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Figure 3-6.  In vivo biodistribution of 3as.

A: In vivo biodistribution of radiotracer 3as in athymic nude (nu/nu) mice bearing
bilateral TrkB+ (right flank) and TrkB- (left flank) tumors. Animals were injected r.o.
with 100-200 mCi of radiotracer 3as and sacrificed at 2 and 30 min. post-injection. B: In
vivo accumulation of radiotracer 3as in TrkB+ and TrkB- NB tumors in athymic nude

(nu/nu) mice.
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inhibitor reported by Bernard-Gauthier has good brain penetration (SUVmax = 2.0) and is
of interest for the imaging of neuronal disorders.!?® Like radiotracer 3as, their compound
was shown to have uptake in the lungs and is cleared through the hepatobiliary system
with the radiotracer being metabolized at the 1-methylindole carbon which is the site of
radionuclide addition.

The required time for the distribution of radiotracer 3as to achieve a signal that is
visible on the subject image may be outside the parameters based on the effective half-
life. This would indicate that a longer-lived radionuclide, such as '*F, should be
incorporated into a specific TrkB inhibitor. There is also the possibility that the !'C
radionuclide is being metabolized during first pass metabolism via O-demethylation in
the liver. Compound 3d could be radiolabeled in the 6 position of the quinazoline
structure (compound 31 and 30) which may avert the liver metabolism, making the
quinazoline structure a key element for radiolabeling, which could improve delivery of
the radiotracer to the tumor and thus improve imaging.

Although the aminoquinazoline was purported to be selective for TrkB,!!” and the
mice had developed tumors as designed, the TrkB tumor could not be visualized. The
PET images were similar to most of the data reported for the 4-aza-2-oxindole scaffold'*
compounds which are pan-Trk inhibitors suggesting that the aminoquinazolines are not
intra-Trk selective.

From the aminoquinazoline PET images, there could be other kinases activated by
the radiotracer. To verify the reported activity of the radiosynthetic standard, the half
maximal inhibitory concentration (ICso), Table 3-4, and a kinase activity profile, Table
3-5, was contracted with Reaction Biology Corp. (Malvern, PA). The kinase profile data
revealed other kinases to be a target of the aminoquinazoline compound causing
secondary targets to be imaged that can confound the diagnostic data gathered.
Significant probe development work will be required for image guided therapy for NB
patients using a selective TrkB inhibitor to become a reality.

The racemate of compound 3as was used as the initial compound for
radiosynthetic optimization, but isomerically pure compounds could be more potent.'3°
There is evidence that an individual isomer of ligands for many biological molecules may
be more active, more selective, or even more toxic.!** The pharmaceutical industry has
pursued pure isomers as both an improvement to patient care and the company’s bottom
line through patent extensions. The next step of the study was to determine if one isomer
was more potent and selective than the other. The isomerically pure radiosynthetic
standards were synthesized per the chemistry elucidated above, compound 3j and 3m.

The ICso of the R and S isomerically pure compounds 3j and 3m were performed
by Reaction Biology Corp, Table 3-4. The data shows that R isomer is more potent than
the S isomer for all Trk isoforms (152 nM vs 1400 nM respectively for TrkB), but not as
potent as the racemic mixture at 71.5 nM. The racemate was a 51:49 as determined by
HPLC (RegisPack, 250 mm x 4.6 mm,5 um; 50/50 Hexane/Ethanol + 0.1% DEA at 1.5
mL/min) with an optical rotation of -9.06+2.6 while the R isomer had an optical rotation
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Table 3-4.  ICso against Trks for radiosynthetic standard
2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-isopropylphenyl)acetamide
3d).

Compound Kinase ICso (nM)
TrkA TrkB TrkC
Racemate 256 71.5 74
R isomer 567 152 73.5
S isomer 6540 1400 617

Table 3-5.  Abbreviated kinase profiling report for radiosynthetic standard
2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-isopropylphenyl)acetamide
3d).

Kinase Enzyme Activity Control Compound Control Compound ID

(% relative to DMSO ICs0 (nM)
controls)

TrkB 7.55 0.0914 Staurosporine
TrkC 15.12 0.19 Staurosporine
RAFI1 27.92 9.39 GW5074

TrkA 32.84 1.51 Staurosporine
EPHA7 33.25 49.2 Staurosporine
FMS 41.88 2.02 Staurosporine
FLT3 52.69 2.19 Staurosporine
HIPK4 59.60 446.0 Staurosporine
c-Kit 61.53 54.6 Staurosporine
ARAF 63.49 27.1 GW5074

