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CHAPTER 1.    INTRODUCTION 

 

 

Hematopoiesis 

 

All the blood cells are continuously generated by hematopoietic stem cells 

(HSCs) throughout life. Maintenance of hematopoietic system homeostasis and 

replenishment of mature blood cells rely on the self-renewal capacity and multipotency of 

HSCs. Hematopoiesis includes adult and embryonic hematopoiesis, which arises from 

different hematopoietic organs and undergoes distinct biology process. So far the murine 

hematopoietic system is the best understood of all species. 

 

 

Adult hematopoietic hierarchy 

 

Hematopoiesis is the process of production, multiplication and specification of 

blood cells in the bone marrow. With a combination of cell surface marker expression 

and functional assays, the hierarchical structure of the hematopoietic system was 

achieved (Figure 1-1). HSCs are the first well-characterized tissue-specific stem cells 

with self-renewal and multipotency and reside at the top of the hierarchy. HSCs give rise 

to the multipotent progenitor (MPP)
1,2

 which further differentiated into two oligopotent 

progenitors: the common lymphoid progenitor (CLP)
3
 and the common myeloid 

progenitor (CMP).
4
 CMPs then give rise to megakaryocyte-erythrocyte progenitors 

(MEPs) and granulocyte-macrophage progenitors (GMPs). These downstream 

oligopotent progenitors then give rise to all of lineage-committed effector cells and 

downstream mature blood cells. 

 

However, recent studies suggested that alternative models for lineage 

commitment during hematopoiesis should be considered. In 2008 Bhandoola’s gourp 

demonstrated that the earliest thymic progenitors (ETPs) are not derived from lymphoid-

restricted progenitors but from multipoient bone marrow progenitors, which lose B 

potential either prethymically or intrathymically.
5
 Almost all ETPs derived from 

multipotent progenitors possess both T and myeloid potential within the thymus.
5
 Later 

on Stuart H. Orkin’s group proposed an alternative mouse hematopoietic hierarchy from 

single-cell expression data which indicated that the MegE lineage priming occurred 

within highly enriched HSCs.
6
 This is different from the model proposed by Jorden 

Adolfsson et al and Cornelis J.H. Pronk et al which placed MegE lineage downstream of 

MPP and CMP.
7,8

 

 

 

Embryonic hematopoiesis 

 

The first wave of hematopoiesis starts in the extraembryonic yolk sac at E7.5 and 

later in allantois and placenta. However functional experiment showed that hematopoietic 

cells generated in yolk sac prior to E9.5 lack colony forming unit-spleen (CFU-S)
9
 and 

lack definitive HSCs prior to E11.5.
10,11

 The aorta-gonad-mesonephros (AGM) region of  
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Figure 1-1. The hierarchy of hematopoietic cells. 

LT-HSC, long-term repopulating HSC; ST-HSC, short-term repopulating HSC; MPP, 

multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid 

progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, granulocyte−macrophage 

progenitor. The encircled pluripotent population, LT-HSC, ST-HSC and MPP are Lin-, 

Sca-1+, c-kit+ as shown. 

 

Reprinted with permission. Larsson J, Karlsson S. The role of Smad signaling in 

hematopoiesis. Oncogene. 2005;24(37):5676-5692.
12
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the mouse embryo starts to make blood cells from E9.5 and was proven to be a powerful 

source of definitive HSCs.
10,11

 From E12.5 hematopoiesis switches to fetal liver and 

HSCs undergo dramatic expansion. Right before birth bone marrow becomes the major 

site of hematopoiesis through the whole life. (Figure 1-2) 

 

 

Hematopoietic Stem Cell 

 

HSCs are rare population and occur at a frequency of 1 stem cell in 10,000 to 

1,000,000 bone marrow cells. HSCs are derived from mesoderm and give rise to all the 

downstream progenitor cells and mature blood cells. Hemogenic endothelium hypothesis 

proposes that HSCs arise directly from committed endothelia cells (ECs) of the ventral 

aspect of the dorsal aorta in the AGM
13,14

 which is distinct from the hemangioblast 

hypothesis which supposes that a common bipotent precursor gives rise to both 

vasculature and the blood cells. Initial understanding of HSCs started with the discovery 

of CFU-S described by Till and McCulloch.
15

 They demonstrated that intravenously 

injected bone marrow cells were capable of forming distinct hematopoietic colonies in 

the spleen of irradiated mice, and these colonies contained erythrocytes, megakaryocytes 

an granulocytes/macrophages.
15

 Later studies pointed out there are at least two type of 

CFU-S: colonies that formed at day 8 after transplantation and those formed at day 

12.
16,17

 They are referred as day 8-CFU-S and day12-CFU-S. Cells residing in day8-

CFU-S were more committed progenitors with little or no self-renewal capacity and cells 

in day12-CFU-S contained certain self-renewing cells.
18

 Morrison and Weissman further 

confirmed that LT-HSC and ST-HSC can only be purified from day-12 to day-14 CFU-

S
1
. 

 

 

Functional characteristics of HSCs 

 

The functional characteristics of HCSs are self-renewal and multilineage 

differentiation potential. 

