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ABSTRACT 
 
 
 Currently used treatment strategies for tuberculosis (TB) involve administration 
of multiple drug combinations for a minimum of 6-9 months. However, these prolonged 
regimens do not always achieve sterilization, as evidenced by post-therapy relapse in a 
subgroup of treated individuals. In an effort to develop novel therapeutic agents for TB a 
new class of chemical agents, nitrofuranylamides, is being developed at the University of 
Tennessee Health Science Center. We hypothesized that the application of an iterative 
pharmacokinetics and pharmacodynamics (PK/PD) guided approach would facilitate the 
optimization of nitrofuranylamide lead compounds suitable for further development.  
 
 First, we examined the biopharmaceutic properties and preclinical PK of 
nitrofuranylamide lead compounds. The first tested lead compound, Lee 562, exhibited a 
high systemic clearance, short terminal half-life, and low oral bioavailability of 15.9%. 
These observations were further supported by the poor metabolic stability of Lee 562. 
Thus, two second generation follow-up compounds, Lee 878 and Lee 952 were tested 
that included structural modifications for increased metabolic stability. Both compounds 
showed improved metabolic stability compared to Lee 562. As expected, this in vitro 
observation translated into an increased in vivo stability (lower plasma clearance) of Lee 
878 compared to Lee 562 and Lee 952, with a 20- and 10-fold higher systemic exposure, 
respectively. As a consequence, oral bioavailability of Lee 878 reached ~27% compared 
to 16% for Lee 952 and Lee 562. We then tested a new set of nine third generation 
compounds for microsomal metabolic stability to guide selection of a stable compound 
with even higher oral bioavailability. From this panel Lee 1106 was selected for further 
PK evaluation in rats. Lee 1106 exhibited favorable PK properties such as a low systemic 
clearance and a long terminal half-life. However, oral bioavailability of Lee 1106 was 
poor (4.6%). Biopharmaceutic evaluation of the compound showed that the compound 
has poor aqueous solubility and a high clogP. Further, the plasma protein binding of the 
compound was found to be high underlining the hydrophobicity of the molecule. Based 
on these results, a PK guided screening paradigm was developed for optimization of the 
nitrofuranylamide lead compounds.  
 
 In order to add pharmacodynamic considerations to the lead optimization 
approach, we developed a novel in vitro PK/PD model and validated the model by 
studying the activity of a first line anti-TB drug, isoniazid (INH) against M. bovis BCG as 
a model organism. M. bovis BCG in the model was treated with multiple doses of INH 
mimicking concentration-time profiles encountered during multiple dosing in vivo. The 
time-kill data was analyzed using a semi-mechanistic PK/PD model that included an 
adaptive IC50 function for explaining the re-growth of bacteria observed over the course 
of treatment. The PK/PD model was able to describe the data well. The PK/PD index 
AUC0-24/MIC was found to be the most explanatory of antimicrobial effect of INH. These 
findings are in agreement with the previously published studies and suggest that the in 
vitro PK/PD model can be used for assessing the antimycobacterial activity of lead 
compounds.  
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 Thus, the in vitro PK/PD model was subsequently applied to establish time-kill 
curves for dosing regimens of lead compound Lee 1106. Lee 1106 showed exposure-
dependent killing of M. bovis BCG. A semi-mechanistic PK/PD model was developed to 
describe the Lee 1106 mediated killing of bacteria. The model was subsequently used for 
numerical simulation experiments to predict the killing effect of different untested 
multiple dose regimens of Lee 1106 in mice. It was found that the once daily regimen is 
most adequate for further studies in the mouse model of TB. The information gained 
from the PK/PD evaluation and the simulation experiments illustrate the utility of the 
PK/PD guided approach for the selection of compounds with favorable properties for a 
high likelihood of in vivo efficacy.  
 
 In summary, we have successfully developed an iterative PK/PD guided process 
for lead optimization of nitrofuranylamides that uses a set of biopharmaceutic, 
pharmacokinetic and pharmacodynamic evaluations as criteria for compound and dose 
selection to move to subsequent development levels. 
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CHAPTER 1.  INTRODUCTION* 
 
 

Tuberculosis and Drug Development 
 
 Tuberculosis (TB) is a chronic, air-borne infectious disease caused by 
Mycobacterium tuberculosis (M.tb). According to the World Health Organization 
(WHO), one-third of the world population is currently infected with TB, and 
approximately 10% of these individuals are expected to develop active TB at some point 
in their lifetime. TB emerged as a leading killer among HIV-infected people with 
declined immune function. A quarter of a million TB deaths are HIV associated. The 
majority of TB deaths occurs in the developing world (countries of Latin America, Asia, 
and Africa), affecting mostly young adults in their most productive years which creates 
an adverse impact on global economics [1].  
 
 Currently used treatment strategies involve administration of multiple drugs for a 
minimum of 6 to 9 months. However, this prolonged regimen does not always achieve 
sterilization, as evidenced by post-therapy relapse in a subgroup of treated individuals 
[2]. Development of resistance to treatment is a hallmark of TB. The prevalence of multi-
drug resistant tuberculosis (MDR-TB) is very high in underdeveloped nations due to lack 
of adherence to therapy. Treatment of MDR-TB is 100 times costlier than drug sensitive 
TB, increases the duration of therapy and necessitates the use of more toxic second-line 
drugs [1]. MDR-TB is present in all 109 countries recently surveyed by the WHO and the 
incidence rate of MDR-TB and XDR-TB (Extensively Drug Resistant TB) is increasing 
worldwide.  MDR-TB is defined as TB resistant to the main first-line drugs, isoniazid and 
rifampicin. XDR-TB is defined as TB with MDR resistance as well as resistance to any 
one of the fluoroquinolone drugs and to at least one of the three injectable second-line 
drugs, amikacin, capreomycin or kanamycin. Although the annual incidence rate of TB 
cases in the United States and other industrialized nations is decreasing steadily, the 
increase in incidence rate of MDR and XDR-TB cases is raising concerns regarding 
progress towards the goal of TB eradication in these nations. The rise of MDR and XDR-
TB cases worldwide is also increasing concerns that we may lose control of the spread of 
TB [1, 3].  
 
 Discovery and development of antibiotics in general is in a declining phase due to 
the lack of commercial incentive and the perceived small market potential. This is 
because newly developed antibiotics are often reserved for treating only drug resistant 
bacterial infections which limits their market size [4]. Higher distribution of TB cases in 
the poorest nations of the world and steady decline in the number of TB cases in the 
developed world are further worsening the condition of TB drug discovery research [5]. 
Consequently, there is an urgent need to develop novel, fast acting anti-TB drugs with 
high potency that can provide treatment options for MDR and XDR-TB, reduce the 
 
*This chapter adapted with permission. Budha, N.R., R.E. Lee, and B. Meibohm, 
Biopharmaceutics, pharmacokinetics and pharmacodynamics of antituberculosis drugs. 
Curr Med Chem, 2008. 15(8): p. 809-25 [152]. 
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duration of therapy to improve adherence, and decrease the interaction potential with 
anti-HIV agents. 
 
 Drug discovery research has undergone remarkable changes in the last decade. 
Many new technologies and strategies have been developed and these developments 
resulted in new opportunities for accumulating detailed information about drug 
candidates. Examples include high throughput screening (HTS), combinatorial chemistry/ 
high throughput synthesis of libraries, genomics, proteomics and computational 
approaches [6]. HTS campaigns have produced large numbers of hits that have been 
subsequently optimized into high affinity ligands for many therapeutic targets. However, 
often this has resulted in high molecular weight compounds with poor biopharmaceutic 
and pharmacokinetic properties creating a major bottleneck in drug discovery research. 
Poor pharmacokinetic properties secondary to poor biopharmaceutical and/or 
physicochemical properties are accountable for the majority of failures in early drug 
development [7]. The in vivo activity of anti-infectives is dictated by their intrinsic 
antimicrobial activity and their free, unbound concentration in the target tissue, as only 
free, non-protein bound drug is pharmacologically active. Biopharmaceutic and 
pharmacokinetic properties consequently play a fundamental role in the efficacy of 
antibiotics, as they determine a drug’s rate and extent of absorption as well as its 
disposition and tissue distribution profile. It has become imperative to consider 
biopharmaceutic properties like solubility, permeability and other physicochemical 
properties for increasing the success rate in developing new molecules [8, 9].  This 
approach is now an integral part of most drug development programs [10-12]. 
 
 In the following sections, we discuss the properties of a desirable TB target, the 
targets of current TB drugs, focus on important biopharmaceutic, pharmacokinetic, and 
pharmacodynamic properties desirable in antitubercular drug development, and provide a 
brief account on the properties of antimycobacterial medications in use and under 
development. 
 
 

Attributes of an Ideal TB Drug Target 
 
 It is quite likely that there exists no single ideal target for tuberculosis therapy, 
rather tuberculosis should be viewed as an atypical infection with multiple 
subpopulations of bacteria showing differential drug sensitivity that may need to be 
targeted by a combination of different drugs. Currently it is believed that the most 
important subpopulations to be targeted by new anti-tuberculosis agents are actively 
growing and persister populations (bacterial cells that neither grow nor die in the 
presence of antibiotics). Thus, activity against all the subpopulations is a prerequisite for 
successful eradication. In order for a TB target to be ‘druggable’ it should be essential for 
the bacterium’s survival, have a fully elucidated function, be amenable to a high 
throughput functional assay, and have no close human ortholog such that specific 
inhibitors can be generated [13]. The properties of current TB drug targets in relation to 
the outlined attributes for an ideal target are provided in Table 1-1. Desirable properties 
of a TB drug target are described in the following [14].  



Table 1-1.  Existing Anti-Tuberculosis Drug Targets. 
 

Drug Target Essentiality Bactericidal 
Activity 

Sterilizing 
Activity 

Uniqueness/ 
Selectivity 

Spectrum of 
Activity Testability 3D 

Structure Validity References

Isoniazid 
Multiple targets including 
acyl carrier protein 
reductase (InhA) 

+++ +++ + +++ Narrow None Available +++ [18, 19] 

Rifampicin RNA polymerase β 
subunit +++ +++ +++ +++ Medium None Available +++ [20] 

Pyrazinamide Membrane energy 
metabolism +++ + +++ +++ Narrow None Not 

available +++ [21] 

Ethambutol Arabinosyl transferase +++ ++ + +++ Narrow None Not 
available +++ [22] 

Streptomycin Ribosomal S12 protein 
and 16S rRNA +++ + + +++ Broad None Available +++ [23] 

Kanamycin 16SrRNA +++ ++ ++ +++ Broad None Available +++ [24, 25] 
Moxifloxacin DNA gyrase +++ +++ ++ ++ Broad None Available +++ [26] 

Ethionamide Acyl carrier protein 
reductase (InhA) +++ ++ + +++ Narrow None Available +++ [18, 19] 

PAS Thymidylate synthase +++ + + ++ Medium Currently 
unknown Available +++ [27, 28] 

Cycloserine D-alanine racemase +++ + + ++ Medium Currently 
unknown Available +++ [29] 

Thiacetazone Currently unknown +++ + + +++ Narrow None Currently 
unknown +++ [30, 31] 
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• Essentiality – desired target should be essential for bacterial growth (in vitro as 
well as in vivo), metabolism and viability. Inactivation of target should result in 
immediate bacterial death or inability to persist. Target enzyme/protein encoding 
gene should belong to a highly conserved region in the bacterial genome. 

• Bactericidal activity – target inhibition should result in rapid killing of actively 
growing bacteria. 

• Sterilizing activity – target inhibition should result in killing of dormant/persistent 
bacterial population and reduce the duration of therapy. 

• Uniqueness/selectivity – desired target should not contain a direct mammalian 
ortholog for target specificity and avoiding host toxicity.  

• Narrow spectrum of activity - corresponding target should not be available in 
other bacterial species to avoid emergence of drug resistance to TB because of 
inadvertent use of antibacterial in other infections and to avoid GI side effects 
from overgrowth of resistant gut flora during prolonged therapy.  

• Testability – the effect of inhibiting a target should be easily testable i.e., a test 
system should be available for screening purposes. The target should be amenable 
to whole-cell or cell free high throughput screening format. 

• Availability of 3D structure – X-ray crystal or NMR structural information should 
ideally be available to guide optimization of the emerging leads. 

• Validity – target should have extensive validation such that the active site is 
‘druggable’ i.e., that suitably sized small molecule inhibitors with drug like 
properties can bind to it efficiently blocking enzyme function, and that the target 
can thus be used with confidence for developing drug candidates. 

 
 

Different Targets Available for TB Therapy: Old and New 
 
 Most of the currently used anti-TB drugs were discovered serendipitously by 
screening compounds for anti-tuberculosis properties [15]. For instance, isoniazid (INH) 
was discovered after observing the growth inhibiting property of its precursor molecule, 
nicotinamide. Similarly, pyrazinamide would not have been discovered had it not been 
tested directly in animals, an approach that would be highly unusual today [16]. Prior to 
the determination of the sequence of the M.tb genome [17], most of the screening 
activities in TB research relied on a small number of existing targets and whole cell 
screening. The determination of the M.tb genome sequence revealed a multitude of 
potential targets, which at the time was hailed as a great breakthrough. However, no new 
drug candidates have come from new genomically derived targets due to a variety of 
reasons. First, validation of a target is time-consuming with many components such as, 
demonstration of biochemical activity of the enzyme and confirmation of essentiality of 
the target, which is particularly laborious for M.tb. Secondly, M.tb has a characteristic 
lipophilic cell wall and intracellular penetration is essential for activity for most targets. 
Thus, compounds that show activity in cell free biochemical screens often are not active 
in live bacteria as they cannot penetrate the cell wall. This is particularly true when the 
enzyme target has a polar active site, such as many important metabolic enzymes that 
would otherwise be ideal targets.  Finally, compounds showing activity in whole cell 
screening against rapidly growing TB are often not active against persistent forms of TB 
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i.e., latent TB infection. Some of the most important targets, old and new, available for 
TB drug discovery are reviewed briefly in the following section. Detailed reviews on 
various TB targets are provided elsewhere [24, 32-34].  
 
 
Cell Wall Biosynthesis  
 
 M.tb has a unique, complex cell wall structure. It consists of three covalently 
linked macromolecules, peptidoglycan, arabinogalactan, and mycolic acids. 
 

• Enoyl carrier protein reductase (InhA): Enzymes of the mycobacterial fatty acid 
biosynthesis pathway, the FAS II complex, are responsible for the biosynthesis of 
mycolic acids [35]. Mycolic acids are branched β-hydroxy fatty acids composed 
of an intermediate length (C24-C26) saturated α-chain and a longer (>C50) 
meromycolate chain that contains characteristic functional moieties. Enoyl carrier 
protein reductase (InhA) is the enzyme of the FAS II complex that catalyzes the 
final step in the elongation of mycolic acids [18]. The anti-TB drugs INH and 
ethionamide both act by inhibiting this enzyme, but via different mechanisms.  
Recently, a new generation of promising biphenyl InhA and Fab I inhibitors have 
been developed that do not require prodrug activation [36]. 

• Arabinosyl transferases are responsible for synthesis of the unique 
arabinogalactan component of mycobacterial cell wall [22]. The anti-TB drug 
ethambutol acts by inhibiting this pathway. Recently, a novel enzyme, 
arabinofuranosyl transferase (AftA), has been identified that catalyzes the addition 
of the first key arabinofuranosyl residue to the galactan domain of the cell wall, 
thus priming the galactan for further elongation [37]. This enzyme and others in 
the arabinogalactan biosynthesis pathway have been found essential for growth 
and could serve as potential targets for drug discovery [38-40]. 

• D-alanine racemase (Alr) catalyzes the first committed step in the bacterial 
peptidoglycan biosynthesis. Peptidoglycan is a structural component of most 
bacterial species including mycobacteria. The second-line anti-TB drug 
cycloserine exerts activity by inhibiting this enzyme [29]. 

 
 
Nucleic Acid Synthesis 

 
• RNA polymerase is responsible for transcribing RNA from DNA. The β-subunit 

of this enzyme is the target of the first-line anti-TB drug rifampicin and other 
drugs in the rifamycins class [20]. 

• DNA gyrase (Topoisomerase IV) is responsible for unwinding the DNA supercoil 
for replication and transcription [26]. Drugs belonging to the fluoroquinolone 
class such as moxifloxacin and ciprofloxacin act by inhibiting this enzyme and 
show good anti-tuberculosis activity [41]. 
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Protein Biosynthesis 
 

 Streptomycin, an aminoglycoside antibiotic, acts by interfering with protein 
synthesis. The site of action is at ribosomal protein S12 (rpsL) of the 30S subunit of the 
ribosome,  and 16S rRNA (rrs) in the protein synthesis [23]. The other drugs in the class, 
kanamycin, amikacin and capreomycin also exhibit similar action by inhibiting 16S 
rRNA in protein synthesis [24].  Linezolid, which belongs to the new orally active 
oxazolidinone class of antibiotics, inhibits protein synthesis at the early stage by binding 
to the 50S subunit of the 23S ribosomal RNA and has shown promising anti-tuberculosis 
activity [42]. 
 
 
Co-factor Biosynthesis  

 
 Folate derivatives are cofactors utilized in the biosynthesis of essential molecules 
such as purines, pyrimidines and amino acids. Bacteria synthesize these folate cofactors 
via a de novo pathway. Dihydrofolate reductase and dihydropteroate synthase are the two 
enzymes involved in the folate biosynthesis that have been the targets for antibacterial 
drug discovery for many years. Para-aminosalicylic acid (PAS), an anti-TB drug, is 
thought to have activity on dihydrofolate reductase [27, 32]. 
 
 
Miscellaneous Targets 

 
• Pyrazinamide, a first-line anti-TB drug, exhibits activity only in vivo. It is thought 

to act by de-energizing the proton motive force of the membrane that affects 
membrane transport [21]. 

• TMC207 (R207910), a novel diaryl quinoline analog in development, acts by 
inhibiting ATP synthase, a novel target for TB drug discovery [43]. 

• Isocitrate lyase (ICL), an enzyme in the glyoxylate pathway that allows the net 
synthesis of dicarboxylic acids from C2 compounds such as acetate, has been 
found essential for the survival of persistent TB organisms [44] and because of 
this feature ICL is viewed by many as an important target for future anti-TB drug 
discovery. 

• Other targets that are being explored as novel drug targets include proteins 
involved in amino acid biosynthesis, regulatory proteins, proteins involved in 
stringent response, and enzymes involved in terpenoid biosynthesis [32]. 

 
 

Ideal Properties of an Anti-TB Drug 
 
 Desirable properties for a new drug are determined by unmet needs. The 
objectives of a newly developed antitubercular therapy are threefold [15]: 
 

• The newly developed TB treatment should reduce the duration of therapy and the 
number of doses needed to be taken per day. 
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• The newly developed TB treatment should provide treatment options for 
multidrug resistant tuberculosis (MDR-TB) and extensively drug resistant 
tuberculosis (XDR-TB) that are not otherwise treatable with an existing therapy. 

• The newly developed TB treatment should provide treatment options for latent 
TB infections and should be able to eradicate its existence in low-incidence 
countries. This is an important requirement as one-third of the world’s population 
is currently infected with TB and reactivation to an active TB could occur when 
the immune system is weakened. 

 
 As stated earlier, the in vivo activity of anti-infectives is dictated by their intrinsic 
antimicrobial activity and their free, unbound concentration in the target tissue, which is 
determined by its biopharmaceutic and pharmacokinetic properties. Desirable 
characteristics of a new TB drug from the biopharmaceutic, pharmacokinetic and 
pharmacodynamic point of view are discussed in the following [15].  
 
 
Biopharmaceutic Properties  
 
 TB calls for chronic therapy. Accordingly, patient adherence to the dosing 
regimen is crucial to the success of therapy as well as to prevent emergence of drug 
resistance. Oral administration is the route of choice for TB drugs due to its ease of 
administration and good patient adherence.  Consequently, high oral bioavailability is 
imperative for a new TB drug. Aqueous solubility and gastrointestinal permeability are 
two important prerequisites for high oral bioavailability. Further, the compound should 
also have sufficient physical and chemical stability to ensure a long shelf-life. In addition, 
the compound should not have any physical or chemical incompatibility with other TB 
drugs used in combination regimens. 
 
 
Pharmacokinetic Properties 
 
 The compound should allow less frequent dosing (once a day or once weekly) 
than current regimens for improved patient adherence. Accordingly, a new TB drug is 
required to have a long elimination half-life.  In addition, a new TB drug should be 
devoid of drug interaction potential with the other drugs used in TB as well as drugs used 
to treat comorbid conditions such as HIV infection. The compound should not have high 
protein binding, which could limit the free fraction available for drug action. 
 
 
Pharmacodynamic Properties 
 
 A new TB drug is expected to have activity against actively replicating and 
persistent populations of mycobacteria in intracellular and extracellular environments. 
Activity against dormant/persistent bacteria facilitates shortening of the duration of 
therapy. The compound should provide treatment options for MDR-TB and XDR-TB. 
The compound should prevent emergence of drug resistance either alone or in 
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combination therapy. In addition, the compound should not produce cross-resistance to 
other antibiotics. This could be achieved provided the compound has a novel mechanism 
of action.  A new TB drug is also expected to treat latent TB (LTB). The compound 
should have no acute or long-term toxicity. This is an important feature for a new TB 
drug since TB drugs usually are taken for much longer durations than normal antibiotic 
therapies. The compound should not produce drug-comorbid disease interactions.  
Thiacetazone, for example, produces severe cutaneous hypersensitivity reactions in HIV 
infected populations [45]. 
 
 
Biopharmaceutic, Pharmacokinetic, and Pharmacodynamic Properties of Anti-TB 

Drugs 
 
 
Biopharmaceutics 
 
 Biopharmaceutics is concerned with the relationship between physicochemical 
properties of drug molecules and its dosage forms on the rate and extent of drug 
absorption. The most important biopharmaceutical/physicochemical properties that 
influence the rate and extent of absorption of drugs are solubility and permeability [46-
48]. Other important parameters include lipophilicity, charge state (pKa) and stability in 
gastrointestinal fluids [6, 49, 50].  
 
Solubility 
 
 Solubility is a key property for the absorption of orally administered drugs. A 
compound is conventionally classified as highly soluble when the largest dose of the 
compound is soluble in less than 250 mL water over a pH range from 1.0 to 7.5. ‘Soluble’ 
compounds have a solubility range of greater than or equal to 33 mg/mL. ‘Sparingly 
soluble’ compounds have a range from 10-33 mg/mL, ‘slightly soluble’ compounds from 
1-10 mg/mL, and ‘very slightly soluble’ compounds from 0.1-1 mg/mL.  Compounds 
with solubility below 1 mg/mL are classified as ‘practically insoluble’. Sparingly soluble 
compounds are frequently difficult to formulate into oral dosage forms that promote the 
bioavailability of the active ingredient. 
 
Permeability 
 
 Permeability is another key biopharmaceutical property that depicts the ability of 
a molecule to cross biological membranes, which in turn largely affects its uptake and 
disposition in the body. The rate and extent of absorption of a drug after oral 
administration is dependent upon the concentration of drug in the intestinal lumen and 
permeability of the intestinal mucosa provided the drug is not degraded or metabolized in 
the gut.  Aqueous solubility of above 50 μg/mL is acceptable for a compound that has 
mid-range permeability and an average potency of 1 mg/kg in most preclinical drug 
development programs. pKa, the negative logarithm of acid dissociation constant of a 
molecule, provides a perspective on the acidic or basic nature of a molecule and is useful 
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to calculate the extent of ionization of a molecule in an aqueous environment. In practical 
terms, the unionized molecule exists for acids 2 pH units below and for bases 2 pH units 
above its pKa.  Degree of ionization affects the lipophilicity of a molecule, and 
eventually affects permeability and many other physicochemical properties. Amidon et 
al. proposed a biopharmaceutics classification system (BCS) under which drugs can be 
categorized into four groups according to their solubility and permeability properties 
[46]. Drugs with high solubility and high permeability are grouped into class I, low 
solubility and high permeability into class II, high solubility and low permeability into 
class III, and low solubility and low permeability into class IV. Drugs falling under class-
I are considered ideal and those falling under II and III exhibit solubility and permeability 
limited absorption, respectively. Drugs falling under class IV are not desirable as they are 
difficult to be developed as orally active molecules. Currently used antitubercular agents 
are classified according to the BCS in Table 1-2 [46]. Ideally, the classification of drug 
solubility should be based on the experimental solubility values and permeability 
classification on the experimental human jejunal permeability data or well-defined mass 
balance studies. Since the experimental permeability data is not readily available for most 
of the drugs, permeability classification was done in this review based on the n-octanol-
water partition coefficient (logP). Compounds having a dose number (D0) ≤1 (D0 = 
maximum dose strength (mg)/[250 x solubility (mg/mL)]) are considered as highly 
soluble and those having an n-octanol-water partition coefficient (logP) values of above 
1.72 are considered as highly permeable compounds [51]. 
 
 
Pharmacokinetics 
 
 Pharmacokinetics (PK) describes the time course of absorption, distribution, 
metabolism and excretion of drug substances in the body. In essence, pharmacokinetics 
describes ‘what happens to a drug molecule in the body’ [52]. The utility of 
pharmacokinetics lies in determining the best way to administer a drug to achieve its 
therapeutic objective. PK parameters of first-line and second-line anti-TB drugs are given 
in Table 1-3. 
 
Absorption 
 
 The process of in vivo drug absorption is a complex phenomenon involving 
several mechanisms. The principal mechanisms of drug absorption include passive 
diffusion (transcellular and paracellular) and carrier-mediated transport (active transport 
and facilitated diffusion). Physicochemical properties such as solubility, lipophilicity, 
charge state (extent of ionization) and stability, and physiological conditions such as 
gastric emptying time, intestinal transit time and gastrointestinal pH influence the 
absorption of drug molecules across the gastrointestinal mucosa. En route to systemic 
circulation, a drug has also to cross ‘metabolic barriers’ such as first-pass intestinal and 
hepatic metabolism. The ‘metabolic barriers’ coupled with the physicochemical barriers 
determine the extent of drug absorbed from a given oral dose. 
 



Table 1-2.  Biopharmaceutic Properties of Anti-Tuberculosis Drugs. 
 

Drug MW 
Maximum 

Dose Strength 
(mg) 

Aqueous 
Solubility 
(mg/mL) 

Dose Number 
(D0) 

LogP pKa BCS 
Class References 

Isoniazid 137.1 300 140 0.009 0.64 2.0, 3.6 and 
10.8 3 [51, 53] 

Rifampin 823.0 300 0.1 (2.8*) 12 3.72 1.7 and 7.9 2 [51, 54, 55] 
Pyrazinamide 123.1 400 15 (26.5$) 0.107 -1.41 0.5 3 [51, 54] 
Ethambutol.2HCl 277.2 400 100  0.016 0.06 6.6 and 9.5 3 [51, 56] 
Streptomycin 581.6 500 >20 N/A -8.005 na N/A [51, 54, 57] 
Kanamycin 484.5 500 Freely soluble N/A -7.936 na N/A [51, 54, 58] 
PAS 153.1 4000 1.67 9.58 1.012 2.015 4 [51, 54, 59] 
Cycloserine 102.1 500 100 0.02 -1.631 na 3 [51, 54, 60] 

Ethionamide 166.2 500 Practically 
insoluble >20 0.705 na 4 [51, 54] 

Ciprofloxacin. HCl 331.3 750 10 0.3 1.335 6.09 3 [51, 54] 
Ofloxacin 361.4 400 28.3 0.0056 1.268 na 3 [51, 54] 
Linezolid 337.3 600 3 0.8 0.232 na 3 [51, 54] 
Moxifloxacin 401.4 400 na na 2.033 na na [51, 54] 
Gatifloxacin 375.4 400 40-60 0.04-0.027 1.801 na 1 [51, 54] 
Metronidazole 171.2 500 10 0.2 -0.262 na 3 [51, 54] 

 
 * Solubility at pH 7.5. 
 $ Solubility at temperature 38°C. 
 N/A: Not applicable (administered by intramuscular injection). 
 Dose number (D0) is calculated using the formula, D0= Maximum dose strength (mg)/[250 (mL)* solubility (mg/mL)]. 
 LogP: n-Octanol-water partition coefficient. 
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Table 1-3.  Pharmacokinetic Parameters of Anti-Tuberculosis Drugs. 
 

