values: their relative position to the simEPSP-spike, and a “delay”, which 

was calculated from the delay of the corresponding spike in the spike train with simEPSP-spike. 
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If a spike on the control train did not occur due to the simEPSP-spike, then its delay was 

calculated as a delay to the position of the next spike in the simEPSP-spike train, independent of 

whether that given spike was related to other spikes in the control spike train. In this way the 

maximum delay was controlled by the frequency. The average delay for spikes that did not occur 

was the reciprocal value of the frequency. 

Our analysis used the notion that when the simEPSP-spike had no effect on a given spike, 

then the delay approached zero (Figure 16A and B marks spikes with no effect marked with 

arrows) and the delay was higher for spikes that were supposedly influenced by the simEPSP-

spike. The delay in the position of the spikes due to the simEPSP-spike monotonically decreased, 

as the spike occurred later in the spike train. The recovery function was calculated as the 

cumulative sum of delays in spike timing by the relative position of spikes and normalized to the 

number of spikes used for analysis. In this way the recovery function follows the time 

distribution of delays and it has a plateau, which means that there was a point where the 

simEPSP-spike did not influence the spike train anymore. (Figure 16C). The perturbation 

window was defined as the time where the recovery function reached 95% of the plateau value. 

This means that if a spike occurred after the perturbation window, the probability was only 5% 

that its timing was changed because of the presence of the simEPSP spike. Note: although the 

reliability and precision values were high (see above) they were not 100%. To find the 95% of 

the plateau value, the recovery function was fitted with a sigmoid curve (See Experimental 

Methods section).  The perturbation window was significantly lower in the presence of 

conductance (Figure 16D) (p=0.002, N=6 cells). The value of the plateau was always lower for 

experiments stimulated with fluctuating conductance than that those with fluctuating current and 

it was related to: 
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1) The higher average delays in the individual spike pairs between the control and traces 

with simEPSP when the cell was stimulated with fluctuating current; and/or 

2) The higher number of spikes, which were suppressed by the simEPSP-spike. 

Because of (2), it was expected that the loss of spikes would be higher for spike trains generated 

with fluctuating current (Figure 16E). Here we should also consider that as the frequency gets 

higher, the loss of spikes gets closer to 1 (see the changes of loss spikes when cell stimulated 

with conductance in Figure 14 C). However there may be a difference in the loss of spikes 

measured at lower frequencies. At lower frequencies (3.8-5 Hz), the loss of spikes was 

significantly different from the averages of 0.35 ± 0.06 and 0.21 ± 0.05 for fluctuating 

conductance and fluctuating current (p=0.034, N=5 cells). The difference in the loss of spikes 

was not the result of the difference in the peak synaptic gain under the two conditions, which was 

not significantly different (0.43 ± 0.05 and 0.46 ± 0.07, for fluctuating current and conductance, 

respectively, N=7 cells, p=0.465).  

 The width of the peak synaptic gain in the PSTH with fluctuating current and fluctuating 

conductance stimulation, as a measurement of spike timing precision in a cell with ongoing 

spiking activity. Stimulating the cell with fluctuating current generated peak synaptic gains that 

were 2.2 ± 0.17 –fold longer than width of the peak synaptic gain generated with fluctuating 

conductance stimulation. The average width of the peak synaptic gain was 13.3 ± 4.9 ms and 5.8 

± 2.8 ms for fluctuating current and fluctuating conductance, respectively (p=0.044, N=6).  

 Refractory period was also measured, and the refractory period of spikes generated with 

fluctuating current was consistently higher in every experiment pair by 1.2 ± 0.1 –fold, than 

refractory periods generated with fluctuating conductance The average values of refractory 

 71



  

periods were 71.1 ± 9.3 and 62.2 ± 10.0 (p=0.033, N=6) for experiments stimulated with 

fluctuating current and for experiments stimulated with fluctuating conductance, respectively.  