 

 

Self-renewal 

 

Self-renewal of HSCs is critical for HSC pool maintenance to prevent the 

exhaustion of blood formation. It is usually achieved by either symmetric or asymmetric 

cell division or both. Symmetric division will result in two identical daughter stem cells 

or two lineage-restricted progenitors while asymmetric division will generate one 

daughter stem cell and one differentiated cell
19

. Asymmetric cell division doesn’t 

generate net increase of HSC numbers. Self-renewal potential of HSCs is associated with 

the activity of telomerase
20-22

. Telemetric shortening during cell division usually results 

in cell cycle arrest, chromosomal instability and replicative senescence and causes the 

loss of self-renewal capacity of HSCs which directly reduces HSC pool size.  
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Figure 1-2. Timeline of hematopoietic events in the mouse conceptus. 

Arrows above indicate the onset of specific hematopoietic cell generation and/or 

appearance; arrows below indicate the earliest time of colonization of the secondary 

hematopoietic territories. AGM, Aorto Gonado Mesonephros region. 

 

Reprinted with permission: Dzierzak E, Speck NA. Of lineage and legacy: the 

development of mammalian hematopoietic stem cells. Nat Immunol. 2008;9(2):129-

136.
23
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Multilineage differentiation potential 

 

Multilineage differentiation means HSCs are able to produce progeny that 

contribute to all blood cell lineages.
24-30

 The decision of HSCs to self-renew or 

differentiation may be random, but the external signals from bone marrow niche play role 

in the cell fate decision of HSCs during lineage commitment through cell-cell or cell-

extracellular matrix (ECM) interactions or through cytokines, chemokines or other 

extracellular molecules. Signaling pathways present in bone marrow niche, such as Wnt 

pathway and Notch pathway, act on HSCs or downstream progenitors to regulate HSC 

lineage commitment. Recent evidence showed multilineage priming is one mechanism 

how HSCs maintain multilineage commitment potential without changing global gene 

expression. Open chromatin structure of HSCs or multipotent progenitors leaves many 

key cis-acting regulatory elements of lineage-affiliated genes accessible which allows 

these genes to be available for transcription. Transcription factors which favor different 

lineage commitment may negatively interact with each other resulting in the dominant 

upregulation of a given program with the shutdown of other program consistent with 

dominant lineage selected. 

 

 

Hematopoietic stem cell characterization 

 

Murine HSCs are a rare population capable of reconstituting recipients and reside 

in fetal liver and adult BM. There are studies to characterize and purify hematopoietic 

stem cells for decades. It becomes clear that combination of surface markers/dye 

exclusion and in vivo/ex vivo functional assays is necessary to identify functional HSCs 

which are able to reconstitute lethally irradiated hosts. More defined subpopulations with 

distinct reconstitution capacity were identified with combination of newly discovered cell 

surface markers by many groups. Here we focus on the phonotypical and functional 

characterization of murine hematopoietic stem cells. 

 

 

Cell surface antigens/receptors 

 

In 1988 Weissman’s group first identified multilineage HSC as a highly enriched 

rare population in lineage marker negative (Lin
-
), Sca-1

+
 and thy1.1

low
 cells, which 

represent about 0.05% of the whole bone marrow.
27

 Ikuta, K et al
31

 showed that both 

HSCs and progenitors express Kit surface marker, but only Lin
-
c-Kit

+
Sca-1

+
 cells are 

primitive HSCs and response better to SCF and stromal cells.
32

 The flk-2 gene, a tyrosine 

kinase receptor, was shown not to be expressed in FR25 Lin
-
c-kt

BR
 population which is 

highly enriched for HSCs
33

 and flk-2 was characterized as HSC marker to further purify 

LT-HSC from adult bone marrow cells as c-Kit
+
Lin

-
Sca-1

+
Flk-2

-
 cells from mice.

2
 Flk-2 

can only be used to separate adult HSCs as fetal liver HSCs express Flk-2. CD34 is a 

human HSC marker.
34

 Unlike human HSCs, mouse long-term multilineage HSCs are 

present in CD34
lo/-

c-Kit
+
Sca-1

+
Lin

-
 fraction,

30
 providing a new marker to separate mouse 

HSCs at a near homogenous level, even though only 20% of intravenously injected 

CD34
lo/-

c-Kit
+
Sca-1

+
Lin

-
 cells conferred long-term multilineage reconstitution.

30
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However, in fetuses and neonates CD34 is also expressed in long-term repopulating 

HCSs.
35

 So using CD34
-
LSK as a marker to purify HSCs is only suitable for mice older 

than 10 weeks due to age-dependent CD34 expression in HSCs. More recently 

combination of SLAM family member CD150 and CD48 with Lineage marker, Sca-1 

and c-Kit was found to be able to purify more enriched functional long-term HCSs.
36

 One 

out every 2.1 CD150
+
CD48

-
Sca-1

+
Lin

-
c-Kit

+
 cells gave long-term multilineage 

reconstitution in lethally irradiated mice.
36

 

 

 

Dye exclusion 

 

Hoechst 33342
low

 side population (SP) is a small subset of population of murine 

bone marrow cells which is able to block the Hoechst efflux activity due to a multidrug 

resistance protein (mdr) or mdr-like mediated efflux. SP was shown to be enriched about 

1000 fold HSC activity and Hoechst 33342 was used to isolate quiescent and replicating 

HSCs.
37,38

 Similar to Hoechst33342, Rhodamine123 (Rh123) is another vital dye used to 

label relative more quiescent murine HSCs and Rh123
low 

 cells self-renew to a greater 

degree than Rh123
high

 population.
39

 Rh123
low

 and Hoechst33342
low 

population both 

represent G0/G1 HSCs with higher level of self-renewal and long-term multilineage 

reconstitution capacity, which were lost within S/G2/M subpopulation.
39

 Resistance to 

active DNA replication provided these quiescent HSCs the radioprotection activity.  

