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YIAR  =  1
2

× (y1+y2) + (x1-x2) × sin 𝛷𝛷
2×(1−cos 𝛷𝛷)

           (Eq. 4-5) 
 

Once the IAR values were calculated, the values were compared between modes 
of testing (flexion/extension) and specimen condition (harvested/implanted) with a one-
way ANOVA with a Dunn's pair-wise multiple comparison test (p<0.05). 
 
 
4.3 Results 
 

Flexibility curves were generated for each specimen in each bending mode. These 
curves can be seen in Figure 4-7 and Figure 4-8 for the harvested and implanted 
conditions, respectively. The flexibility curves exhibited a pattern that is common for 
viscoelastic tissue testing. Range of motion graphs for individual and combined modes of 
bending are shown in Figure 4-9 and Figure 4-10, respectively. Significant differences 
between lateral modes of bending are indicated on the charts.  The only significant 
differences found were in right lateral bending and combined lateral bending. 

 
The average shear and axial forces found during specimen testing can be found in 

Table 4-1.  A negative shear force represents an anterior shear for flexion/extension 
testing and a shear in the direction of rotation for lateral bending tests. A negative axial 
force represents a compressive force, while a positive axial force represents a tensile 
force.  

 
 After each incremental rotation the spine robot saved data for shear and axial 
forces experienced by the spine.  Figure 4-11 illustrates the shear forces throughout 
rotation for the four modes of bending.  Figure 4-12 illustrates the axial forces throughout 
rotation for the four modes of bending.  Sign conventions for these graphs are the same as 
what was noted for Table 4-1.  For all specimens and all modes of bending, all but a very 
small percentage of the shear and axial forces stayed within the ±2N range that was 
specified by the user.  As a result, a pure moment loading condition was effectively 
replicated using the Spine Robot. 
 

IAR values for harvested and implanted conditions can be seen in Figure 4-13 and 
Figure 4-14, respectively.  Each zone (yellow for flexion and red for extension) 
represents the average and standard deviations zones where the IAR was located during 
each test.  Calculated IAR values were normalized to the height and width of the 
harvested disc space of each specimen as measured from radiographs. Average 
normalized IAR locations can be seen overlaid over a representative lumbar MSU for the 
harvested and implanted conditions in Figure 4-15 and Figure 4-16, respectively. 
Significant differences between the x- and y-locations between bending modes and 
specimen conditions can be seen in Table 4-2. 
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Figure 4-13 Calculated Harvested IAR Locations.  The yellow and red zones represent 
the average and standard deviations of the flexion and extension locations, respectively.  
The calipers in each image are set to 10mm. 
 
 
 
 

 
 

Figure 4-14 Calculated Implanted IAR Locations.  The yellow and red zones represent 
the average and standard deviations of the flexion and extension locations, respectively.  
The calipers in each image are set to 10mm. 
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Figure 4-15 Normalized Harvested IAR Locations.  Representative lumbar overlaid 
with a graph of the normalized harvested IAR locations (average with error bars). 1 unit 
on the x-axis is equivalent to the sagittal length of the cranial vertebral body. 1 unit on the 
y-axis is equivalent to harvested disc height. 
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Figure 4-16 Normalized Implanted IAR Locations.  Representative lumbar overlaid 
with a graph of the normalized implanted IAR locations (average with error bars). 1 unit 
on the x-axis is equivalent to the sagittal length of the cranial vertebral body. 1 unit on the 
y-axis is equivalent to harvested disc height. 
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Table 4-2 Significant Differences among IAR Locations.   
 

Test X-Values Y-Values 
Harvested - Flexion vs. Extension Yes (p<0.05) No (p = 0.193) 
ProDisc-L - Flexion vs. Extension Yes (p<0.05) Yes (p<0.05) 
Flexion - Harvested vs. ProDisc-L Yes (p<0.05) Yes (p<0.05) 

Extension - Harvested vs. ProDisc-L Yes (p<0.001) Yes (p<0.05) 
 
Differences between modes of bending and specimen conditions are shown. 
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4.4 Concluding Discussion 
 

The range of motion data indicate that for this form of testing the ProDisc-L 
implant imitates the biomechanical properties of the intact disc for flexion/extension 
bending. However, the lateral bending data indicate a significant difference between the  
right lateral bending data sets and the combined lateral bending data sets. This highlights 
the importance of the center of rotation of constrained devices. The increase in lateral 
bending is likely due to the constraining Prodisc-L implant disengaging the facet joints.  
Additionally, the fact that for individual bending modes only the right lateral bending 
showed a significant difference between conditions could indicate that the implant was 
improperly placed in the frontal plane. Because a constrained device is unable to 
compensate for small shifts in surgical positioning, careful placement is critical for 
ensuring a successful prosthesis.  
 
 The IAR shows a pronounced shift between flexion and extension for both the 
harvested and implanted conditions, which is in line with experimental observation. One 
would expect the IAR to lie in a posterior area during extension for the implanted 
specimens because it was observed that the cranial and caudal endplates actually 
detached throughout the bending motion. This is in contrast to flexion testing, where the 
IAR lied on average very near the center of the radius if the articulating polyethylene 
core. Under different testing conditions where shear forces aren’t minimized, it is likely 
that additional shear forces would be put on the posterior structures, namely the facets. 
  