Depending on the properties of the background synaptic activity, the cell can maintain a 

longer or shorter “memory” of a previous signal of how long it takes for the cell to return to its 

“original” spiking pattern corresponding to a given input. There are two factors contributing to 

the length of the perturbation, the presence of fluctuation, which causes irregularity in spiking 

(Figure 15) and the presence of conductance in the background (Figure 16). Our definition of 

perturbation included the effect of simEPSP-related spike on those spikes that did not occur due 

to EPSP spike and those spikes that were delayed due to the simEPSP spike. This suggests that 

the presence of simEPSP-spike changed the reliability of those spikes and they disappeared from 

the spike train due to the simEPSP-spike. As a consequence we found a connection between the 

way a neuron reacted to perturbation by a spike and the loss of spikes.  
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CHAPTER IV. DISCUSSION 

 

Summary 

The effect of background synaptic activity was studied on EPSP-spike coupling. We 

considered spike timing and the regulation of synaptic gain. In the first part of the study we 

addressed how the background synaptic activity interacts with the passive and active properties 

of the cell to facilitate spike-timing precision. Ongoing synaptic activity may promote precision 

of spike timing in vivo, because in this in vitro system it reduced the depolarization- induced 

EPSP prolongation. Background synaptic conductance also reduced the increase in the EPSP rise 

time due to depolarization, but it did not reduce the increase in the EPSP amplitude compared to 

that of recorded at resting potential. In a cell with ongoing firing activity, an EPSP caused a 

transient increase in the frequency of discharge. The probability that an EPSP evoked a spike 

(peak synaptic gain) depended linearly on the amplitude of the EPSP. The time course of the 

peak synaptic gain was related to the EPSP rise time. The peak synaptic gain was followed by a 

reduced probability of firing and we examined. We examined the two possible explanations for 

this reduced probability of firing: (1) a limited window of reduced excitability of the cell, 

because of the relative refractory period and (2) or the EPSP-related spike cause a realignment of 

the subsequent spikes in the spike train. To analyze what happen with the spike counts, we 

calculated the probabilities (termed the “loss of spikes”) that if a spike is generated due to the 

EPSP (increase in the spike count) then what the probability is this increase is not present after a 

longer period. We found that the peak synaptic gain was not significantly affected by the 

background firing rate, however the “loss of spikes” increased with the background frequency 
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increase. We concluded that background frequency might provide a powerful mechanism to 

regulate the overall spike count: with higher frequency a single EPSP only affects the timing of 

spikes but not the spike count. 

EPSP-related spikes can also disturb the timing of spikes; in this way a cell appears to 

preserve a “memory” of the previous activity in the timing of spikes. A single EPSP had a 

negligible effect on spike train if it is not coupled to a spike. However when the EPSP was 

coupled to a spike it affected the timing of spikes over a greater period. The two regulators of the 

length of the perturbation by an EPSP-related spike were (1) the irregularity in the spiking 

pattern, induced by the fluctuation in the membrane potential and (2) addition of extra 

conductance also had a significant effect. We also found that the longer an extra spike disturbed 

the timing of subsequent spikes was, the larger the probability of suppressing a spike became 

(loss of spikes). Based on these data we concluded that synaptic activity, which cause a 

fluctuation in the membrane potential and conductance regulates efficacy of EPSP-spike 

coupling. The effect of conductance is double: (1) increases the precision of spike timing 

generated by a single EPSP and (2) limits the interaction between the spikes in the train. As a 

consequence, the capacity to transmit information by its spike train output may be regulated with 

the presence of background synaptic activity. 

 

 
Limitations of the experimental design 

 
Under the present experimental conditions the ongoing synaptic background activity was 

recreated with injection of point conductances into the pyramidal cells. To study the effect of 

synaptic activity, unitary current transients were collected at the somata of pyramidal cells from 
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paired recordings between pyramid->pyramidal cells and fast spiking cell->pyramidal cells 

(Galarreta and Hestrin, 1998) and these currents were used to generate unitary conductance 

transients, which were injected into the soma of other pyramidal cells. 

In the experimental design we assumed a very simplified model of the cell. (1) Pyramidal 

cells have a very elaborate morphology and as a consequence they are not electronically 

compact, but we did not deal with that fact. (2) Synaptic conductances are widely distributed 

along the dendrites, but we only studied their interaction on the soma. (3) We assumed that 

synaptic activity is balanced, that is the ration of excitatory and inhibitory conductance is more 

or less constant, and (4) their temporal distribution resembles an uncorrelated Poisson process. 