 

The phenotype of murine hematopoietic stem cells at different development 

stages is summarized in Table 1-1. 

 

 

Functional assay 

 

In vitro functional assays developed for HSCs are cobblestone area-forming cell 

(CAFC) assay and long-term culture-initiating cell (LTC-IC) assay. Actually they are not 

able to identify true HSCs; instead they are the assays identifying relative immature cells 

in culture. The first in vivo assay to assess HSC function is thought to be CFU-S
15

 until 

the cells forming spleen colonies were proven to be hematopoietic progenitors with short-

term potential.
18

 To test repopulating HSC function long-term transplantation assay is 

required. 

 

 

Long-term repopulating assay 

 

Long-term repopulating assay requires intravenous injection of test bone marrow 

cells to irradiated or compromised hosts. Test cells and host cells should be 

distinguishable from each other by different alleles of the hematopoietic cell marker 

CD45.1 or CD45.2. In earlier studies cells were distinguished by different hemoglobin
40

 

or gender.
41

 Peripheral blood (PB) is collected at various intervals and contribution of test 

cells to myeloid, T lymphoid and B lymphoid lineage are assessed by flow cytometry. 

LT-HSCs are considered to be present in test cells only when recipient PB contains  
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Table 1-1. Phenotype of murine hematopoietic stem cell at different development 

stage. 

 

HSC Marker 

Hemangioblast (Primitive streak, yolk 

sac) 

Flk-1(Kdr)
+
 

Pre-HSC (AGM) CD34
+
CD41

+
Sca-1

-
CD45

-
 

HSC (AGM, placenta) CD34
+
CD45

+
CD41

+/-
Sca-1

+/-
 

HSC (fetal liver) Sca-1
+
CD34

+
CD45

+
Mac1

+
CXCR4

+
 

HSC (bone marrow) c-kit
+
Thy1.1(CD90)

lo 
Lin-Sca

hi
 (KTLS) 

 Sca-1
+
CD34

+/-
CD45

+
Lin

-
 

 CD150
+
CD48

-
CD244

-
 (SLAM) 

 Rh123
low

, Hoe33342
low

,PyroninY
low

 

 5-FU resistant 

 Aldehyde dehydrogenase
high

 

Fr25 (Small cells) Lin
-
 

 Side-population cells 

AGM, aorta gonado mesonephros; 5-FU, fluorouracil; HSC, hematopoietic stem cell; 

SLAM, signaling lymphocyte activation molecule. 

 

Reprinted with permission. Ratajczak MZ. Phenotypic and functional characterization of 

hematopoietic stem cells. Curr Opin Hematol. 2008;15(4):293-300.
42
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donor- derived cells in the all triple lineages after at least 16 weeks post transplantation. 

Long-term repopulating assay also can be used to evaluate HSC activity in genome 

modified cells by retroviral delivery with fluorescence markers or leukemia-initiating 

cells (LICs) from leukemia samples. 

 

 

Competitive repopulation assay 

 

In competitive repopulation assay test cells and standard cells are mixed at variety 

of ratio, 1:1 ratio at most cases, and injected into hosts. Usually standard cells contain 

specific number of whole bone marrow cells or HSCs which allows semi-qualify HSC 

frequency relative to standard cells. Test cells and standard cells should be 

distinguishable from each other. For more accurate evaluation of competitive 

reconstitution unit (CRU) frequency limiting-dilution assay is used. 

 

 

Limiting-dilution assay 

 

Limiting-dilution assay allows evaluation of absolute CRU frequency (HSC 

number) in test cells. It involves a titration of varying dose of test cells (at least 3 doses), 

which are mixed with 1-2x10
5
 competitors (contain about 5-10 CRU) and injected into 

lethally irradiated hosts. Competitors are usually subjected to two rounds of bone marrow 

transplantation prior to the limiting-dilution assay. The proportion of recipients whose 

bone marrow cells are determined to contain >1% or >5% cells of test cell origin in all 

three lineages (myeloid lineage, T lymphocyte lineage and B lymphocyte lineage) after at 

least 16 weeks following transplantation is used to calculate the CRU frequency 

generated by Poisson statistics. 

 

 

Serial transplantation assay 

 

Given population is transplanted into primary recipients, whose bone marrow 

cells were harvested and transplanted into secondary recipients and further into tertiary 

recipients. Serial transplantation assay is the most stringent HSC assay since only the 

most primitive HSCs are able to yield long-term, multilineage repopulation through 

multiple rounds of transplantation. 