IRAK1 67.24 27.8 Staurosporine
DDRI1 72.50 2.31 Staurosporine
Aurora B 76.43 9.24 Staurosporine
PDGFRb 77.93 2.92 Staurosporine
ACKI1 77.54 31.8 Staurosporine

Tested against 369 kinases. Conditions: compound concentration of 1 uM. Control
compound staurosporine was tested in 10-dose ICso mode with 4-fold serial dilution
starting at 20 or 100 uM. Reactions were carried out at 10 uM ATP.
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0f -92.946.3 and the S isomer was +94.6+7.5 as expected. Although a reputable
company was used for the ICso determinations, the data of the racemate was collected on
different days than the isomers, therefore, there may be possible inter-to intra-day
variability affecting the data and causing the appearance of the isomers being worse than
the racemate. The data for the isomers was collected on the same day and does clearly
show that the R isomer is more potent than the S isomer. The results were used to select
the R isomer for repeat studies of the cell uptake, biodistribution at 30 minutes, and a
kinetic image spanning one hour. The data indicated no change from the racemate in the
PET images and biodistribution, (data not shown).

Overall Conclusions

Novel aminoquinazoline radiotracers were synthesized. The activity reported by
Baindur (100 nM) was similar to the lab results obtained from the Reaction Biology Corp
(71.5 nM) for the TrkB ICso, but the isomerically pure data and the in vivo imaging data
yielded confounding results. This may be due to the metabolism of the radiotracer, the
preparation of the compound, or that the overall uptake time of these compounds is
greater than what can be imaged with ''C. Changing to another PET radionuclide like '*F
could provide a superior uptake time without the meaningful loss of radioactivity. The
aminoquinazoline pharmacophore is viable for radiolabeling with !'C but an extensive
SAR study is required to see if there is a more suitable compound to selectively target
TrkB with higher affinity and improved solubility. The compounds radiolabeled in this
study would also benefit from a targeted reformulation investigation that may address the
solubility, lipophilicity, and stability issues noted during the experiments. Ultimately,
this project has provided a glimpse into the possibility of designing a compound that
could be used to provide image guided therapy for a group of patients that has a lot of
room for improvement in the overall survival.

Experimental Section

Synthesis of Radiosynthetic Standards and Precursors

All the reagents and HPLC grade solvents were purchased from Fisher Scientific
(Suwanee, GA). The reactions were monitored by TLC on pre-coated silica gel 60 F2s4
plates from Merck, KGaA (Darmstadt, Germany) and visualized using UV light with a
frequency of 254 nm. Reaction mixtures were purified using a Biotage FLASH
(Charlotte, NC) column chromatography purification system and the silica cartridges
were purchased from Biotage. HPLC methods were developed using an Agilent
Technologies 1200 series system on a SB-C18 column at room temperature with a flow
rate of 0.45 mL/min. The HPLC column was purchased from Agilent Technologies
(Santa Clara, CA). Mass spectra were determined by a Waters Acquity UPLC-PDA-
ELSD-MS. UPLC separations were performed using an Acquity UPLC 2.1 x 50 mm
BEH C18 column (1.7 um, Waters) at 60 °C, and a 1.0 mL/min flow rate. The PDA was
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set to acquire UV data from 200-400 nm throughout the run. UPLC gradient: solvent A
(water with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid): 0-0.2
minutes at 90-70% A, 0.2-1.6 minutes at 70-5% A (linear gradient), and 1.6-1.95 minutes
at 5% A. The optical rotation was determined using a Jasco P-1010 polarimeter from
Jasco Inc. (Easton, MD); all samples were prepared in chloroform.

The 4-chloro-6,7-dimethoxyquinazoline is commercially available from Alfa
Aesar (Tewksbury, MA), the 2-(1-(tertbutoxycarbonyl)-pyrrolidin3-yl)acetic acid was
purchased from Asta Tech (Bristol, PA), the 4-isopropylaniline is commercially available
from Acros Organics (New Jersey, USA), and the polystyrene (PS) carbodiimide beads
are commercially available from Biotage (Charlotte, NC).

General procedure for the synthesis of N-(4-isopropylphenyl)-2-(pyrrolidin-
3-yl)acetamide (3a-c)

An appropriate sized round bottom flask was used to dissolve 2-(1-(tert-
butoxycarbonyl)pyrrolidin-3-yl)acetic acid (1.5 eq) in anhydrous dichloromethane
(DCM) and PS-carbodiimide beads (2 eq) were added and stirred for 15-60 minutes. 4-
isopropylaniline (1 eq) was then added to the mixture and the mixture was stirred
overnight. The crude product was filtered and the resin was washed with DCM twice and
the combined filtrate and washings were concentrated to yield the tert-butyl 3-(2-((4-
isopropylphenyl)-amino)-2-oxoethyl)pyrrolidine-1-carboxylate. The crude product was
then dissolved in 3M HCI/MeOH solution and stirred at room temperature for 1 hour.
Completion of the reaction was determined by UPLC-MS and/or TLC chromatography.
The product was concentrated under reduced pressure to obtain the crude product as the
HCI salt in sufficient purity for the next step.