 One limitation of this study was the fact that only single-level specimens were 
tested. Testing full lumbar spines would allow for the study of adjacent level effects, such 
as motion compensation, a critical component to the long-term success of TDR 
components. Another limitation is the fact that no muscle vectors were simulated during 
testing. Simulating muscle vectors would allow for a much better representation of 
human movement and presumably better imitate in-vivo responses. Finally, axial rotation 
was not tested in this research. 
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Chapter 5 - Conclusions and Limitations 
 
 
 The initial motivation for this study was to develop a pure moment testing 
protocol that was significantly more accurate than common testing platforms in the 
published literature.  The University of Tennessee Health Science Center Spine Robot 
has extremely high resolution translational axes, which we believed would be suitable for 
a pure moment methodology.  As shown in Chapter 3, off-axis loading was reduced 
almost completely within the protocol, and was not a significant source of error.  The 
cable-and-pulley setup favored by many labs is incapable of producing pure rotational 
loading free of off-axis forces acting on the specimen.  The range of motion and 
flexibility data derived during testing showed similar results to other in-vitro and in-vivo 
testing, indicating that the designed protocol can be suitably compared to current 
methods.  
 
 The second motivation for the study was the calculation of the IAR for the spinal 
segments. The resolution of the Spine Robot’s axes give positional data that is more 
precise than data for other in-vitro methods or radiographic data for in-vivo methods.  
Testing showed a clear, significant A-P separation of the IAR locations for segments 
under all conditions.  As mentioned previously, this was not a surprise since less precise 
measurements would naturally tend to the average of these separate points, which is what 
is seen in other published data.  It is important to note that although shifts in the IAR 
occurred, this did not excessively alter the biomechanics of the instrumented segment 
compared to the harvested state for this passive pure moment testing.  
 
 The proximity of the calculated IAR of the implanted specimen during flexion to 
the COR of the implant itself highlights the accuracy of the methodology.  The shift of 
the IAR of implanted specimen under extension testing indicates a physical separation of 
the joint, a behavior that was observed during testing.  Although tests were only 
performed under passive conditions, a clear separation of the joint might indicate an 
instability resulting from the device’s design and implantation procedure.  In the case of 
the ProDisc-L implant, this behavior might also lead to additional shear stresses on the 
polyethylene inlay within the prosthesis.  IAR tracking is an important tool for 
understanding the kinematic characteristics of both the intact spine and those that have 
been surgically altered. 
 
 Some limitations exist in this research.  First, the testing only included single-
level MSUs, and only included L4-L5 segments.  Testing of multiple levels would allow 
for study of motion compensation at adjacent levels and implants at multiple levels.  
Additionally, the L5-S1 segment is important to research as it accounts for a large 
amount of lumbar rotation.60  Next, because there was no simulation of a muscle vector 
within the MSU, the testing cannot be said to show the dynamics of the joint. However, 
because the testing conditions represent a passive condition for the joint the kinematic 
behavior of the joint was observed.  Testing only included sagittal and lateral bending, 
excluding axial rotation.  As axial rotation is one of the three principal rotations of the 
spine, it is a necessary component in quantifying spinal motion.  Finally, the placement of 
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the implants was determined by a spine surgeon and was not a parameter that was 
controlled for.  The placement of the implant can affect motion response and mechanics 
in patients and laboratory settings.4,29 
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Chapter 6 - Recommendations for Future Work 
 
 
 One recommendation for future work would be to complete the pure moment 
testing protocol on a full lumbar specimen.  With an entire lumbar column, researchers 
would be able to observe motion compensation at adjacent levels and test implanted 
conditions with devices on multiple levels.  Additionally, full lumbar testing would be 
much more suitable for incorporating a fusion model as a test condition, since a single-
level fusion model would ideally yield no motion.  A second recommendation would be 
to incorporate coupled pure moment testing into the protocol.  The Spine Robot has the 
capacity to simultaneously apply sagittal bending and axial rotation or lateral bending 
with axial rotation.  Incorporating coupled motions into the protocol would not require 
significant modification to the current program code.   
 
 A compressive force to simulate muscle response could be implemented to 
represent a physiologically active simulation as opposed to the passive simulation in the 
current study.  This compressive force could be created with the current actuators 
themselves, and would not require any additional external equipment.  The positional 
control of the Spine Robot would allow for more accurate placement of the simulated 
muscle vectors with the potential to study individual or multiple muscles.  Another 
potential addition would be a physiological shear force to study its affect on motion and 
IAR location.  Conditions of extreme shear could be detrimental to the stability of TDR 
devices, and several studies have hypothesized that it might play a role in the dislocation 
of the polyethylene inlay of the Prodisc-L.29,40 
 
 Finally, it would be beneficial to create a pure moment protocol that could create 
the loading conditions in real-time as opposed to quasi-static.  We believe that the Spine 
Robot is capable of producing a pure moment response in real-time, but is not possible 
with current knowledge.  This study would be remiss without mentioning how much 
potential the Spine Robot has for spine biomechanics research.  Hopefully the full 
capabilities of this device will be realized in the near future.  
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