Drug Dose  
(mg) F t1/2  

(hr) 
Protein 
Binding 

Tmax  
(hr) 

Cmax 
 (mg/L) 

Clearance
(L/hr) 

Volume of 
Distribution

Vd (L) 

%Excreted 
Unchanged 

in Urine 
References

2-4.5 (Slow) 22.7-39.5 a 5-9# Isoniazid 300 - 
0.75-1.8 (Fast)

Negligible 1-2 3-5 
11-20.2 a 36.4-57.4a 

24-34# 
[61-63] 

Rifampicin 600 90-95% 2-5 60-90% 1.5-2 3-10 8-21.42 b 55 4-10 [31, 61-65] 
Ethambutol 800 70-80% 3-4 6-30% 2-4 2-5 32.8-39.5 19-21 75-80 [61-63] 
Pyrazinamide 1000 >70% 10-24 5-10% 2 45-65 0.84-9.66 c 40-52c 4-14 [61-63] 
Ethionamide 250 >90% 2-3 30% 1-3 2.16 na 93.5d 1 [61-63] 
Thiacetazone 150 na 4 ~95% 4-5 1.6-3.2 na na 42 [61-63] 

Free Acid 4000 3-4  41-68 
PAS Sodium Salt 

4000 
na 2-3 15% 

0.5-1 76-104 
na 7.4 30 [61-63] 

Cycloserine 750 70-90% 10 na 3-4 20-35 na 8-18 70 [61-63] 
Streptomycin* 1000 - 2-4 35-57% <1 50-60 na 76-115 90 [61-63] 
Kanamycin* 1000 - 2-3 Negligible <1 20-35 na 13-28 99 [62] 
Rifapentine 600 na 14-18 98% 5-6 8-30 na na <10 [61, 64] 
Ciprofloxacin 750 70% 4 20-40% 1-2 4.3 18e 260 40-50 [66, 67] 
Ofloxacin 600 85-95% 3-7 20-30% 1-2 10 na 90 75 [66-68] 
Moxifloxacin 400 86-92% 12-14 26-50% 1-3 2.5-5 9.1-11.6 119-189 20 [66, 69] 
Gatifloxacin 400 96% 7-14 20% 1-2 2.33-3.59 11.4 126 >70 [66, 70] 
Linezolid 600 ~100% 4.5-5.5 31% 1-2 9-16 6-12 40-50 30 [71] 

 
  *Streptomycin and kanamycin are administered intramuscularly. 
  # Includes unchanged drug and metabolites (hydrazones). 
  a Vss/F and CL/F reported. 
  b CL/F. 
  c Varea/F and CL/F reported. 
  d V/F reported. 
  e CLrenal reported. 
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Distribution 
 
 Once drug has entered the vascular system, it gets distributed throughout the 
various tissues and body fluids. However, most drugs do not distribute uniformly and 
similarly throughout the body. The differences in tissue distribution of drugs can be 
attributed to differential tissue affinity, blood flow to tissues, ability to cross 
biomembranes and physicochemical properties (lipophilicity and extent of ionization). 
Many drugs interact with body components such as proteins and other macromolecules. 
Binding to protein structures in the plasma is an important binding process for many 
drugs, and plasma protein binding is a major determinant of drug disposition. It is a well 
known fact that the drug bound to protein is not pharmacologically active, and is 
oftentimes not accessible to drug metabolizing enzymes (e.g. in the liver) and excretion 
processes of organs such as kidneys and lungs.  Furthermore, binding to proteins also 
restricts the mobility of drug across biomembranes. On the contrary, free drug is relevant 
for the pharmacological effects as it can interact with pharmacologic target structures, 
can be metabolized and excreted, and may pass biomembranes. Thus, only free drug 
concentrations are of therapeutic interest. 
 
Metabolism 
 

Metabolism/biotransformation and excretion are the two major pathways of drug 
elimination from the body. In general, metabolizing enzymes convert drugs into more 
polar molecules that can easily be excreted by elimination organs such as the kidneys. 
Usually, metabolism results in immediate loss of activity due to changes in lipophilicity, 
polarity etc. that hinders a drug’s access to its site of action. However, biotransformation 
makes some drugs more potent than the parent compounds (bioactivation). Metabolism 
takes place by enzymatic catalysis, predominantly in the liver, but may also occur in 
other body organs and tissues such as plasma, kidneys, lungs and intestines. Diverse 
classes of enzymes are available for elimination of drugs in the body. Based on the 
proportion of drugs and endogenous molecules metabolized, the most important and the 
best-characterized class of drug-metabolizing enzymes is the cytochrome P450 (CYP) 
family [72]. It is involved in the oxidative metabolism of many endogenous chemicals, as 
well as herbal components and drug molecules.  
 
Excretion 
 
 Excretion is referred to as the irreversible removal of drug from the body. 
Although the kidneys are the major organ of drug excretion, drug molecules are also 
excreted from several other organs such as the lungs, the intestines, the skin, and the liver 
via the bile. The major mechanisms of drug excretion in the kidneys include glomerular 
filtration and active tubular secretion. Drugs with small molecular weight are removed by 
glomerular filtration. Their removal, however, is limited to only the free fraction of drug 
in the plasma. Physicochemical parameters such as lipophilicity, solubility, urinary pH 
and ionization status of a molecule play a role in the elimination by the kidneys. 
Lipophilic drugs get frequently reabsorbed by passive diffusion processes summarized as 
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tubular reabsorption. Thus the tubular reabsorption process limits drug excretion by the 
kidneys. 
 
 Tubular secretion in the kidneys as well as biliary secretion in the liver are active 
transporter-mediated elimination processes. Active drug transport across biomembranes 
has recently been identified playing a major role in drug absorption, distribution and 
elimination processes. The human MDR1 gene product, p-glycoprotein, has been 
described as a major determinant of pharmacokinetics of numerous drugs. Other 
transporters such as multidrug resistant proteins in the liver, MRP1 and MRP2, are also 
involved in the elimination of numerous drug molecules and their metabolites. In the 
kidneys, active tubular secretion is largely mediated by a series of organic cation (OCT) 
and anion (OAT) transporters. 
 
 A brief discussion of key PK parameters is provided in the following for a better 
understanding of their implications in drug development and pharmacotherapy: 
 
Bioavailability (F) 
 
 Oral bioavailability of drugs is defined as rate and extent to which a drug is 
absorbed and becomes available in the systemic circulation. Extent of oral bioavailability 
(F) of a drug molecule is expressed as the fraction of the orally administered dose relative 
to an intravenous dose that gets absorbed into the systemic circulation. F ranges from 0 
(0% absorption) to 1 (100% absorption). The absolute oral bioavailability (F) is of great 
interest as it determines the dose to maintain concentrations sufficient for effective 
pharmacotherapy.  
 
Clearance (CL) 
 
 Clearance is a measure of drug removal efficiency from the body. In general, 
more than one organ contributes to the elimination of drug from the body and total 
clearance of a drug is the sum of all elimination organ clearances. Clearance is a 
fundamental pharmacokinetic property. It determines exposure to a given drug dose and 
consequently determines (together with F) the dose of a drug to achieve effective 
pharmacotherapy. Also, clearance is a determinant of the elimination half-life of a drug 
and consequently, determines together with volume of distribution the frequency of drug 
administration.  
 
Volume of Distribution (Vd) 
 
 The volume of distribution relates the amount of drug in the body to the plasma 
drug concentration. The magnitude of Vd indicates whether the drug is residing largely 
within or outside the vascular space. Vd is also a fundamental pharmacokinetic property. 
Together with clearance, it determines elimination half-life of the drug and consequently, 
frequency of drug administration.  
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Half-life (t½) 
  
 The elimination half-life (t1/2) of a drug is the time required for elimination of half 
of the bioavailable dose. It is a derived pharmacokinetic parameter and is determined by 
the two fundamental parameters of drug disposition, clearance and volume of 
distribution. 
 

CL
Vt d×

=
693.0

2/1  

 
 The elimination half-life of a drug determines the frequency of drug 
administration. Together with the extent of bioavailability (F) and clearance (CL), it 
determines the dosage regimen for effective pharmacotherapy. 
 
 
Pharmacodynamics 
 
 Pharmacodynamics (PD) is defined as the intensity of a drug effect in relation to 
its concentration in the body. In general, pharmacodynamics is what the drug does to the 
body [52]. However, antimicrobial pharmacodynamics is what the drug does to the 
pathogen residing in the host organism.  
 
Measures of Anti-Tuberculosis Activity 
 
 The minimum inhibitory concentration (MIC) and the minimum bactericidal 
concentration (MBC) have been the major pharmacodynamic parameters used to quantify 
the activity of an antimicrobial agent against the infecting pathogen. The MIC is defined 
as the lowest drug concentration that inhibits growth of microorganisms after 16-20 h of 
incubation with a standard inoculum (1-5 x 105 CFU/mL) [73]. The MBC is defined as 
the drug concentration that produces 99.99% killing of the initial inoculum.  The MIC 
and the MBC are in vitro measures of antimicrobial’s efficacy. In vivo measures of 
antitubercular activity include early bactericidal activity (EBA) and sterilizing activity of 
a drug. EBA is defined as the rate of fall of colony forming units (CFU/mL) in the 
sputum of patients during the first two days of drug treatment and is expressed as log10 
(CFU/mL)/day. The EBA of a drug reduces the viable counts of bacteria in the patient’s 
sputum rapidly thereby rendering them noninfectious. Sterilizing activity of a drug is 
defined as the ability to sterilize the sputum, caseous granulomas in the lungs and the 
spleen and prevent relapse, i.e., it captures activity against slow growing and persister 
populations of mycobacteria which are responsible for relapse. 
 
In vivo Models of Anti-Tuberculosis Activity 
 
 For the assessment of in vivo efficacy, several animal models of TB have been 
established in a variety of species, including mice, guinea pig, rabbit and non-human 
primates. The choice of animal model must be weighed against the feature of the disease 
captured by the model and careful interpretation of the data obtained from each model is 

 14



warranted. Detailed reviews on various animal models of TB can be found elsewhere [74-
77]. 
 
 The availability of a variety of genetically defined mouse strains as well as their 
ease of manipulation, housing and their low cost made murine models of TB most 
popular among the available models. However, the pathology of disease in murine 
models is markedly different from humans. After aerosol infection, the granulomas 
developed in the lungs are not well-formed structures as opposed to human disease. 
Caseous necrosis and cavity formation that are characteristic of human M.tb infection are 
not observed in the mouse model of TB. During the active TB infection, human lung 
contains an array of granulomas (solid, caseous, necrotic and cavitary) with varying 
numbers of bacteria. In contrast, little or no such heterogeneity is observed in mouse 
lung. During the chronic phase of the disease, unlike humans, high numbers of bacteria 
are found in the lungs and the spleen [74, 76]. Thus, the mouse model is not ideal for 
studying latent TB. However, murine models can be used for evaluation of EBA of novel 
drug compounds and new dosing regimens.  
 
 Recently, interferon-γ (IFN-γ) knockout mouse models have been utilized for 
rapid screening of the efficacy of new drug compounds against TB. Without the 
protective IFN-γ gene, these mice are highly susceptible to the M.tb infection and, 
therefore, the activity of a compound can be seen rapidly when compared to untreated 
controls. This sensitive mouse model requires only 9 days of treatment and a small 
number of animals, which makes it an ideal model for first line testing of TB compounds 
[78]. Wayne showed in his in vitro model of dormancy that the oxygen depleted M.tb 
cultures enter a non-replicating persistence state [79]. Recently, it has been shown that 
animals infected intranasally with oxygen depleted cultures can be used to test against TB 
vaccines [80]. Once optimized, this model also may be used to screen the activity of 
candidate drugs against persistent forms of TB.  
 
 The formation of granulomas and associated caseation in rabbit and guinea pig 
models of TB is closely similar to human disease. Hematogenous spread to uninfected 
lobes occurs in both models. The exponential increase in bacterial numbers in the lungs 
and caseous necrosis during cell mediated immunity in guinea pigs ultimately progress to 
fatal disease within a time frame of several months to a year. Persistent populations of 
bacteria have been observed in the primary lesions. Thus, the guinea pig model may be 
useful to screen new drug compounds against persistent forms of TB [81]. Since rabbits 
are more resistant to M.tb infection and highly susceptible to Mycobacterium bovis, much 
of the research in rabbits has been carried out using M. bovis. Caseation is moderate, and 
cavity formation and bronchial dissemination are observed in rabbit lungs [74, 76].  
 
 TB in non-human primates is markedly similar to human disease and exhibits 
antigen induced T-lymphocyte activity both in vitro and in vivo. Although expensive, it is 
the best currently available model of latent TB [74, 76]. Since shortening of duration of 
TB therapy is largely dependent on eradicating the latent disease, the non-human primate 
model is probably the best model for studying the efficacy of new drugs and combination 
treatment regimens. 
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First-Line Agents 
 
 
Isoniazid 

  
 Isoniazid (INH) is highly active against M.tb with an MIC of 0.01-0.25 μg/mL. It 
is bactericidal against rapidly dividing bacteria, but has limited activity against slow 
growing populations. INH is a prodrug that requires activation by the catalase (katG) 
gene of M.tb [82, 83]. The action of INH is quite complex and involves several targets 
[84], but the most significant is InhA causing interference with the synthesis of mycolic 
acids, an essential component of the mycobacterial cell wall [85].  Drug resistance to INH 
is commonly mediated via mutations in the katG gene, leading to the loss of catalase-
peroxidase activity and the failure to produce toxic INH derivatives [82]. INH is known 
to cause hepatotoxicity in a small number of patients, with an increased risk for 
individuals with a slow acetylator phenotype.  
 
 INH is highly hydrophilic in nature and has a high, temperature-dependent water 
solubility of 14 g in 100 mL at 25˚C and 26 g in 100 mL at 40˚C [53].  The aqueous 
solubility of INH is highly favorable for oral absorption. There is a discrepancy in the 
literature on the acid dissociation constants (pKa) of INH. This is in part due to the 
difference in measurement methods employed. INH has three different pKa values, pKa1 
= 2.13, pKa2 = 3.81 and pKa3 = 11.03 [86]. In another report, pKa values were found to 
be 2.00, 3.6, and 10.8 for pKa1, pKa2 and pKa3, respectively [87]. INH exists in an 
ionized state in the entire pH range of the gastrointestinal tract.  The hydrophilicity of 
INH is further reflected by its low n-octanol-water partition coefficient of 0.64. [51]. 
Hydrophilicity, low-n-octanol water partition coefficient and charge state, however, result 
in a relatively low permeability of INH. Thus, INH can be classified under BCS as a 
class-III drug, i.e., a compound with high solubility and low permeability [51]. However, 
this classification is based on the correlation between partition coefficients and 
permeability of the compounds and such correlations have only limited predictability. 
The data on INH oral absorption and permeability are rather inconclusive for its BCS 
classification, but it suggests INH to be on the borderline of BCS class-I and class-III 
[88]. As with the other BCS class-III drugs, oral absorption of INH is decreased by food.  
 
 Following oral administration, INH undergoes rapid and complete absorption with 
peaks occurring 1-2 hours after drug intake. Absorption of INH is decreased by food and 
antacids. INH is distributed extensively into tissues and body fluids including CSF. It 
passes through the placental barrier and is secreted into milk achieving concentrations 
comparable to plasma.  Protein binding of the drug is negligible. It is metabolized in the 
liver primarily by acetylation and dehydrazination. The acetylation of INH is mediated by 
a polymorphically expressed enzyme, N-acetyl transferase 2 (NAT2). As a result, the 
population can be divided as slow acetylators and fast acetylators based on their NAT2 
metabolizing capacity. The majority of Asians and about 50% of Caucasians and Blacks 
are rapid acetylators. However, the rate of elimination does not significantly alter the 
effectiveness of the drug. 5-30% of the orally administered drug is excreted in the urine, 
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mostly as metabolites. Higher percentages have been observed after IV administration 
suggesting significant first-pass metabolism [62, 89-91]. 
 
 
Rifampicin 
 
 Rifampicin (RIF) is the mainstay of current anti-tuberculosis therapy. Chemical 
structure of RIF and other established anti-TB drugs are shown in Figure 1-1. RIF shows 
bactericidal activity against both actively growing and slowly metabolizing non-growing 
bacilli [24, 83]. RIF in concentrations of 0.005-0.2 μg/mL inhibits the growth of M.tb in 
vitro. RIF’s activity against dormant forms of mycobacteria is thought to be responsible 
for its effect of reducing the duration of TB therapy necessary for sterilization [92]. 
Resistance to RIF is thought to occur primarily through changes in the rpoB gene leading 
to alteration of the target site on RNA polymerase [93]. Resistance to RIF has been 
reported to also confer cross-resistance to other rifamycins such as rifabutin and 
rifapentine. RIF’s metabolite, 25-desacetyl rifampin, retains most of RIF’s activity. 
Frequent adverse effects of RIF include skin rash, fever and GI distress. Allergic 
reactions also have been reported in the treatment with RIF and occur more frequently 
during high dose treatment (>900 mg twice weekly) [83, 89, 94]. 
 
 Analogous to INH, RIF also exhibits pH and temperature dependent water 
solubility. At room temperature RIF has a solubility of 2.8 mg/mL at pH 7.5 and 99.5 
mg/mL at pH 2.0 [55]. At 37˚C, RIF shows a solubility of 200 mg/mL in 0.1N HCl and 
9.9 mg/mL in phosphate buffer pH 7.4 [95]. RIF is very stable in solid state in sealed 
containers at room temperature. In contrast, it shows decreased stability in aqueous 
solutions. It undergoes desacetylation at alkaline pH and transforms into a quinone in the 
presence of oxygen. RIF has two pKa values, 1.7 and 7.9. It has an n-octanol-water 
partition coefficient of 3.72 and is classified as a BCS class II drug, i.e., a low solubility 
and high permeability drug [51]. 
 
 RIF is well absorbed after oral administration (oral bioavailability of 90-95%) 
with therapeutic concentrations occurring in the body 2-4 hours after drug intake. Food 
interferes with the absorption of rifampicin resulting in an approximate 30% reduction in 
the bioavailability. RIF is widely distributed in the body and is about 80% bound to 
plasma proteins. RIF is distributed readily into cavity lining, lung parenchyma and 
kidneys. In contrast, distribution into caseous tissue and cerebrospinal fluid (CSF) are 
much poorer [96]. Though the distribution into CSF is poorer than into lung tissue, RIF 
still achieves therapeutic concentrations in CSF. Distribution into CSF is enhanced in 
local inflammatory conditions such as meningitis [62, 89]. RIF may discolor body fluids 
such as urine and tears, producing an orange-red color. RIF is metabolized in the body to 
a desacetylated derivative, which is also active. Importantly, RIF induces the activity of 
the phase-I drug metabolizing enzymes CYP3A, CYP1A2 and CYP2C [97, 98], the 
phase-II enzymes glucuronosyl transferases and sulfotransferases [98, 99], and efflux 
transporter such as p-glycoprotein [100]. It has also been shown to induce the activity of 
CYP2D6 in individuals with extensive metabolizer phenotype for this enzyme [101]. In 
addition, RIF induces hepatic enzymes that accelerate its desacetylation. As a result, the 
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Figure 1-1. Chemical Structures of Established Anti-Tuberculosis Drugs. 
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half-life of RIF is progressively shortened by about 40% during the first 14 days of 
treatment. However, RIF is not metabolized by CYP metabolism. RIF and its metabolites 
are rapidly excreted into the bile and undergo enterohepatic circulation. Intestinal 
reabsorption of desacetylated derivatives, however, is poor and about 65% of the drug is 
excreted in the feces. About 35% of the drug is excreted in the urine, with approximately 
half of this being unchanged drug [62]. 
 
 
Pyrazinamide 
 
 Pyrazinamide (PZA) is a structural analog of nicotinamide used exclusively for 
TB therapy. PZA is a paradoxical drug that does not show any activity against 
mycobacteria under normal culture conditions at neutral pH but shows high in vivo 
sterilizing activity [102]. PZA shows in vitro activity only in acidic cultures [103, 104]. 
Activity of PZA at acidic pH makes it ideal drug for killing tuberculosis residing in acidic 
phagosomes within infected macrophages [105]. Addition of PZA to a combination 
pharmacotherapy against tuberculosis for the first two months reduces the treatment 
duration by at least 6 months [92]. PZA is a prodrug requiring conversion to its active 
form, pyrazinoic acid (POA) by the enzyme pyrazinamidase/nicotinamidase in 
mycobacteria [24, 106]. A mutation in pncA that encodes pyrazinamidase is thought to be 
the mechanism of resistance to PZA in some M.tb strains [106, 107]. Most commonly 
observed adverse effects of PZA are gastrointestinal distress, arthralgias and elevations in 
the serum uric acid levels. Hepatotoxicity is the major limiting toxicity for treatment with 
PZA [83]. 
 
 PZA, a hydrophilic drug, exhibits temperature dependent water solubility. It 
shows solubility of 0.64 g/100 g of solution at 0˚C and 2.65 g/100 g solution at 37˚C 
[108]. PZA exhibits good stability in the solid state, in both wet or dry atmosphere and 
daylight. PZA has a reported pKa value of 0.5 and exists in the ionized state in the 
gastrointestinal tract. Hydrophilicity of PZA is reflected by its low n-octanol-water 
partition coefficient of -1.41. PZA is classified as a BCS class-III drug, i.e., a high 
solubility, low permeability drug [51]. 
 
 PZA is readily absorbed after oral administration with peak concentrations 
occurring two hours after drug administration. PZA is widely distributed throughout the 
body. It has excellent tissue penetration in CNS, lungs and liver and achieves high levels 
in the cerebrospinal fluid as well. Plasma protein binding of the drug is about 10%. PZA 
is metabolized in the body by hydrolysis followed by hydroxylation to 5-
hydroxypyrazinoic acid. PZA has a relatively long elimination half-life of 9-10 hours, 
and metabolites are excreted by the kidneys. The plasma half-life may be prolonged in 
patients with impaired hepatic or renal function. About 4-14% of the drug is excreted 
unchanged in urine [62, 89, 90]. 
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Ethambutol 
 
 Ethambutol (EMB) is used as a first-line agent replacing para-aminosalicylic acid 
due to its better patient tolerability. EMB is active against all forms of mycobacteria but it 
is generally bacteriostatic. EMB is used in combination regimens while awaiting 
susceptibility data to INH, RIF and PZA. Use of EMB can be stopped provided the 
organism is susceptible to the three first-line drugs [83]. EMB interferes with the 
biosynthesis of a mycobacterial cell wall polysaccharide, arabinogalactan [109]. The 
enzyme arabinosyl transferase, encoded by embB, is thought to be the major target of 
EMB [110]. In M.tb, embB is present in an operon along with two other genes, embC and 
embA in the order of embCAB. These three genes share more than 65% amino acid 
sequence homology with each other [110]. Mutations in the operon embCAB are thought 
to be responsible for resistance to EMB [110]. The major adverse effect with EMB 
treatment is reversible retrobulbar neuritis [83]. 
 
 EMB is available as dihydrochloride salt and free base. The free base is sparingly 
soluble in water and shows relatively good solubility in organic solvents [111]. On the 
contrary, the dihydrochloride salt is readily soluble in water (100 mg/mL) and dimethyl 
sulfoxide and is sparingly soluble in organic solvents [56]. EMB is a weak base with 
reported pKa values of 6.6 and 9.5. EMB is also a hydrophilic drug and exists in the 
ionized state throughout the gastrointestinal tract. The hydrophilicity of EMB is further 
reflected by its low n-octanol-water partition coefficient of 0.06. Based on logP and 
aqueous solubility, EMB can be classified as a BCS class-III drug, i.e., a high solubility 
and low permeability drug [51]. 
 
 EMB is absorbed rapidly after oral administration with an absolute oral 
bioavailability of 70-80%. Peak plasma concentrations occur 2-4 hours after drug intake 
and the drug is well distributed throughout the body and is only about 30% bound to 
plasma proteins. EMB does not enter CSF, limiting its use in CSF infections. 
Approximately 15% of the drug is metabolized to aldehyde and dicarboxylic acid 
metabolites. EMB has an elimination half-life of 3-4 hours and the majority of the drug 
(75-80% of bioavailable dose) is excreted unchanged in urine. The plasma half-life may 
be prolonged in renal insufficiency, requiring dosage adjustment. 20-22% of the drug is 
excreted unchanged into the feces [62, 90, 105, 112]. 
 
 

Second-Line Agents 
 
 
Streptomycin 
 
 Streptomycin (SM) is an aminoglycoside antibiotic produced from Streptomyces 
griseus. Concentrations ranging from 0.4-10 μg/mL inhibit the growth of the vast 
majority of strains of M.tb. SM is often used as an additional drug while awaiting 
susceptibility test results for hospitalized patients and also used as important treatment for 
some MDR-TB and XDR-TB strains [83]. Streptomycin was shown to cause ototoxicity 
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and nephrotoxicity on chronic use. Nephrotoxicity caused by SM is mild and reversible 
compared with other aminoglycoside antibiotics but administration is often painful and 
poorly tolerated by patients [83]. 
 

SM is available as free base and sulfate, hydrochloride and calcium chloride salt 
forms. All forms are very soluble in water (>20 mg/mL) and practically insoluble in 
chloroform and ether [57].  
 
 Because of its polycationic nature SM is not absorbable after oral administration. 
Thus, it needs to be given by intramuscular injection or intravenously. The dose of SM is 
15 mg/kg per day for patients with normal renal function. It is typically administered as 
1000 mg single daily dose or 500 mg twice daily dose, resulting in peak serum levels of 
about 50-60 μg/mL and 15-30 μg/mL, respectively, within one hour of intramuscular 
administration. SM is widely distributed into body tissues and fluids, passes through the 
placental barrier and is secreted into milk. However, distribution of SM into the CSF is 
limited. About 35-57% of the drug is protein bound. The majority of the drug undergoes 
renal elimination (~90%) and no metabolites have been identified. SM has an elimination 
half-life of about 2-4 hours. The elimination is dependent on renal function, and dosage 
adjustment is necessary in case of renal insufficiency [61, 62, 105] 
 
 
Para-Aminosalicylic Acid 
 
 Para-aminosalicylic acid (PAS), a structural analog of para-amino benzoic acid, is 
bacteriostatic in nature. It inhibits the growth of M.tb in vitro at a concentration of 1 
μg/mL. The antimicrobial activity of PAS is highly specific. Gastrointestinal disturbances 
are the most commonly observed adverse effects with PAS therapy. It is also reported to 
produce hypersensitivity reactions and rarely, hepatitis [31, 83]. 
 
 PAS exits as free acid and as a sodium salt. PAS shows a solubility of 1 g in 600 
mL water [59]. PAS has a reported pKa value of 2.015 and exists in the ionized state 
throughout the gastrointestinal tract. The n-octanol-water partition coefficient of PAS 
was reported as 1.012. Based on this partition coefficient and aqueous solubility, PAS can 
be classified as a BCS class-IV drug, i.e., a low solubility and low permeability drug. 
 
 PAS is readily absorbed after oral administration with peak plasma concentrations 
occurring within 2 hours after drug intake. A single oral dose of 4 g of the free acid 
results in peak serum concentrations of 41-68 μg/mL, whereas 4 g of sodium salt results 
in peak serum concentrations of 76-104 μg/mL. PAS is well distributed throughout body 
while distribution into CSF is low. PAS is metabolized by acetylation and >50% of drug 
is acetylated. In contrast to INH, the acetylation of PAS is mediated by N-acetyl 
transferase 1 (NAT1), for which in contrast to NAT2 genetic variants with defective 
function are relatively rare [113]. In addition to acetylation, a N-glycyl derivative of PAS 
is observed in the plasma. When PAS is concomitantly administered with INH the in vivo 
acetylation of PAS competes with the acetylation of INH, resulting in higher plasma 
concentrations of free INH than when INH is given alone. This is believed to be due to 
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the competition for coenzyme A by the acetylating enzyme systems. However, this fact 
has no clinical relevance. The drug has an elimination half-life of 2-3 hours and more 
than 80% is excreted unchanged in the urine. Elimination of the drug is retarded in case 
of renal impairment [30, 31, 62, 90, 105]. 
 
 
Kanamycin 
 
 Kanamycin (KM) is an aminoglycoside antibiotic produced by Streptomyces 
kanamyceticus. KM is comprised of three components, Kanamycin A, B and C. 
Kanamycin A is the major component of all and designated as kanamycin. KM shows 
inhibitory activity against M.tb at concentrations of about 6 μg/mL in vitro. KM is more 
active at alkaline pH and exerts a rapid bactericidal effect at concentrations little above 
the MIC. Like other aminoglycosides, KM inhibits protein synthesis. KM has poor 
patient tolerability due pain associated with its injection. Minor side effects similar to 
those encountered with streptomycin have been described with KM therapy. Eosinophilia 
in the absence of other manifestations of allergy occurs in about 10% of treated 
individuals. The most important toxic effect with KM therapy is nephrotoxicity [31]. 
 
 KM exists as free base, mono sulfate form and acid sulfate form. All forms are 
soluble in water and almost insoluble in organic solvents. The mono sulfate form shows a 
solubility of 350 mg/mL whereas the acid sulfate shows a solubility of 1 part in 1 part of 
water [58]. KM is highly hydrophilic in nature and has a logP value of -7.936. Since KM 
is only administered intramuscularly, BCS classification is not applicable. 
 