N-(4-isopropylphenyl)-2-(pyrrolidin-3-yl)acetamide (3a). Using the above general
procedure, 2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid (2.04 g, 8.88 mmol) in
DCM (100 mL) with PS-carbodiimide beads (9.17 g, 11.8 mmol) and 4-isopropylaniline
(0.81 mL, 5.92 mmol) were used to synthesize tert-butyl
3-(2-((4-isopropylphenyl)amino)-2-oxoethyl)pyrrolidine-1-carboxylate. Next, 3M
HCI/MeOH (100 mL) solution was used to yield compound 3a as a salt (99%). MS(ESI),
m/z =247.3 [M+H]".

(R)-N-(4-isopropylphenyl)-2-(pyrrolidin-3-yl)acetamide (3b). Using the above
general procedure, (R)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid (0.5 mg, 2.2
mmol) in DCM (50 mL) with PS-carbodiimide beads (3.1 g, 4 mmol) and 4-
isopropylaniline (0.27 mL, 2 mmol) were used to synthesize (R)-tert-butyl
3-(2-((4-isopropylphenyl)amino)-2-oxoethyl)pyrrolidine-1-carboxylate. Next, 3M
HC1/MeOH (500 mL) solution was used to yield compound 3b as a salt (98%). MS(ESI),
m/z =247.23 [M+H]".

(S)-N-(4-isopropylphenyl)-2-(pyrrolidin-3-yl)acetamide (3¢). Using the above general

procedure, (S)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid (0.5 mg, 2.2 mmol)
in DCM (50 mL) with PS-carbodiimide beads (3.0 g, 3.9 mmol) and 4-isopropylaniline
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(0.27 mL, 2 mmol) were used to synthesize (S)-tert-butyl
3-(2-((4-isopropylphenyl)amino)-2-oxoethyl)pyrrolidine-1-carboxylate. Next, 3M
HC1/MeOH (500 mL) solution was used to yield compound 3¢ as a salt (98%). MS(ESI),
m/z =247.23 [M+H]".

General procedure for the coupling of the quinazoline and pyrrolidine (3d-o)

The pyrrolidine (1 eq) was dissolved in anhydrous 2-propanol and the quinazoline
(1 eq) was added followed by N,-N-diisopropylethylamine (DIEA) (2 eq) and stirred
overnight at 100 °C. The reaction mixture was cooled to room temperature, concentrated
in vacuo, and purified by reverse phase chromatography with a gradient mobile phase of
acetonitrile and water with 0.1% ammonium bicarbonate using a Biotage FLASH system
with a C18 column cartridge. The desired compound was identified by UPLC-MS.

2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-N-(4-isopropylphenyl)acetamide
(3d). Using the above general procedure, compound 3a (1 g, 4.1 mmol), 2-propanol (80
mL), 4-chloro-6,7-dimethoxyquinazoline (1.5 g, 6.5 mmol), and DIEA (1.5 mL) were
used to synthesize compound 3d as a solid (25%). MS(ESI), m/z = 435.40 [M+H]".

6,7-dimethoxy-4-(pyrrolidin-1-yl)quinazoline (3e). Using the above general procedure,
pyrrolidine (0.12 mL, 1.41 mmol), 2-propanol (8 mL),
4-chloro-6,7-dimethoxyquinazoline (316 mg, 1.41 mmol), and DIEA (0.5 mL) were used
to synthesize compound 3e and purified by flash chromatography (35%). MS(ESI), m/z
=260.30 [M+H]".

6-(benzyloxy)-7-methoxy-4-(pyrrolidin-1-yl)quinazoline (3f). Using the above general
procedure, pyrrolidine (0.03 mL, 0.4 mmol), 2-propanol (8 mL),
6-(benzyloxy)-4-chloro-7-methoxyquinazoline (110 mg, 0.37 mmol), and DIEA (0.5 mL)
were used to synthesize compound 3f and purified by flash chromatography (39%).
MS(ESI), m/z = 336.94 [M+H]".

7-(benzyloxy)-6-methoxy-4-(pyrrolidin-1-yl)quinazoline (3g). Using the above
general procedure, pyrrolidine (0.27 mL, 3.33 mmol), 2-propanol (8 mL),
7-(benzyloxy)-4-chloro-6-methoxyquinazoline (1 g, 3.33 mmol) and DIEA (0.5 mL)
were used to synthesize compound 3g and purified by flash chromatography (33%).
MS(ESI), m/z = 336.36 [M+H]".