 

 

Regulation of Hematopoietic Stem Cell Pool 

 

HSCs give rise to all the blood lineages throughout the life span; as a result HSC 

pool should be well maintained. This usually involves the regulation of the balance of 

HSC self-renewal and differentiation, HSC survival and death (apoptosis/necropsies), 

lineage priming and selection and many other aspects of HSC activities by either intrinsic 

or extrinsic signals or both. Intrinsic mechanism includes transcription factors, epigenetic 
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modification, non-coding RNA, especially microRNA and extrinsic signals come from 

microenvironment (bone marrow niche) where HSCs reside.  

 

 

Transcription factors 

 

Numerous of transcription factors are shown to play critical role in HSC self-

renewal or differentiation through gain of function or loss of function assays. They 

include HOX genes, Gata2, Runx1, Gfi1 and many others. HOX genes are highly 

conserved from Drosophila to mammals and play roles in embryonic patterning and 

hematopoiesis. The detail of HOX gene function in normal and malignant hematopoiesis 

will be discussed in later paragraphs. Gata2 is one of the six members of GATA family 

in mammals. It is expressed in primitive hematopoietic cells and its expression level 

declines gradually along hematopoietic differentiation.
43,44

 Gata2 knock-out mice die at 

day 10-11 of gestation due to impaired primitive hematopoiesis, demonstrating that 

Gata2 is essential for earliest stage of hematopoiesis during embryogenesis.
43,44

 Gata2 is 

also crucial for adult HSCs and HPCs proliferation. Gata2 may preserve immature cell 

pool by inhibiting hematopoietic precursor cell differentiation and also confers increased 

quiescence of human HSCs and HPCs when expressed at high level.
45,46

 At meanwhile, 

reciprocal expression pattern of Gata1 and Gata2 is critical for erythropoiesis and 

erythroid homeostasis. Gata2 may function through SCL and active both Kit and Gata2 

in immature erythroid cells.
47

 

 

 

Epigenetic regulation 

 

Epigenetic regulation, histone or DNA modification, allows changes of large set 

of gene expression by influencing the accessibility of transcription factors to DNA and 

altering transcription profile of cells. Epigenetic regulation includes methylation, 

acetylation, phosphorylation, sumoylation and ubiquitylation. Here we focus on the 

discussion how histone or DNA epigenetic modification regulates or maintains HSC 

signature. 

 

Histone hyperacetylation usually indicates ‘open’ chromatin whereas 

deacetylation means ‘condensed’ chromatin. Histone acetylation is catalyzed by histone 

acetyl transferase and histone deacetylation is catalyzed by histone deacetlylases 

(HDACs). Histone methylation usually occurs on arginine or lysine residues. Methylation 

on H3K4, H3K36 and H379 are associated with transcription activation while 

methylation on H3K9, K3K27 and H4K20 are related to transcription repression. BMI1 

belongs to Polycomb-group (PcG) proteins, which repress gene (such as HOX genes) 

transcription through histone modification. Bmi-1
-/-

 mice demonstrated reduced number 

of adult HSCs but not fetal liver HSCs and defect in long-term reconstitution of both fetal 

liver and adult HSCs
48

 while enforced expression of Bmi-1 augments HSC self-

renewal,
49-51

 indicating Bmi-1 is essential for self-renewing HCSs. Besides HSCs, Bmi-1 

is also required for neuron stem cells self-renewal but not survival or differentiation.
52

 A 

similar phenomenon was observed in the Mph1/Rae28 loss mice
53

 and MPH1/RAE28 is 
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another member of PcG family which forms ploycomb complex 1 with M33, BMI1 or 

MEL18 and SCMH1.
54-58

 In contrast, Ring1b loss mice
59

 or mice with hypomorphic 

mutation of Eed
60

 or Suz12
61,62

 exhibited enhanced HSC or HPC activities. 

 

Methylation of CpG in DNA is another major epigenetic modification. DNA 

methylation is catalyzed by DNA methyltransferase (Dnmt1, Dnmt3a and Dnmt3b) and 

methylation in promoter region is associated with gene silencing. Dnmt3a and Dnmt3b 

execute de novo DNA methylation and play role in the regulation of cell differentiation. 

CD34
-
LSK cells express both Dnmt3a and Dnmt3b. Disruption of Dnmt3a or Dnmt3b or 

both do not affect either myeloid or lymphoid lineage differentiation potential while loss 

of both Dnmt3a and Dnmt3b but not either one of them result in defect in long-term HSC 

reconstitution.
63

 Later Challen et al
64

 applied serial transplantation on Dnmt3a-null HSCs 

which demonstrated 200-fold expansion of phenotypic HSCs in secondary recipients 

coupled with declined multi-lineage differentiation capacity with successive rounds of 

transplantation. Expansion of Dnmt3a-null HSCs was associated with activation of HSC 

self-renewal program including Runx1 and Gata3 indicating the essential role of Dnmt3a 

in silencing self-renewal genes in HSCs and permission of hematopoietic 

differentiation.
64

 Conditional knockout of Dnmt1 led to defects of HSC self-renewal, 

bone marrow niche retention and generation of myeloid-restricted progenitors from 

HSCs.
65

 Haploinsufficency of Dnmt1 was shown to be sufficient to impair self-renewal 

of MALL-AF9-induced leukemia stem cells (LSCs) and similar effect
66

 was seen in B-

Lymphoid leukemia with Dnmt1 hypomorphic allele.
67

 These studies indicated the role of 

Dnmt1 in normal and malignant HSCs for regulation of self-renewal.  