 Like streptomycin, KM is poorly absorbed from the gastrointestinal tract. Less 
than 1% of the dose is absorbed after either oral or rectal administration. The drug is 
administered via deep intramuscular injection and is rapidly absorbed from the 
intramuscular site of injection. An intramuscular dose of 7.5 mg/kg of KM results in peak 
serum levels of 20-35 μg/mL. Because of its polar nature penetration of KM into cells is 
poor and distribution of the drug is limited to extracellular spaces. About 99% of KM is 
excreted unchanged in the urine. The elimination half-life of KM is approximately 2-3 
hours and may be prolonged in case of renal insufficiency [105]. 
 
 
Ethionamide 
 
 Although ethionamide (ETH) is bactericidal in nature, large doses are required for 
achieving bactericidal concentrations in serum and these doses produce severe 
gastrointestinal disturbances. Thus, ETH could be considered as bacteriostatic agent [83]. 
ETH suppresses the multiplication of M.tb in the concentrations ranging from 0.6 to 2.5 
μg/mL. ETH is a prodrug structurally related to INH that when activated targets the same 
InhA - mycolic acid biosynthesis pathway [18]. ETH is activated by a monooxygenase, 
EthA, in the mycobacteria [114, 115]. Mutations in the activation enzyme, EthA, and the 
target, InhA, result in the development of resistance to ETH [116]. ETH is reported to 

 22



produce dose limiting gastrointestinal toxicity. Hepatotoxicity and CNS toxicity such as 
psychosis, peripheral neuritis and visual disturbances have also been reported [83]. 
 
 Ethionamide is practically insoluble in water and is unstable on exposure to light. 
ETH has a low n-octanol-water partition coefficient (0.705) and falls under BCS class-
IV. 
 
 After oral administration ETH is not subject to any appreciable first-pass 
metabolism. Peak concentrations of about 2 μg/mL occur 3 hours after 250 mg of drug 
intake. ETH is widely distributed in the body including CSF. It undergoes extensive 
metabolism yielding several metabolites. ETH is eliminated quickly from the body with 
an elimination half-life of 2-3 hours. ETH inhibits acetylation of INH in vitro. About 1% 
of the drug is excreted unchanged via the kidneys [30, 62, 90, 105]. 
 
 
Ciprofloxacin 
 
 The fluoroquinolones ciprofloxacin (CIP), levofloxacin, ofloxacin and 
sparfloxacin have been used in TB therapy and ciprofloxacin and ofloxacin are currently 
used as second-line agents for the treatment of MDR-TB in the USA and other countries 
[117]. CIP is bactericidal against M.tb. It acts by inhibiting DNA synthesis, targeting the 
DNA gyrase A and B subunits. Mutations in the GyrA and GyrB subunits are responsible 
for the development of resistance to CIP [24].  
 
 CIP exists as free base and a hydrochloride salt. Aqueous solubility of the free 
base (1.1 mg/L) is much lower than the hydrochloride salt (10 mg/mL). CIP has a pKa 
value of 6.09, and thus exists in an ionized state in the gastrointestinal tract. The n-
octanol-water partition coefficient (logP) of CIP is reported as 1.335 [54]. Based on 
aqueous solubility and logP, CIP can be classified as a BCS class-III compound, i.e., a 
high solubility and low permeability drug. 
 
 CIP is readily absorbed after oral administration with peaks occurring in less than 
2 hours. The absolute bioavailability is approximately 70% without appreciable loss by 
first pass metabolism. CIP is widely distributed in the body and about 20-40% of the drug 
is bound to plasma proteins. CIP is metabolized primarily in the liver and four 
metabolites have been identified in urine accounting for about 15% of the administered 
dose. CIP has an elimination half-life of 3-6 hours in the body. About 40-50% of the 
administered dose is excreted unchanged in the urine [61]. 
 
 
Ofloxacin 
 
 Ofloxacin (OFL) is also a fluoroquinolone antibiotic used as a second-line agent 
for the treatment of MDR-TB. OFL, like CIP, is bactericidal against TB and acts by 
inhibiting the enzyme DNA gyrase.  Resistance to OFL can also confer cross-resistance to 
other agents in this class of antibiotics [117]. 
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 OFL is more soluble in water (28.3 mg/mL) than CIP. OFL has a reported logP 
value of 1.268. Based on reported values of aqueous solubility and logP, OFL can be 
classified as a BCS class-III drug, i.e., a high solubility and low permeability drug similar 
to CIP [51, 54].  
 
 OFL is almost completely absorbed (85-95%) from the gut after oral 
administration. Peak plasma concentrations are reached within 1-2 hours after drug 
intake.  OFL is widely distributed in the body and about 20-30% of the drug is bound to 
plasma proteins. In contrast to CIP, OFL is not metabolized in the body and the majority 
of drug (75%) is excreted unchanged in the urine [66-68]. 
 
 
Cycloserine 
 
 Cycloserine (CS) shows moderate activity against M.tb, with inhibitory activity at 
concentrations of 5-20 μg/mL in vitro. No cross-resistance has been observed between 
CS and other anti-tuberculosis agents. CS is a cell wall peptidoglycan synthesis inhibitor. 
It blocks the action of D-alanine racemase (Alr) and D-alanine: D-alanine ligase (Ddl) 
[118, 119]. Alr mediates L-alanine to D-alanine conversion; D-alanine then serves as a 
substrate for Ddl. However, the mechanism of resistance to CS therapy is so far unclear 
[24].  
 
 CS shows good water solubility (100 mg/mL) and is practically insoluble in 
organic solvents [60]. CS is a hydrophilic drug with an n-octanol-water partition 
coefficient (logP) of -1.631. Based on aqueous solubility and logP, CS can be classified 
as a BCS class-III drug, i.e., a high solubility and low permeability drug. 
 
 CS is well absorbed (70-90%) after oral administration with peak plasma 
concentrations occurring within 3-4 hours of drug intake. CS is extensively distributed 
throughout the body including CSF. Very little of the drug undergoes metabolism and 
most of it is eliminated renally as unchanged drug (70%). CS has an elimination half-life 
of about 10 hours. The elimination half-life may be prolonged in patients with renal 
insufficiency [62, 90, 120]. 
 
 
Thiacetazone 
 
 Thiacetazone is bacteriostatic in nature and is considered obsolete for 
antitubercular pharmacotherapy [121] as it produces severe skin reactions including 
Steven-Johnson syndrome [83]. 
 
 Thiacetazone is only slightly soluble in water. It is readily absorbed from the gut. 
Peak concentrations occur within 4-5 hours after drug administration.  It is distributed 
widely into different tissues in the body with varying tissue concentrations. The drug 
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undergoes rapid elimination from the body and has an elimination half-life of 4 hours. 
About 42% of the drug is excreted unchanged in the urine [30, 62, 90, 105]. 
 
 

Novel Compounds/Therapies 
 
 There has been a lot of interest in developing new compounds/therapies for the 
treatment of tuberculosis in view of the emergence of MDR and XDR strains of TB. 
Chemical structures of new and investigational anti-TB compounds are shown in Figure 
1-2. In the following is a brief discussion on a novel set of compounds for which the 
treatment of tuberculosis has recently been approved as a new indication and compounds 
that are currently under clinical investigation for treatment of TB. 
 
 
Rifapentine 
 
 Rifapentine, a newer agent in the class rifamycins, was approved for the treatment 
of pulmonary tuberculosis by the US Food and Drug Administration in 1998. Rifapentine 
inhibits the growth of M.tb in vitro at concentration of 0.04 μg/mL. The mechanism of 
action of rifapentine is similar to that of rifampin [64]. 
 
 The absolute bioavailability of rifapentine has not been determined. The relative 
bioavailability with an oral solution was found to be approximately 70% after a 600 mg 
oral dose in healthy volunteers. Peak serum concentrations ranging from 8 to 30 μg/mL 
occur within 5-6 hours after a 600 mg oral dose of rifapentine. A high fat meal increases 
bioavailability of the drug by about 50% [64]. Rifapentine and its active metabolite, 25-
desacetyl rifapentine, have excellent penetration into macrophages with ratios of 
intracellular vs. extracellular concentration of 24-60 and 7, respectively [122]. 
Rifapentine is 97.7% bound to plasma proteins and has an elimination half-life of about 
14-18 hours. It is hydrolyzed by intestinal and hepatic esterases to its desacetylated 
metabolite. In the gastrointestinal tract rifapentine also undergoes non-enzymatic, acid 
mediated degradation to a 3-formyl derivative.  Rifapentine is a weak inducer of CYP 
enzymes and its induction capacity lies somewhere in-between rifampin and rifabutin. 
Auto-induction of metabolism has not been observed on repeated administration [64]. 
Following a single 600 mg oral dose of radiolabeled rifapentine to four healthy 
volunteers, 17% of the total radioactivity was recovered in the urine and 70% in the feces 
[123]. Due to its high activity and long elimination half-life, rifapentine has compared to  
rifampicin the potential advantage of only needing to be administered twice weekly in the 
intensive phase of treatment and once weekly in the continuation phase of treatment.  
With this regimen, rifapentine reached similar efficacy measured as sputum culture 
conversion rates as rifampicin administered once daily in the intensive phase and twice 
weekly in the continuation phase of treatment [124]. 
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Figure 1-2. Chemical Structures of Newer and Investigational Anti-Tuberculosis Compounds. 
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Moxifloxacin 
 
 The fourth generation fluoroquinolone moxifloxacin is perhaps the most active 
quinolone antibiotic against M.tb [125].  Moxifloxacin is active against TB equivalent to 
or greater than INH at a dose level of 25 mg/kg [126]. In a mouse model, moxifloxacin 
monotherapy was equally effective as INH, and the combination of moxifloxacin with 
INH was more effective than each drug alone [127]. Moxifloxacin has also shown early 
bactericidal activity comparable to INH and rifampin in human subjects [128].  
 
 Moxifloxacin is readily absorbed from the gastrointestinal tract with an absolute 
oral bioavailability of approximately 90%. Peak concentrations occur within 1-3 hours 
after drug administration. Co-administration with a high fat meal does not affect 
absorption of the drug. Moxifloxacin is approximately 50% bound to plasma proteins. It 
is extensively distributed throughout the body with higher tissue levels than the 
corresponding plasma concentrations and has a volume of distribution of 1.7-2.7 L/kg. 
Moxifloxacin exhibits excellent penetration into alveolar macrophages and the epithelial 
lining fluid with a mean tissue to plasma ratio of 21.2 and 8.7, respectively. It is 
metabolized by glucuronidation (~14% of the dose) and sulfation (~38% of the dose). 
The CYP enzyme system is neither involved in the metabolism of moxifloxacin nor is it 
affected by moxifloxacin. The sulfate conjugate is excreted primarily in the feces 
whereas glucuronide conjugated is excreted in the urine. About 45% of the drug is 
excreted unchanged in the urine (~20%) and feces (~25%). Moxifloxacin has a mean 
elimination half-life of 12-14 hours [129]. 
 
 
Gatifloxacin 
 
 Like moxifloxacin, gatifloxacin has also shown promising activity against M.tb 
either in combination therapy or in monotherapy in mouse models [130]. Gatifloxacin has 
been removed from the US market because of its adverse effects on glucose homeostasis 
(disturbances in blood glucose levels, hypoglycemia and hyperglycemia) in both diabetic 
and non-diabetic patients. Gatifloxacin exhibited potent activity against TB and no cross-
resistance with other classes of drugs was observed [130]. It has shown to be active 
against occasionally dividing bacteria in an in vitro study [131, 132]. Early bactericidal 
activity of gatifloxacin against TB is currently being investigated in an NIH sponsored 
phase II clinical trial. 
 
 Gatifloxacin exhibits temperature dependent water solubility, with maximum 
solubility (40-60 mg/mL) occurring in a pH range of 2-5[70]. 
 
 Gatifloxacin is well absorbed after oral administration and peak concentrations 
occur within 1-2 hours after drug intake. Its absolute bioavailability is 96%. Food does 
not affect the absorption of the drug from the gastrointestinal tract. Plasma protein 
binding of gatifloxacin was found to be 20% in healthy volunteers. Gatifloxacin 
undergoes rapid tissue distribution after oral administration and achieves high 
concentrations in respiratory fluids and tissues such as alveolar macrophages, lung 
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parenchyma, bronchial mucosa, sputum and lung epithelial lining fluid. It undergoes 
limited biotransformation in the body and is excreted to more than 70% unchanged in the 
urine. Less than 1% of the drug is recovered in the urine as metabolites. The mean 
elimination half-life of gatifloxacin ranges from 7-14 hours and is independent of dose 
and route of administration [70].  
 
 
Linezolid 
 
 Linezolid is an oxazolidinone compound approved recently for gram-positive 
infections. It showed good activity against drug sensitive and resistant strains of M.tb 
both in vitro and in animal studies [133]. However, long-term use of linezolid is 
associated with myelosuppression and neurotoxicity. Although some recent studies have 
shown the efficacy of linezolid in treating MDR-TB [134, 135], severe adverse effects 
have been reported during its  long-term use at a dose of 600 mg/day [136]. Hence, 
linezolid may only be considered for treating MDR-TB. 
 
 Linezolid has an aqueous solubility of about 3 mg/mL. The n-octanol-water 
partition coefficient (logP) of linezolid is reported as 0.232 [54]. Based on aqueous 
solubility and logP, linezolid can be classified as a BCS class-III drug. 
  
 Linezolid is rapidly and completely absorbed after oral administration with an 
absolute bioavailability of approximately 100%. Therefore, linezolid can be administered 
orally or intravenously without dosage adjustment. Peak concentrations are reached 
within 1-2 hours after drug intake. Food does not affect the extent absorbed, however, the 
peak plasma concentration Cmax is decreased by 17% and the time at which the peak 
concentration occurs (Tmax) is delayed from 1.5 hours to 2.2 hours when high fat food is 
given with linezolid. Linezolid is readily distributed into highly perfused organs and is 
about 31% bound to plasma proteins. It is primarily metabolized by oxidation of the 
morpholine ring, producing two inactive metabolites. Linezolid is not detectably 
metabolized by enzymes of CYP system in vitro and it does not inhibit the activities of 
clinically significant CYP enzymes such as CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A. 
Under steady-state conditions, approximately 50% of the dose is excreted as metabolites 
and 30% as unchanged drug in the urine. Linezolid has a mean elimination half-life of 
about 5 hours [137]. 
 
 
Metronidazole 
 
 Metronidazole is a well-known anti-infective agent that has never been used for 
treatment of TB because it is inactive against rapidly growing aerobic TB cultures and 
also in mouse infection disease models of TB. Recent experiments, however, have shown 
it to be active against anaerobic cultures in vitro [138-140]. It has been suggested that the 
disease pathology in humans is significantly different to that of the mouse, with closed 
caseous necrotic lesions that are highly anoxic and are likely to contain anaerobic bacilli 
[74, 141], which may be susceptible to metronidazole. Studies in rabbit models of TB 
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that recapitulate this feature have demonstrated metronidazole to be highly effective 
[142]. These studies suggest that metronidazole may have unique activity against 
anaerobic subpopulations of TB bacilli. Because anoxic bacteria are highly resistant to 
sterilizing effects of first-line drugs, such subpopulations of bacilli are thought to be 
responsible for extending the duration of TB chemotherapy. A clinical trial sponsored by 
the National Institutes of Health has started recruiting patients in South Korea to evaluate 
the ability of metronidazole to kill anaerobic subpopulation of M.tb within MDR-TB 
patients [142]. 
 
 Metronidazole has an aqueous solubility of about 10 mg/mL and an n-octanol-
water partition coefficient of -0.262 [54]. The low value of logP indicates hydrophilicity 
of the compound. Based on these properties, metronidazole can be classified as a BCS 
class-III drug. 
 
 Metronidazole is well absorbed after oral administration with peaks occurring 1-2 
hours after drug intake. Metronidazole exhibits linear pharmacokinetics, i.e., plasma 
concentrations and exposure follow dose proportionality. The drug is distributed widely 
throughout the body and less than 20% of the circulating metronidazole is bound to 
plasma proteins. In CSF, saliva and milk, metronidazole achieves concentrations similar 
to those found in plasma. Further, bactericidal concentrations have also been observed in 
the pus from hepatic abscesses. Metronidazole is primarily metabolized by side chain 
oxidation and glucuronide conjugation. About 20% of the drug is excreted unchanged in 
urine. Metronidazole has an elimination half-life of about 8 hours in healthy volunteers 
[143]. 
 
 
PA-824 
 
 PA-824 is a novel nitroimidazopyran derivative currently under development by 
the Global Alliance for TB Drug Development [77]. PA-824 acts mainly by inhibiting the 
synthesis of cell wall components through molecular targets that are yet to be identified. 
PA-824 showed high activity against drug sensitive and drug resistant strains of M.tb, 
indicating absence of cross-resistance to current TB drugs [144]. Furthermore, PA-824 
exhibits activity against both replicating and non-replicating strains of bacteria in vitro 
making it a promising molecule for reducing the duration of therapy. PA-824 entered 
human phase I trials in June 2005 [145]. 
 
 PA-824 is highly lipophilic and exhibits poor aqueous solubility (~20 µg/mL) 
[146]. This poor solubility resulted in inefficient drug delivery in animal models. Lipid 
coated cyclodextrin complexation improved aqueous solubility as well as the drug’s oral 
bioavailability from about 2 to 40% in mice. PA-824 is widely distributed in mice and 
has an excellent tissue penetration in the lungs and spleen with tissue to plasma ratios of 
about 5 and 4, respectively [146]. Concentrations of PA-824 were not significantly 
different in mice when given alone or in various combination regimens including first 
line TB drugs such as RIF, INH and PZA. This suggests that PA-824 does not produce 
significant drug interactions with the first-line TB drugs. Peak serum concentrations 
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achieved after a single oral dose of PA-824 in mice are 80 to 110 fold higher than the 
MIC of 0.25 µg/mL [144]. 
 
 
OPC-67683 
 
 OPC-67683 is a nitro-dihydroimidazooxazole derivative currently being 
developed by Otsuka Pharmaceuticals [147, 148]. In vitro data suggest that OPC-67683 is 
highly active against both drug sensitive and drug resistant subpopulations of bacteria 
(MIC 0.006-0.024 µg/mL). No cross-resistance has been observed with any of the 
existing first-line drugs. In addition, OPC-67683 exhibited very high intracellular activity 
against TB in a macrophage assay [147, 148]. Phase I safety, tolerability and 
pharmacokinetic testing and a 7-day early bactericidal activity (EBA) study at a dose of 
400 mg have been reported to be completed. A new formulation is being tested to 
minimize fed vs. fasting effect in a multiple dose, multi-center extended EBA (14 days) 
study at four dose levels (100, 200, 300 and 400 mg). No results have been published yet 
[149].  
 
 In a murine experimental model of TB, OPC-67683 exhibited the longest terminal 
half-life (7.6 hr) compared to all other first line drugs. Peak plasma concentration (Cmax 
0.297 µg/mL) occurred about 6 hours after drug administration (2.5 mg/kg). The oral 
bioavailability of the compound is in the range of 35-60% in mice, rats and dogs. OPC-
67683 is well distributed into tissues with a tissue to plasma ratio of about 3-7 in the 
lungs. In vitro metabolism with animal and human microsomes suggests that the drug is 
not metabolized by CYP enzymes and neither stimulates nor inhibits CYP enzymes at 
concentrations up to 100 µM. This suggests that clinically significant drug interactions 
are not expected with other CYP metabolized drugs at therapeutic levels [148]. 
 
 
TMC207 
 
 The diaryl quinoline TMC207 (previously, R207910) is a member of a new class 
of anti-mycobacterial agents currently being developed by Tibotec Pharmaceuticals, a 
research subsidiary of Johnson & Johnson. It has been found to have a new mode of 
action that is different from the existing anti-TB agents, implying a low probability of 
cross-resistance. TMC207 inhibits the proton pump of the M.tb ATP synthase, the main 
source of energy for mycobacteria [43]. It has been recently identified that the oligomeric 
subunit c (AtpE) of ATP synthase is the target of TMC207 [150]. A remarkable feature of 
TMC207 is its exceptional specificity for mycobacteria. Though ATP synthase is a 
ubiquitous enzyme found in most living organisms, a very limited sequence similarity 
between the mycobacterial and human AtpE proteins was observed [151]. The compound 
showed potent early bactericidal activity matching or exceeding that of INH in a non-
established murine mouse model [171]. It also showed synergistic effects when given 
with pyrazinamide in murine models [153, 154]. Phase IIa proof-of-concept studies were 
completed recently in TB patients at three dose levels, 25, 100 and 400 mg given once 
daily for one week. Bactericidal activity was observed at a dose of 400 mg. The 
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compound was well tolerated and no major safety concerns were identified. Dosing 
regimen and treatment duration needed for sterilization has not been defined in humans 
yet. Phase II trials to determine dosing regimen, long-term safety and efficacy are 
planned to start soon [155].  
 
 In a single ascending-dose pharmacokinetic study, TMC207 was well tolerated by 
human volunteers without any severe adverse effects. It is well absorbed after oral 
administration and peak concentrations (Cmax) occur about 5 hr after the dose. Absorption 
of TMC207 is increased twofold with food. Plasma drug concentrations decline 
triexponentially after Cmax is reached. The compound exhibits linear pharmacokinetics in 
healthy volunteers as well as TB patients, i.e., a proportional increase in Cmax and area 
under the curve (AUC) in the dose range tested (25-700 mg). A multiple-ascending dose 
study suggests an ‘effective half-life’ of 24 hours. Steady state blood levels were not 
achieved until 14 days of therapy due to the long terminal half-life. Steady state plasma 
concentrations were higher than those effective in a mouse model of TB [43]. TMC207 is 
metabolized by CYP3A4 enzymes. Thus, enzyme induction during co-administration 
with rifampin lowered TMC207 levels by 50%.   
 
 TMC207 is an attractive candidate molecule for TB therapy because of its high 
potency against drug sensitive and drug resistant TB strains, its novel mode of action and 
its long elimination half-life [151]. However, it has several potential problems for 
development as a first-line drug: influence of food on the oral absorption, drug-
interaction potential with the important first-line TB drug rifampicin, and minimal early 
bactericidal activity (EBA) for the first four days of therapy when compared to INH and 
RIF. However, EBA from days 5 to 7 is similar to INH and RIF at a dose of 400 mg. The 
influence of food on the oral bioavailability would likely complicate designing a 
standardized dosing regimen suitable for patients around the globe. Since TMC207 is 
metabolized by CYP3A4, it is also likely subject to drug interactions with anti-HIV 
therapeutics such as protease inhibitors raising concerns about its usefulness in HIV 
positive TB patients [156].  Tibotec is considering the evaluation of the activity of 
TMC207 in a phase II trial in MDR-TB patients because of the absence of RIF in the 
standard MDR-TB regimen and the relatively low efficacy of the existing regimen in 
these patients [157]. 
 
 
SQ109 
 
 SQ109 is a novel ethambutol analog developed from high throughput 
combinatorial screening [158]. SQ109 shows good activity against TB in in vitro assays 
including a macrophage assay and in an in vivo mouse model. It has shown efficacy and 
potency in inhibiting intracellular mycobacteria that is similar to that of INH and superior 
to ethambutol. SQ109 showed a dose dependent reduction of mycobacterial load in lungs 
and spleen after 28 days of therapy at 0.1-25 mg/kg/day that was equivalent to 
ethambutol at 100 mg/kg/day and was less potent than INH at 25 mg/kg/day [159]. On 
substitution for ethambutol, SQ109 showed improved efficacy in combination therapy 
with first-line TB drugs, isoniazid and rifampicin, in a chronic infection mouse models 
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[160]. SQ109 is currently being tested for safety, tolerability and pharmacokinetics in 
phase I clinical trials. 
 
 SQ109 undergoes rapid but incomplete absorption following oral administration 
in mice, rats and Beagle dogs with peak concentrations occurring in less than an hour. 
The compound has an oral bioavailability of 2.4-5, 12 and 3.8% in dogs, rats and mice, 
respectively. After the oral administration of 14C labeled compound to rats, the highest 
level of radioactivity was found in the liver followed by the lungs, the spleen and the 
kidneys. 22.2% and 5.6% of the radioactivity was found in feces and urine, respectively. 
The plasma protein binding of SQ109 varied from 6 to 23% depending on the species 
(human, rat, mouse and dog), and the compound showed a terminal half-life of 5.3, 7.4 
and 29.3 hours in mice, rats and dogs, respectively [161]. In an in vitro metabolic study 
using 10 minute incubation with mouse, rat, dog and human microsomes, about 23, 48, 
51 and 58% of SQ109 remained unchanged, respectively. The majority of SQ109 is 
metabolized via oxidation, epoxidation and N-dealkylation in human liver microsomes. 
CYP reaction phenotyping coupled with CYP specific inhibitors identified CYP2D6 and 
CYP2C19 to be the predominant enzymes involved in the metabolism of SQ109. 
 
 The novel antitubercular compounds PA-824, OPC-67683, TMC207 and SQ109 
are all in various phases of clinical development, raising the hopes for a more effective 
eradication of TB. A closer look at the available data (mostly animal and few human 
data) and the compounds’ predicted biopharmaceutic characteristics (Table 1-4) suggests 
that all of these compounds suffer from poor aqueous solubility. Poor solubility coupled 
with the high lipophilicity (characteristics of BCS class-II drugs) of these compounds 
could be obstacles in developing oral formulations for efficient delivery. For instance, the 
formulation used in the phase I and proof-of-concept studies of OPC-67683 needed to be 
replaced with a newer formulation [149] and PA-824 exhibited poor bioavailability in 
mice before a new formulation approach (lipid coated cyclodextrins) was used [146]. 
Furthermore, poor aqueous solubility frequently results in high interindividual variability 
in oral absorption, and low oral bioavailability. Food influences the absorption of BCS 
class-II drugs by either increasing the gastric residence time or increasing the solubility 
(fatty food). Influence of food on the absorption is undesirable for a TB therapeutic since 
it complicates the design of an effective, standardized dosing regimen suitable for TB 
patients worldwide. Thus, it is important to focus on the aqueous solubility and 
lipophilicity of novel compounds in the early stages of drug discovery to avoid potential 
problems in their delivery. 
 
 

PK/PD Parameters of Anti-TB Drugs 
 
 Anti-infective agents, in general, have been characterized by two different 
patterns of killing, time-dependent and concentration-dependent killing. Intracellularly 
acting drugs such as aminoglycosides, fluoroquinolones and rifamycins exhibit 
concentration-dependent killing patterns whereas antibiotics that act on cell wall targets, 
such as penicillins and cephalosporins exhibit time-dependent killing patterns. PK/PD 
parameters such as AUC/MIC and Cmax/MIC explain the bactericidal activity of  



Table 1-4.  Biopharmaceutic and Pharmacokinetic Properties of Investigational Anti-Tuberculosis Drugs. 
 

Compound MW MIC 
(µg/mL) clogP  Solubility 

(µg/mL)* 
Bioavailability 

(%) 
Half-life 

(hr) References 

PA-824 359.3 0.015-0.25 1.91 21.6 2-40a 12.8-18.3a [144, 162-164] 

OPC-67683 534.5 0.006-0.024 5.23 0.04 35-60b 7.6a [148, 149, 162, 
163] 

TMC207 555.5 0.003-0.120 6.41 0.08 na 24c [43, 162, 163] 
SQ109 330.6 0.16-0.64 5.84 4.07 2.4-12b 5.3-29.3b [161-163] 

 
    *: In silico predicted solubility. 
    a: Data from PK studies in mice. 
    b: Data from PK studies in mice, rats, and dogs. 
    c: Data from PK studies in humans.  
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concentration-dependent killers while time during which serum levels remain above MIC 
(T>MIC) explains the efficacy of time dependent killers [165]. The magnitude of these 
parameters varies among organisms for reliable prediction of bactericidal effect. For 
fluoroquinolones, the bactericidal effect against gram-negative bacilli such as 
Pseudomonas aeruginosa is observed at a Cmax/MIC ratio of >12 or AUC/MIC ratio  
≥100-125, with poor activity at Cmax/MIC ratios <4. Maximum activity is achieved when 
the AUC/MIC ratio exceeds 250 [166]. If this holds true for mycobacterial infections, the 
effectiveness of rifampicin, ciprofloxacin, ofloxacin, streptomycin, amikacin and 
kanamycin should improve by giving larger doses less frequently. However, limited 
information exists on the PK/PD correlates of bactericidal activity of antitubercular 
agents. Important PK/PD parameters of antitubercular agents are given in Table 1-5. So 
far, very little or no correlation was observed between PK/PD measures and bactericidal 
or sterilizing activity of anti-TB agents. Correction for protein binding did not improve 
this correlation. PAS, a bacteriostatic agent, has surprisingly larger Cmax/MIC and 
AUC/MIC ratios compared with rifampin and isoniazid. Recent studies in the aerosol 
infected mouse model have shown that RIF and INH exhibit a concentration-dependent 
killing pattern that correlates best with the AUC/MIC ratio [167, 168]. The same authors 
have also shown AUC/MIC to be a reliable predictor of efficacy for the fluoroquinolones 
moxifloxacin, sparfloxacin, ciprofloxacin and ofloxacin [169]. However, the PK/PD 
parameters identified using a mouse model can predict only the early bactericidal activity 
because of inherent drawbacks of these models. An important difference exists between 
the aerosol infected mouse model of TB and human disease. Unlike humans, the 
granulomas in mouse models are not progressed to caseation and liquefaction. Further, 
after the onset of the chronic phase of the disease, unlike humans, the lungs and spleen of 
mice contain high numbers of persisting bacteria [76].  Non-human primate models of TB 
that recapitulate the human disease are ideal for identifying the clinically relevant PK/PD 
predictors of sterilization efficacy of anti-TB agents. However, these models are very 
expensive and are not suitable for screening compounds in the early stages of the drug 
development process. Thus, more studies are needed to fill this gap between drug 
discovery and clinical testing and provide definitive guidance in antitubercular drug 
development. 
 