7-(benzyloxy)-6-methoxy-4-(pyrrolidin-1-yl)quinazoline (3h). Using the above
general procedure, pyrrolidine (0.4 mL, 0.5 mmol), 2-propanol (12.5 mL),
7-(benzyloxy)-6-methoxyquinazolin-4-yl 4-methylbenzenesulfonate (190 mg, 0.5 mmol),
and DIEA (0.2 mL) were used to synthesize compound 3h and purified by flash
chromatography (3%). MS(ESI), m/z = 336.46 [M+H]".

2-(1-(7-(benzyloxy)-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-

isopropylphenyl)acetamide (3i). Using the above general procedure, compound 3a (411
mg, 1.67 mmol), 2-propanol (40 mL), 7-(benzyloxy)-4-chloro-6-methoxyquinazoline
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(502 mg, 1.67 mmol) and DIEA (0.5 mL) were used to synthesize compound 3i and
purified by flash chromatography (35%). MS(ESI), m/z = 511.5 [M+H]".

(R)-2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3j). Using the above general procedure, compound 3b
(160 mg, 0.65 mmol), 2-propanol (80 mL), 4-chloro-6,7-dimethoxyquinazoline (233 mg,
1.04 mmol), and DIEA (1.5 mL) were used to synthesize compound 3j and purified by
flash chromatography (44%). MS(ESI), m/z = 435.33 [M+H]". Optical rotation:
-92.88+6.28.

(R)-2-(1-(7-(benzyloxy)-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3k). Using the above general procedure, compound 3b
(160 mg, 0.65 mmol), 2-propanol (80 mL),
7-(benzyloxy)-4-chloro-6-methoxyquinazoline (313 mg, 1.04 mmol), and DIEA (1.5 mL)
were used to synthesize compound 3k and purified by flash chromatography (38%).
MS(ESI), m/z = 511.29 [M+H]".

(R)-2-(1-(6-(benzyloxy)-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-(4-
isopropylphenyl)acetamide (31). Using the above general procedure, compound 3b
(160 mg, 0.65 mmol), 2-propanol (80 mL),
6-(benzyloxy)-4-chloro-7-methoxyquinazoline (313 mg, 1.04 mmol), and DIEA (1.5 mL)
were used to synthesize compound 31 and purified by flash chromatography (38%).
MS(ESI), m/z = 511.38 [M+H]".

(8)-2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-(4-
isopropylphenyl)acetamide (3m). Using the above general procedure, compound 3¢
(150 mg, 0.61 mmol), 2-propanol (80 mL), 4-chloro-6,7-dimethoxyquinazoline (219 mg,
0.97 mmol), and DIEA were used to synthesize compound 3m and purified by flash
chromatography (47%). MS(ESI), m/z = 435.42 [M+H]". Optical rotation: 94.6+7.5.

(8)-2-(1-(7-(benzyloxy)-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3n). Using the above general procedure, compound 3¢
(150 mg, 0.61 mmol), 2-propanol (80 mL),
7-(benzyloxy)-4-chloro-6-methoxyquinazoline (293 mg, 0.97 mmol) and DIEA (1.5 mL)
were used to synthesize compound 3n and purified by flash chromatography (40%).
MS(ESI), m/z = 511.38 [M+H]".

(5)-2-(1-(6-(benzyloxy)-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/N-(4-
isopropylphenyl)acetamide (30). Using the above general procedure, compound 3¢
(150 mg, 0.61 mmol), 2-propanol (80 mL),
6-(benzyloxy)-4-chloro-7-methoxyquinazoline (293 mg, 0.97 mmol), and DIEA were
used to synthesize compound 30 and purified by flash chromatography (40%). MS(ESI),
m/z =511.29 [M+H]".
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General procedure for the coupling of the quinazoline and pyrrolidine using
microwave synthetic technology (3p-u)

In a microwave tube with a stir bar, the pyrrolidine (1 eq), the quinazoline (1 eq)
and DIEA were dissolved in solvent. The vessel was sealed and purged with nitrogen.
Next the vessel was inserted into the microwave instrument and the reaction was
initiated. The reaction mixture was cooled to room temperature, concentrated in vacuo,
and purified by reverse phase chromatography with a gradient mobile phase of
acetonitrile and water with 0.1% ammonium bicarbonate using a Biotage FLASH system
with a C18 column cartridge. The desired compound was identified by UPLC-MS.