According to cable theory, the transmembrane current will attenuate in amplitude and it 

will have a slower kinetics with distance on a neuron containing passive membrane properties 

only (Rall, 1989). The level of attenuation will depend on the traveling distance from the site of 

origination of the current transient, and the larger the ratio of the membrane resistivity to the 

intracellular resistivity the smaller the attenuation is. We should also consider that voltage 

attenuation on the dendrites of pyramidal cells depends on the active conductances distributed 

along the dendrite, such as synaptic activity combined with voltage dependent conductances, and 

membrane properties (membrane resistivity and capacitance). These properties are not uniform 

along the cell; for example the membrane resistivity is significantly lower in the dendrites than in 

the soma (Stuart and Spruston, 1998). 

When studying the effect of attenuation of voltage signals from the soma to the distal 

dendrite under our experimental conditions, it is uncertain how much the dendritic resting 

voltage dependent conductances interact with the injection of conductance at the soma.  
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Injection of conductance into the soma does not affect the attenuation of voltage 

transients traveling from the soma to the distal part of the dendritic tree. However the transient is 

affected by the dendritic conductances, which occur as leak compared to the conductance on the 

soma (Spruston et al., 1993). Moreover, when stimulated with fluctuating conductance, the 

attenuation of voltage transient is expected to be higher then when stimulated with an invariable 

step current, because the level of attenuation also depends on the frequency components of the 

membrane potential fluctuation (Spruston et al., 1993). Since we injected fluctuating 

conductance, these observations suggest that our experimental design allowed us to study the 

activity of somatic conductances and the dendrites have relatively small contribution. 

However we should consider here that there are active conductances on the proximal 

dendrites, which may interact with somatic conductances, the level of which in turn depends on 

the membrane potential. Basal dendrites may be more compact electronically than apical 

dendrite, which may influence the somatic processes. They also contain NMDA receptors in a 

higher ratio compared to the ration on the apical dendrite of the pyramidal cell. Considering the 

facts that slices contain ambient glutamate that may generate a tonic current from the activation 

of NMDA receptors (Sah et al., 1989), NMDA receptors may serve as a powerful modifier of the 

somatic activity (Schiller et al., 2000). To evaluate the space clamping by the dynamic clamp and 

the somatic and dendritic interaction in the EPSP-spike coupling, further investigations are 

necessary, for example using models. 

Other problems may occur due to series resistance between the recording electrode and 

the cell. When it was possible we used the double electrode recording for this reason. Because 

the input resistance of pyramidal cell is low and we even made it lower by injecting conductance, 

measurement of the EPSP parameters could be affected by the series resistance. The effect of 
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series resistance is greater on the measurement of the amplitude of synapses that are closer to the 

soma. The level of distortion is bigger with larger synaptic conductances (Spruston et al., 1993). 

However, the effect of conductance resulted in very similar values when the ratio of the 

amplitude measured at depolarized membrane potentials and the amplitude measured at resting 

potentials was compared between simulated EPSPs and evoked EPSPs. The evoked EPSP were 

probably originated from several hundred µm from the soma and they also had a wider range of 

rise time kinetics, as well as wide ranges of amplitude distribution. Similar conclusions could be 

derived about the comparison of normalized rise times (measured at depolarized 

potentials/resting membrane potential) between the samples of simulated EPSPs and evoked 

EPSPs. These latter would be affected in a similar way independently from the location of EPSP. 

Another simplification was that when the conductance waves were generated, IPSCs and 

EPSCs of only the same size were used. However, unitary conductances, measured on the soma 

may have a variability in their amplitude and time course, moreover they are prone to synaptic 

depression when the cell is continuously active. In our experiments we did not consider the 

presence of synaptic depression, and even with evoked EPSP, the waiting period between trials 

was carefully chosen to prevent the depression of the synaptic activity. The variability of EPSPs 

and IPSP in vivo may generate a fluctuation in the membrane potential with larger variability. 

(compare Azouz and Gray (1999a to trace on Figure 5.) However, the presence of tonic 

conductance could be modeled with the dynamic clamp system and have shown a powerful 

effect both on influencing the precision of spike timing evoked by a single EPSP and limiting the 

interaction between spikes in the spike train. And we have also shown that fluctuation was 

enough to generate a quantitatively different interaction between spikes in the spike train.  
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Further studies are necessary to study that a combination of a more realistic fluctuation in 

the membrane potential and tonic conductance would make a qualitative or quantitative 

difference in the properties of EPSP spike coupling. 