In spite of remarkable developments in the fields of mycobacteriology and drug 
development, the number of antitubercular drug molecules that have recently reached 
clinical trials is small. The major bottlenecks in antitubercular drug development include 
lack of inexpensive animal models to predict the efficacy of compounds under 
development, a poor understanding of predictive PK/PD measures and a poor 
understanding of latent TB infection. Recent reports on the emergence of extensively 
drug-resistant tuberculosis (XDR-TB) [3]are concerning and reinforce the need for a 
speedy development of agents with novel modes of action and lack of cross-resistance. 
Novel molecules such as OPC-67683, TMC207 and PA-824 are promising candidates to 
treat drug resistant TB and are expected to reach the market by 2012 [171]. TB 
pharmacotherapy, however, also needs to be improved by developing more efficient 
dosing regimens for the existing anti-TB drugs that allow for shortening the duration and 
improving the adherence to therapy. 
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Table 1-5.  PK/PD Parameters of Anti-Tuberculosis Drugs. 
 

Target Drug Cmax/MIC T>MIC AUC/MIC Protein 
Binding fu fu* 

Cmax/MIC
fu* 

AUC/MIC
Bactericidal 

Activity 
Sterilizing 
Activity References

Isoniazid (Slow) 18 19.2 19.01 Cell wall 
Components Isoniazid (Fast) 

40 
9 11.6 

 
Negligible

 

0.99 
 39.6 

11.48 
+++ + [31, 62, 83]

 Ethambutol 10 13 23.4 6-30% 0.7 7 16.38 ++ + [31, 62, 83]
 Pyrazinamide 3.8 na 52 5-10% 0.9 3.42 46.8 + +++ [31, 62, 170]
 Ethionamide 1.6 1.5 1 30% 0.7 1.12 0.7 ++ + [31, 62, 83]
 Thiacetazone 1.3 5.5 1.2 95% 0.05 0.065 0.06 + + [31, 62, 83]
 Cycloserine 3.8 22.5 195.5 na na na na + + [31, 62, 83]
Intracellular 
Targets Rifampicin 24 9 39.9 60-90% 0.1 2.4 3.99 +++ +++ [31, 62, 83]

 Streptomycin 10 8 124.5 35-57% 0.43 4.3 53.54 + + [31, 62, 83]
 PAS 75 4 153.7 15% 0.85 63.75 130.6 + + [31, 62, 83]
 Ciprofloxacin 5 10.5 16.9 20-40% 0.6 3 10.14 + + [31, 62, 83]
 Ofloxacin 5 15.5 47.4 20-30% 0.7 3.5 33.18 + + [31, 62, 83]

 
    Cmax/MIC: Ratio of peak serum concentration to minimum inhibitory concentration. 
    T>MIC: % of time during which the serum concentration remains above the MIC. 
    AUC/MIC: Ratio of area under plasma concentration-time curve to MIC. 
    Bactericidal Activity: Killing of rapidly dividing bacteria. 
    Sterilizing Activity: Total eradication of bacteria that includes rapidly dividing and dormant subpopulations. 
    fu: Fraction of unbound drug. 
    fu x Cmax/MIC and fu x AUC/MIC: PK/PD parameters calculated using free fraction of the drug. 
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Central Hypothesis 
 
 The effectiveness of an antibacterial agent depends upon its ability to reach the 
site of infection (intracellular and/or interstitial) in a sufficiently high unbound 
concentration and to stay at the site of infection for a sufficiently long period of time. The 
aspect of presentation of drugs to bacteria is governed by the pharmacokinetics (PK) of 
the drug. The mere presence of an antibacterial agent at the site of infection is not 
sufficient for its activity; the compound also needs to have the ability to penetrate the 
bacterial cell wall to achieve sufficient intracellular concentrations and the compound 
should have affinity for its target to achieve antimicrobial effect (intrinsic activity). The 
aspects of a drug’s antimicrobial activity are termed pharmacodynamics (PD) [172]. It is 
thus readily apparent that the in vivo activity of an anti-infective agent is determined by 
its intrinsic antimicrobial activity and free, unbound concentration in the target tissue, 
since only free, non-protein bound drug is pharmacologically active.  
 
 Traditionally, the antimicrobial drug development process has been a trial and 
error approach in which different candidate compounds were tested for in vitro and 
subsequently in vivo antimicrobial activity. This process is inefficient, resource intensive 
and time consuming as it requires a large number of compounds to be screened to 
identify a potential lead for further development. Pharmacokinetic/pharmacodynamic 
(PK/PD) models in an integrated fashion provide powerful predictive capabilities for 
drug efficacy in vivo [173, 174], and allow in silico modeling and simulation of the 
effectiveness of different dosing regimens and treatment modalities [52, 175]. The 
utilization of PK/PD principles from the early stages of drug development is believed to 
result in scientifically driven, evidence-based, more focused and accelerated drug 
development process [176-179]. The utilization of PK/PD principles in designing dosing 
regimens and guiding drug development processes has been the common practice for 
various classes of antibiotics in non-mycobacterial infections, especially for fast-growing 
microorganisms [165, 180-186]. However, so far very limited information exists on the 
PK/PD relationships of existing or novel anti-tubercular drugs and on the utility of these 
relationships in guiding a drug development process. We hypothesized that an iterative 
PK/PD guided paradigm involving pharmacokinetically guided lead optimization 
followed by a pharmacodynamic evaluation in in vitro 
pharmacokinetic/pharmacodynamic model would facilitate the identification of 
antimycobacterial lead compounds suitable for further development. We investigated this 
hypothesis for a novel class of nitrofuranylamides targeted against M. tuberculosis.  
 
 In specific aim 1 (Chapter 2), we developed an iterative pharmacokinetically 
guided lead optimization paradigm based on a set of biopharmaceutic and in vivo 
pharmacokinetic properties. We applied this approach in the lead optimization of a novel 
class of nitrofuranylamides with antimycobacterial activity.  
 
 In specific aim 2 (Chapter 3), we developed a novel in vitro PK/PD model for 
characterizing the time course of bacterial kill rates for antibiotic dosing regimens against 
slow growing microorganisms, thereby capturing the dynamic interplay between 
microorganisms and changing drug concentrations as encountered during prolonged 

 36



antibiotic pharmacotherapy in vivo. We validated the in vitro PK/PD model by 
characterizing the time course of bacterial kill rates for dosing regimens of a first line 
anti-tuberculosis drug, isoniazid (INH) using M. bovis BCG as a model organism.  
 
 In specific aim 3 (Chapter 4), we determined time course of bacterial kill rates for 
dosing regimens of a nitrofuranylamide lead compound, Lee 1106 in the in vitro PK/PD 
model. Based on these data, we developed an in silico pharmacodynamic model for 
describing the Lee 1106 mediated bacterial kill. We applied this in silico 
pharmacodynamic model to predict the bactericidal effect of Lee 1106 at different, 
untested dosing regimens by numerical simulation experiments, thereby gaining insights 
on the potential in vivo antimycobacterial activity of Lee 1106. 
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CHAPTER 2.  PHARMACOKINETICALLY-GUIDED LEAD OPTIMIZATION 
OF NITROFURANYLAMIDE ANTI-TUBERCULOSIS AGENTS* 
 
 

Introduction 
 
 Mycobacterium tuberculosis (M.tb) is the causative agent of TB in humans. As 
indicated by World Health Organization statistics, one-third of the world population is 
currently infected with TB, and it is anticipated that close to 10% of these infected 
individuals develop active TB at some point in their lifetime. TB is the second leading 
cause of infectious disease mortality in the world with approximately 2 to 3 million 
deaths per year [14]. Association of TB with HIV has proven to be fatal; a quarter of a 
million TB deaths are HIV infection associated [1]. Current pharmacotherapeutic 
regimens require treatment of TB with multiple drugs, including isoniazid, rifampicin, 
ethambutol and pyrazinamide for a period of six months. Treatment of drug resistant TB 
is more difficult requiring the usage of second-line agents that are associated with 
increased toxicity [187]. Adherence to prolonged treatment regimens required to kill 
persistent or latent bacteria and thus clear the infection is often poor, leading to treatment 
failures and development of resistance to therapy. Recently, the emergence of XDR-TB 
[3] has raised concerns that we may lose control over the spread of TB. Though currently 
there are intensive efforts to develop new TB therapies, it is worth reflecting that no new 
major classes of drugs have been approved for the treatment of TB since the introduction 
of the rifamycins into the market in 1971 [188]. Thus, the availability of more potent 
antibiotics that could effectively reduce the duration of therapy against M.tb is highly 
desirable. 
 
 Besides good in vivo activity, an ideal TB drug should have minimal side effects, 
high oral bioavailability, and a favorable pharmacokinetic profile, i.e., linear 
pharmacokinetics and a long terminal half-life that would allow once-a-day dosing with 
predictable and reproducible systemic exposure, and compatibility with existing HIV 
medications for joint therapy. In an effort to develop new and more potent therapies to 
treat TB, a novel class of anti-infectives with high in vitro activity against M.tb, 
nitrofuranylamides, has recently been characterized by our group [189-192]. 
 
 The main objective of the current work is to gain an understanding of the 
preclinical pharmacokinetics of the nitrofuranylamide series of compounds, and to 
improve the pharmacokinetic properties of these compounds via structural modification. 
Because optimization of pharmacokinetic properties is frequently a rate limiting step in 
the preclinical development of anti-tuberculosis agents [12, 193, 194], the 
pharmacokinetically-guided lead optimization used in this publication may also be useful 
for screening other compounds in early drug discovery projects. 
 
 
*This chapter adapted with permission. Budha, N.R., et al., Pharmacokinetically-guided 
lead optimization of nitrofuranylamide anti-tuberculosis agents. AAPS J, 2008. 10(1): p. 
157-65 [235]. 
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Materials and Methods 
 
 
Chemicals and Reagents 
 
 All tested nitrofuranylamides were synthesized in the laboratory of Dr. R.E. Lee 
at the University of Tennessee Health Science Center, Memphis, TN, including Lee 562 
(5-Nitro-furan-2-carboxylic acid [6-(4-benzyl-piperazin-1-yl)-pyridin-3-ylmethyl]-
amide), Lee 878 (1-benzyl-4-{4-[(5R)-3-(5-nitro-2-furyl)-4, 5-dihydroisoxazol-5-yl] 
phenyl} piperazine), Lee 952: N-methyl-N-[4-(2-morpholin-4-ylethoxy) benzyl]-5-nitro-
2-furamide, and Lee 1106 (1-{4-[3-(5-nitro-2-furyl)-4, 5-dihydroisoxazol-5-yl] phenyl}-
4-[4-(trifluoromethoxy) phenoxy] piperidine) (Figure 2-1). Details on the synthesis of the 
test compounds are described elsewhere [191, 192, 195]. Acetonitrile, HPLC grade water, 
acetic acid and ammonium acetate were purchased from Fisher Scientific (Pittsburgh, 
PA). Drug free rat plasma was purchased from Aleken Biologicals (Nash, TX).  
 
 
Pharmacokinetic Studies in Rats 
 
 Catheterized male Sprague-Dawley rats (jugular vein alone for oral study and 
jugular vein and femoral vein for intravenous study) from Harlan Bioscience 
(Indianapolis, IN), weighing approximately 250 g, were kept on a 12 hr light/dark cycle 
with food and water available ad libitum. Groups of rats (n = 4-5) received either an 
intravenous (IV) or oral dose of a test compound at a dose level of 10 mg/kg or 100 
mg/kg, respectively. For oral administrations, the animals were fasted overnight and until 
4 hr after administration of test compound. Serial blood samples (~250 μL) were 
collected predose and at predetermined time points postdose. Plasma was separated 
immediately by centrifugation (3000g for 10 min at 4ºC) and stored at -80°C until 
analysis.  Feces and urine specimens were collected for Lee 562 and Lee 1106 for a 
period of 24 hours after administration. The study protocol was approved by the 
Institutional Animal Care and Use Committee of the University of Tennessee Health 
Science Center. 
 
 
Microsomal Incubations 
 
 Microsomal metabolic stability of the compounds was assessed in pooled rat liver 
microsomal preparations (Cellzdirect, Austin, TX) by monitoring disappearance of the 
parent compound over an incubation period of 90 minutes. The percentage of intact 
parent compound in the samples was estimated by comparing analyte concentrations 
before and after incubation using a liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) assay. Reactions were started by adding 25 μL of microsomal protein 
solution (10 mg/mL) to 25 μL of test compound (50 μM) and 200 μL of NADPH 
regenerating solution (1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2 
and 1 unit/mL glucose-6-phosphate dehydrogenase in pH 7.4 phosphate buffer solution). 
The mixture was incubated at 37°C and samples were taken at 0, 15, 30, 45, 60 and 90 
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Figure 2-1.  Chemical Structures of Lee 562, Lee 878, Lee 952, and Lee 1106. The 
boxes and circles depict important structural differences between the first generation 
compound Lee 562, the second generation compounds Lee 878 and Lee 952, and the 
third generation compound Lee 1106. 
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minutes. The reaction was terminated by the addition of three volumes of ice-cold 
acetonitrile containing an internal standard, Lee 563. Controls were treated in a similar 
manner using heat-denatured microsomes. Samples were centrifuged at 3,000×g for 10 
minutes at 4ºC and the supernatants were removed for analysis. An aliquot (10 µL) was 
analyzed by LC-MS/MS. 
 
 
Solubility and Lipophilicity 
 
 Aqueous solubility of the compounds was estimated at two different pH values 
using a miniaturized shake-flask method [196]. Approximately 1 mg of the test 
compound was shaken with 500 μL of either pH 6.0 or pH 7.4 buffer in a glass vial at 
400 rpm and room temperature for 24 hours. The resulting mixture was centrifuged and 
the concentration in the supernatant was determined by LC-MS/MS. The octanol-water 
partition coefficient (clogP) of the compounds as measure of their lipophilicity was 
calculated using ChemDraw Ultra version 7.0 (CambridgeSoft Corporation, Cambridge, 
MA). 
 
 
Protein Binding 
 
 Protein binding of the compounds was determined using equilibrium dialysis. 
Biologically relevant concentrations of test compound were prepared (low and high) in 
rat plasma. 200 μL of the plasma sample was placed in the central chamber and 350 μL 
of blank isotonic phosphate buffer, pH 7.4 in the peripheral chamber of a dialysis device 
(MW cutoff 6000-8000, RED® device, Pierce Biotechnology Inc, Rockford, IL). The 
chambers were covered with a seal and incubated at 37ºC for 4-6 hours at a rocking speed 
of 100 rpm. At the end of incubation, the volumes of plasma and recipient buffer were 
measured to identify and account for volume shift, if any. Aliquots of plasma and buffer 
were used to determine the drug concentration using an LC-MS/MS assay. The free 
fraction of the drug was calculated as ratio of the concentrations in the buffer and in 
plasma. 
 
 
Plasma Concentration Measurements by LC-MS/MS 
 
 A calibration curve ranging from 1-500 µg/L was constructed for each test 
compound by spiking the test compound into 50 µL of blank rat plasma. A structural 
analogue of the test compounds, Lee 563 (ethyl 4-(5-{[(5-nitro-2-furoyl) amino] methyl} 
pyridin-2-yl) piperazine-1-carboxylate), was added as internal standard to all calibration 
standards and all plasma specimens. Plasma proteins were precipitated by the addition of 
three volumes of acetonitrile. The samples were centrifuged at 3000×g for 10 minutes at 
4ºC and the supernatants were removed for analysis. Chromatographic separations were 
carried out using a Shimadzu liquid chromatograph (Shimadzu Corporation, USA) 
consisting of two pumps, online degasser, system controller and a CTC Leap auto 
sampler (Leap Technologies, Carrboro, NC). A gradient of acetonitrile and 10 mM 
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ammonium acetate was used at a flow rate of 0.3 mL/min.  A Phenomenex® Luna, 3μ 
C18 (2), 50 x 2 mm column (Phenomenex, Torrance, CA) protected with a guard column 
was used for the separation. 10 μL of sample was injected onto the column and the eluate 
was led directly into an API 3000 triple-quadrupole mass spectrometer (Applied 
Biosystems ABI/MDS-Sciex, Foster City, CA) equipped with an electrospray ion source. 
The quadrupoles were operated in the positive ion mode. The resulting multiple reaction 
monitoring chromatograms were used for quantification using Analyst software version 
1.4.1 (Applied Biosystems ABI/MDS-Sciex, Foster City, CA).  
 
 
Pharmacokinetic Data Analysis 
 
 Plasma concentration-time data were analyzed by non-compartmental analysis 
using WinNonlin 5.0.1 (Pharsight Corporation, Mountain View, CA). The area under the 
plasma concentration-time curve from time 0 to infinity (AUCinf) was calculated by the 
trapezoidal rule with extrapolation to time infinity. The terminal half-life (t1/2) was 
calculated as 0.693/λz, where λz is the terminal phase rate constant. The plasma clearance 
(CL) was calculated using the equation CL=Doseiv/AUCinf, iv, where Doseiv and AUCinf, iv 
are the IV dose and corresponding area under the plasma concentration-time curve from 
time 0 to infinity, respectively. Volume of distribution based on terminal phase (Vz) was 
calculated using Vz=Doseiv/(λz*AUCinf, iv). The peak plasma concentration (Cmax) and the 
time when it occurred (tmax) in the oral dose group were obtained by visual inspection of 
the plasma concentration-time curves. Clearance after oral dose (CL/F) was calculated as 
Doseoral/AUCinf, oral. Volume of distribution after oral dose (Vz/F) was calculated as 
Doseoral/(λz*AUCinf, oral). Oral bioavailability (F) was calculated using F = (AUCinf, oral* 
Doseiv)/(AUCinf, iv *Doseoral), where Doseoral, Doseiv, AUCinf, iv, and AUCinf, oral are the 
oral and IV dose and the corresponding areas under the plasma concentration-time curves 
from time 0 to infinity, respectively.  
 
 

Results 
 
 
Pharmacokinetics of Lee 562 
 
 The first evaluated lead compound was Lee 562 (Figure 2-1).  The plasma 
concentration-time profiles of Lee 562 after single IV and oral administration are shown 
in panels A and B of Figure 2-2, the derived pharmacokinetic parameters in Table 2-1.  
Lee 562 appeared rapidly in plasma after oral administration with peak plasma levels 
(Cmax) observed in less than 15 min after administration. There was a rapid decline in the 
plasma levels followed by a smaller second peak about 6 hr after the dose administration.  
The second peak in the profile after oral administration indicates the possibility of 
enterohepatic recirculation of the compound or erratic absorption.  The compound was 
distributed extensively in the body with a volume of distribution of 28.9 L/kg. A high 
clearance of 12.9 L/hr/kg indicates rapid elimination. The amount of compound excreted 
unchanged into urine or feces was less than 0.1% of the dose by both routes of  
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Figure 2-2.  Measured Plasma Concentration-Time Profiles (Mean ± SD) after 
Intravenous (10 mg/kg, Panel A) or Oral (100 mg/kg, Panel B) Administration of Lee 562 
to Rats (n = 5-6 per group). 
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Table 2-1.  Pharmacokinetic Parameters (Mean ± SD) of Lee 562, Lee 878, Lee 952, and Lee 1106. 
 

% Dose Excreted 
Route Compound t½ 

(hr) 
AUCinf 

(µg hr/L) 

Volume of 
Distribution 

(L/kg) 

Clearance 
(L/hr/kg) Urine Feces 

Bioavailability 
(%) 

IV Lee 562 1.30 ± 0.89 956 ± 442 28.9 ± 29.4 12.9 ± 7.6 0.001 ± 0.0003 0.001 ± 0.001  
 Lee 878 2.63 ± 0.35 19091 ± 1724 2.00 ± 0.36 0.527 ± 0.05 ND ND  
 Lee 952 7.34 ± 2.27 1846 ± 82.2 58.0 ± 20.1 5.42 ± 0.24 ND ND  
 Lee 1106 10.3 ± 1.41 22423 ± 4096 6.72 ± 1.10 0.456 ± 0.07 0.035 ± 0.01 0.14 ± 0.06  
         

Oral Lee 562 3.69 ± 0.86 1519 ± 458 386 ± 187 71.6 ± 23.2 0.009 ± 0.02 0.023 ± 0.02 15.9 ± 4.8 
 Lee 878 ND 52324 ± 14834a ND 2.07 ± 0.71b ND ND 27.4 ± 7.8b 
 Lee 952 3.39 ± 1.16c 2936 ± 1119 192 ± 127 37.7 ± 12.5 ND ND 15.9 ± 6.1 
 Lee 1106 9.24 ± 1.71 10230 ± 9101 231 ± 174 16.0 ± 10.3 0.025 ± 0.02 11.8 ± 7.09 4.6 ± 4.1 

 
  ND: Not determined. 
  a: AUC0-48hr. 
  b: AUC0-48hr was used for calculation of clearance and oral bioavailability. 
  c: Not reliable. Determined to limited log-linear phase. 
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administration suggesting that the high clearance is the result of extensive metabolism. 
The high clearance resulted in a short terminal half-life of 1.3 hr after IV and 3.7 hr after 
oral administration, and an oral bioavailability of only 15.9%. To investigate the extent of 
metabolism, Lee 562 was incubated in rat liver microsomal preparations. The microsomal 
metabolism of Lee 562 was rapid and extensive, with nearly complete loss (>99.5%) of 
the parent compound within 90 minutes of incubation.  
 
 
Microsomal Metabolic Stability of Second Generation Compounds Lee 878 and Lee 
952 
 
 Metabolic stability of a compound is investigated to determine metabolic half-life 
and intrinsic clearance which can be major determinants for in vivo drug efficacy, and to 
aid in structural optimization of lead compounds in drug discovery settings [197]. 
Analysis of the structure of Lee 562 led us to attribute its metabolic instability in part to 
the amide bond of the compound. Thus, two follow-up second generation compounds, 
Lee 878 and Lee 952, were tested that included structural modifications to improve 
metabolic stability.  For Lee 878, the amide bond was replaced by an isoxazole ring; for 
Lee 952, the amide hydrogen was substituted with a methyl group (Figure 2-1). The 
microsomal metabolism of Lee 952 was rapid and extensive, with >95% loss of the 
parent compound after 90 minutes of incubation (4.3% remaining). The metabolic half-
life appears to be less than 15 minutes. The desired cutoff for metabolic stability in most 
preclinical programs is more than 30% of parent remaining stable after 90 minutes of 
incubation [198]. In contrast, Lee 878 exhibited acceptable metabolic stability under this 
criterion with 31.4% of the parent compound remaining stable at the end of incubation. 
 
 
Pharmacokinetics of Second Generation Compounds Lee 878 and Lee 952 
 
 The plasma concentration-time profiles and pharmacokinetic parameters of Lee 
878 and Lee 952 after single IV and oral administration to rats are shown in panels A and 
B of Figures 2-3 and 2-4 and Table 2-1, respectively. Oral absorption of Lee 878 was 
slow with peak plasma concentration (Cmax) occurring about 6 hours after administration. 
In contrast, oral absorption of Lee 952 was rapid with peaks observed within 15 minutes 
of administration. Lee 952 distributed more extensively in the body than Lee 878 with a 
distribution volume of 58 L/kg compared to 2.0 L/kg. As expected from the microsomal 
metabolic stability studies, the mean plasma clearance was much larger for Lee 952 with 
5.4 L/hr/kg compared to 0.53 L/hr/kg for Lee 878.  Consequently, oral bioavailability of 
Lee 878 was found to be 27.4%, while Lee 952 exhibited poor oral bioavailability with 
only 15.9%. Since the terminal elimination phase was not captured after oral 
administration of Lee 878, AUC0-48 hr was used to determine oral bioavailability. Despite 
its substantially lower clearance, Lee 878 exhibited a much shorter terminal half-life of 
2.6 hr after IV administration compared to Lee 952 with 7.3 hr.  This can be explained 
with Lee 878’s substantially smaller distribution volume compared to Lee 952, which 
indicates less drug distribution to peripheral tissues and thus easier access of drug 
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Figure 2-3.  Measured Plasma Concentration-Time Profiles (Mean ± SD) after 
Intravenous (10 mg/kg, Panel A) or Oral (100 mg/kg, Panel B) Administration of Lee 878 
to Rats (n = 5-6 per group). 
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Figure 2-4.  Measured Plasma Concentration-Time Profiles (Mean ± SD) after 
Intravenous (10 mg/kg, Panel A) or Oral (100 mg/kg, Panel B) Administration of Lee 952 
to Rats (n = 5-6 per group). 
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compound to elimination processes. 
 
 
Metabolic Stability of Third Generation Compounds 
 
 Since the microsomal metabolic stability was found to be correlated with the oral 
bioavailability of Lee 562, Lee 878 and Lee 952, a new set of nine compounds within the 
nitrofuranylamide series was screened for metabolic stability. Chemical structures of the 
compounds and microsomal metabolic stability data are shown in Figure 2-5. Lee 1106 
exhibited superior metabolic stability with more than 70% of the parent compound 
remaining stable after 90 minutes of incubation. Thus, Lee 1106 was selected for further 
pharmacokinetic evaluation in rats. The structural modifications of Lee 562 that lead to 
the other three compounds, Lee 878, Lee 952 and Lee 1106, are shown in Figure 2-1. 
 
 
Pharmacokinetics of the Third Generation Compound Lee 1106 
 
 The plasma concentration-time profiles of Lee 1106 after single IV and oral 
administration are shown in panels A and B of Figure 2-6, the corresponding 
pharmacokinetic parameters in Table 2-1. Absorption of Lee 1106 was slow, with peak 
plasma concentration (Cmax) observed 9 hr after administration. Oral bioavailability of the 
compound was 4.6%. Lee 1106 showed a distribution volume of 6.7 L/kg. As expected 
from the metabolic stability data, the plasma clearance of the compound was low, 0.46 
L/hr/kg. The unchanged compound excreted in urine was less than 1% of the dose by 
both routes of administration, whereas about 0.1% and 12% of the dose was excreted 
unchanged in feces after IV and oral administration, respectively.  The low plasma 
clearance of Lee 1106 resulted in a longer terminal half-life than observed in the other 
tested nitrofuranylamides, 10.3 hr after the IV and 9.24 hr after the oral administration. 
 
 
Solubility Screening 
 
 Aqueous solubility is one of the most important properties for a compound 
intended to be developed as an orally active molecule. The solubility of the investigated 
compounds is presented in the Table 2-2. A compound is conventionally classified as 
highly soluble when the largest dose of the compound is soluble in less than 250 mL 
water over a pH range from 1.0 to 7.5 [46]. Though there is no strict cutoff value for 
solubility available, solubility above 50 µg/mL is arbitrarily considered acceptable for 
compound progression in most preclinical development programs [12]. It is assumed that 
this level of solubility would never pose a problem in limiting bioavailability. Lee 562, 
Lee 878 and Lee 1106 did not pass this solubility requirement, but the solubility for Lee 
952 clearly exceeds the cutoff value. Predicted octanol-water partition coefficient, clogP 
values for Lee 562, Lee 878, Lee 952 and Lee 1106 are shown in Table 2-2. A graph 
showing the relationship between the clogP and the aqueous solubility of all the tested 
compounds is presented in the panel A of Figure 2-7. 
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Figure 2-5.  Chemical Structures of Third Generation Nitrofuranylamides. The values provided in parenthesis indicate the metabolic 
stability in an in vitro microsomal stability assay (percent parent compound remaining stable after 90 min of incubation). 
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Figure 2-6.  Measured Plasma Concentration-Time Profiles (Mean ± SD) after 
Intravenous (10 mg/kg, Panel A) or Oral (100 mg/kg, Panel B) Administration of Lee 
1106 to Rats (n = 5-6 per Group). 
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Table 2-2.  Aqueous Solubility and Plasma Protein Binding of Lee 562, Lee 878, Lee 
952, and Lee 1106. 
 