7-(benzyloxy)-6-methoxy-4-(pyrrolidin-1-yl)quinazoline (3p). Using the above
general procedure, pyrrolidine (1.0 mL, 12.2 mmol) and
7-(benzyloxy)-4-chloro-6-methoxyquinazoline (1 g, 3.3 mmol) were heated at 170 °C for
5.6 minutes at normal intensity to synthesize compound 3p and purified by flash
chromatography (41%). MS(ESI), m/z = 336.2 [M+H]".

2-(1-(7-(benzyloxy)-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3q). Using the above general procedure, compound 3a (87
mg, 0.35 mmol) and 7-(benzyloxy)-4-chloro-6-methoxyquinazoline (107 mg, 0.35 mmol)
in DMF (2 mL) were heated at 170 °C for 5.6 minutes at normal intensity to synthesize
compound 3q and purified by flash chromatography (41%). MS(ESI), m/z=511.4
[M+H]".

(R)-2-(1-(7-(benzyloxy)-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3r). Using the above general procedure, compound 3b
(106 mg, 0.43 mmol), 7-(benzyloxy)-4-chloro-6-methoxyquinazoline (130 mg, 0.43
mmol) and DIEA (0.151 mL, 0.87 mmol) in DMF (2 mL) were heated at 170 °C for 5.6
minutes at normal intensity to synthesize compound 3r and purified by flash
chromatography (43%). MS(ESI), m/z=511.36 [M+H]".

(R)-2-(1-(6-(benzyloxy)-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-(4-
isopropylphenyl)acetamide (3s). Using the above general procedure, compound 3b
(168 mg, 0.68 mmol), 6-(benzyloxy)-4-chloro-7-methoxyquinazoline (205 mg, 0.68
mmol), and DIEA (0.24 mL, 1.36 mmol) in DMF (3 mL) were heated at 170 °C for 5.6
minutes at normal intensity to synthesize compound 3s and purified by flash
chromatography (43%). MS(ESI), m/z = 511.36 [M+H]".

(R)-2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-/NV-(4-
isopropylphenyl)acetamide (3t). Using the above general procedure, compound 3b
(160 mg, 0.65 mmol), 4-chloro-6,7-dimethoxyquinazoline (146 mg, 0.65 mmol) and
DIEA (0.23 mL, 1.3 mmol) in DMF (3 mL) were heated at 170 °C for 5.6 minutes at
normal intensity to synthesize compound 3t and purified by flash chromatography (43%).
MS(ESI), m/z = 435.31 [M+H]".
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2-(1-(6,7-dimethoxyquinazolin-4-yl)pyrrolidin-3-yl)-N-(4-isopropylphenyl)acetamide
(3u). Using the above general procedure, compound 3a (170 mg, 0.69 mmol),
4-chloro-6,7-dimethoxyquinazoline (250 mg, 1.1 mmol), and DIEA (0.24 mL, 1.4 mmol)
in DMF (3 mL) were heated at 170 °C for 5.6 minutes at normal intensity to synthesize
compound 3u and purified by flash chromatography (46%). MS(ESI), m/z = 435.4
[M+H]".

Synthetic options for demethylation of the 6 or 7 position of the aminoquina-
zoline

Synthesis of 2-(1-(6-hydroxy-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-
(4-isopropylphenyl)acetamide (3x). Compound 3d (100 mg, 0.230 mmol) and sodium
hydroxide (13.8 mg, 0.345 mmol) were put in a reaction vessel. The vessel was
maintained under a nitrogen atmosphere. Anhydrous N-methyl-2-pyrrolidone (NMP) (2
mL) was added to the reaction mixture followed by dodecane-1-thiol (0.164 mL, 0.69
mmol). The reaction mixture was stirred at 130 °C for 2 hours. The crude mixture was
acidified using IN HCI and diluted with EtOAc. The aqueous phase was extracted with
EtOAc and the combined organic layers were washed with water and brine, dried over

MgSO4 and concentrated in vacuo. Compound 3x was purified by flash chromatography
(49%).

Synthesis of 2-(1-(6-hydroxy-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-
(4-isopropylphenyl)acetamide (3x). Compound 3d (100 mg, 0.230 mmol) was
dissolved in methanesulfonic acid (1.5 mL, 23 mmol) and heated at 200 °C for10
minutes. The reaction mixture was allowed to cool to room temperature and then was
treated with sodium bicarbonate solution and then extracted with EtOAc. TLC Ry= 0.
(89/11 DCM/methanol).