 

 

Signaling pathways 

 

 

Wnt signaling pathway 

 

Wnt signaling regulates both HSC self-renewal and differentiation. In mammals 

Wnt proteins are present in primitive and definitive hematopoiesis sites. Wnt-5a and 

Wnt-10b are expressed in murine yolk sac (E11), fetal liver (E14) and fetal liver HSCs.
68

 

In vitro culture Wnt-5a was shown to have positive effect on proliferation of fetal liver 

HSCs in an autocrine and paracrine manner, while monocyte and erythrocyte formation 

were preferred from bone marrow HPCs in the present of soluble Wnt-5a.
69

 

Overexpression of β-catenin, downstream executor of the Wnt signaling cascade, 

enhances HSC self-renewal.
70

 Β-catenin also has been shown to promote T-ALL cells 

survival, adhesion and proliferation, and it is undetectable in mature T cells.
71

 Whether β-

catenin shared the same mechanism on HSCs self-renewal and leukemic cells 

proliferation is not yet clear.  
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Notch signaling pathway 

 

Notch signaling requires physical interaction of Notch ligands and Notch 

receptors, which are expressed in Notch-ligand-expressing cells and Notch-expressing 

cells, separately. In bone marrow, HSCs express Notch and bone marrow stromal cells, 

endothelial cells and fibroblasts, express Notch ligands, such as Jagged and Delta. Notch 

signaling is critical for embryonic development as Jag1-deficient mice are embryonic 

lethal due to the defects in the vasculature remodeling.
72

 Notch signaling plays a role in 

modulating HSCs self-renewal, differentiation and proliferation. Jagged1 alone inhibited 

proliferation and myeloid colony formation of CD34
+
 cells but enhanced erythroid 

colony formation in the presence of stem cell factor (SCF).
73

 Activation of endogenous 

Notch signaling with immobilized Delta-1enhanced proliferation of cord blood derived- 

CD34
+
 cells in vitro and myeloid-lymphoid repopulating ability in vivo.

74
 Expression of 

the intracellular domain of Notch 1 can immortalized murine HSCs and immortalized cell 

line was able to differentiate into both myeloid and lymphoid lineages.
75

 

 

 

Phosphatidylinositol 3 kinase pathway 

 

Phosphatidylinositol 3 kinase pathway (PI-3) kinase pathway promotes cell 

growth, proliferation and survival. PI-3 kinase can be activated by receptor tyrosine 

kinase or other signaling pathway and generate Phosphatidylinositol-3, 4, 5-trisphosphate 

(PIP3). PIP3 further activates Art. Phosphorated Akt activates mammalian target of 

rapamycine (mTOR) kinase. mTOR1 promotes cell growth and proliferation, while 

mTOR2 regulates Akt activity. Pten negatively regulates PI-3 kinase pathway by 

dephosphorylating PIP3, thus resulting in inhibition of cell growth, proliferation and 

survival. Conditional knock-out of Pten from embryonic stem cells as well as neuron 

stem cells can drive cells into cell cycle and enhance self-renewal.
76-78

 Deletion of Pten 

from adult HSCs also increase cell cycle entry, leading to transient increase of HSC 

numbers but depletion of HSCs in the mouse bone marrow in the end.
79,80

 Phenotype of 

Pten deletion/inactivation demonstrated that Pten normally maintains HSCs in a quiescent 

state. However, Pten deletion also drives leukemogenesis. Yilmaz reported 

myeloproliferative disease which progressed to AML and ALL when Pten was 

inactivated in murine hematopoietic system using flox-Mx-1-Cre system.
79

 Different role 

of Pten deletion on HSCs depletion and leukemic stem cells generation suggests 

independent mechanism of each phenomena caused by Pten inactivation. 

 

 

TGF/BMP signaling pathway 

 

TGF-β superfamily includes TGF-β/activin/nodal family, bone morphogenetic 

protein (BMP)/growth and differentiation factor (GDF)/Muellerian inhibiting substance 

(MIS) family. Upon binding of the ligands, activated type I and type II serine/threonine 

kinase receptors form heterodimer and phosphorylate specific intracellular receptor-

regulated Smads (R-Smad), including Smad1,2,3,5,and 8. Smad1, Smad5 and Smad8 are 

primary mediators of BMP signaling, while Smad2 and Smad3 transduce signal through 
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Figure 4-6. TetO-sPrdm16 transgene integration site by FISH and protein 

expression in transgenic bone marrow cells. 

(A). FISH conducted in transgenic mouse bone marrow cells showed transgene 

localization in mouse genome. Integration site of transgene in 8012 line was chromosome 

19B-C1 region, integration site in 8005S line was chromosome3C-D region and 

chromosome 2C-1 region in 8080 line. (B). sPRDM16 and GFP protein expression in 

transgenic bone marrow cells under the Doxycycline induction in vivo in all three 

founder lines. No sPRDMd16 and GFP protein expression was detected in wild type bone 

marrow cells and un-induced transgenic bone marrow cells. GAPDH was used as loading 

control for western blot. WT: wild type. Tg: Transgenics. Dox: Doxycycline. 
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Figure 4-7. GFP percentage in HSC, progenitor and mature lineages in transgenic 

bone marrow 39 days post doxycycline induction. 