Solubility (mg/L) 
Compound Molecular 

Weight 
MIC90* 
(µg/mL) clogP 

pH 6.0 pH 7.4 

% 
Protein 
Binding 

Lee 562 421.4 0.0062 2.41 18.5 4.43 96.43 
Lee 878 432.5 0.00005 4.29 3.34 0.24 99.92 
Lee 952 389.4 0.09 1.91 1975 759 44.53 
Lee 1106 517.5 0.025 6.41 BLQa 2.67 99.99 

 
* MIC90: Minimum inhibitory concentration to inhibit the growth of 90% of organisms 
determined against M. tuberculosis H37Rv using microbroth dilution in Middlebrook 
7H9. 
a: BLQ: Below the limit of quantification. 
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Figure 2-7.  Relationship between Aqueous Solubility, Plasma Protein Binding and 
clogP in the Investigated Nitrofuranylamides. Panel A shows correlation between 
aqueous solubility and clogP and panel B shows correlation between plasma protein 
binding and clogP. The plasma protein binding of the compounds Lee 992 and Lee 1053 
could not be determined due to instability in plasma. 
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Plasma Protein Binding 
 
 The compounds Lee 562, Lee 878 and Lee 1106 are extensively bound to plasma 
proteins with 96.4%, 99.9% and >99.9% binding, respectively (Table 2-2). In contrast, 
Lee 952 was only 44.5% bound to plasma proteins. A graph showing relationship 
between clogP and the protein binding of all the tested compounds is presented in the 
panel B of Figure 2-7. 
 
 

Discussion 
 
 The first tested lead compound, Lee 562, exhibited a high systemic clearance, 
short terminal half-life, and low oral bioavailability of 15.9%. These observations were 
further supported by the poor metabolic stability of Lee 562, which was attributed to its 
amide linkage and the benzyl piperazine side chain in the structure. Thus, two second 
generation follow-up compounds were tested that included structural modifications for 
increased metabolic stability.  For Lee 878, the amide bond was replaced by an isoxazole 
ring; for Lee 952, the amide hydrogen was substituted with a methyl group and the 
benzyl piperazine was replaced with a solubilizing morpholino group. Both compounds 
showed improved metabolic stability in the rat microsome assay compared to Lee 562, 
with Lee 878 being much more stable than Lee 952. As expected, this in vitro 
observation translated into an increased in vivo stability (lower clearance) of Lee 878 
compared to Lee 562 and Lee 952, with a 20- and 10-fold higher systemic exposure, 
respectively.  As a consequence, oral bioavailability of Lee 878 reached ~27% compared 
to 16% for Lee 952 and Lee 562. 
 
 The low oral bioavailability of Lee 562 and Lee 952 was predictable, considering 
that the mean plasma clearance after IV administration was 12.9 L/hr/kg and 5.4 L/hr/kg 
respectively. Based on their extensive metabolism, their plasma clearance and a typical 
hepatic blood flow of 3.3 L/hr/kg in rats [199], the theoretical hepatic extraction ratio 
(ER) for these compounds could be estimated as 3.9 and 1.6 for Lee 562 and Lee 952, 
respectively. As the maximum physiologically possible hepatic ER is 1, i.e., complete 
removal and/or metabolic conversion of all drug presented to the liver, the calculated ERs 
for Lee 562 and Lee 952 exceeding 1 suggest the presence of extrahepatic metabolism 
and/or sequestration of drug into blood cells. Upon incubation with heparinized human 
whole blood, Lee 562 showed slow distribution into red blood cells with a partitioning 
coefficient of 2.1 (results not shown). Overall, the low oral bioavailability of these 
compounds could be attributed to high first-pass metabolism. For Lee 562, poor aqueous 
solubility apart from the first-pass inactivation could also be a contributing factor to its 
low oral bioavailability.  
 
 Similarly, assuming that clearance of Lee 878 is only hepatic, the hepatic ER for 
Lee 878 could be estimated as 0.16. Considering first-pass inactivation alone, this would 
suggest that the maximum oral bioavailability for Lee 878 could theoretically reach 84% 
([1-ER]*100) as opposed to the observed bioavailability of 27.4%. Possible reasons for 
this difference in bioavailability could be poor aqueous solubility, transporter-mediated 
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efflux in the gastrointestinal membrane, and/or degradation/metabolism in the 
gastrointestinal tract. 
 
 The elimination half-life of Lee 878 was only 2.6 hr, mainly due to the 
surprisingly small volume of distribution of this compound. Considering the high clogP 
of 4.3 for Lee 878 and the corresponding low aqueous solubility, the limited volume of 
distribution of Lee 878 is most likely explained by its excessive binding (99.92%) to 
plasma proteins. A high plasma protein binding reduces the free, pharmacologically 
active concentrations of a drug and limits its tissue distribution. This might be the major 
reason why Lee 878 was found to have low in vivo efficacy in a mouse model of M.tb 
infection despite favorable systemic exposure, high metabolic stability and high in vitro 
activity [192]. 
 
 Since the microsomal metabolic stability was found to be correlated with the oral 
bioavailability of the first and second generation compounds we tested, a new set of nine 
third generation compounds belonging to the same series were screened for microsomal 
metabolic stability to guide selection of a stable compound for pharmacokinetic 
evaluation.  
 
 As Lee 1106 exhibited superior metabolic stability, its pharmacokinetic properties 
were evaluated in vivo. The compound exhibited favorable pharmacokinetic properties 
such as a low systemic clearance and a long terminal half-life. However, oral 
bioavailability of Lee 1106 is poor despite a mean plasma clearance after IV 
administration of only 0.46 L/hr/kg. Assuming that all clearance for Lee 1106 is mediated 
by the liver, the hepatic ER for Lee 1106 would be calculated as 0.14 and the maximum 
oral bioavailability based on first-pass inactivation alone would be 86%. However, Lee 
1106 exhibited a very low oral bioavailability of 4.6%. Poor aqueous solubility of the 
compound could explain to some extent the observed low oral bioavailability of the 
compound, which might be overcome by optimizing the dosage form using solubilizing 
excipients [200]. Further, possible degradation/metabolism and/or transporter-mediated 
efflux of the compound in the gastrointestinal tract could also contribute to this 
observation. In addition, poor aqueous solubility, high plasma protein binding and high 
clogP of Lee 1106 suggest hydrophobicity of the molecule. Lee 1106 has a molecular 
weight exceeding 500 Da (517.5 Da) and a clogP exceeding 5 (6.41), thereby clearly 
deviating from the Lipinski’s rule of five, a scoring function used to predict orally active 
molecules [47]. 
 
 A closer look at the structures of the compounds suggests that Lee 878 and Lee 
1106 have a larger number of aromatic rings imparting more hydrophobicity to the 
molecule which in turn decreases their aqueous solubility. Lee 952 has fewer aromatic 
rings in its structure and exhibits high aqueous solubility.  As shown in the panel A of 
Figure 2-7, aqueous solubility in our set of compounds was inversely correlated with 
clogP as measure of hydrophobicity (p = 0.004, Pearson correlation coefficient: -0.76).  
Similarly, protein binding was consistently above 96% with higher clogP values in all the 
tested compounds (Figure 2-7, panel B).  
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Figure 2-8.  Screening Paradigm for Lead Optimization of Anti-TB Compounds. 
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CHAPTER 3.  AN IN VITRO PK/PD MODEL TO DETERMINE TIME-KILL 
CURVES OF ANTIBIOTICS AGAINST SLOW-GROWING 
MICROORGANISMS 
 
 

Introduction 
 
 In spite of the fact that bacteria are exposed to dynamically changing drug 
concentrations in vivo, antibiotics are frequently dosed based on point estimates of 
efficacy derived from exposure to constant concentrations. Until last decade, it was a 
common practice to select antimicrobial dosing regimens above the minimum inhibitory 
concentration (MIC) of the pathogen being treated. This approach, however, has several 
disadvantages as it does not accurately reflect the complex interaction among the three 
major players, the drug, the microorganism and the host. Constant (static) drug levels 
used in MIC determinations hardly reflect the actual in vivo situation where the 
pharmacodynamic effect is the result of dynamic exposure of the organism to the 
unbound drug fraction in the target tissue. Furthermore, the MIC provides only limited 
information on the kinetics of bactericidal activity as it is used as a threshold value for the 
activity of the antibiotic.  In reality, however, antimicrobials usually have already some 
activity at concentrations below the MIC and may not have the maximum activity just 
above the MIC. Thus, complete time courses of the drug effect in response to 
concentration-time courses encountered in vivo seem to be more adequate and 
informative for selecting optimal dosing strategies than the use of point estimates such as 
MIC [201]. 
 
 In recent years, integrated pharmacokinetic/pharmacodynamic (PK/PD) 
approaches have been developed as a more sophisticated methodology to assess the 
efficacy of antimicrobials based on dynamic kill curves. These PK/PD-based approaches 
are being used to help in the selection of potential drug candidates and to provide a 
scientific rationale for selecting dosing regimens that increase the efficacy and reduce the 
probability of emergence of drug resistance [176].  The US Food and Drug 
Administration and the European Medicines Evaluation Agency have been advocating 
the use of various in vitro and in vivo models to characterize the PK/PD properties of 
antibiotics and to predict the efficacy of candidate compounds in the early stages of the 
drug development process [202, 203].  
 
 In vitro PK/PD models can be used to study the antibacterial effect of single and 
combination  drug compounds and dosing regimens before in vivo efficacy studies [204].  
The advantage of these models is that the appropriate human/animal pharmacokinetic 
profiles can easily be simulated and the effect of these changing drug concentrations on 
bacterial growth (i.e., via kill curves) and emergence of resistance can be assessed. 
Different species of microorganisms and clinical isolates of the same bacteria that vary in 
sensitivity to drug treatment can be exposed to different dosing regimens, such that the 
PD parameters can be identified that best explain the activity/efficacy of the drug and 
allow the optimization of dosage regimens for maximum efficacy. Since the influence of 
the immune system is absent in these in vitro models, the drug-bacterium interactions can 
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be measured more precisely. Thus, in vitro models offer a safer and more ethical way of 
assessing the PK/PD relationships of antibiotics compared to animal or human studies 
[201, 205-207].  
 
 Several in vitro PK/PD models for antibiotics have been reported in the literature 
and can be broadly classified as either dilution models or diffusion models based on the 
mechanism by which the dynamic concentration-time profiles are simulated [204, 208]. 
However, most of the available in vitro models have been applied for fast growing 
bacteria and are not suitable for studies on slow growing microorganisms such as 
Mycobacterium tuberculosis. The previously reported dilution models without a filter 
membrane [209-211] are not suitable for slow growing organisms since the bacteria are 
washed out during the dilution process and the bacterial replication rate is not sufficient 
to offset this loss. The reported dilution models with filter membrane have so far not been 
utilized for slow growing organisms in the published literature.  More recently, several 
reports have been published using hollow fiber bioreactors (diffusion models) as in vitro 
models for testing antibacterial activity against M. tuberculosis [212-215]. However, 
there are severe limitations associated with the use of hollow fiber bioreactors for in vitro 
culturing of bacteria. As these bioreactors are complex and difficult to sterilize between 
experiments, new hollow fiber cartridges are recommended for every study which makes 
a broad-based application of these experiments cost-prohibitive. Further, nonspecific 
drug binding to the hollow fiber capillaries, especially of the highly lipophilic compounds 
frequently tested for anti-mycobacterial activity, can produce erroneous results. In view 
of these limitations of the existing in vitro models, we decided to develop a novel in vitro 
PK/PD model for studying the pharmacologic properties of antibiotics against slow-
growing microorganisms that is simple, inexpensive and easy to construct and operate. In 
the following, we illustrate the application of this model to determine time-kill curves of 
slow growing microorganisms by characterizing the effect of isoniazid (INH) dosing 
regimens on Mycobacterium bovis Bacillus Calmette-Guerin (BCG).  
 
 

Materials and Methods 
 
 
In vitro PK/PD Model Design 
 

The in vitro PK/PD model system consisted of a two-armed, water jacketed 
spinner culture flask (1965 series spinner flask, Bellco Glass, Vineland, NJ) as depicted 
in Figure 3-1. A 25 mm diameter filter unit (Pall Corporation, East Hills, NY) was fixed 
to one end of a custom made hollow steel tube. The other end of the steel tube was 
connected to plastic tubing (PharMed tubing, Cole-Parmer, Vernon Hills, IL). A prefilter 
(5μm, Millipore, Billerica, MA) and filter membrane (0.22μm, Millipore, Billerica, MA) 
were placed in the filter unit to prevent leakage of bacteria during the dilution process. 
The whole filter unit was suspended into the media from the top. The flask was placed on 
a magnetic stirrer; a magnetic stir bar in the flask ensured homogeneity of the culture and 
prevented membrane pore blockage. One of the side arms covered with silicone septa was 
used for repeated sampling. The other sidearm was connected to a reservoir containing 
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A. Outlet for media 
B. Inlet for fresh media 
C. Sampling and dosing 

port 
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E. Filter unit holding 
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filters 

F. Magnetic stir bar 
G. Water jacket 

 
 

Figure 3-1.  Schematic Diagram of In vitro PK/PD Model. 
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antibiotic free sterile medium through a thin plastic tube (PharMed tubing, Cole-Parmer, 
Vernon Hills, IL). The outlet tubing from the filter unit was connected to a peristaltic 
pump (Masterflex L/S, Cole-Parmer, Vernon Hills, IL) to continuously withdraw the 
medium from the flask at a constant rate. Fresh sterile medium (Middlebrook 7H9, 
Becton Dickinson, Sparks, MD) was pumped into the flask at the same rate. The solution 
of the antibiotic INH was added through the sidearm. INH concentration in the flask was 
decreased exponentially according to the equation, 
 

tk
0 eCC ⋅−⋅=  

 
where C0 is the initial concentration of INH in the flask, C is the concentration at any 
time t, k is the elimination rate constant and t is the time elapsed since the addition of 
INH. The elimination rate constant k is equal to F/V, where F is the flow rate of the 
medium and V is the volume of the medium in the flask. Different half-lives (t1/2) of INH 
were simulated in the model by changing the flow rate according to the equation, 
 

2/1

2ln
t

VF ⋅=
 

 
 The temperature in the flask was maintained at 37oC by attaching a thermostatic 
water circulator to the water jacket of the flask. The apparatus was sterilized by 
autoclaving between experiments and was kept in a biological safety cabinet during 
operation. Working picture of the in vitro model was shown in Figure 3-2. 
 
 
Culture, Media, and Antibiotics 
 
 Mycobacterium bovis BCG was grown in Middlebrook 7H9 broth (Becton 
Dickinson, Sparks, MD) supplemented with 10% albumin dextrose complex and 0.1% 
v/v Tween 80. The cultures were stored at -80°C in Middlebrook 7H9 broth. For each 
experiment, cultures were thawed and incubated at 37°C in Middlebrook 7H9 broth for 4 
days.  
 
 The antibiotic isoniazid (INH) was obtained from Sigma-Aldrich (St. Louis, MO). 
A stock solution of antibiotic was prepared in DMSO and stored at -80°C. Working 
solutions of INH were prepared from the stock solution using sterile water. 
 
 
Minimum Inhibitory Concentration of Isoniazid 
 
 The MIC of INH was determined using the microbroth dilution method according 
to the CLSI guidelines [73] and was read by visual inspection. Two fold serial dilutions 
of INH in 100 µL of the Middlebrook 7H9 broth medium were prepared in round- 
bottomed 96 well microtiter plates (Nunc, Sigma-Aldrich, St. Louis, MO). An equivalent 
volume (100 µL) of broth containing ~105 CFU/mL bacteria was added to each well to 
give final concentrations of INH starting at 200 mg/L and the plates were incubated
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Figure 3-2.  A Picture Showing Two Working Units of In vitro PK/PD Model. 
 
 
aerobically at 37°C for 7 days. The MIC was recorded as the lowest concentration of drug 
that prevented visible growth. 
 
 
Time-Kill Curves of INH 
 
 The test organism M. bovis BCG was used to evaluate the in vitro model. M. bovis 
BCG was grown to the early logarithmic growth phase in Middlebrook7H9 medium. The 
logarithmically growing culture was then used to inoculate the in vitro model. The final 
density of the culture in the in vitro system was ~106 CFU/mL. The medium was drawn 
from the flask via the combination of a 5 µm and a 0.22 µm filter at a predetermined flow 
rate that mimicked the in vivo elimination half-life of INH. Fresh sterile medium was 
pumped into the flask at the same rate through one side arm to keep the volume of the 
medium at the initial level. The addition of INH doses was started after the culture had 
reached the logarithmic growth phase which was determined by the optical density of the 
culture. INH doses were added daily for 7 days to simulate INH plasma concentration-
time profiles in humans treated with 25, 100 and 300 mg/day (Table 3-1).  Since INH is 
metabolized by a polymorphically expressed enzyme, NAT2 (N-acetyl transferase 2), this 
difference in INH metabolizing activity results in a bimodal distribution of elimination 
half-lives with fast and slow acetylators. Thus, elimination half-lives of either 4.5 or 2.0 
hr were simulated in the model to mimic slow and fast acetylators, respectively. 
Approximately 200 μL of the medium was collected at time zero and every day thereafter 
until the end of the experiment. The number of viable bacteria in each sample was 
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Table 3-1.  Experimental Plan with Initial Concentrations of Isoniazid. 
 

Elimination 
Half-life 

INH 
Dose/day 

Number 
of Doses 

Initial 
Concentration 

(C0) 
Dose Group 

hr mg  mg/L 
Control - - - - 

25 7 0.3 
100 7 1.21 Slow 

Acetylators 4.5 
300 7 3.64 
25 7 0.3 
100 7 1.21 Fast 

Acetylators 2.0 
300 7 3.64 

 
 
determined by plating serial dilutions of the samples on antibiotic-free Middlebrook 
7H11 agar plates. The plates were incubated for 3-4 weeks at 37°C. The antibacterial 
activity was measured as the reduction in number of viable bacteria, expressed as 
CFU/mL. Each experiment was performed in duplicate for each dose level and 
elimination half-life. No-drug controls were included in the study for comparison to 
assess the extent of killing by INH. Time-kill curves were constructed based on the time 
course of CFU/mL measurements.  
 
 
Time-Kill Curve Data Analysis 
 
 The relationship between INH exposure and microbial kill was modeled by using 
a previously described time-kill curve equation [185], 
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  Eq. 3-1 
 
where N is the M. bovis BCG cell count in CFU/mL, k0 is the bacterial net growth rate 
constant, Nmax is the maximum number of bacteria in the system in CFU/mL, Imax is the 
maximum kill rate, C is the concentration of INH at time t, and IC50 is the concentration 
at half-maximal kill rate. The logistic growth function, 1-N/Nmax was used to describe the 
limited growth of bacteria in the absence of antibacterial agents. The delay in bacterial 
kill rate was modeled using the term 1-e-αt, where α is the delay rate constant. According 
to the model, the delay rate constant α mathematically modulates Imax over time and 
determines the duration of time needed for Imax to reach its value. The delay in bacterial 
kill is likely due to the time necessary to achieve enough intracellular drug exposure to 
initiate the killing process. The IC50 was modeled as adaptive constant which changes 
with the exposure and the ratio of the initial cell count to the cell count at time t 
according to equation, 
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    Eq. 3-2 
 
where IC50A is the adaptive IC50, N0 is the number of bacterial cells at time zero and 
IC50 is the baseline IC50.  The adaptive IC50 explains the change in IC50 due to an 
increased drug insensitive cell population over the course of treatment, such as the 
frequently observed latency for Mycobacterium species [212, 216-218]. All time-kill data 
were analyzed simultaneously by nonlinear mixed effects modeling (NONMEM v.6.2, 
Icon, Ellicott City, MD). PK parameters were fixed in the PK/PD model and set equal to 
their selected values (V=55 mL, where V is volume of the medium in the system, half-
life, t1/2 = 4.5 and 2.0 hr for slow and fast acetylators respectively). The first-order 
conditional estimation method within NONMEM was used to analyze the generated time-
kill curves. The measured data and model predictions were log transformed and the 
random residual variability was modeled using an additive error term. The between 
experiment variability in the parameter α was modeled as exponential error. Model 
performance was evaluated using goodness-of-fit plots, including observed vs. predicted, 
weighted residuals vs. time and weighted residuals vs. predictions plots.  
 
 For identification of the most appropriate empirical PK/PD index associated with 
the microbial kill of INH, cell counts on days 2, 3 and 4 were analyzed using an 
inhibitory Emax model [213] expressed as, 
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where, E is the observed M. bovis BCG cell counts in log10 CFU/mL, Econtrol is the BCG 
cell count in the control experiment, and Emax is the maximal antimicrobial effect in log10 
CFU/mL. EC50 is the value of the PK/PD index that produces half-maximal 
antimicrobial effect and PKPD is one of the empirical PK/PD indices frequently used in 
infectious disease pharmacotherapy, AUC0-24/MIC, T>MIC or Cmax/MIC. The PK/PD 
index that best characterized the effect of of INH on M. bovis was selected based on 
goodness-of-fit criteria (e.g., coefficient of determination values), residual analysis and 
visual inspection. 
 
 

Results 
 
 Mycobacterium bovis BCG was successfully cultured in our novel in vitro PK/PD 
model for 10 days. The growth rate constant of M. bovis BCG in the absence any 
antibacterial compound was found to be 0.0464 hr-1 and the corresponding doubling 
time/generation time was calculated as 14.9 hours. This doubling time of M. bovis BCG 
is similar to that observed in vitro and comparable to the published range (13-20 hours) 
[219]. Administration of INH dosing regimens to logarithmically growing cultures of 
BCG in the in vitro model resulted in reduced cell counts when compared to the control 
experiment (Figure 3-3, panels A and B). The initial kill rate during the first two days of  
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Figure 3-3.  Plots Showing Measured (Mean ± SD) and Model Predicted (Lines) M. 
bovis BCG CFU/mL over Time for the PK/PD Model. Panel A shows kill curves for slow 
acetylators of isoniazid, panel B for fast acetylators. Symbols for dose groups: Control 
experiment, ○; 25 mg/day, ■; 100 mg/day, ▲; and 300 mg/day, ●.  Lines represent 
individual predictions based on the PK/PD Model. 
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therapy in slow acetylators was 0.32, 1.36, and 1.35 log10 (CFU/mL)/day for the 25, 100 
and 300 mg/day dosing regimens, respectively. Similarly, the initial kill rate for the fast 
acetylators was calculated as 0.09, 0.05 and 0.78 log10 (CFU/mL)/day for the 25, 100 
and 300 mg/day dosing regimens respectively. The initial kill rate of INH, analogous to 
in vivo early bactericidal activity (EBA) was concentration- and thus dose-dependent. As 
concentrations in simulated slow acetylators were higher than in fast acetylators, the INH 
mediated kill effect was also more pronounced in slow acetylators compared to fast 
acetylators at each dose level (Figure 3-3, panels A and B). The bactericidal activity 
appeared with a delay of approximately 24 hours in the fast acetylator dose groups 
compared to the corresponding dose groups in slow acetylators (Figure 3-3, panels A and 
B). The INH mediated killing of bacteria ceased after three days of therapy and re-growth 
of bacteria appeared in both slow and fast acetylator dose groups (Figure 3-3, panels A 
and B). 
 
 Different mathematical models were evaluated for describing the M. bovis BCG 
time-kill data generated with the in vitro PK/PD model [183, 220-225]. An adaptive IC50 
kill curve model was selected to describe the data. Graphical representations showing 
observed and predicted BCG cell counts at all the tested dosing regimens in slow and fast 
acetylators are displayed in the panels A and B of Figure 3-3. The corresponding 
parameter estimates were listed in the Table 3-2. The maximum kill rate (Imax) was 
calculated as 0.852 hr-1. The concentration of INH that produces the half-maximal kill 
rate, IC50, was estimated as 0.244 mg/L. The adaptive IC50, IC50A, was correspondingly 
ranging from 0.244 to 15.4 mg/L. For comparison, the MIC for INH determined with the 
classic dilution approach was found to be 0.05 mg/L. The goodness-of-fit plots presented 
in Figure 3-4 and Figure 3-5 indicate that the selected mathematical time-kill curve 
model (Eq. 3-1) is able to describe the data well (Figures 3-4 and 3-5).  
 
 Examination of the relationship between empirical PK/PD indices and microbial 
kill for day 3 of the treatment revealed that the PK/PD index AUC0-24/MIC was the most 
explanatory of the INH mediated microbial kill (Figure 3-6). The relationships between 
microbial kill and the other PK/PD indices, Cmax/MIC and T>MIC are also shown in  
 
 

Table 3-2.  Parameter Estimates of Isoniazid PK/PD Model. 
 

Parameter Units Estimate (% CV) 
k0 hr-1 0.0464 (61.6) 
IC50 mg/L 0.244 (271) 
Adaptation 
Constant L/mg.hr 0.00224 (36.5) 

Imax hr-1 0.852 (87.6) 
α hr-1 0.088 (85) 
   
Between Experiment Variability (%CV) in α        95.02 (64.2)  
   
Residual Variability (%CV)     81.3 (27.1) 
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Figure 3-4.  Goodness-of-Fit Plots for the INH PK/PD Model - Observed versus 
Predicted Values. Panel A shows observed vs. individual predicted values (log10 
CFU/mL) and panel B shows observed vs. population predicted values (log10 CFU/mL). 
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Figure 3-5.  Goodness-of-Fit Plots for the INH PK/PD Model - Weighted Residuals. 
Panel A shows weighted residuals vs. time (hr) and panel B shows weighted residuals vs. 
population predicted values (log10 CFU/mL). 
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Figure 3-6.  Relationship between PK/PD Indices and Microbial Kill on Day 3 after Treatment. Panels A, B, and C show 
AUC/MIC, T>MIC, and Cmax/MIC, respectively. 
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Figure 3-6. Similar results were observed for day 2 and day 4 data (results not shown). 
The parameter estimates from the empirical PK/PD analysis were given in Table 3-3. 
 
 

Discussion 
 
 Identification of pharmacodynamic parameters has become an integral part of the 
development process of novel antibiotics [176]. Characterization of pharmacodynamic 
parameters in the early stages of development enables the design of optimal dosage 
regimens for animal and human studies and allows for better predictions of the 
success/failure of an antibiotic development program [206, 208]. In vitro PK/PD models 
are used widely for the determination of pharmacodynamic parameters of antibiotics 
[184, 220, 223, 224, 226-228] due to a variety of advantages. One of the advantages of in 
vitro models is that human and animal pharmacokinetic profiles can easily be simulated. 
In addition, the lack of immune system in these in vitro experiments allows for precise 
characterization of bacteria-drug interactions. Further, the in vitro models are better 
suited over animal models to test and identify the time- or concentration-dependant 
killing nature of antibacterial drugs [201]. The novel in vitro PK/PD model described in 
this manuscript belongs to the dilution model category with a filter membrane to prevent 
bacterial dilution. It is easily constructed, inexpensive, prevents dilution of the bacteria 
without membrane pore blockage and can be used for slow growing organisms as shown 
with the time-kill analysis using M. bovis BCG. Compared to the previously reported 
models of similar nature [204, 205], the model described in this paper has several 
advantages: 1) It is a completely closed system and is safe to work with pathogenic 
strains, 2) the model can be used to work with slow and fast growth rate organisms, 3) the 
temperature in the flask can be controlled precisely with a water jacket and, 4) 
assembling and disassembling of the components of the model is simple and straight 
forward, allowing for easy study conduct and equipment sterilization. 
 
 Slow growth rate microorganisms such as M. bovis BCG pose many challenges 
for in vitro culturing. Much longer periods, usually more than a week are required to 
assess the efficacy of an antibacterial agent against these slow growing organisms when 
compared to fast growing organisms.  Consequently, integrity of the filter membrane is 
crucial for allowing media exchange but preventing outflow of bacteria throughout the 
duration of experiment. In addition, the in vitro PK/PD model should not hinder natural 
growth of bacteria in the absence of antibacterial agents. The concordance between the  
 
 

Table 3-3.  Empirical PK/PD Indices. 
 

Parameter Units AUC0-24/MIC T>MIC (%) Cmax/MIC 

Emax log10 CFU/mL 4.69 6.94 4.90 

EC50 variable dependent 
on index 36.01 57.33 12.33 

R2  0.991 0.988 0.988 
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observed doubling time for M. bovis BCG and the literature reported values suggests that 
the in vitro PK/PD model described in this report is not interfering with the normal 
growth of M. bovis BCG. 
 