Synthesis of 2-(1-(6-hydroxy-7-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/V-
(4-isopropylphenyl)acetamide (3x). Compound 3d (108 mg, 0.249 mmol) was
dissolved in CHCl; (25 ml) and cooled to 0 °C. Then tribromoborane (0.836 ml, 4.87
mmol) was added drop wise under a nitrogen atmosphere and allowed to come to room
temperature. The reaction was refluxed for 24 hours. The reaction mixture was allowed
to cool to room temperature and then was treated with sodium bicarbonate solution and
then extracted with methanol. TLC Ry= 0. (89/11 DCM/methanol).

Synthesis of 7-methoxy-4-(pyrrolidin-1-yl)quinazolin-6-ol (3y). Compound 3e (50
mg, 0.19 mmol) was dissolved in CHCl3 (5 ml) and cooled to 0 °C. Then tribromoborane
(0.65 ml, 3.8 mmol) was added drop wise under a nitrogen atmosphere and allowed to
come to room temperature. The reaction temperature was increased to 65 °C for 60
minutes. The reaction mixture was allowed to cool to room temperature and then was
treated with sodium bicarbonate solution and then extracted with methanol. TLC Ry= 0.
(89/11 DCM/methanol).
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General procedure for the synthesis of the benzyl protected 6 or 7 position
aminoquinazoline (3z-am)

Step 1: The hydroxy substituted methoxybenzoic acid (1 eq) was dissolved in
DMEF. Then potassium carbonate (5 eq) and benzyl bromide (2.5 eq) were added to the
reaction vessel. The reaction mixture was stirred overnight at room temperature. The
reaction mixture was filtered, EtOAc was added and the solution was washed with brine,
dried with MgSOs, and concentrated in vacuo. Purification by crystallization gave benzyl
protected methoxybenzoate. Step 2: The benzyl protected methoxybenzoate (1 eq) from
Step 1 was dissolved in DCM at -10 °C and acetic acid (35 eq) was slowly added
followed by nitric acid (10 eq). The reaction mixture warmed to room temperature and
then refluxed at 100 °C overnight. The completed reaction mixture was poured into ice,
extracted with EtOAc, washed with brine, dried with MgSOs, filtered, and concentrated
in vacuo. Step 3: The benzyl protected nitrobenzoate (1 eq) was dissolved in EtOAc and
tin(II) chloride dihydrate (3.1 eq) was added. The reaction mixture was heated at 50 °C
overnight. The reaction mixture was cooled, filtered through celite, washed with 10%
NaHCO:s, extracted with EtOAc, dried with MgSQs4, and concentrated in vacuo. Step 4:
The benzyl protected amino methoxybenzoate (1 eq) was dissolved in formamide
followed by ammonium formate (1.5 eq). The reaction mixture was heated at 150 °C for
12 hours. The reaction mixture was cooled to room temperature, poured into water, and
filtered, yielding the quinazolinone. Step 5: The quinazolinone (1 eq), thionyl chloride
(19 eq), and 5 drops of DMF were added to toluene and refluxed for 4 hours. The
reaction mixture cooled to room temperature and concentrated in vacuo yielding the
halogenated quinazoline as a solid.

benzyl 3-(benzyloxy)-4-methoxybenzoate (3z). Using Step 1 of the above general
procedure, isovanillic acid (2.5 g, 15 mmol), potassium carbonate (10.3 g, 74.3 mmol),
and benzyl bromide (4.4 mL, 37 mmol) in DMF (130 mL) were used to synthesize
compound 3z as a solid (68%). MS(ESI), m/z = 349.22 [M+H]".

benzyl 4-(benzyloxy)-3-methoxybenzoate (3aa). Using Step 1 of the above general
procedure, vanillic acid (2.5 g, 15 mmol), potassium carbonate (10.3 g, 74.3 mmol), and
benzyl bromide (4.4 mL, 37 mmol) in DMF (130 mL) were used to synthesize compound
3aa as a solid (70%). MS(ESI), m/z = 349.23 [M+H]".

benzyl 4-(benzyloxy)-3-methoxybenzoate (3aa). Using Step 1 of the above general
procedure, vanillic acid (100 mg, 0.6 mmol), potassium carbonate (410 mg, 6.8 mmol),
and benzyl bromide (0.35 mL, 37 mmol) in DMF (2 mL) were heated in a microwave
reactor at 95 °C for 5.6 minutes at normal intensity to synthesize compound 3aa as a
solid (51%). MS(ESI), m/z = 349.32 [M+H]".