 

Mechanism for prevention of prolongation 

It has been suggested that pyramidal cells cannot transmit information about the timing of 

presynaptic activity because of the presence of the prolongation of EPSPs at membrane potential 

values close to firing threshold when depolarized with a current pulse (Fricker and Miles, 2000, 

Stuart and Sakmann, 1995, Andreasen and Lambert, 1999). The prolongation becomes highly 

sensitive to changes in the membrane potential just below the spike threshold (Figure 8B; Stuart 

and Sakmann, 1995, Andreasen and Lambert, 1999), and this prevents the precise time locking 

of spike generation to the EPSP onset. The prolongation of the EPSP half width could be 

explained by the presence of a noninactivating sodium current on the soma and proximal apical 

dendrite of the pyramidal cell (Stafstrom et al, 1984, Stuart and Sakmann, 1995, Deisz et al., 

1991, Fricker and Miles, 2000) that has a low, but significant density in the membrane. These 

currents are activated in a subthreshold voltage range (Alzheimer et al., 1993). The estimated 

density of persistent sodium currents is ranging from 0.25% to 1-2% of the overall Na+-current 

(French et al., 1990, Alzheimer et al., 1993), but this amount is enough to depolarize the 

membrane potential in the presence of excitatory inputs in a greater amount compared to the 

depolarization of a passive membrane. 

The persistent sodium currents on the distal dendrites of CA1 pyramidal cells (Andreasen 

and Lambert, 1999) and layer 5 neocortical pyramidal neurons (Schwindt and Crill, 1995, 
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Gonzalez-Burgos and Barrionuevo, 2001) might also participate in the prolongation of the EPSP 

half width and increase in the amplitude during depolarization. However, the prolongation of the 

EPSP half width by the activation of dendritic persistent sodium currents might be masked by 

potassium conductances (Andreasen and Lambert, 1999, Gonzalez-Burgos and Barrionuevo, 

2001). In one study (Lipowsky et al., 1996) only the persistent sodium currents that were 

responsible for the prolongation of EPSP half width on CA1 pyramidal cells originated from the 

dendrites. We should mention here that other ion channels also participate in the depolarization-

induced prolongation of EPSP half width and relative increase in the EPSP amplitude, compared 

to that obtained at resting potential. One cause of this result maybe the low threshold activated 

calcium channel on the dendrites of CA1 pyramidal cells (Gillessen and Alzheimer, 1997). Low 

threshold Ca-channels can also cause an increase in the prolongation of EPSP half width with 

depolarization (Gonzalez-Burgos and Barrionuevo, 2001) when the potassium conductances are 

blocked in the dendrites. Recruitment of synaptic NMDA receptors by depolarization was also 

reported as a possible mechanism for the prolongation of EPSP (Schwindt and Crill, 1995, 

Thomson, 1997) because depolarization can remove the magnesium block that is present at more 

hyperpolarized conditions and also glutamate was shown to be present in the slice in such a 

concentration that can activate NMDA receptors on the dendrites (Sah et al., 1989). 

Our results are in agreement with those results describing the participation of the 

persistent sodium currents in the depolarization induced prolongation, because TTX restores the 

simulated EPSP parameters obtained at near threshold conditions to the values measured at 

resting potential with step current as a background activity. Similarly, when the cells are 

depolarized by background conductance, which diminished the prolongation of EPSP half width 

but not the EPSP amplitude increase with depolarization, TTX reduces the EPSP amplitude to 
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the value obtained at resting potential. We did not pursue further the underlying mechanism of 

how conductance reduces the prolongation of EPSP half width due to depolarization by a current 

pulse because of the lack of selective persistent sodium current blockers. One study reported that 

phenytoin, an antiepileptic drug selectively blocks persistent sodium currents on CA1 pyramidal 

cells (Fricker and Miles, 2000). Application of phenytoin (see in Mechanism of prolongation part 

in the Results section) on layer 5 pyramidal cells reduced the prolongation of EPSP half width 

and the increase in the EPSP amplitude when the cell was depolarized from resting potential to 