 INH is one of the first line agents used in the multi drug combination therapy for 
TB that kills actively dividing bacteria. Early bactericidal activity (EBA) of the 
combination drug therapy for TB is derived mainly from INH activity on the 
logarithmically growing bacteria [229, 230]. EBA is defined as the rate of fall of colony 
forming units (CFU/mL) in the sputum of patients during the first two days of drug 
treatment and is expressed as log10 (CFU/mL)/day. PK/PD models based on in vitro 
time-kill curves have been used to assess the efficacy of antimicrobial agents. However, 
reports about the use of such models for anti-tuberculosis drugs are scarce. Only a few 
recently reported in vitro models characterized dynamic time-kill curves of the anti-
tuberculosis agents INH, rifampicin and moxifloxacin [212-215]. From the results of the 
time-kill experiments performed in this study, it can be seen that the kill rate of bacteria 
is different at identical dosing regimens in the slow and fast acetylator groups of INH. An 
initial delay in killing was observed at all the dosing regimens studied in the fast 
acetylator groups in contrast to the slow acetylator dose groups (Figure 3-3, panels A and 
B). In an in vitro study with 14C-labeled INH, it was shown that it takes more than 2 hours 
for complete intracellular uptake of INH when incubated with M. bovis BCG [231]. Since 
INH is eliminated with a half-life of 2 hours in fast acetylators the observed delay in 
killing could be due to the rapid removal of drug from the medium in this group 
compared to slow acetylators (half-life 4.5 hr). Similarly, the rapid removal of drug in the 
fast acetylators is likely the reason for the observed differences in the initial kill rates of 
bacteria among the identical dose groups in both slow and fast acetylators. The exposure-
dependant kill pattern for mycobacteria under INH therapy has been characterized in 
previously reported in vitro and in vivo animal studies [167, 215]. The initial rapid kill 
rate followed by a slow kill rate along with the re-growth of bacteria observed in our 
study is remarkably similar to that observed in an in vitro study by Gumbo et al., using 
M. tuberculosis H37Ra [215]. Similar results were found in several other in vitro drug 
susceptibility assays. It was hypothesized that the development of transient resistance to 
INH is responsible for the cessation of INH bactericidal activity [217, 232]. 
 
 We used a semi-mechanistic PK/PD model to describe the rate of killing of 
bacteria over time at different dosing regimens. The principle behind the analysis is that 
the change in CFUs over time is governed by the difference in the rate of growth and the 
rate of killing with INH stimulating the rate of microbial kill. The limiting growth of 
bacteria in the absence of INH was described by a logistic function, 1-N/Nmax where, N is 
the number of CFU/mL at time t and Nmax is the maximum number of bacteria (CFU/mL) 
in the system which corrects for the limitations of space and nutrients that are inherent to 
in vitro systems [185, 220, 225]. A correction factor (1-e-αt) was incorporated to describe 
the delay in kill effect after the addition of INH in the fast acetylator dose groups [185]. 
Since the numbers of INH insensitive populations of bacteria due to latency or resistance 
increased over the course of treatment, the selected PK/PD model needed to be able to 
describe the re-growth of bacteria. Various approaches have been reported for modeling 
drug resistance and/or growth of drug insensitive populations of bacteria [183, 213, 220-
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225]. Here, we used an adaptive IC50 model to describe the increase in apparent IC50 
due to growth of drug insensitive populations of bacteria. The increase in IC50 was 
inversely related to the INH exposure and the ratio of cell counts to the initial cell 
numbers (Eq. 3-2). This means that low exposure to INH results in increased 
development of insensitivity which is manifested as an increase in apparent IC50. This 
model was able to describe the observed re-growth of bacteria after several days of drug 
exposure. The IC50 was estimated as 0.244 mg/L and could increase over the course of 
treatment up to 15.4 mg/L. The stationary concentration of INH which is defined as the 
concentration at which the rate of bacterial killing equals growth was calculated using 
IC50 of INH as described by Mouton et al.[233]. The calculated stationary concentration 
(0.014 mg/L) was much lower than the MIC (0.05 mg/L), a commonly observed 
phenomenon for the concentration/exposure dependent killing by antibiotics [233]. 
 
 In the current study, INH exhibited exposure-dependent antibacterial activity on 
M. bovis BCG. The empirical PK/PD index AUC0-24/MIC was found to be well 
associated with the microbial kill. In contrast, the other tested indices, Cmax/MIC and 
T>MIC, were not correlated well with microbial kill. Not surprisingly, the finding that 
the INH kill rate is exposure-dependant is in agreement with previously published in vitro 
and in vivo studies [167, 212, 215]. However, the parameter estimate (AUC0-24/MIC) 
from a previous study, 61.6 is different from that of the current study, 36.0. The 
difference is likely due to the difference in the test organisms’ susceptibility to INH (M. 
tuberculosis H37Ra vs. M. bovis BCG).  
 
 The novel in vitro PK/PD model and associated PK/PD modeling approach 
described here can be used as a tool to evaluate and predict the bactericidal activities of 
novel anti-tuberculosis compounds. The underlying principle is to describe the whole 
time course of the events seen in the bacterial system when exposed to antibiotics. Such 
models, when combined with other information such as toxicology data, can be used to 
design improved dosing regimens of antibiotics beyond the empirical approaches. 
Simulations based on the mechanistically based time-kill models allow for evaluation and 
comparison of previously tested and hypothetical, untested dosing strategies.  
 
 The in vitro time-kill curve approach described for anti-mycobacterial drug 
activity, however, has some limitations. The current study was performed with an 
assumption that the plasma concentrations are similar to the effect site concentrations. 
However, in most of cases in vivo effect site concentrations are difficult to determine and 
may differ from plasma concentrations dependent on protein binding and tissue uptake. 
Secondly, the environment for bacterial growth in vitro differs from that in vivo.  Thirdly, 
the drug effect was measured on logarithmically growing bacteria which only describes 
the EBA of a drug. Thus, the approach described here cannot predict the sterilizing 
activity of drugs on persister (slowly metabolizing) populations of mycobacteria which 
are thought of being frequently responsible for relapses under drug therapy. This is one of 
the major limitations of most in vitro and in vivo models currently available for 
evaluating drug activity in tuberculosis.  
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Conclusion 
 
 In conclusion, we have shown that a newly developed in vitro PK/PD model can 
be used to determine time-kill curves for slow growing organisms as exemplified by the 
determination of time-kill curves for dosing regimens of INH against M. bovis BCG. We 
have also shown that the time-kill data of INH against M. bovis BCG can be described 
using an adaptive IC50 model that corrects for increased drug insensitive populations of 
bacteria during the course of treatment. The newly developed model can be used to 
determine time-kill curves of novel anti-tuberculosis compounds to aid in their 
development. Also, the approach can be used to evaluate new dosing regimens of 
currently used anti-tuberculosis agents. 
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CHAPTER 4.  PHARMACODYNAMICS OF LEE 1106 AGAINST M. BOVIS BCG 
IN AN IN VITRO PK/PD MODEL 
 
 

Introduction 
 
 In an effort to develop new and more potent therapies to treat TB, a novel class of 
anti-infectives with high in vitro activity against M.tuberculosis, nitrofuranylamides, has 
recently been characterized by our group [189-192, 234]. The compound Lee 1106 
emerged from the pharmacokinetically-guided paradigm described in chapter 2 and 
possesses the characteristics of a lead compound suitable for further development [235]. 
Lee 1106 was found to have good in vitro activity against M. tuberculosis with an MIC of 
0.025 mg/L. Also, Lee 1106 exhibited good metabolic stability with more than 70% of 
the parent compound remaining stable after 90 minutes of incubation with co-factor 
supplemented liver microsomal preparation. This in vitro observation translated into an 
increased in vivo stability (lower plasma clearance) and a longer elimination half-life of 
Lee 1106 in rats compared to other compounds in the nitrofuranylamide series. On the 
other hand, however , the compound exhibited a poor oral bioavailability of 4.6%, most 
likely secondary to poor aqueous solubility [235]. With the recent advances in 
solubilization technology, the compound’s apparent aqueous solubility can be enhanced 
using solubilizing excipients [200], and this approach is expected to increase its oral 
bioavailability. The stability of Lee 1106 in liver microsomal preparations indicates only 
limited, if any, involvement of the cytochrome P450 (CYP450) enzyme system in the 
clearance of the compound. This absence of major CYP450-mediated metabolism 
increases the likelihood of compatibility with existing anti HIV medications which are 
mainly metabolized by the CYP450 enzyme system and are frequently co-administered 
with anti-tuberculosis agents [188, 236].  
 
 In the current chapter we investigated the time course of bacterial kill of Lee 1106 
in an in vitro PK/PD model previously developed by our group that simulates the 
fluctuating concentrations in the in vivo pharmacokinetic profile of Lee 1106. The Lee 
1106-mediated bacterial kill was characterized at different multiple-dose regimens using 
M. bovis BCG as a model organism. An integrated PK/PD model was developed based on 
the generated bacterial time-kill curves that was able to describe the anti-mycobacterial 
effect of Lee 1106 on M. bovis BCG for all tested dosing regimens. The PK/PD model 
was subsequently used for numerical simulations to predict the antibacterial effect of Lee 
1106 for untested dosing regimens.  This approach gained valuable insights into the 
potential in vivo anti-mycobacterial activity of Lee 1106 and may guide dose selection 
and study designs for future in vivo evaluations. 
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Materials and Methods 
 
 
Culture, Media, and Antibiotics 
 
 Mycobacterium bovis BCG was grown in Middlebrook 7H9 broth (Becton 
Dickinson, Sparks, MD) supplemented with 10% albumin dextrose complex and 0.1% 
v/v Tween 80. The cultures were stored at -80°C in Middlebrook 7H9 broth. For each 
experiment, aliquots were thawed and incubated at 37°C in Middlebrook 7H9 broth for 4 
days.  
 
 The test compound Lee 1106 (1-{4-[3-(5-nitro-2-furyl)-4, 5-dihydroisoxazol-5-yl] 
phenyl}-4-[4-(trifluoromethoxy) phenoxy] piperidine) was synthesized in the laboratory 
of Dr. R.E. Lee at the University of Tennessee Health Science Center, Memphis, TN 
(Figure 2-1, Chapter 2). A stock solution of Lee 1106 was prepared in DMSO and stored 
at -80°C. Working solutions of the compound were prepared from the stock solution 
using DMSO. 
 
 
Minimum Inhibitory Concentration of Lee 1106 
 
 The MIC of Lee 1106 was determined using the microbroth dilution method 
according to the CLSI guidelines [73] and was read by visual inspection. Two fold serial 
dilutions of Lee 1106 in 100 µL of the Middlebrook 7H9 broth medium were prepared in 
round-bottomed micro liter plates (Nunc, Sigma-Aldrich, St. Louis, MO). An equivalent 
volume (100 µL) of broth containing ~105 CFU/mL bacteria was added to each well to 
give final concentration of Lee 1106 starting at 200 mg/L and the plates were incubated 
aerobically at 37°C for 7 days. The MIC was recorded as the lowest concentration of the 
compound that prevented visible growth. 
 
 
In vitro PK/PD Model Design 
 
 A description of the in vitro PK/PD model design is presented in Chapter 3 of this 
dissertation. 
 
 
Time-Kill Curves of Lee 1106 
 
 The test organism M. bovis BCG was used to determine the time-kill curves. M. 
bovis BCG was grown to early logarithmic growth phase in Middlebrook7H9 medium. 
The logarithmically growing culture was then used to inoculate the in vitro model. The 
final density of the culture in the in vitro system was ~106 CFU/mL. The medium was 
drawn from the flask via the combination of a 5 µm and a 0.22 µm filter at a 
predetermined flow rate that mimicked the in vivo elimination half-life of Lee 1106. 
Fresh sterile medium was pumped into the flask at the same rate through one side arm to 

 74



keep the volume of the medium at the initial level. The addition of Lee 1106 doses was 
started after the culture had reached the logarithmic growth phase which was determined 
by the optical density of the culture. Lee 1106 doses were added daily for 7 days to 
simulate Lee 1106 plasma concentration-time profiles in rats treated with 0.1, 0.3, 1, 3 
and 10 mg/kg/day given once daily (Table 4-1). An elimination half-life of 10.3 hr was 
simulated in the in vitro model. The elimination half-life 10.3 hours was adapted from the 
intravenous pharmacokinetic data of Lee 1106 in rats [235]. Approximately 200 μL of 
the sample was collected at time zero and every day thereafter until the end of the 
experiment. The number of viable bacteria in each sample was determined by plating 
serial dilutions of the samples on antibiotic-free Middlebrook 7H11 agar plates. The 
bacterial cells were washed twice to remove the residual compound before plating. The 
plates were incubated for 3-4 weeks at 37°C. The antibacterial activity was measured as 
the reduction in number of viable bacteria, expressed as CFU/mL. No-drug control was 
included in the study to assess the extent of killing by Lee 1106. The time-kill curves 
were constructed based on the time course of CFU/mL measurements.  
 
 
Time-Kill Curve Data Analysis 
 
 The relationship between Lee 1106 exposure and microbial kill was modeled by 
using a previously described time-kill curve equation [185], 
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where N is the M. bovis BCG cell count in CFU/mL, k0 is the bacterial net growth rate 
constant, Nmax is the maximum number of bacteria in the system in CFU/mL,  Imax is the 
maximum kill rate, C is the concentration of Lee 1106 at time t, and IC50 is the 
concentration at half-maximal kill rate. The logistic growth function, 1-N/Nmax was used 
to describe the limited growth of bacteria in the absence of antibacterial agents. The IC50 
was modeled as adaptive constant which changes with the exposure and the ratio of the 
initial cell count to the cell count at time t according to equation, 
 
 

Table 4-1.  Experimental Plan with Initial Concentrations of Lee 1106. 
 

Elimination 
Half-life 

Lee 1106
Dose/day

Number of 
Doses 

Initial Conc. 
(C0) 

Dose 
Group hr mg/kg  mg/L 

Control - - - - 
0.1 7 0.115 
0.3 7 0.345 
1 7 1.15 
3 7 3.45 

Treatment 10.3 

10 7 11.5 
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   Eq. 4-2 
 
where IC50A is the adaptive IC50, N0 is the number of bacterial cells at time zero and 
IC50 is the baseline IC50.  The adaptive IC50 explains the change in IC50 due to an 
increased drug insensitive cell population over the course of treatment, such as the 
frequently observed latency for Mycobacterium species [212, 216-218]. All time-kill data 
were analyzed simultaneously by nonlinear mixed effects modeling (NONMEM v.6.2, 
Icon, Ellicott City, MD). PK parameters were fixed in the PK/PD model and set equal to 
their selected values (V=55 mL, where V is volume of the media in the system, half-life, 
t1/2 = 10.3 hr) [235]. The first-order conditional estimation method in NONMEM was 
used to analyze the generated time-kill curves. The data and model predictions were log 
transformed and the random residual variability was modeled using an additive error 
term. The between experiment variability in the parameters IC50 and adaptation constant 
was modeled as exponential error. Model performance was analyzed using goodness-of-
fit plots, including observed vs. predicted, weighted residuals vs. time and weighted 
residuals vs. predictions plots. In addition, a visual predictive check was performed to 
evaluate the model. One thousand datasets were simulated from the PK/PD model and 
90% prediction intervals from the simulated datasets were overlaid on the observed data. 
 
 For identification of the most appropriate empirical PK/PD index associated with 
the microbial kill, cell counts on days 2, 3 and 4 were analyzed using an inhibitory 
sigmoid Emax model [213] expressed as, 
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where, E is the observed M. bovis BCG log10 CFU/mL, Econtrol is the BCG cell count in 
the control experiment, Emax is the maximal antimicrobial effect in log10 CFU/mL, EC50 
is the value of PK/PD index that produces half-maximal antimicrobial effect, H is the hill 
coefficient and PKPD is one of the empirical PK/PD indices frequently used in infectious 
diseases pharmacotherapy, AUC0-24/MIC and Cmax/MIC. The PK/PD index ‘time above 
minimum inhibitory concentration’ T>MIC was not estimated because the concentrations 
of Lee 1106 were above MIC 100% of the time in the steady-state  dosing intervals at all 
dose levels except 0.1 mg/kg. The PK/PD index that best characterized the effect of Lee 
1106 on M. bovis was selected based on goodness-of-fit criteria (e.g., coefficient of 
determination values), residual analysis and the visual inspection. 
 
 
Numerical Simulations  
 
 Numerical simulation experiments were performed based on the PK/PD model to 
predict the bactericidal effect of Lee 1106 on M. bovis BCG at untested dosing regimens 
in mice, the species frequently used for in vivo infection model of mycobacteria. The 
pharmacokinetics of Lee 1106 in mouse were extrapolated from the rat pharmacokinetics 
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by using allometric scaling. Dosing regimens of Lee 1106 with twice daily, once daily, 
twice weekly and once weekly administration (dosing intervals 12, 24, 72 and 168 hr, 
respectively) were simulated using the PK/PD model developed from the experimental 
time-kill data collected at once daily dosing regimens. One thousand datasets were 
simulated for each dosing regimen, and median and 90% prediction intervals of M. bovis 
BCG cell counts were calculated and plotted against time.  
 
 

Results 
 
 The growth rate constant of M. bovis BCG in the in vitro PK/PD model was found 
to be 0.0568 hr-1 and the corresponding doubling time/generation time was calculated as 
12.2 hours. This doubling time of M. bovis BCG is similar to that observed in the time-
kill curves of isoniazid, 14.9 hr (Chapter 3) and comparable to the published range (13-20 
hours) [219]. Administration of Lee 1106 dosing regimens to logarithmically growing 
cultures of M. bovis BCG in the in vitro PK/PD model resulted in reduced cell counts in a 
dose-dependent manner (Figure 4-1). The initial kill rate during the first two days of 
therapy was -0.35, 0.57, 0.99, 2.12 and 1.67 log10 (CFU/mL)/day for the 0.1, 0.3, 1, 3 
and 10 mg//kg/day dosing regimens, respectively (Figure 4-2). The observed initial kill 
rates were dose-dependent. No killing was observed with the 0.1 mg/kg dosing regimen 
and the highest killing was observed with the 3 mg/kg/day regimen. The killing effect 
reached a plateau at the 3 mg/kg dosing regimen. Further increases in dose up to 10 
mg/kg did not produce any additional increase in the bacterial kill rate. No delay was 
observed between the bactericidal effect of Lee 1106 and the drug exposure at all studied 
dosing regimens. 
 
 The time-kill data was analyzed using an adaptive IC50 kill curve model based on 
Eq. 4-1. The adaptive IC50 function was implemented based on Eq. 4-2. Graphical 
representations showing observed and predicted BCG cell counts at all the tested dosing 
regimens are displayed in Figure 4-1. The corresponding parameter estimates are listed in 
Table 4-2. The maximum kill rate (Imax) was calculated as 0.338 hr-1. The concentration 
of Lee 1106 that produces the half-maximal kill rate, IC50, was estimated as 0.55 mg/L. 
The adaptive IC50, IC50A, was correspondingly ranging from 0.55 mg/L at early to 31.4 
mg/L at late time points.  For comparison, the MIC for Lee 1106 determined with the 
classic dilution approach was found to be 0.025 mg/L. The goodness-of-fit plots 
presented in Figure 4-3 and Figure 4-4 indicate that the PK/PD model (Eq. 4-1) is able to 
describe the data well (Figure 4-1). This notion is supported by a visual predictive check 
that related the 90% prediction intervals to the experimentally obtained data (Figure 4-5, 
panels A to F). 
 
 Examination of the relationship between empirical PK/PD indices and microbial 
kill for day 3 of the treatment revealed that the PK/PD indices AUC0-24/MIC and 
Cmax/MIC both were able to describe the Lee 1106 mediated microbial kill (Figure 4-6). 
Similar results were observed for day 2 and day 4 data (results not shown). The parameter 
estimates from the empirical PK/PD analysis are listed in Table 4-3. The relationship 
between microbial kill and the PK/PD index, T>MIC could not be determined since the  
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Figure 4-1.  Measured (Symbols) and PK/PD Model Predicted (Lines) M. bovis BCG 
CFU/mL over Time for Different Dosing Regimens of Lee 1106. Control experiment, ○; 
0.1 mg/kg/day, □; 0.3 mg/kg/day, Δ; 1 mg/kg/day, ●; 3 mg/kg/day, ■; and 10 mg/kg/day, 
▲. Lines represent individual predictions based on the PK/PD Model. 
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Figure 4-2.  Initial Kill Rates of Lee 1106 Plotted against Dose. 
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Table 4-2.  Parameter Estimates of Lee 1106 PK/PD Model. 
 

Parameter Units Estimate  
(% CV) 

Between Experiment 
Variability in %CV 

k0 hr-1 0.0568 (15.7) * 
IC50 mg/L 0.55 (35.3) 57.1 
Adaptation 
Constant L/mg.hr 0.00016 (91.2) 154 

Imax hr-1 0.338 (13.1) * 
Residual Variability (%CV)               60.9 (33.4) 

 
      *No variability estimated for this parameter. 
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Figure 4-3.  Goodness-of-Fit Plots for the Lee 1106 PK/PD Model - Observed versus 
Predicted Values. Panel A shows observed vs. individual predicted values (log10 
CFU/mL) and panel B shows observed vs. population predicted values (log10 CFU/mL). 
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Figure 4-4.  Goodness-of-Fit Plots for the Lee 1106 PK/PD Model - Weighted 
Residuals. Panel A shows weighted residuals vs. time (hr) and panel B shows weighted 
residuals vs. population predicted values (log10 CFU/mL). 
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Figure 4-5.  Visual Predictive Check for the PK/PD Model. 90% Prediction intervals 
(dotted lines) for time-kill curves calculated from 1000 numerical simulations for each 
dosing regimen of Lee 1106. Continuous lines indicate median values and circles indicate 
the experimental M. bovis BCG cell counts (CFU/mL) at A) Control (no-drug), B) 0.1 
mg/kg/day regimen, C) 0.3 mg/kg/day regimen, D) 1 mg/kg/day regimen, E) 3 mg/kg/day 
regimen and F) 10 mg/kg/day regimen.  
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Figure 4-6.  Relationship between PK/PD Indices and Microbial Kill on Day 3 after 
Treatment. Panels A and B show Cmax/MIC and AUC/MIC, respectively. 
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Table 4-3.  Empirical PK/PD Indices Based on Day 3 Data. 
 

Parameter Units AUC0-24/MIC Cmax/MIC 
Emax log10 CFU/mL 5.47 5.47 

EC50 Variable dependent 
on the index 239 20.11 

H  1.14 1.14 
R2  0.995 0.995 

 
          R2 is the coefficient of determination. 
 
 
concentrations from all the dosing regimens (except 0.1 mg/kg) were above the MIC for 
M. bovis BCG during one dosing interval.  
 
 For the simulation of time-kill curves for different dosing regimens in future in 
vivo efficacy studies in mice, the pharmacokinetics of Lee 1106 were extrapolated from 
rat to mouse using three-quarter exponent law in allometric scaling. The elimination half-
life of Lee 1106 in mice was calculated as 5 hours. The numerical simulations using 
mouse PK data at the once daily (Figure 4-7) and twice daily dosing regimen (Figure 4-8) 
showed similar efficacy. The Lee 1106 regimens with once a week (Figure 4-9) and twice 
weekly (Figure 4-10) dosing predicted re-growth after an initial decrease in cell counts 
due to increased drug insensitive M. bovis BCG cell populations and may result in the 
ultimate selection of resistant populations of bacteria. 
 
 

Discussion 
 
 Bacterial time-kill curve analysis captures the dynamic interplay between the 
bacteria and the drug by simulating the fluctuation in antibiotic concentrations observed 
in vivo. In contrast to a static parameter for antibacterial activity such as MIC, the time-
kill analysis provides an antibacterial agent’s activity as a function of antibiotic 
concentration and time [201]. The in vitro PK/PD models offer several advantages in the 
determination of time-kill curves. First, time-kill curves can be determined at a wide 
range of concentrations which may not be possible with animal models or human studies. 
Secondly, dose-fractionation experimental designs can easily be implemented to remove 
the covariance between PK/PD indices to help determine the concentration- or time- 
dependent killing nature of antibiotics. Thirdly, the lack of immune response in the in 
vitro PK/PD model allows for a more accurate characterization of the interaction between 
the drug and the bacteria. Finally, it is relatively easy, inexpensive and ethical to 
determine time-kill profiles in in vitro models compared to in vivo models [206, 208]. 
 
 The doubling time of M. bovis BCG of 12.2 hours is close to the published range, 
13-20 hours, indicating that the in vitro model did not interfere with normal growth of M. 
bovis BCG [219]. Lee 1106 exhibited exposure dependent killing of M. bovis BCG which 
is evident from the initial kill rates analogous to early bactericidal activity (EBA) during  
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Figure 4-7.  90% Prediction Intervals (Dotted Lines) for Time-Kill Curves Calculated 
from 1000 Numerical Simulations for Once Daily Dosing Regimens of Lee 1106 in 
Mice. Continuous lines indicate median values. A) 0.1 mg/kg regimen, B) 0.3 mg/kg 
regimen, C) 1 mg/kg regimen, D) 3 mg/kg regimen and E) 10 mg/kg regimen.  
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Figure 4-8.  90% Prediction Intervals (Dotted Lines) for Time-Kill Curves Calculated 
from 1000 Numerical Simulations for Twice Daily Dosing Regimens of Lee 1106 in 
Mice. Continuous lines indicate median values. A) 0.1 mg/kg regimen, B) 0.3 mg/kg 
regimen, C) 1 mg/kg regimen, D) 3 mg/kg regimen and E) 10 mg/kg regimen. 
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Figure 4-9.  90% Prediction Intervals (Dotted Lines) for Time-Kill Curves Calculated 
from 1000 Numerical Simulations for Once Weekly Dosing Regimens of Lee 1106 in 
Mice. Continuous lines indicate median values. A) 0.1 mg/kg regimen, B) 0.3 mg/kg 
regimen, C) 1 mg/kg regimen, D) 3 mg/kg regimen and E) 10 mg/kg regimen. 
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Figure 4-10.  90% Prediction Intervals (Dotted Lines) for Time-Kill Curves Calculated 
from 1000 Numerical Simulations for Twice Weekly Dosing Regimens of Lee 1106 in 
Mice. Continuous lines indicate median values. A) 0.1 mg/kg regimen, B) 0.3 mg/kg 
regimen, C) 1 mg/kg regimen, D) 3 mg/kg regimen and E) 10 mg/kg regimen. 
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the first two days of therapy. When compared to the most efficient anti-tuberculosis agent 
INH, Lee 1106 exhibited superior early bactericidal activity. Lee 1106 exhibited more 
than 2-log unit reduction (2.12 log10 CFU/mL/day) in viable count every day during the 
first two days of therapy. In comparison, INH (300 mg/day) exhibited only a 1.35 log-
unit reduction in the viable count every day (Chapter 3). The Lee 1106-mediated killing 
effect reached a plateau at the 3 mg/kg/day dosing regimen. A further increase in dose to 
10 mg/kg did not produce any increase in bactericidal activity. This could be due to a 
very broad dose range, 0.1 mg/kg/day to 10 mg/kg/day (100 fold) used in the study, 
which eventually reached the maximum possible bactericidal activity (Figure 4-2). 
Alternatively, this observation could indicate that Lee 1106 exhibits time-dependent 
killing of M. bovis BCG. However, no killing but bacterial growth instead was observed 
at the 0.1 mg/kg dosing regimen, even though the concentrations of Lee 1106 were above 
the MIC for M. bovis BCG 94.3 % of time during one dosing interval.  
 
 The Lee 1106 mediated killing of bacteria ceased after 2-3 days of therapy at 
doses 3 mg/kg and 10 mg/kg once daily whereas the bactericidal activity lasted for 4-5 
days at doses 0.3 and 1 mg/kg once daily. This difference in the bactericidal activity 
appears similar to the paradoxical ‘Eagle effect’ observed for β-lactam antibiotics which 
also exhibit reduced bactericidal effects at higher concentrations [237]. As a result, the 
re-growth of bacteria was observed after 3 days of therapy at the 3 mg/kg and 10 mg/kg 
dose levels and after 5 days of therapy at the 0.3 mg/kg and 1 mg/kg dose levels.  
 
 The PK/PD model with an adaptive IC50 function was able to describe the re-
growth of bacteria after several days of drug exposure at all the studied dose groups. The 
increase in IC50 is inversely related the Lee 1106 exposure and the ratio of cell counts to 
the initial cell numbers (Eq. 4-2). This means that low exposure to Lee 1106 results in 
increased development of insensitivity, manifested as an increase in apparent IC50. The 
IC50 was estimated as 0.55 mg/L and increased over the course of treatment to 31.42 
mg/L. Total concentrations of Lee 1106 were utilized in developing the PK/PD model 
assuming that the extent of binding to proteins (BSA, bovine serum albumin) in the 
medium is similar to that of plasma protein binding. Middlebrook 7H9 medium contains 
5 g/L of BSA whereas the albumin in the plasma ranges from 30 to 50 g/L. The stationary 
concentration of Lee 1106 which is defined as the concentration at which the rate of 
bacterial killing equals growth was calculated using IC50 as described by Mouton et al. 
[233]. Usually, the stationary concentration is lower than the MIC for antibiotics with 
concentration-dependent kill. On the contrary, the calculated stationary concentration for 
Lee 1106, 0.111 mg/L, was greater than the MIC, 0.025 mg/L. This observation is in 
agreement with the anti-mycobacterial activity of other compounds in the 
nitrofuranylamide series. These compounds showed bacteriostatic effect at concentrations 
equivalent to MIC and bactericidal effect at much higher concentrations ranging from 0.1 
to 1.56 mg/L [234]. The percentage of time the concentration of Lee 1106 is above the 
stationary concentration for M. bovis BCG at 0.1 mg/kg dosing regimen in a dosing 
interval is only 1.67%, a likely reason for the absence of bactericidal effect at this dosing 
regimen. 
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 The empirical PK/PD analysis revealed that Lee 1106 exhibits an exposure-
dependent antibacterial kill. The PK/PD indices AUC/MIC and Cmax/MIC both could 
explain the observed Lee 1106-mediated bacterial kill (R2 = 0.995).  
 