benzyl 5-(benzyloxy)-4-methoxy-2-nitrobenzoate (3ac). Using Step 2 of the above
general procedure, compound 3z (3 g, 8.6 mmol), acetic acid (17.3 mL, 301 mmol), and
nitric acid (3.9 mL, 86 mmol) in DCM (17 mL) were used to synthesize compound 3ac as
an oil (89%). MS(ESI), m/z =394.08 [M+H]".
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benzyl 4-(benzyloxy)-5-methoxy-2-nitrobenzoate (3ad). Using Step 2 of the above
general procedure, compound 3aa (3 g, 8.6 mmol), acetic acid (27.1 mL, 474 mmol), and
nitric acid (6.1 mL, 136 mmol) in DCM (28 mL) were used to synthesize compound 3ad
as a solid (78%). MS(ESI), m/z = 394.49 [M+H]".

benzyl 2-amino-5-(benzyloxy)-4-methoxybenzoate (3ae). Using Step 3 of the above
general procedure, compound 3ac (3 g, 7.6 mmol) and tin(II) chloride dihydrate (5.4 g,
24 mmol) in EtOAc (32 mL) were used to synthesize compound 3ae as a brown solid
(23%). MS(ESI), m/z = 364.39 [M+H]".

benzyl 2-amino-4-(benzyloxy)-5-methoxybenzoate (3af). Using Step 3 of the above
general procedure, compound 3ad (2 g, 5.1 mmol) and tin(IT) chloride dihydrate (3.4 g,
15 mmol) in EtOAc (20 mL) were used to synthesize compound 3af as a brown solid
(44%). MS(ESI), m/z =364.14 [M+H]".

benzyl 2-amino-4-(benzyloxy)-5-methoxybenzoate (3af). Using Step 3 of the above
general procedure, compound 3ad (400 mg, 1 mmol) and tin(II) chloride dihydrate (688
mg, 3.1 mmol) in EtOAc (3.7 mL) were heated in a microwave reactor at 120 °C for 5.6
minutes at normal intensity to synthesize compound 3af as a brown solid (48%).
MS(ESI), m/z = 364.32 [M+H]".

benzyl 2-amino-4-(benzyloxy)-5-methoxybenzoate (3af). Using a modified Step 3 of
the above general procedure, compound 3ad (367.6 mg, 0.935 mmol) and iron (52.2 mg,
0.935 mmol) in acetic acid (5 mL) were heated at 100 °C for 1 hour to synthesize
compound 3af as a brown solid (50%). MS(ESI), m/z = 364.3 [M+H]".

6-(benzyloxy)-7-methoxyquinazolin-4(3H)-one (3ai). Using Step 4 of the above
general procedure, compound 3ae (500 mg, 1.38 mmol), formamide (3.3 mL, 83 mmol),
and ammonium formate (130 mg, 2.1 mmol) were used to synthesize compound 3ai as a

solid (73%). MS(ESI), m/z = 283.04 [M+H]".

7-(benzyloxy)-6-methoxyquinazolin-4(3H)-one (3ak). Using Step 4 of the above
general procedure, compound 3af (4.5 g, 12.4 mmol), formamide (29.8 mL, 748 mmol),
and ammonium formate (1.17 g, 18.6 mmol) were used to synthesize compound 3ak as a
solid (86%). MS(ESI), m/z = 283.12 [M+H]".

7-(benzyloxy)-6-methoxyquinazolin-4(3H)-one (3ak). Using Step 4 of the above
general procedure, compound 3af (750 mg, 2.06 mmol), formamide (2.5 mL, 63 mmol),
and ammonium formate (195 mg, 3.1 mmol) were heated in a microwave reactor at 220
°C for 5.6 minutes at normal intensity to synthesize compound 3ak as a solid (68%).
MS(ESI), m/z = 282.8 [M+H]".

6-(benzyloxy)-4-chloro-7-methoxyquinazoline (3al). Using Step 5 of the above general
procedure, compound 3ai (250 mg, 0.89 mmol), thionyl chloride (1.27 mL, 17.3 mmol),
and a catalytic amount of DMF in toluene (25 mL) were used to synthesize compound
3al as a solid (92%). MS(ESI), m/z=301.2 [M+H]".
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7-(benzyloxy)-4-chloro-6-methoxyquinazoline (3am). Using Step 5 of the above
general procedure, compound 3ak (360 mg, 1.3 mmol), thionyl chloride (1.8 mL, 25
mmol), and a catalytic amount of DMF in toluene (25 mL) were used to synthesize
compound 3am as a solid (62%). MS(ESI), m/z = 300.87 [M+H]".