near threshold. However, it also affects spike threshold and size, which makes it hard to 

compared the EPSP parameters at a given membrane potential. Thus phenytoin is not the right 

blocker to study the role of persistent sodium currents. In summary, the results with a putative 

blocker of persistent sodium channels are inconclusive, we can only hypothesize the mechanism 

underlying the reduction of EPSP half width when cells depolarized with background 

conductance. An increase in the input conductance reduces the membrane potential displacement 

due to the activation of persistent sodium currents at near spike threshold potentials. The 

transient and persistent voltage dependent sodium currents, however, are activated with 

depolarization, independent from the level of the background conductances. Thus, the amplitude 

of EPSP increases with the depolarization, even without the presence of the prominent half width 

increase. Alternatively, only transient sodium currents could be responsible for the increase in 

EPSP amplitudes and persistent sodium currents could be responsible for the prolongation of 

EPSP half width induced by depolarization from resting potential.  
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How much conductance is sufficient to improve the precision of spike timing? 

It is well established that the dynamics of network activity represented in the firing of a 

single neuron (Steriade, 2001). It is also known the level of network activity depends on the 

“brain-state”, e.g. sleep and vigilance (Steriade et al., 2001, Steriade, 2001), level of anesthesia 

(Armstrong-James and George, 1988) or attention (Martinez-Trujillo and Treue, 2002). Although 

ongoing synaptic activity can reduce a cell’s input resistance by up to 70%-80% (Pare et al., 

1998, Destexhe and Pare, 1999), we were interested in what might be a minimum value to 

prevent the depolarization induced prolongation of EPSP half width (Figure 9C). We found that 

about a 35% reduction in the input resistance by tonic conductance injection is sufficient to 

diminish the prolongation of EPSP half width induced by depolarization with a current pulse. We 

also found that addition of a subthreshold fluctuation does not change significantly the 

prolongation and the prevention of prolongation by background conductance (Figure 10).  

There are two major sources of conductance in cells with ongoing spiking activity in 

vivo: synaptic input, and conductances that cause activation and are related to the spike 

generation. Na+- and K+-channels are activated during an action potential and they could 

generate a prominent conductance on the soma and the proximal part of the axon (Cole and 

Curtis, 1939). This conductance may decrease the amplitude of an EPSP not related to the spike 

itself by up to 30% of its original value. The decrease occurs within the window starting before 

the spike and ending 10-15 ms after the spike (Hausser et al., 2001). The spike related 

conductance, added to the level of conductance from the synaptic activity may provide a further 

improvement in the precision of spike timing. This may be because at that level of conductance, 

adding an extra conductance still lowers the EPSP half width (Figure 10B). With data from 

Figure 11C, we found the spike time window was reduced 1.5-fold more with tonic conductance 

 81



  

stimulation compared to the reduction of the EPSP half width. This suggests that spiking activity 

may provide an additional improvement in the spike timing precision, when cells fires with 

higher frequency vs the cell fires with a lower frequency. Taken together in cells where the 

ongoing background synaptic activity generates a high frequency of firing, the precision of 

EPSP-spike would be expected to be higher then the presence of conductance but without the 

firing. However, we did not find significant correlation between the frequency of discharge and 

the width of the peak synaptic gain.  The reason could be that values of evoked EPSP rise time 

fall into a relatively wide range and peak synaptic gain was strongly dependent upon the EPSP 

rise time. There is a difference between the width of peak synaptic gains when stimulated with 

fluctuating current or fluctuating conductance: the width of the peak synaptic gain generated 

with fluctuating current stimulation was 2.2  ± 0.18 –fold longer than the width of peak synaptic 

gain on histograms generated with fluctuating current. 