 Since the aerosol infection mouse model of TB is used widely for the evaluation 
of antimycobacterial activity, pharmacokinetics of Lee 1106 were extrapolated from rat 
to mouse by using allometric scaling. The scaling from rat to mouse was performed under 
an assumption that the metabolic activity and thus the clearance of the compound follows 
the three-quarter exponent law [238, 239]. Accordingly, an elimination half-life of 5 
hours in mice as opposed to 10.3 hours in rats was used in the numerical simulations for 
predicting bactericidal effect of Lee 1106 in the mouse model. The results of numerical 
simulation experiments indicate that the twice daily dosing regimens produce a 
bactericidal effect similar to the once daily dosing regimens. Furthermore, twice weekly 
and once weekly dosing regimens predicted increased drug insensitive populations of 
bacteria manifested as re-growth in the predicted time-kill curves. These simulations 
suggest that the once daily dosing regimen is adequate for the further in vivo studies in 
mouse models of tuberculosis. 
 
 

Conclusion 
 
 In conclusion, we determined the time-kill profiles for dosing regimens of Lee 
1106 against a slow growing organism, M. bovis BCG. The PK/PD model with an 
adaptive IC50 function was able to describe the behavior in the data along with the re-
growth observed after several days of exposure in the time-kill profiles. The model-based 
numerical simulations indicate that the once daily dosing regimen in the mouse could 
produce similar antibacterial effects as observed in the in vitro kill curve analysis. 
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CHAPTER 5.  SUMMARY 
 
 
 Currently used strategies for the treatment of tuberculosis involve administration 
of multiple drugs for a minimum of 6 to 9 months. However, these prolonged regimens 
do not always achieve sterilization, as evidenced by post-therapy relapse in a subgroup of 
treated individuals [2]. Treatment of multi drug resistant-TB (MDR-TB) is 100 times 
costlier than drug sensitive TB, increases the duration of therapy and necessitates the use 
of more toxic second-line drugs [1]. Recently, the emergence of XDR-TB (extensively 
drug resistant TB) cases worldwide is increasing concerns that we may lose control over 
the spread of TB [1, 3]. Though currently there are intensive efforts to develop new TB 
therapies, it is worth noting that no new major classes of drugs have been approved for 
the treatment of TB since the introduction of the rifamycins into the market in 1971 
[188]. This indifference to the burgeoning drug resistance problem stemmed from the 
perceived lack of commercial incentive in the development of new TB drugs. As a result, 
a majority of the ongoing efforts in the development of novel therapeutic agents were 
initiated by non-profit organizations and academic research institutions [14].  
 
 In an effort to develop novel therapeutic agents for TB a new class of chemical 
agents, nitrofuranylamides, is being developed by our group [189-192, 195]. In the 
current dissertation, I hypothesized that application of an iterative PK/PD-guided 
approach would facilitate the identification of antimycobacterial lead compounds suitable 
for further development. I investigated this hypothesis for the class of chemical agents 
being developed by our group. First, I developed an iterative pharmacokinetically-guided 
lead optimization paradigm and successfully applied this approach in the optimization of 
nitrofuranylamide lead compounds. To complement the PK guided approach and expand 
it to a PK/PD-guided lead optimization paradigm, I developed a novel in vitro PK/PD 
model for characterizing the time-kill profiles of lead compounds against mycobacteria. I 
validated the in vitro model by characterizing the effect of the first-line anti-tuberculosis 
agent isoniazid against M. bovis BCG as a model organism. Lastly, I determined time-kill 
profiles for dosing regimens of a nitrofuranylamide lead compound, Lee 1106 in the in 
vitro model. I then developed a mathematical model for describing the Lee 1106 
mediated bacterial kill. Based on this mathematical model, I performed numerical 
simulations for predicting the bactericidal effect of Lee 1106 at different, untested dosing 
regimens and gained further insights into the in vivo antimycobacterial activity of Lee 
1106. 
 
 In the first step, I examined the biopharmaceutic properties and preclinical 
pharmacokinetics of nitrofuranylamides to accelerate the optimization of leads into 
development candidates. All tested compounds had high in vitro antimicrobial activity. 
The first tested compound, Lee 562, exhibited a high systemic clearance, short terminal 
half-life, and low oral bioavailability of 15.9%. These observations were further 
supported by the poor metabolic stability of Lee 562, which was attributed to its amide 
linkage and the benzyl piperazine side chain in the structure (Figure 2-1) Thus, two 
second generation follow-up compounds, Lee 878 and Lee 952 were tested that included 
structural modifications for increased metabolic stability. For Lee 878, the amide bond 
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was replaced by an isoxazole ring; for Lee 952, the amide hydrogen was substituted with 
a methyl group and the benzyl piperazine was replaced with a solubilizing morpholino 
group. Both compounds showed improved metabolic stability in a rat liver microsomal 
stability assay compared to Lee 562, with Lee 878 being much more stable than Lee 952. 
As expected, this in vitro observation translated into an increased in vivo stability (lower 
plasma clearance) of Lee 878 compared to Lee 562 and Lee 952, with a 20- and 10-fold 
higher systemic exposure, respectively. As a consequence, oral bioavailability of Lee 878 
reached ~27% compared to 16% for Lee 952 and Lee 562. Since the microsomal 
metabolic stability was found to be correlated with the oral bioavailability of the first and 
second generation compounds we tested, a new set of nine third generation compounds 
with high in vitro activity belonging to the same series was screened for microsomal 
metabolic stability to guide selection of a stable compound for pharmacokinetic 
evaluation. The most stable compound in the assay, Lee 1106 was selected for further PK 
evaluation in rats. The compound exhibited favorable pharmacokinetic properties such as 
a low systemic clearance and a long terminal half-life. However, oral bioavailability of 
Lee 1106 was limited (4.6%). Biopharmaceutic evaluation of the compound showed that 
the compound has poor aqueous solubility and a high clogP. The compound also 
exhibited high plasma protein binding. All three qualities, poor aqueous solubility, high 
clogP and high plasma protein binding suggest hydrophobicity of the molecule. Based on 
these results, a screening paradigm (Figure 2-8) was developed for optimization of the 
nitrofuranylamide lead compounds in a timely and cost-effective manner [235]. The lead 
compound Lee 1106 was selected for further evaluation in an in vitro PK/PD model. 
 
 In order to develop a PK/PD guided approach to lead optimization, a simple, 
inexpensive and reliable in vitro assay for the pharmacodynamic assessment of novel 
antibiotics is very much needed. Considering the slow growing nature of M. tuberculosis 
and the lack of availability of suitable pharmacodynamic models for assessing the activity 
of antimicrobials against slow growing organisms, I developed a novel in vitro PK/PD 
model and evaluated its performance by studying the pharmacodynamic effect of a first 
line antituberculosis drug, isoniazid (INH) against M. bovis BCG as a model organism. In 
the in vitro model M. bovis BCG was exposed to drug concentration-time profiles as 
usually encountered in humans during multiple dose therapy.  Simulated INH dosing 
regimens included 25, 100 and 300 mg/day. Concentration-time profiles were simulated 
for both human INH metabolism phenotypes, fast as well as slow metabolizers secondary 
to NAT2 polymorphism. The generated time-kill data was analyzed using a semi-
mechanistic pharmacokinetic-pharmacodynamic model that included an adaptive IC50 
function for explaining the re-growth of bacteria observed over the course of treatment. 
The PK/PD model was able to describe the data well. Empirical PK/PD analysis revealed 
that the AUC0-24/MIC is the most explanatory PK/PD index for the antimicrobial effect of 
INH on M. bovis BCG. The exposure dependent killing of bacteria by INH is in 
agreement with similar in vitro and in vivo studies using M. tuberculosis as test organism 
[167, 212, 215]. These findings suggest that the proposed in vitro PK/PD model and 
associated modeling approach are valuable tools for the assessment of antibacterial 
activity in slow growing microorganisms. 
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 After successful application for INH, the in vitro model was used to investigate 
the time-kill behavior of the novel lead compound, Lee 1106. Lee 1106 showed 
exposure-dependent killing of M. bovis BCG. Empirical PK/PD analysis identified the 
PK/PD indices AUC/MIC and Cmax/MIC as predictors of the bactericidal effect of Lee 
1106. Numerical simulation experiments were performed using the PK/PD model to 
predict the kill effect of different untested multiple dose regimens of Lee 1106 in mice. 
The pharmacokinetics of Lee 1106 were extrapolated from rats to mice by allometric 
scaling. The mouse PK was used in these simulations since the mouse models of TB are 
widely used for assessing the efficacy of anti-TB compounds. The simulation 
experiments suggest that once daily dosing would be adequate for in vivo efficacy studies 
in mouse models. The time-kill curves obtained by numerical simulation will guide the 
selection of dosing regimens for future in vivo experiments (M.tb mouse infection 
models).  
 
 In summary, we have successfully developed an iterative PK/PD guided process 
for lead optimization of nitrofuranylamides that uses a set of biopharmaceutic, 
pharmacokinetic and pharmacodynamic evaluations designed to identify the compounds 
suitable for further development. The utilization of PK/PD principles is believed to result 
in a scientifically driven, evidence-based, more focused and accelerated drug 
development process. Knowledge about the mechanistic reasons for lack of in vivo 
efficacy are of particular importance in guiding the chemical lead optimization process 
and to pinpoint the potential molecular modifications a compound has to undergo in order 
to have bioactivity and drug-likeness, i.e., the set of molecular properties and structural 
features that determine whether a compound is likely to succeed in drug development. 
The results of this study serve as an example for the optimization of lead compounds 
against tuberculosis. The general approach described in this dissertation, however, can 
also be applied in the optimization of leads in other chemical classes for treating 
tuberculosis and as well as other bacterial infections of slow as well as fast growing 
microorganisms. 
 
 
 



LIST OF REFERENCES 
 
 
1. World Health Organization, Fact sheet No 104: Tuberculosis. 2007, Geneva: 

WHO. 
2. El-Sadr, W.M., et al., A review of efficacy studies of 6-month short-course 

therapy for tuberculosis among patients infected with human immunodeficiency 
virus: differences in study outcomes. Clin Infect Dis, 2001. 32(4): p. 623-32. 

3. U.S. Department of Health and Human Services Center for Disease Control and 
Prevention, Emergence of Mycobacterium tuberculosis with extensive resistance 
to second-line drugs--worldwide, 2000-2004. MMWR Morb Mortal Wkly Rep, 
2006. 55(11): p. 301-5. 

4. Wenzel, R.P., The antibiotic pipeline--challenges, costs, and values. N Engl J 
Med, 2004. 351(6): p. 523-26. 

5. Spigelman, M. and S. Gillespie, Tuberculosis drug development pipeline: 
progress and hope. Lancet, 2006. 367(9514): p. 945-47. 

6. Kerns, E.H., High throughput physicochemical profiling for drug discovery. J 
Pharm Sci, 2001. 90(11): p. 1838-58. 

7. Prentis, R.A., Y. Lis, and S.R. Walker, Pharmaceutical innovation by the seven 
UK-owned pharmaceutical companies (1964-1985). Br J Clin Pharmacol, 1988. 
25(3): p. 387-96. 

8. van De Waterbeemd, H., et al., Property-based design: optimization of drug 
absorption and pharmacokinetics. J Med Chem, 2001. 44(9): p. 1313-33. 

9. Veber, D.F., et al., Molecular properties that influence the oral bioavailability of 
drug candidates. J Med Chem, 2002. 45(12): p. 2615-23. 

10. Venkatesh, S. and R.A. Lipper, Role of the development scientist in compound 
lead selection and optimization. J Pharm Sci, 2000. 89(2): p. 145-54. 

11. Pritchard, J.F., et al., Making better drugs: Decision gates in non-clinical drug 
development. Nat Rev Drug Discov, 2003. 2(7): p. 542-53. 

12. Caldwell, G.W., et al., The new pre-preclinical paradigm: compound 
optimization in early and late phase drug discovery. Curr Top Med Chem, 2001. 
1(5): p. 353-66. 

13. Volker, C. and J.R. Brown, Bioinformatics and the discovery of novel anti-
microbial targets. Curr Drug Targets Infect Disord, 2002. 2(4): p. 279-90. 

14. Global Alliance for TB Drug Development. 2007 [cited May 23, 2007]; Available 
from: http://www.tballiance.org. 

15. Global Alliance for TB Drug Development, Tuberculosis. Scientific blueprint for 
tuberculosis drug development. Tuberculosis (Edinb), 2001. 81 Suppl 1: p. 1-52. 

16. Solotorovsky, M., et al., Pyrazinoic acid amide: An agent active against 
experimental murine tuberculosis. Proc Soc Exp Biol Med, 1952. 79(4): p. 563-
65. 

17. Cole, S.T., et al., Deciphering the biology of Mycobacterium tuberculosis from 
the complete genome sequence. Nature, 1998. 393(6685): p. 537-44. 

18. Banerjee, A., et al., inhA, a gene encoding a target for isoniazid and ethionamide 
in Mycobacterium tuberculosis. Science, 1994. 263(5144): p. 227-30. 

95 

http://www.tballiance.org/


19. Oliveira, J.S., et al., Crystallographic and pre-steady-state kinetics studies on 
binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase 
enzymes from Mycobacterium tuberculosis. J Mol Biol, 2006. 359(3): p. 646-66. 

20. Campbell, E.A., et al., Structural mechanism for rifampicin inhibition of bacterial 
rna polymerase. Cell, 2001. 104(6): p. 901-12. 

21. Zhang, Y. and D. Mitchison, The curious characteristics of pyrazinamide: a 
review. Int J Tuberc Lung Dis, 2003. 7(1): p. 6-21. 

22. Belanger, A.E., et al., The embAB genes of Mycobacterium avium encode an 
arabinosyl transferase involved in cell wall arabinan biosynthesis that is the 
target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A, 
1996. 93(21): p. 11919-24. 

23. Spotts, C.R. and R.Y. Stanier, Mechanism of streptomycin action on bacteria: a 
unitary hypothesis. Nature, 1961. 192: p. 633-37. 

24. Zhang, Y., The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol 
Toxicol, 2005. 45: p. 529-64. 

25. Kondo, J., et al., Crystal structure of the bacterial ribosomal decoding site 
complexed with amikacin containing the gamma-amino-alpha-hydroxybutyryl 
(haba) group. Biochimie, 2006. 88(8): p. 1027-31. 

26. Aubry, A., et al., Mycobacterium tuberculosis DNA gyrase: interaction with 
quinolones and correlation with antimycobacterial drug activity. Antimicrob 
Agents Chemother, 2004. 48(4): p. 1281-88. 

27. Rengarajan, J., et al., The folate pathway is a target for resistance to the drug 
para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol, 2004. 53(1): p. 
275-82. 

28. Sampathkumar, P., et al., Structure of the Mycobacterium tuberculosis flavin 
dependent thymidylate synthase (MtbThyX) at 2.0A resolution. J Mol Biol, 2005. 
352(5): p. 1091-104. 

29. LeMagueres, P., et al., The 1.9 A crystal structure of alanine racemase from 
Mycobacterium tuberculosis contains a conserved entryway into the active site. 
Biochemistry, 2005. 44(5): p. 1471-81. 

30. Aranda, C.P., Second-line agents: p-amino salicylic acid, ethionamide, 
cycloserine and thiacetazone, in Tuberculosis, Rom, WN and Garay, SM; Editors. 
1997, Lippincott-Raven: Philadelphia, PA. p. 811-16. 

31. Petri, W.A., Chemotherapy of tuberculosis, Mycobacetrium avium complex 
disease, and leprosy, in Goodman and Gilman's The Pharmacological Basis of 
Therapeutics, Brunton, LL; Lazo, JS; and Parke, KL; Editors. 2006, McGraw-
Hill: New York, NY. p. 1203-24. 

32. Mdluli, K. and M. Spigelman, Novel ta.rgets for tuberculosis drug discovery. 
Curr Opin Pharmacol, 2006. 6(5): p. 459-67. 

33. Zhang, Y., K. Post-Martens, and S. Denkin, New drug candidates and therapeutic 
targets for tuberculosis therapy. Drug Discov Today, 2006. 11(1-2): p. 21-27. 

34. Zhang, Y. and L.M. Amzel, Tuberculosis drug targets. Curr Drug Targets, 2002. 
3(2): p. 131-54. 

35. Bloch, K. and D. Vance, Control mechanisms in the synthesis of saturated fatty 
acids. Annu Rev Biochem, 1977. 46: p. 263-98. 

96 



36. Sullivan, T.J., et al., High affinity InhA inhibitors with activity against drug-
resistant strains of Mycobacterium tuberculosis. ACS Chem Biol, 2006. 1(1): p. 
43-53. 

37. Alderwick, L.J., et al., Identification of a novel arabinofuranosyltransferase 
(AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. 
J Biol Chem, 2006. 281(23): p. 15653-61. 

38. Pan, F., et al., Cell wall core galactofuran synthesis is essential for growth of 
mycobacteria. J Bacteriol, 2001. 183(13): p. 3991-98. 

39. Kremer, L., et al., Galactan biosynthesis in Mycobacterium tuberculosis. 
Identification of a bifunctional UDP-galactofuranosyltransferase. J Biol Chem, 
2001. 276(28): p. 26430-40. 

40. Li, W., et al., rmlB and rmlC genes are essential for growth of mycobacteria. 
Biochem Biophys Res Commun, 2006. 342(1): p. 170-78. 

41. Ginsburg, A.S., J.H. Grosset, and W.R. Bishai, Fluoroquinolones, tuberculosis, 
and resistance. Lancet Infect Dis, 2003. 3(7): p. 432-42. 

42. Cynamon, M.H., et al., Activities of several novel oxazolidinones against 
Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother, 
1999. 43(5): p. 1189-91. 

43. Andries, K., et al., A diarylquinoline drug active on the ATP synthase of 
Mycobacterium tuberculosis. Science, 2005. 307(5707): p. 223-27. 

44. Munoz-Elias, E.J. and J.D. McKinney, Mycobacterium tuberculosis isocitrate 
lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med, 
2005. 11(6): p. 638-44. 

45. Nunn, P., et al., Cutaneous hypersensitivity reactions due to thiacetazone in HIV-
1 seropositive patients treated for tuberculosis. Lancet, 1991. 337(8742): p. 627-
30. 

46. Amidon, G.L., et al., A theoretical basis for a biopharmaceutic drug 
classification: the correlation of in vitro drug product dissolution and in vivo 
bioavailability. Pharm Res, 1995. 12(3): p. 413-20. 

47. Lipinski, C.A., Drug-like properties and the causes of poor solubility and poor 
permeability. J Pharmacol Toxicol Methods, 2000. 44(1): p. 235-49. 

48. van De Waterbeemd, H., The fundamental variables of the biopharmaceutics 
classification system (BCS): a commentary. Eur J Pharm Sci, 1998. 7(1): p. 1-3. 

49. Avdeef, A. and B. Testa, Physicochemical profiling in drug research: a brief 
survey of the state-of-the-art of experimental techniques. Cell Mol Life Sci, 2002. 
59(10): p. 1681-89. 

50. Avdeef, A., Physicochemical profiling (solubility, permeability and charge state). 
Curr Top Med Chem, 2001. 1(4): p. 277-351. 

51. Kasim, N.A., et al., Molecular properties of WHO essential drugs and provisional 
biopharmaceutical classification. Mol Pharm, 2004. 1(1): p. 85-96. 

52. Meibohm, B. and H. Derendorf, Basic concepts of 
pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol 
Ther, 1997. 35(10): p. 401-13. 

53. Del Rio-Estrada, C. and H.W. Dougherty, Kirk-Othmer Encyclopedia of Chemical 
Technology. 2nd ed. Vol. 21. 1970: John Wliey & Sons: Hoboken, NJ.  p. 528-33. 

97 



54. Wishart, D.S., et al., DrugBank: a comprehensive resource for in silico drug 
discovery and exploration. Nucleic Acids Res, 2006. 34(Database issue): p. 
D668-72. 

55. Furesz, S., Chemical and biological properties of rifampicin. Antibiot Chemother, 
1970. 16: p. 316-51. 

56. Girgis, E.H., Z. Gad, and M. Maram, Ion-pair extraction and precipitation 
methods for ethambutol determination. J Pharm Sci, 1974. 63(11): p. 1764-67. 

57. Mossa, J.S., A.H.U.K. Taragan, and M.M.A. Hasan, Streptomycin, in Analytical 
Profiles of Drug Substances. 1987, Academic Press: London, UK. p. 507-52. 

58. Mossa, J.S., A.H.U.K. Taragan, and M.M.A. Hasan, Kanamycin, in Analytical 
Profiles of Drug Substances. 1987, Academic Press: London, UK. p. 260-88. 

59. Hasan, M.M.A., A.I. Jado, and M.U. Zubair, Aminosalicylic acid, in Analytical 
Profiles of Drug Substances. 1981, Academic Press: London, UK. p. 1-15. 

60. Lamb, J.W., Cycloserine, in Analytical Profiles of Drug Substances. 1987, 
Academic Press: London, UK. p. 54-64. 

61. Douglas, J.G. and M.J. McLeod, Pharmacokinetic factors in the modern drug 
treatment of tuberculosis. Clin Pharmacokinet, 1999. 37(2): p. 127-46. 

62. Holdiness, M.R., Clinical pharmacokinetics of the antituberculosis drugs. Clin 
Pharmacokinet, 1984. 9(6): p. 511-44. 

63. Mandell, G.L. and W.A. Petri, Drugs used in the chemotherapy of tuberculosis, 
Mycobacetrium avium complex disease, and leprosy, in Goodman and Gilman's 
The Pharmacological Basis of Therapeutics, Hardman, JG and Limbierd, LE; 
Editors. 1996, McGraw-Hill: New York, NY. p. 111-13. 

64. Burman, W.J., K. Gallicano, and C. Peloquin, Comparative pharmacokinetics and 
pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet, 2001. 
40(5): p. 327-41. 

65. Israili, Z.H., C.M. Rogers, and H. el-Attar, Pharmacokinetics of antituberculosis 
drugs in patients. J Clin Pharmacol, 1987. 27(1): p. 78-83. 

66. Bergogne-Berezin, E., Clinical role of protein binding of quinolones. Clin 
Pharmacokinet, 2002. 41(10): p. 741-50. 

67. Berning, S.E., The role of fluoroquinolones in tuberculosis today. Drugs, 2001. 
61(1): p. 9-18. 

68. Tomioka, H., H. Saito, and K. Sato, Comparative antimycobacterial activities of 
the newly synthesized quinolone AM-1155, sparfloxacin, and ofloxacin. 
Antimicrob Agents Chemother, 1993. 37(6): p. 1259-63. 

69. Balfour, J.A. and H.M. Lamb, Moxifloxacin: a review of its clinical potential in 
the management of community-acquired respiratory tract infections. Drugs, 2000. 
59(1): p. 115-39. 

70. U.S.Department of Health and Human Services Food & Drug Administration, 
Prescribing information: TEQUIN. 2004, Silver Spring, MD. 

71. Diekema, D.I. and R.N. Jones, Oxazolidinones: a review. Drugs, 2000. 59(1): p. 
7-16. 

72. Guengerich, F.P., Characterization of human microsomal cytochrome P-450 
enzymes. Annu Rev Pharmacol Toxicol, 1989. 29: p. 241-64. 

98 



73. Clinical and Laboratory Standards Institute, Approved standard M7-A7: methods 
for dilution antimicrobial susceptibility test for bBacteria that grow aerobically. 
2007: Wayne, PA, USA. 

74. Flynn, J.L., et al., Non-human primates: a model for tuberculosis research. 
Tuberculosis (Edinb), 2003. 83(1-3): p. 116-18. 

75. Gupta, U.D. and V.M. Katoch, Animal models of tuberculosis. Tuberculosis 
(Edinb), 2005. 85(5-6): p. 277-93. 

76. Boshoff, H.I. and C.E. Barry, 3rd, Tuberculosis - metabolism and respiration in 
the absence of growth. Nat Rev Microbiol, 2005. 3(1): p. 70-80. 

77. Stover, C.K., et al., A small-molecule nitroimidazopyran drug candidate for the 
treatment of tuberculosis. Nature, 2000. 405(6789): p. 962-66. 

78. Gruppo, V., et al., Rapid microbiologic and pharmacologic evaluation of 
experimental compounds against Mycobacterium tuberculosis. Antimicrob 
Agents Chemother, 2006. 50(4): p. 1245-50. 

79. Wayne, L.G. and L.G. Hayes, An in vitro model for sequential study of shiftdown 
of Mycobacterium tuberculosis through two stages of nonreplicating persistence. 
Infect Immun, 1996. 64(6): p. 2062-69. 

80. Woolhiser, L., et al., In vivo adaptation of the Wayne model of latent tuberculosis. 
Infect Immun, 2007. 75(5): p. 2621-25. 

81. Lenaerts, A.J., et al., Location of persisting mycobacteria in a Guinea pig model 
of tuberculosis revealed by r207910. Antimicrob Agents Chemother, 2007. 51(9): 
p. 3338-45. 

82. Zhang, Y., et al., The catalase-peroxidase gene and isoniazid resistance of 
Mycobacterium tuberculosis. Nature, 1992. 358(6387): p. 591-93. 

83. Peloquin, C.A., Tuberculosis, in Pharmacotherapy: A Pathophysiologic 
Approach, Dipiro, JT; et al., Editors. 2002, McGraw-Hill: New York, NY. p. 
1917-38. 

84. Argyrou, A., et al., Proteome-wide profiling of isoniazid targets in 
Mycobacterium tuberculosis. Biochemistry, 2006. 45(47): p. 13947-53. 

85. Winder, F.G. and P.B. Collins, Inhibition by isoniazid of synthesis of mycolic 
acids in Mycobacterium tuberculosis. J Gen Microbiol, 1970. 63(1): p. 41-48. 

86. Nagano, K., et al., Metal complexes of isonicotinoylhydrazine and related 
compounds. II. Acid dissociation constants and ultraviolet absorption spectra of 
isonicotinoylhydrazine and related compounds. Chem Pharm Bull (Tokyo), 1963. 
11: p. 797-805. 

87. Rekker, R.F. and W.T. Nauta, Spectrophotometric investigation of isonicotinoyl 
hydrazide (Inh). A contribution to the knowledge of the yellow isonicotinoyl 
hydrazide rho-aminosalicylic acid combination (Inh-Pas). Pharm Weekbl, 1964. 
99: p. 1157-65. 

88. Becker, C., et al., Biowaiver monographs for immediate release solid oral dosage 
forms: isoniazid. J Pharm Sci, 2007. 96(3): p. 522-31. 

89. Peloquin, C.A., et al., Population pharmacokinetic modeling of isoniazid, 
rifampin, and pyrazinamide. Antimicrob Agents Chemother, 1997. 41(12): p. 
2670-79. 

90. Peloquin, C.A., Pharmacology of the antimycobacterial drugs. Med Clin North 
Am, 1993. 77(6): p. 1253-62. 

99 



91. Weber, W.W. and D.W. Hein, Clinical pharmacokinetics of isoniazid. Clin 
Pharmacokinet, 1979. 4(6): p. 401-22. 

92. Mitchison, D.A., The action of antituberculosis drugs in short-course 
chemotherapy. Tubercle, 1985. 66(3): p. 219-25. 

93. Telenti, A., et al., Detection of rifampicin-resistance mutations in Mycobacterium 
tuberculosis. Lancet, 1993. 341(8846): p. 647-50. 

94. Peloquin, C.A., et al., Pharmacokinetics of rifampin under fasting conditions, 
with food, and with antacids. Chest, 1999. 115(1): p. 12-18. 

95. Seydel, J.K., Physico-chemical studies on rifampicin. Antibiot Chemother, 1970. 
16: p. 380-91. 

96. Kenny, M.T. and B. Strates, Metabolism and pharmacokinetics of the antibiotic 
rifampin. Drug Metab Rev, 1981. 12(1): p. 159-218. 

97. Bachmann, K.A. and L. Jauregui, Use of single sample clearance estimates of 
cytochrome P450 substrates to characterize human hepatic CYP status in vivo. 
Xenobiotica, 1993. 23(3): p. 307-15. 