(A). GFP percentage in singlets, B cells and Myeloid cells from transgenic bone marrow. 

(B). GFP percentage in HSC and progenitors from transgenic bone marro. 

(A) and (B) both demonstrated doxycycline dose-dependent GFP induction in mature, 

HSC and progenitor cells. Note low GFP induction in MEPs. 
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Figure 4-8. MPP and HSC frequency on marking cells. 

HOXB4 but not sPrdm16  increases MPP frequency. Sustained expression of sPRDM16 

in HOXB4 expressing cells maintain the same MPP frequency as HOXB4
+
 cells. 

sPRDM16 alone and HOXB4 alone both are able to increase HSC frequency about 2-2.5 

fold. Sustained expression of sPRDM16 in HOXB4 expressing cells decreased HSC 

frequency to control level. 
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CHAPTER 5.    DISCUSSION 

 

 

Significance 

 

The object of this study is to understand molecular mechanism of HOXB4-

mediated HSC benign expansion in vivo. It started with gene expression array of HOXB4 

expressing LSK cells from transplanted mice and then we focused on Prdm16, one of the 

most significant downregulated genes, to study its role on HOXB4-HSC benign 

expansion. Results of this study revealed some interesting aspects of HOXB4-mediated 

HSC expansion. 

 

 

HOXB4 is a global regulator of HSC self-renewal  

 

In this study gene expression prolife of HOXB4 expressing LSKs cells from 

transplanted mice revealed a dynamic transcriptional network of HOXB4 during the 

reconstitution. In order to expand HSCs, HOXB4 activated hematopoietic stem cell 

pathway and hematopoietic stem cell long term pathway. Expression of genes regulating 

HSC function were altered by HOXB4, such as Hemgn, Gata2, N-myc, Pten, Bcl-3, 

Prdm16, Jun, HOXA9 and many others, which led to balanced HSC expansion. Besides 

HSC expansion, HOXB4 also facilitate B cell lineage and myeloid lineage priming at 

LSK cell level. As a result of differentiation permission, HOXB4 is able to control the 

HSC pool size and prevent the leukemia, a great feature of HOXB4 but not seen in any 

other oncogenic HOX factors such as HOXA9 and HOXA10. In summary HOXB4 is a 

global regulator of HSC self-renewal. HOXB4-mediated benign HSC expansion is not 

achieved by a single downstream target or pathway. It is an outcome of highly complex 

regulation of genes and pathways playing roles in HSC proliferation, differentiation and 

apoptosis, which leads to balanced HSC expansion. Besides the knowledge we gained in 

this study, role of HOXB4 in HSC expansion in vivo is a very interesting topic in the 

hematology field and worthwhile for further exploration. 

 

 

Differential regulation of Prdm16 transcript by HOXB4 and HOXA9/A10 

 

Our study revealed that downregulation of Prdm16 is unique for HOXB4 but not 

for HOXA9 and HOXA10 in HSCs. HOXB4, HOXA9 and HOXA10 belong to HOX 

family. HOX genes all bind to a similar set of ‘AT’-rich DNA binding site through their 

homeodomain and the non-homeodomain adjacent to the homeodomain offer additional 

HOX-DNA-binding specificity. A bacterial one-hybrid approach (B1H) and in vivo 

protein-binding microarrays (PBMs) showed that the ‘AT’-rich DNA consensus 

sequences HOXB4 and HOXA9/A10 recognize and bind to are different (Figure 5-1), 

suggesting HOXB4 and HOXA9/A10 may bind to different region of Prdm16 promoter 

or enhancer. This can be one of the mechanisms of differential transcription regulation of 

Prdm16 by HOXB4 and HOXA9/A10. There is a study suggesting that HOX gene can  
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Figure 5-1. Comparison of in vitro and in vivo Hox-binding site preferences.  

Shown are LOGO diagrams summarizing Hox-binding site preferences for Hox4 and 

Hox9-13 groups. The column on the left lists the LOGOs generated using the binding 

sites identified by the B1H method. The column on the right lists the LOGOs generated 

using the protein-binding microarrays. Y-axis is nucleotide frequency. 