A recent study applying whole cell patch clamp recording techniques reported that the 

level of ongoing spiking activity is low in awake animals (Margrie et al., 2002). Data from 

anesthetized animals also support this (Margrie et al., 2002, Moore and Nelson, 1998, Zhu and 

Connors, 1999). As a consequence, conductance from background synaptic activity cannot be 

high. Margrie and co-workers (2002) found that the frequency of firing in the somatosensory 

cortex of an awake rat is less than 1 Hz. This contradicts studies employing wide variety of 

techniques, which have reported frequency values of 5-40 Hz in awake animals (Hubel and 

Wiesel, 1959, Steriade et al., 2001, Mountcastle et al., 1969, Azouz et al., 1997). There is no 

explanation yet for this discrepancy. We might assume that there are differences between cortical 

areas in the level of ongoing spiking frequency. All the low values were recorded from the 

somatosensory cortex, and higher values were mainly from the visual cortical areas (except data 
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from Mountcastle et al.; 1969). Animals were kept in a stereotaxic device during the recording, 

which prevents the constant stimulation from the environment that could be important for the 

correct functioning of somatosensory cortex. Further studies are necessary to decide what are the 

physiological values for the level of the spontaneous activity in the cortex. 

 

Refractory period and the effect of a single spike on the spike timing  

Neuronal refractory period occurs immediately after a spike. As a consequence, the 

probability of firing at a given moment depends not only on the stimulation, but also on the 

timing of the preceding spike in the train. Thus, refractory period restricts maximal firing 

frequency. This would limit the neuron’s capacity for transmission of information in a coding 

system that conveys information based on the frequency of spiking. For this reason, in earlier 

studies the effect refractory period had to be removed from the observed spike train in order to 

estimate the stimulus related spike data from the instantaneous firing rate (Gray, 1967). Although 

we know more about the ionic mechanisms underlying the refractory period (Hodgkin and 

Huxley, 1952, Schwindt et al., 1988b, Schwindt et al., 1988a, Schwindt et al., 1989, Spain et al., 

1991, Schwindt et al., 1992, Sah and Faber, 2002), its role in neuronal integration is not well 

understood. 

After a neuron fires an action potential, the cell preserves a “memory” of that spike by 

resetting the membrane potential in the soma and proximal dendrites. With this reset, the 

membrane potential ends up further away from the spike initiation threshold. Depending on how 

long the interval is before the next spikes, spikes can accumulate into the spike trains with 

different consequences (Abeles, 1991). (1) During the early refractory phase only a higher level 
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of network activity can create a spike. A continuous high level of network activity creates a 

regular spiking, limited only by the length of the absolute refractory period. (2) A spike may 

arrive during an “intermediate zone”, after the early refractory period (the definition relates to 

the fact, that the average membrane potential is still lower than the steady state membrane 

potential). (3) A spike can arrive when the membrane potential reached the steady state and a 

previous spike does not effect its timing, but stimulation does.  

Our results showed on Figure 15 and Figure 16 that the length these intervals depends on 

the stimulation itself. A cell stimulated with a step current behaves like all the spikes arrive 

during the early refractory period of the previous spike. Any perturbation due to an “extra” spike 

accumulated in the timing of the following spikes. As a consequence the net synaptic gain is low 

when the cell fires with regular interspike interval. However, it is likely that a spike will not 

perturb the timing of other spikes, if it arrives during the time, when the cell’s membrane 

potential reached its steady state. And, when the frequency of spiking is high enough, than most 

of the spikes arrive during the “intermediate zone” of the previous spike, and the timing of spikes 

and the probability of accumulation of a spike in the spike train will depend not only on the 

stimulation but the timing of the previous spikes. The presence of fluctuation in this case is 

important, because it allows the membrane potential to be “reset”, and it acts by shortening of the 

effect of a single spike on the subsequent spikes.   

To analyze what happens when an EPSP arrives at a cell with ongoing activity, we 

defined the perturbation window. The cell’s perturbation window was measured by how an 

actively spiking cell reacts to the application of an extra spike. The measure contained two 

parameters: the maximal latency of all the subsequent spikes that showed a jitter in their timing 

compared to the timing of their pairs on the control spike train. In case the spike on the test train 
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did not occur, the maximal latency was the reciprocal value of the frequency of firing. EPSP 

creates only a very short perturbation in the timing of spikes and only a spike due to the EPSP 

could create a longer memory extending tens of milliseconds.  

Although there was no significant difference in the refractory period when cells were  

stimulated with fluctuating current vs. fluctuating conductance, we found that the presence of 

synaptic conductance reduced the impact of a single spike on the spike train. This could be 

because the length of the perturbation window depends on two possible factors: the precision of 

EPSP-spike coupling and the interaction of the refractory period with the background spiking 

frequency. Although there was no difference between the reliability and precision of spike 

generation due to the fluctuating conductance and fluctuating current, we found a small but 

significant difference in the width of the peak of cells’ PSTHs, thus the precision of EPSP-spike 

coupling was higher, when the ongoing spiking activity was generated with fluctuating 

conductance compared to that generated with fluctuating current.  