98. Dilger, K., et al., Consequences of rifampicin treatment on propafenone 
disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics, 
1999. 9(5): p. 551-59. 

99. Gallicano, K.D., et al., Induction of zidovudine glucuronidation and amination 
pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol, 1999. 
48(2): p. 168-79. 

100. Greiner, B., et al., The role of intestinal P-glycoprotein in the interaction of 
digoxin and rifampin. J Clin Invest, 1999. 104(2): p. 147-53. 

101. Caraco, Y., J. Sheller, and A.J. Wood, Pharmacogenetic determinants of codeine 
induction by rifampin: the impact on codeine's respiratory, psychomotor and 
miotic effects. J Pharmacol Exp Ther, 1997. 281(1): p. 330-36. 

102. Tarshis, M.S. and W.A. Weed, Jr., Lack of significant in vitro sensitivity of 
Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am 
Rev Tuberc, 1953. 67(3): p. 391-95. 

103. Wade, M.M. and Y. Zhang, Anaerobic incubation conditions enhance 
pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol, 
2004. 53(Pt 8): p. 769-73. 

104. Zhang, Y., S. Permar, and Z. Sun, Conditions that may affect the results of 
susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med 
Microbiol, 2002. 51(1): p. 42-49. 

105. Mandell, G.L. and W.A. Petri, Antimicrobial agents: Drugs used in chemotherapy 
of tuberculosis, Mycobacterium avium complex disease, and leprosy, in Goodman 
and Gilman's The Pharmacological Basis of Therapeutics, Hardman, JG; et al., 
Editors. 1996, McGraw-Hill: New York, NY. p. 1161-62. 

106. Scorpio, A. and Y. Zhang, Mutations in pncA, a gene encoding 
pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug 
pyrazinamide in tubercle bacillus. Nat Med, 1996. 2(6): p. 662-67. 

107. Scorpio, A., et al., Characterization of pncA mutations in pyrazinamide-resistant 
Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1997. 41(3): p. 540-
43. 

100 



108. Felder, E. and D. Pitre, Pyrazinamide, in Analytical Profiles of Drug Substances. 
1983, Academic Press: London, UK. p. 433-63. 

109. Takayama, K. and J.O. Kilburn, Inhibition of synthesis of arabinogalactan by 
ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother, 1989. 
33(9): p. 1493-99. 

110. Telenti, A., et al., The emb operon, a gene cluster of Mycobacterium tuberculosis 
involved in resistance to ethambutol. Nat Med, 1997. 3(5): p. 567-70. 

111. Kanther, R., Myambutol: chemistry, pharmacology, and toxicology. Antibiot 
Chemother, 1970. 16: p. 203-14. 

112. Peets, E.A., et al., The absorption, excretion, and metabolic fate of ethambutol in 
man. Am Rev Respir Dis, 1965. 91: p. 51-58. 

113. Hughes, N.C., et al., Identification and characterization of variant alleles of 
human acetyltransferase NAT1 with defective function using p-aminosalicylate as 
an in-vivo and in-vitro probe. Pharmacogenetics, 1998. 8(1): p. 55-66. 

114. DeBarber, A.E., et al., Ethionamide activation and sensitivity in multidrug-
resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2000. 97(17): p. 
9677-82. 

115. Baulard, A.R., et al., Activation of the pro-drug ethionamide is regulated in 
mycobacteria. J Biol Chem, 2000. 275(36): p. 28326-31. 

116. Morlock, G.P., et al., ethA, inhA, and katG loci of ethionamide-resistant clinical 
Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother, 2003. 
47(12): p. 3799-805. 

117. Jacobs, M.R., Activity of quinolones against mycobacteria. Drugs, 1995. 49 
Suppl 2: p. 67-75. 

118. David, H.L., K. Takayama, and D.S. Goldman, Susceptibility of mycobacterial D-
alanyl-D-alanine synthetase to D-cycloserine. Am Rev Respir Dis, 1969. 100(4): 
p. 579-81. 

119. Strych, U., et al., Characterization of the alanine racemases from two 
mycobacteria. FEMS Microbiol Lett, 2001. 196(2): p. 93-98. 

120. Strausbaugh, L.J., C.D. Mandaleris, and M.A. Sande, Comparison of four 
aminoglycoside antibiotics in the therapy of experimental E. coli meningitis. J 
Lab Clin Med, 1977. 89(4): p. 692-701. 

121. Elliott, A.M. and S.D. Foster, Thiacetazone: time to call a halt? Considerations 
on the use of thiacetazone in African populations with a high prevalence of 
human immunodeficiency virus infection. Tuber Lung Dis, 1996. 77(1): p. 27-29. 

122. Mor, N., et al., Comparison of activities of rifapentine and rifampin against 
Mycobacterium tuberculosis residing in human macrophages. Antimicrob Agents 
Chemother, 1995. 39(9): p. 2073-77. 

123. Reith, K., et al., Disposition and metabolism of 14C-rifapentine in healthy 
volunteers. Drug Metab Dispos, 1998. 26(8): p. 732-38. 

124. Jarvis, B. and H.M. Lamb, Rifapentine. Drugs, 1998. 56(4): p. 607-16; discussion 
617. 

125. Gillespie, S.H. and O. Billington, Activity of moxifloxacin against mycobacteria. J 
Antimicrob Chemother, 1999. 44(3): p. 393-95. 

101 



126. Ji, B., et al., In vitro and in vivo activities of moxifloxacin and clinafloxacin 
against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1998. 42(8): 
p. 2066-69. 

127. Miyazaki, E., et al., Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is 
active in a mouse model of tuberculosis. Antimicrob Agents Chemother, 1999. 
43(1): p. 85-89. 

128. Pletz, M.W., et al., Early bactericidal activity of moxifloxacin in treatment of 
pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents 
Chemother, 2004. 48(3): p. 780-82. 

129. U.S.  Department of Health and Human Services Food & Drug Administration, 
Prescribing information: AVELOX. 2004, Silver Spring, MD. 

130. Tomioka, H., Current status of some antituberculosis drugs and the development 
of new antituberculous agents with special reference to their in vitro and in vivo 
antimicrobial activities. Curr Pharm Des, 2006. 12(31): p. 4047-70. 

131. Paramasivan, C.N., et al., Bactericidal action of gatifloxacin, rifampin, and 
isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium 
tuberculosis. Antimicrob Agents Chemother, 2005. 49(2): p. 627-31. 

132. Zhao, B.Y., et al., Fluoroquinolone action against clinical isolates of 
Mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid 
media and in human macrophages. Antimicrob Agents Chemother, 1999. 43(3): 
p. 661-66. 

133. Alcala, L., et al., In vitro activities of linezolid against clinical isolates of 
Mycobacterium tuberculosis that are susceptible or resistant to first-line 
antituberculous drugs. Antimicrob Agents Chemother, 2003. 47(1): p. 416-17. 

134. von der Lippe, B., P. Sandven, and O. Brubakk, Efficacy and safety of linezolid in 
multidrug resistant tuberculosis (MDR-TB)--a report of ten cases. J Infect, 2006. 
52(2): p. 92-96. 

135. Fortun, J., et al., Linezolid for the treatment of multidrug-resistant tuberculosis. J 
Antimicrob Chemother, 2005. 56(1): p. 180-85. 

136. Park, I.N., et al., Efficacy and tolerability of daily-half dose linezolid in patients 
with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother, 2006. 
58(3): p. 701-14. 

137. U.S.  Department of Health and Human Services Food & Drug Administration, 
Prescribing information: ZYVOX. 2005, Silver Spring, MD. 

138. Wayne, L.G. and H.A. Sramek, Metronidazole is bactericidal to dormant cells of 
Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1994. 38(9): p. 
2054-58. 

139. Brooks, J.V., S.K. Furney, and I.M. Orme, Metronidazole therapy in mice 
infected with tuberculosis. Antimicrob Agents Chemother, 1999. 43(5): p. 1285-
88. 

140. Dhillon, J., et al., Metronidazole has no antibacterial effect in Cornell model 
murine tuberculosis. Int J Tuberc Lung Dis, 1998. 2(9): p. 736-42. 

141. Walsh, G.P., et al., The Philippine cynomolgus monkey (Macaca fasicularis) 
provides a new nonhuman primate model of tuberculosis that resembles human 
disease. Nat Med, 1996. 2(4): p. 430-36. 

102 



142. U.S. National Institutes of Health ClinicalTrials.Gov. Metronidazole for 
pulmonary tuberculosis (South Korea).  2007  [cited Dec 15, 2007]; Available 
from: http://clinicaltrials.gov/ct/show/NCT00425113?order=1. 

143. U.S.  Department of Health and Human Services Food & Drug Administration, 
Prescribing information: FLAGYL. 2003, Silver Spring, MD. 

144. Nuermberger, E., et al., Combination chemotherapy with the nitroimidazopyran 
PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents 
Chemother, 2006. 50(8): p. 2621-25. 

145. Ahmad, K., New tuberculosis drug enters human trials. Lancet Infect Dis, 2005. 
5(8): p. 475. 

146. Lillibridge, J.H., et al., PA-824, a nitroimidazopyran antitubercular agent: 
favorable pharmacokinetics parameters in mice after delivery in a novel oral 
formulation. 1996: Abstr Intersci Conf Antimicrob Agents Chemother. 137 
(abstract no. F216). 

147. Sasaki, H., et al., Synthesis and antituberculosis activity of a novel series of 
optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem, 2006. 
49(26): p. 7854-60. 

148. Matsumoto, M., et al., OPC-67683, a nitro-dihydro-imidazooxazole derivative 
with promising action against tuberculosis in vitro and in mice. PLoS Med, 2006. 
3(11): p. e466. 

149. Hittel, N., Open forum II on key issues in TB drug development. 2006 [cited 15 
March, 2007]; Available from: http://www.kaisernetwork.org. 

150. Koul, A., et al., Diarylquinolines target subunit c of mycobacterial ATP synthase. 
Nat Chem Biol, 2007. 3(6): p. 323-24. 

151. Cole, S.T. and P.M. Alzari, Microbiology. TB--a new target, a new drug. Science, 
2005. 307(5707): p. 214-15. 

152. Budha, N.R., R.E. Lee, and B. Meibohm, Biopharmaceutics, pharmacokinetics 
and pharmacodynamics of antituberculosis drugs. Curr Med Chem, 2008. 15(8): 
p. 809-25. 

153. Ibrahim, M., et al., Synergistic activity of R207910 combined with pyrazinamide 
against murine tuberculosis. Antimicrob Agents Chemother, 2007. 51(3): p. 
1011-15. 

154. Mc Neely, D.F. and M. Cavaleri, TMC207 Oral Presentation. 2005, San Diego, 
CA: TBTC 17th Semi-Annual Group Meeting. 

155. U.S. National Institutes of Health ClinicalTrials.Gov. TMC207-TiDP13-C208: 
Anti-bacterial activity, safety, and tolerability of TMC207 in patients with multi-
drug resistant Mycobacterium tuberculosis (MDR-TB).  2007 [cited 23 May, 
2007]; Available from: http://clinicaltrials.gov/ct/show/NCT00449644?order=1. 

156. Guengerich, F.P., Cytochrome P-450 3A4: regulation and role in drug 
metabolism. Annu Rev Pharmacol Toxicol, 1999. 39: p. 1-17. 

157. Ginsberg, A.M. and M. Spigelman, Challenges in tuberculosis drug research and 
development. Nat Med, 2007. 13(3): p. 290-94. 

158. Lee, R.E., et al., Combinatorial lead optimization of [1,2]-diamines based on 
ethambutol as potential antituberculosis preclinical candidates. J Comb Chem, 
2003. 5(2): p. 172-87. 

103 

http://clinicaltrials.gov/ct/show/NCT00425113?order=1
http://clinicaltrials.gov/ct/show/NCT00449644?order=1


159. Jia, L., et al., Pharmacodynamics and pharmacokinetics of SQ109, a new 
diamine-based antitubercular drug. Br J Pharmacol, 2005. 144(1): p. 80-87. 

160. Nikonenko, B.V., et al., Drug therapy of experimental tuberculosis (TB): 
improved outcome by combining SQ109, a new diamine antibiotic, with existing 
TB drugs. Antimicrob Agents Chemother, 2007. 51(4): p. 1563-35. 

161. Jia, L., et al., Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br 
J Pharmacol, 2006. 147(5): p. 476-85. 

162. NIAID-Division of AIDS, HIV/OI Therapeutics Database. 2007, National 
Institute of Allergy and Infectious Diseases (NIAID). 

163. Cruciani, G., M. Pastor, and W. Guba, VolSurf: a new tool for the 
pharmacokinetic optimization of lead compounds. Eur J Pharm Sci, 2000. 11 
Suppl 2: p. S29-39. 

164. Lillibridge, J.H., et al., PA-824, a nitroimidazopyran antitubercular agent: 
favorable pharmacokinetic parameters in mice after delivery in a novel oral 
formulation, in 36th Annual Interscience conference on Antimicrobial Agents and 
Chemotherapy (ICAAC). 1996: New Orleans, Louisiana. 

165. Craig, W.A., Pharmacokinetic/pharmacodynamic parameters: rationale for 
antibacterial dosing of mice and men. Clin Infect Dis, 1998. 26(1): p. 1-10; quiz 
11-12. 

166. Wright, D.H., et al., Application of fluoroquinolone pharmacodynamics. J 
Antimicrob Chemother, 2000. 46(5): p. 669-83. 

167. Jayaram, R., et al., Isoniazid pharmacokinetics-pharmacodynamics in an aerosol 
infection model of tuberculosis. Antimicrob Agents Chemother, 2004. 48(8): p. 
2951-57. 

168. Jayaram, R., et al., Pharmacokinetics-pharmacodynamics of rifampin in an 
aerosol infection model of tuberculosis. Antimicrob Agents Chemother, 2003. 
47(7): p. 2118-24. 

169. Shandil, R.K., et al., Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin 
against Mycobacterium tuberculosis: evaluation of in vitro and 
pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents 
Chemother, 2007. 51(2): p. 576-82. 

170. Nuermberger, E. and J. Grosset, Pharmacokinetic and pharmacodynamic issues 
in the treatment of mycobacterial infections. Eur J Clin Microbiol Infect Dis, 
2004. 23(4): p. 243-55. 

171. World Health Organization, WHO Drug Information, Publications, Editor. 2006, 
W.H.O. p. 239-45. 

172. Nightingale, C.H., R. Quintiliani, and D.P. Nicolau, Intelligent dosing of 
antimicrobials, in Current Clinical Topics in Infectious Diseases, Remington, JS 
and Swartz, MN; Editors. 1994, Blackwell Scientific: Cambridge, MA. p. 252-65. 

173. Schentag, J.J., Pharmacokinetic and pharmacodynamic predictors of 
antimicrobial efficacy: moxifloxacin and Streptococcus pneumoniae. J 
Chemother, 2002. 14 Suppl 2: p. 13-21. 

174. Delacher, S., et al., A combined in vivo pharmacokinetic-in vitro 
pharmacodynamic approach to simulate target site pharmacodynamics of 
antibiotics in humans. J Antimicrob Chemother, 2000. 46(5): p. 733-39. 

104 



175. Bonate, P.L., Clinical trial simulation in drug development. Pharm Res, 2000. 
17(3): p. 252-56. 

176. Meibohm, B. and H. Derendorf, Pharmacokinetic/pharmacodynamic studies in 
drug product development. J Pharm Sci, 2002. 91(1): p. 18-31. 

177. CDER/FDA, Exposure Response Relationships: Guidance for Industry, US 
Department of Health and Human Services, Food and Drug Administration, 
Center for Drug Evaluation and Research, Rockville, Editor. 2003. 

178. Lesko, L.J., et al., Optimizing the science of drug development: opportunities for 
better candidate selection and accelerated evaluation in humans. J Clin 
Pharmacol, 2000. 40(8): p. 803-14. 

179. Peck, C.C., et al., Opportunities for integration of pharmacokinetics, 
pharmacodynamics, and toxicokinetics in rational drug development. J Clin 
Pharmacol, 1994. 34(2): p. 111-19. 

180. Svensson, U.S., et al., Population pharmacokinetic and pharmacodynamic 
modelling of artemisinin and mefloquine enantiomers in patients with falciparum 
malaria. Eur J Clin Pharmacol, 2002. 58(5): p. 339-51. 

181. Schentag, J.J., A.K. Meagher, and A. Forrest, Fluoroquinolone AUIC break 
points and the link to bacterial killing rates. Part 1: In vitro and animal models. 
Ann Pharmacother, 2003. 37(9): p. 1287-98. 

182. Schentag, J.J., A.K. Meagher, and A. Forrest, Fluoroquinolone AUIC break 
points and the link to bacterial killing rates. Part 2: human trials. Ann 
Pharmacother, 2003. 37(10): p. 1478-88. 

183. Schuck, E.L., et al., Pharmacokinetic/pharmacodynamic (PK/PD) evaluation of a 
once-daily treatment using ciprofloxacin in an extended-release dosage form. 
Infection, 2005. 33 Suppl 2: p. 22-28. 

184. Regoes, R.R., et al., Pharmacodynamic functions: a multiparameter approach to 
the design of antibiotic treatment regimens. Antimicrob Agents Chemother, 2004. 
48(10): p. 3670-76. 

185. Li, Y., et al., A pharmacokinetic/pharmacodynamic mathematical model 
accurately describes the activity of voriconazole against Candida spp. in vitro. Int 
J Antimicrob Agents, 2008. 31(4): p. 369-74. 

186. Boak, L.M., et al., Pharmacokinetic/pharmacodynamic factors influencing 
emergence of resistance to linezolid in an in vitro model. Antimicrob Agents 
Chemother, 2007. 51(4): p. 1287-92. 

187. Blumberg, H.M., et al., ATS/CDC/IDSA: Treatment of tuberculosis. Am J Respir 
Crit Care Med, 2003. 167(4): p. 603-62. 

188. Burman, W.J. and B.E. Jones, Treatment of HIV-related tuberculosis in the era of 
effective antiretroviral therapy. Am J Respir Crit Care Med, 2001. 164(1): p. 7-
12. 

189. Tangallapally, R.P., et al., Synthesis and evaluation of nitrofuranylamides as 
novel antituberculosis agents. J Med Chem, 2004. 47(21): p. 5276-83. 

190. Tangallapally, R.P., et al., Synthesis and evaluation of cyclic secondary amine 
substituted phenyl and benzyl nitrofuranyl amides as novel antituberculosis 
agents. J Med Chem, 2005. 48(26): p. 8261-69. 

191. Tangallapally, R.P., et al., Synthesis of new and potent analogues of anti-
tuberculosis agent 5-nitro-furan-2-carboxylic acid 4-(4-benzyl-piperazin-1-yl)-

105 



benzylamide with improved bioavailability. Bioorg Med Chem Lett, 2006. 16(10): 
p. 2584-89. 

192. Tangallapally, R.P., et al., Discovery of novel isoxazolines as anti-tuberculosis 
agents. Bioorg Med Chem Lett, 2007. 17(23): p. 6638-42 

193. Laughon, B.E., New tuberculosis drugs in development. Curr Top Med Chem, 
2007. 7(5): p. 463-73. 

194. Eddershaw, P.J., A.P. Beresford, and M.K. Bayliss, ADME/PK as part of a 
rational approach to drug discovery. Drug Discov Today, 2000. 5(9): p. 409-14. 

195. Tangallapally, R.P., et al., Nitrofurans as novel anti-tuberculosis agents: 
identification, development and evaluation. Curr Top Med Chem, 2007. 7(5): p. 
509-26. 

196. Glomme, A., J. Marz, and J.B. Dressman, Comparison of a miniaturized shake-
flask solubility method with automated potentiometric acid/base titrations and 
calculated solubilities. J Pharm Sci, 2005. 94(1): p. 1-16. 

197. Thompson, T.N., Optimization of metabolic stability as a goal of modern drug 
design. Med Res Rev, 2001. 21(5): p. 412-49. 

198. White, R.E., High-throughput screening in drug metabolism and pharmacokinetic 
support of drug discovery. Annu Rev Pharmacol Toxicol, 2000. 40: p. 133-57. 

199. Davies, B. and T. Morris, Physiological parameters in laboratory animals and 
humans. Pharm Res, 1993. 10(7): p. 1093-95. 

200. Strickley, R.G., Solubilizing excipients in oral and injectable formulations. Pharm 
Res, 2004. 21(2): p. 201-30. 

201. Mueller, M., A. de la Pena, and H. Derendorf, Issues in pharmacokinetics and 
pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob 
Agents Chemother, 2004. 48(2): p. 369-77. 

202. The U.S. Department of Health and Human Services Food and Drug 
Administration, Developing antimicribial drugs-general considerations for 
clinical trials. 1998, Rockville, MD. 

203. The European Agency for the Evaluation of Medicinal Products (EMEA) - 
Committee for Proprietary Medicinal Products (CPMP), Points to consider on 
pharmacokinetics and pharmacodynamics in the development of antibacterial 
medicinal products. 2000, London, UK. 

204. Lowdin, E., et al., Pharmacodynamic effects of sub-MICs of benzylpenicillin 
against Streptococcus pyogenes in a newly developed in vitro kinetic model. 
Antimicrob Agents Chemother, 1996. 40(11): p. 2478-82. 

205. Dalla Costa, T., et al., Pharmacokinetic-pharmacodynamic modelling of the in 
vitro antiinfective effect of piperacillin-tazobactam combinations. Int J Clin 
Pharmacol Ther, 1997. 35(10): p. 426-33. 

206. Schuck, E.L. and H. Derendorf, Pharmacokinetic/pharmacodynamic evaluation of 
anti-infective agents. Expert Rev Anti Infect Ther, 2005. 3(3): p. 361-73. 

207. Muller, M., A. dela Pena, and H. Derendorf, Issues in pharmacokinetics and 
pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob 
Agents Chemother, 2004. 48(5): p. 1441-53. 

208. Lister, P.D., The role of pharmacodynamic research in the assessment and 
development of new antibacterial drugs. Biochem Pharmacol, 2006. 71(7): p. 
1057-65. 

106 



209. Grasso, S., et al., New in vitro model to study the effect of antibiotic concentration 
and rate of elimination on antibacterial activity. Antimicrob Agents Chemother, 
1978. 13(4): p. 570-76. 

210. Maggiolo, F., et al., Bactericidal activity of two different dosage regimens of 
imipenem in an in-vitro dynamic model. J Antimicrob Chemother, 1993. 32(2): p. 
295-300. 

211. Murakawa, T., et al., New in vitro kinetic model for evaluating bactericidal 
efficacy of antibiotics. Antimicrob Agents Chemother, 1980. 18(3): p. 377-81. 

212. Gumbo, T., et al., Isoniazid bactericidal activity and resistance emergence: 
integrating pharmacodynamics and pharmacogenomics to predict efficacy in 
different ethnic populations. Antimicrob Agents Chemother, 2007. 51(7): p. 2329-
36. 

213. Gumbo, T., et al., Selection of a moxifloxacin dose that suppresses drug 
resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic 
infection model and mathematical modeling. J Infect Dis, 2004. 190(9): p. 1642-
51. 

214. Gumbo, T., et al., Concentration-dependent Mycobacterium tuberculosis killing 
and prevention of resistance by rifampin. Antimicrob Agents Chemother, 2007. 
51(11): p. 3781-88. 

215. Gumbo, T., et al., Isoniazid's bactericidal activity ceases because of the 
emergence of resistance, not depletion of Mycobacterium tuberculosis in the log 
phase of growth. J Infect Dis, 2007. 195(2): p. 194-201. 

216. Middlebrook, G., Isoniazid-resistance and catalase activity of tubercle bacilli; a 
preliminary report. Am Rev Tuberc, 1954. 69(3): p. 471-72. 

217. Viveiros, M., et al., Isoniazid-induced transient high-level resistance in 
Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2002. 46(9): p. 
2804-10. 

218. Colangeli, R., et al., The Mycobacterium tuberculosis iniA gene is essential for 
activity of an efflux pump that confers drug tolerance to both isoniazid and 
ethambutol. Mol Microbiol, 2005. 55(6): p. 1829-40. 

219. Wayne, L.G., Mycobacterial speciation, in The Mycobacteria: A Sourcebook, 
Kubica, GP and Wayne, LG; Editors. 1984, Marcel Dekker: New York, NY. p. 
25-66. 

220. Yano, Y., et al., Application of logistic growth model to pharmacodynamic 
analysis of in vitro bactericidal kinetics. J Pharm Sci, 1998. 87(10): p. 1177-83. 

221. Nielsen, E.I., et al., Semimechanistic pharmacokinetic/pharmacodynamic model 
for assessment of activity of antibacterial agents from time-kill curve experiments. 
Antimicrob Agents Chemother, 2007. 51(1): p. 128-36. 

222. Carret, G., J.P. Flandrois, and J.R. Lobry, Biphasic kinetics of bacterial killing by 
quinolones. J Antimicrob Chemother, 1991. 27(3): p. 319-27. 

223. Meagher, A.K., et al., Novel pharmacokinetic-pharmacodynamic model for 
prediction of outcomes with an extended-release formulation of ciprofloxacin. 
Antimicrob Agents Chemother, 2004. 48(6): p. 2061-68. 

224. Mouton, J.W., A.A. Vinks, and N.C. Punt, Pharmacokinetic-pharmacodynamic 
modeling of activity of ceftazidime during continuous and intermittent infusion. 
Antimicrob Agents Chemother, 1997. 41(4): p. 733-38. 

107 



225. Tam, V.H., et al., Mathematical modelling response of Pseudomonas aeruginosa 
to meropenem. J Antimicrob Chemother, 2007. 60(6): p. 1302-09. 

226. Liu, P., et al., Pharmacokinetic-pharmacodynamic modelling of antibacterial 
activity of cefpodoxime and cefixime in in vitro kinetic models. Int J Antimicrob 
Agents, 2005. 25(2): p. 120-29. 

227. Tam, V.H., A.N. Schilling, and M. Nikolaou, Modelling time-kill studies to 
discern the pharmacodynamics of meropenem. J Antimicrob Chemother, 2005. 
55(5): p. 699-706. 

228. Zhi, J., C.H. Nightingale, and R. Quintiliani, A pharmacodynamic model for the 
activity of antibiotics against microorganisms under nonsaturable conditions. J 
Pharm Sci, 1986. 75(11): p. 1063-67. 

229. Jindani, A., et al., The early bactericidal activity of drugs in patients with 
pulmonary tuberculosis. Am Rev Respir Dis, 1980. 121(6): p. 939-49. 

230. Jindani, A., C.J. Dore, and D.A. Mitchison, Bactericidal and sterilizing activities 
of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med, 
2003. 167(10): p. 1348-54. 

231. McClatchy, J.K., Mechanism of action of isoniazid on Mycobacterium bovis 
strain BCG. Infect Immun, 1971. 3(4): p. 530-34. 

232. Wallis, R.S., et al., Drug tolerance in Mycobacterium tuberculosis. Antimicrob 
Agents Chemother, 1999. 43(11): p. 2600-06. 

233. Mouton, J.W. and A.A. Vinks, Pharmacokinetic/pharmacodynamic modelling of 
antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the 
minimum inhibitory concentration versus stationary concentration. Clin 
Pharmacokinet, 2005. 44(2): p. 201-10. 

234. Hurdle, J.G., et al., A microbiological assessment of novel nitrofuranylamides as 
anti-tuberculosis agents. J Antimicrob Chemother, 2008. 62(5): p. 1037-45. 

235. Budha, N.R., et al., Pharmacokinetically-guided lead optimization of 
nitrofuranylamide anti-tuberculosis agents. AAPS J, 2008. 10(1): p. 157-65. 

236. Burman, W.J., Issues in the management of HIV-related tuberculosis. Clin Chest 
Med, 2005. 26(2): p. 283-94, vi-vii. 

237. Eagle, H. and A.D. Musselman, The rate of bactericidal action of penicillin in 
vitro as a function of its concentration, and its paradoxically reduced activity at 
high concentrations against certain organisms. J Exp Med, 1948. 88(1): p. 99-
131. 

238. West, G.B., J.H. Brown, and B.J. Enquist, A general model for the origin of 
allometric scaling laws in biology. Science, 1997. 276(5309): p. 122-26. 

239. Boxenbaum, H., Interspecies scaling, allometry, physiological time, and the 
ground plan of pharmacokinetics. J Pharmacokinet Biopharm, 1982. 10(2): p. 
201-27. 

 
 

108 



109 

VITA 
 
 

Nageshwar R. Budha was born in Warangal, Andhra Pradesh, India, in 1976. He 
joined the Kakatiya University in 1997 and received a Bachelor in Pharmacy degree in 
2001. He joined in the same university for Master’s program in pharmaceutics in 2002 
and graduated in 2004. In the Fall of 2004, he joined the graduate program in the 
Department of Pharmaceutical Sciences, the University of Tennessee Health Science 
Center, Memphis, from where he will receive his Ph.D. under the supervision of Prof. 
Bernd Meibohm. 
 