 

Modified with permission. Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for 

cofactors and collaborators. Curr Top Dev Biol. 2009;88:63-101. 
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use transcription repressors as HOX cofactors in gene repression. Selectively using 

repressor by HOXB4 but not HOXA9 and HOXA10 can be the explanation of HOXB4-

mediated Prdm16 repression. HOX collaborators are another group of proteins which 

binds to HOX factors or HOX-targeted elements to determine target genes are activated 

or repressed. Protein-protein interaction between HOX factors and collaborators may 

form enhanceosome-like structure on HOX-targeted region to activate target genes 

expression. HOXB4 and HOXA9/A10 may form transcription complex with different 

collaborators and determine whether to active or repress Prdm16 transcription.
114

 

 

 

HOXB4 doesn’t cause leukemia unless pro-oncogenes are activated 

 

HOXB4 is always considered as a safe factor to expand HSCs, because 

overexpression of HOXB4 doesn’t lead to hematopoietic malignancies. Safety issue was 

brought back to discussion when the two myeloid leukemia cases from a dog and a 

macque who received HOXB4 transduced CD34
+
 cells

187
 were reported. In our 

independent screening we also detected two myeloid leukemias derived from HOXB4 

expressing cells in transplanted mice. Both studies revealed additional genetic lesions in 

leukemic cells due to vector integration and activation of sPrdm16 was common in both 

studies, indicating HOXB4 is doesn’t transform hematopoietic cells unless additional 

oncogenes are activated and activation of sPRDM16 is one of the factors contributing to 

the leukemogenesis. Leukemic cells line generated from the leukemic dog demonstrated 

sPRDM16-dependent growth in vitro. However, it is possible the leukemias with 

sPrdm16 activation may be purely due to sPrdm16 expression and HOXB4 was not at all 

involved. In our study we didn’t detect any hematopoietic malignancies when sPrdm16 

was overexpressed alone. Shing D.C et al also claimed that sPrdm16 was not oncogenic 

in WT mice but in p53 null mice.
248

 Both studies suggest sPrdm16 alone is not sufficient 

to cause leukemia. So our screening together with previous literature reports support the 

synergistic role of HOXB4 and sPRDM16 in leukemogenesis.  

 

 

Oncogenic potential of sPRDM16 

 

sPRDM16 is the short form of PRDM16 with partial deletion of N-terminal PR 

domain. sPRDM16 but not PRDM16 is considered as a proto-oncogene
189

 and is 

associated human hematopoietic malignancies. Absence of the PR domain may count for 

the oncogenic potential of sPRDM16. PR domain is 20-30% identical to SET domain, 

indicating the potential role of PRDM16 as a methyltransferase. sPRDM16 is highly 

homologous to EVI1, zinc finger part of MDS1/EVI1 (PRDM3) protein. EVI1 is 

oncogenic and aberrant expression of EVI1 is detected in about 10% of AML cases
265

 

and is able to induce MDS in mice.
266

 Similar to Prdm16, EVI1 gene expression is 

upregulated in NUP98-HOXA9-expressing leukemia cells.
267

 Several mechanisms have 

been identified to contribute to the leukemogenic activity of EVI1 which can be shared 

by sPRDM16. EVI1 exerts negative regulation on TGF-β signaling pathway through the 

repression of Smad3 function, which promotes cellular proliferation and affects cellular 

differentiation. EVI1 also suppresses the JNK-1-mediated phosphorylation of c-JUN or 
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inhibits interferon-α signaling to exert anti-apoptotic effects.
268,269

 Recent studies showed 

that EVI recruits and forms protein complex with several Polycomb proteins to PTEN 

locus and switch PTEN promoter from H3K27Ac status to H3K27m3 status to repress 

Pten expression, which activates PI3K/ARK/Mtorc1 signaling in leukemia cells.
270,271

 

Mechanisms of leukemogenic potential of EVI1 mentioned above suggest that EVI1 

unique regulation of certain pathways and recruitment of epigenetic modifiers confer 

EVI1’s oncogenic activity and lack of HMT activity from PR domain is not the reason. 

sPRDM16 can induce leukemia in the similar manner as EVI1 due to the structural and 

biology similarities between them. 

 

 

MDS/AML genetic lesion is missing from HOXB4/sPrdm16 preleukemia model 

 

When sPrdm16 and HOXB4 were co-overexpressed, only 2 out of 12 recipients 

developed preluekmias at 28 or 32 weeks post transplantation. Two preleukemic cases 

represent MDS/AML phenotype with normal karyotype. Low incidence may be due to 

low cotransduction efficiency. However, the long latency for leukemogenesis indicates 

activation sPrdm16 and HOXB4 are not sufficient to cause leukemic transformation. 

MDS/AML is a heterogeneous group of hematopoietic stem cell disorders and acquired 

mutations such as NPM1
272

, TET2
273

 and FLT3
274

 were well characterized in sporadic 

cases of AML. Submicroscopic deletion of 5q was recently identified in a patient with 

MDS presenting with normal karyotype resulting in loss of tumor suppressor CTNNA1 

and HSPA9.
275

 ASXL1frameshift/stop mutation (591*), EZH2 point mutation (R690H), 

RUNX1 frameshift/ stop mutations (c.474dupT and c424_425ins11bp) and TET2 

frameshift/stop mutations (c.1510_1513delAAAA and R1465*) were also detected as 

MDS-associated mutations.
275,276

 RUNX1 mutations are frequently detected in de novo 

AML with noncomplex karyotype and were proposed as clinical biomarkers for disease 

progression of MDS to AML.
277

 Harriet Holme et al
278

 reported genetic categorization of 

27 families with familial MDS/AML, revealing heterozygous mutations in the GATA2 

gene (c.121C>G p.Pro41Ala; c1187G>A p. Arg396Gln and c1061C>T, p.Thr354Met), 

TERT mutations, TERC mutations and RUNX1 mutation. There are also MDS/AML 

cases with unidentified mutations. One or many of the mutations mentioned above may 

be required for the complete MDS/AML transformation in our HOXB4 and sPrdm16 

transplanted animals, missing which led to delayed onset of the leukemias.  