Adding an extra conductance reduced the size of the afterhyperpolarization (Table 1 in 

Experimental Methods). The mechanism for the reduction of the refractory period is similar to 

the way the conductance reduces or prevents prolongation. If the input resistance is lower and the 

currents underlying the refractory period cannot displace the membrane potential as much, then 

in a cell with no background conductances (Table 1). As a consequence, the membrane potential 

stays closer to the firing threshold. We should note here this mechanism does not affect the size 

or timing of the absolute refractory period, which is due to the sodium channel inactivation 

Hodgkin and Huxley, 1952). 

Thus the presence of the background activity, together with the refractory period 

provided a possible mechanism for regulation of the accumulation of spikes in the spike train, 
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independently from the peak synaptic gain. Cells with shorter perturbation window accumulate 

more spikes, but not affecting the peak synaptic gain. A larger amount of conductance shortens 

the effect of the cell’s past activity on the timing of spikes, allowing more independence between 

single spikes to transmit information. Intuitively, if a perturbation arrives that changes the 

structure of the spike train by delaying spikes, the sooner the spike train “gets back” into the 

“intended” spike train mode, the higher number of spikes can be accumulated in the spike train. 

In this way, a larger amounts of background synaptic activity allows more rapid regulation of 

synaptic efficacy. Conversely, when synaptic activity is low, the cell is in an integrative mode, 

and the efficacy is high.  

 

Concluding remarks 

Network activities are thought to have a profound impact on several properties of the 

cells. The network activity in the cortex arises from the thalamus, the interaction between 

thalamo-cortical synapses, and cortico-cortical synapses. The level of network synaptic activity 

is not constant but controlled by other structures, e.g., subcortical modulatory structures 

(Steriade, 2001). In this project we explored how the network activity may regulate the 

integrative properties of pyramidal cells, and whether a higher levels of background synaptic 

activity may allow for a more efficient information transmission in the cortex.  

The presence of background synaptic conductances due to the network activity was 

suggested as something that influences gain modulation (Chance et al., 2002, Prescott, 2003). In 

those studies, synaptic integration from many active synapses was considered and the authors 

concluded that level of network activity allows for a dynamic modulation of the integration of all 

 86



  

asynchronous inputs were assumed to arrive with a constant rate for a longer time period. Our 

experimental approach was different, because we studied the influence of the network activity in 

the context of a single synaptic input, which is a transient signal. Based on this paradigm, we 

were able to show experimentally that network activity may regulate precision of spike timing. 

Further,  the efficacy of EPSP-spike coupling is related to the precision of timing. Activation of a 

single input increases the probability of spike, however the probability that a number of spikes 

accumulated in the spike train also depends on the network activity, and the refractory period of 

the cell.  

In this study we chose to examine rather the role of tonic conductance and kept the 

fluctuation in the membrane potential constant. A further step will be to investigate 

experimentally the role of the activating synaptic conductance related fluctuation in the 

membrane potential in the integration of a single synaptic input. A recent study by Rudolph and 

Destexhe (Rudolph and Destexhe, 2003) using a computational model and parameters measured 

in vivo and in vitro, also concluded that higher level of background activity may allow a fast 

regulation of synaptic efficacy because of the presence of high fluctuation in the membrane 

potential. They argue that tonic conductance reduces the difference between the impacts of the 

synapses located more distally or more proximally, but the fluctuating background conductance 

allowed a “boosting” of the dendritic input and increased the probability that the dendritic input 

reached the soma. Their model predicts that the highest synaptic efficacies can be obtained with 

the highest level of background activity and argue that background activity interacts with 

channels on the dendrites.  Our experimental system could be used to test these ideas 

experimentally. The two mechanisms, (1) the effect of tonic conductance on the precision of 

EPSP-spike coupling, and  (2) the fluctuating conductance, which assumed to increase the 
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efficacy of EPSP-spike coupling would determine the properties of information transmission 

between cells in the neuronal network. 
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DEFINITIONS AND ABBREVIATIONS 

 
 
AHP: Defined as the voltage difference between the threshold and the minimum of 

afterhyperpolarization after the spike. 

Auto renewal function: to measure how the probability of spiking changes after a spike on cells 

with ongoing activity. In every trace all the spikes were considered as reference points 

and the timing of spikes following each reference spike in a 100 ms window were 

measured and collected in a histogram with a bin size of 1 ms (see page 30).   

Background firing frequency was calculated from instantaneous firing rate of those PSTH that 

were generated without the presence of EPSP, by averaging the bins from 200 ms from 

the starting point to the end of the stimulation. 

Box car filter: 9 points before and after the smoothed value were averaged together with the 

smoothed value (see page 32). 

Cumulative sum: The probability of spiking in time (see page 29). 

Cumulative delay in spike timing: calculated from those traces in which an simEPSP 

contributed to the peak synaptic gain (simEPSP-spike). All the spikes on the control 

traces that could have been influenced by the simEPSP-spike were characterized by two 

values: their relative position to the simEPSP-spike, and a “delay”, which was calculated 

from the delay of the corresponding spike in the spike train with simEPSP-spike. If a 

spike on the control train did not occur due to the simEPSP-spike, then its delay was 

calculated as a delay to the position of the next spike in the simEPSP-spike train, 

independent of whether that given spike was related to other spikes in the control spike 
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train. In this way the maximum delay was controlled by the frequency. The average delay 

for spikes that did not occur was the reciprocal value of the frequency (see page 69). 

eEPSP: evoked EPSP (see page 18). 

Instantaneous firing frequency: firing frequency corresponding to the individual bins of the 

peristimulus time histogram with a bin size of 1ms (page 29). 

Loss of spikes: The probability that the spike count of a spike train does not increase after a 

transient increase due to the EPSP (peak synaptic gain). It is calculated as the average 

value of the longer, stabilized part of the cumulative sum after the initial peak due to the 

EPSP, then normalized to the peak synaptic gain (see page 57). 

Normalized EPSP amplitude: the ratio of EPSP amplitude measured at membrane potential 

values near spike threshold and at resting potentials (see page 39). 

Normalized EPSP half width: the ratio of EPSP half widths measured at membrane potentials 

near spike threshold and at resting potentials. (see page 37).  

Normalized EPSP rise time: which was defined as the ratio (depolarized/resting) of the EPSP 

rise time obtained at membrane potentials near spike threshold and at resting potentials 

(see page 41). 

Peak synaptic gain: probability of spiking due to the EPSP. It was defined as the maximum on 

the cumulative sum histogram after the onset of the EPSP (see page 30).  

Peristimulus time histogram: a histogram of spike timing collected from a large number of 

traces, locked to the timing of the stimulus (see page 29). 

Perturbation window: defines a period following the simEPSP-related spike, after which the 

probability that position of a spike generated by the background activity, is changed 

because of the presence of the simEPSP-spike, is less than 5%. The perturbation window 
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was calculated as the time where the cumulative delay in spike timing reached 95% of the 

plateau value (see page 70).  

Probability of firing: The chance that an EPSP evoke a spike when the cell is depolarized to 

near spike threshold (see page 37). 

PSTH: peristimulus time histogram 

SimEPSP: simulated EPSP that were generated by injection of a double exponential shaped 

current transient (see page 22.) 

Spike amplitude (mV): measured between the spike threshold and maximum of the spike  

Spike half width (ms): measured between the points defined the spike amplitude at 50% size 

between the rise phase and decay phase of the spike. 

Spike time window: Defined to quantify the distribution of spike timing. Cumulative 

probabilities of firing in time are calculated from the spike latencies from the onset of the 

EPSP. Spike time window was measured between the points corresponding to 0.1 and 0.9 

values of histogram of the cumulative probabilities firing (see page 50).  

EPSP half width (ms): time between the rising and decay phase of EPSP at half the amplitude 

(see page 18). 

EPSP rise time (ms): time during the rising phase of the EPSP between the 10% and 90% levels 

of amplitude (see page 18). 

Width of the peak synaptic gain (ms): defined as a window between the 10 and 90% of the 

maximum on the cumulative sum. 
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