 

 

Repression of Prdm16 may promote cell enter cell cycle and facilitate HOXB4-

mediated HSC expansion 

 

Expansion of HSCs requires HSCs to enter cell cycle. PRDM16 shared high 

similarity of MDS1/EVI1protein, suggesting the PRDM16 may share similar mechanism 

how MDS1/EVI1 regulate HSC self-renewal can. MDS1/EVI1 was shown to be negative 

cell cycle regulator, loss of which led to increased proportion of active dividing HSCs 

and HSC exhaustion.
218

 Endogenous Prdm16 is highly expressed in quiescent LT-HSCs 

and loss of Prdm16 increased the proportion of HSCs undergoing active cell 

division.
215,216

  We detected marked repression of Prdm16 in HOXB4-HSCs. It is 
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possible that HOXB4 represses Prdm16 to release HSCs from cell cycle arrest state. 

When sPrdm16 expression is sustained in HOXB4 expressing cells, HSC proliferation 

can be suppressed, which results in reduced phonotypical and functional HSCs number 

observed in this study, supporting the hypothesis that repressing Prdm16 in HOXB4 

expressing cells is required for HOXB4-mediated HSC expansion. Loss of Prdm16 also 

induces apoptosis/cell death in HSCs.
215,216

 Repression of Prdm16 by HOXB4 can be a 

mechanism to induced apoptosis in unwanted proliferating HSCs, which is contradict to 

our previous finding that HOXB4 indeed protects hematopoietic progenitors from 

apoptosis. Although how HOXB4 downregulates Prdm16 in transplanted mice is 

unknown, but it is clear sustained expression of sPrdm16 decreased HSC frequency in 

HOXB4 transplanted mice. In conclusion, repression of Prdm16 is required for HOXB4-

mediated HSC expansion in vivo. 

 

 

Future Directions 

 

HOXB4-mediated HSC expansion is an interesting topic. Findings of our study 

revealed the unique regulation of Prdm16 by HOXB4 during HSC expansion in vivo. 

Considering the limitations discussed above, several experiments can be carried out to 

improve this study. 

 

Our study showed significant downregulation of Prdm16 by HOXB4 in 

transplanted mice. To address the question how HOXB4 downregulates Prdm16, ChIP 

assay can be performed. We have generated HOXB4-dependent myeloid cell line. This 

cell line contains Gr1
-
Mac1

-
FcɛR- 

primitive population which demonstrated HOXB4-

dependent proliferation and myeloid progenitor self-renewal capacity. We have 

conducted ChIP assay using I12 HOXB4 monoclonal antibody and HOXB4 protein 

enrichment was nicely achieved. However, ChIP-seq data showed low signal-to-noise 

ratio which makes peak calling impossible. High noise can be due to low specificity of 

the HOXB4 antibody or non-stringent washing condition, both can be improve by 

changing to a ChIP-grade antibody and more stringent washing solution. But non-specific 

binding of HOXB4 to mouse genome due to high expression level of HOXB4 by 

overexpression vector can also contribute to the high noise. Lower the protein expression 

by switching to weak promoter probably can decrease the noise. 

 

As mentioned above another question is not answered by our study is how 

downregulation of Prdm16 contributes to the HSC expansion in HOXB4 transplanted 

mice. Given the fact that loss of Prdm16 release HSC into cell cycle,
215,216

 repression of 

Prdm16 can set HSC at active proliferation state, thus allowing HSC expansion. To test 

the hypothesis, cell cycle analysis can be done on HSC compartment of HOXB4 and 

sPRDM16 co-expressing cells and we predict higher proportion of G0 cells in HOXB4 

and sPRDM16 double positive HSCs than HOXB4 single positive HSCs. 

 

Prdm16 was claimed as a hematopoietic stem cell regulator.
216

 Mechanistic 

studies regarding its role in hematopoietic specification and HSC maintenance are 

lacking. Numerous studies have identified molecular mechanism of Prdm16-mediated 
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brown fat maturation, including complex elements, upstream regulators and downstream 

pathways. Prdm16 was also reported to maintain heterochromatin integrity through its 

H3K9me1 methyltransferase activity. As one of the long-term directions, molecular 

interaction of Prdm16 with other factors and involvement of Prdm16 in epigenetic 

modification during embryonic and adult hematopoiesis can be explored, findings of 

which will provide great insight of HSC biology. 

 

Our study showed that oncogenic HOXA9 and HOXA10 upregulated Prdm16 up 

to about 50 fold compared with HOXB4 in HSC compartment, suggesting aberrant 

expression of Prdm16 could be a major player in HOXA9 or HOXA10-associated 

leukemia initiation or maintenance. If so, overexpression of HOXA9/10 in Prdm16 null 

HSCs but not WT HSCs will not lead to leukemia. It will be exciting to confirm the role 

of Prdm16 and identify Prdm16 pathway in HOXA9/10-asscoiated leukemia. Drug 

screening can be conducted to identify promising compounds targeting Prdm16 pathway 

associated with HOXA9/10 leukemia. 
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