Synthetic options for debenzylation of the 6 or 7 position of the 4-substituted
quinazoline

General procedure for the removal of the benzyl protecting group of the
quinazoline (3an-ap). Using a 3-neck, round bottom flask, a catalytic amount of 10%
palladium on carbon was added and the flask was purged with nitrogen. EtOAc was then
added and the flask was maintained under a nitrogen atmosphere continually fed through
the flask neck. A balloon filled with hydrogen gas was attached to a stop-cock apparatus
and affixed to the second flask neck. The substituted quinazoline (1 eq) was dissolved in
EtOAc and added through the septum of the third neck. The nitrogen flow was stopped,
the hydrogen purged the flask, and finally the vent needle was removed to maintain a
positive pressure with hydrogen. The reaction mixture was stirred at room temperature
for 96 hours. The reaction mixture was filtered and the concentrated in vacuo to yield the
desired product.

7-methoxy-4-(pyrrolidin-1-yl)quinazolin-6-ol (3an). Using the above general
procedure, compound 3f (40 mg, 0.12 mmol), 10% palladium on carbon (15.9 mg, 0.149
mmol) in EtOAc (20 mL) were used to synthesize compound 3an as a solid (4%).
MS(ESI), m/z = 246.38 [M+H]".

6-methoxy-4-(pyrrolidin-1-yl)quinazolin-7-ol (3a0). Using the above general
procedure, compound 3g (40 mg, 0.12 mmol), 10% palladium on carbon (15.9 mg, 0.149
mmol) in EtOAc (20 mL) were used to synthesize compound 3ao as a solid (11%).
MS(ESI), m/z = 246.3 [M+H]".

2-(1-(7-hydroxy-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-/N-(4-
isopropylphenyl)acetamide (3ap). Using the above general procedure, compound 3i
(80 mg, 0.16 mmol), 10% palladium on carbon (20.8 mg, 0.196 mmol) in EtOAc (25 mL)
were used to synthesize compound 3ap as a solid (2%). MS(ESI), m/z = 421.4 [M+H]".

Synthesis of 2-(1-(7-hydroxy-6-methoxyquinazolin-4-yl)pyrrolidin-3-yl)-N-(4-
isopropylphenyl)acetamide (3aq). In a 5-mL microwave vessel with a stir bar,
compound 3i (50 mg, 0.1 mmol) was added followed by TFA (2 mL). The vessel was
sealed and heated to 40 °C for 4 hours. The solution was diluted with acetonitrile and
concentrated in vacuo yielding the desired deprotected quinazoline. The product was
purified by flash chromatography as a solid (97%). MS(ESI), m/z = 421.4 [M+H]".
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Synthesis of Radiolabeled Tracers

General procedure for radiosynthesis using ''C (3ar-as). All the radiochemistry was
performed on the PETChem Solutions (Chelsea, MI) radiochemistry unit, a semi-
automatic !'C methylation module using the “wet” method under an argon atmosphere.
!¢ is produced by proton irradiation of nitrogen gas with 0.5% oxygen mixed with it in a
(p,a) nuclear reaction producing ['!C]carbon dioxide. This reactive gas is bubbled
through a mixture of LAH and THF to give the volatile ['!C]methanol species. This is
then passed through a solution of hydroiodic acid creating [''C]methyl iodide. The
[''C]methyl iodide is either reacted with the desmethyl precursor dissolved in DMSO
with potassium carbonate or passed over the silver triflate column to produce [!'C]methyl
triflate, which is then reacted with the desmethyl precursor in the same manner as
[''C]methyl iodide.

The radiolabeled tracer was purified by HPLC using a SB-C18 column with a
mobile phase of 55% 50 mM ammonium acetate and acetonitrile, pH adjusted to 3.8 at a
flow of 4 mL/min. Removal of the solvents was achieved through filtration and
adsorption on a tC18 Sep-Pak® and eluted with 1 mL of EtOH into a final solution of 50
mM ammonium acetate that is pH adjusted to 5.5. Total synthesis time is 30-33 minutes.
The key results are listed in Table 3-1.

6-methoxy-7-[''C]methoxy-4-(pyrrolidin-1-yl)quinazoline (3ar). Using the above
general procedure, compound 3ao (1 mg, 0.004 mmol) and potassium carbonate (3.75
mg, 0.271 mmol) in DMF (0.15 mL) were reacted with [''C]methyl iodide at 85 °C for
10 minutes to yield the crude compound 3ar radiotracer (15%).

2-(1-(6-methoxy-7-[''C]lmethoxyquinazolin-4-yl)pyrrolidin-3-yl)-N-(4-
isopropylphenyl)acetamide (3as). Using the above general procedure, compound 3aq
(1 mg, 0.002 mmol) and potassium carbonate (3.75 mg, 0.271 mmol) in DMSO (0.15
mL) were reacted with [''C]methyl triflate at room temperature to yield the crude
compound 3as radiotracer (26%).
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CHAPTER 4. OVERALL DISCUSSION OF RESEARCH PROJECTS

Introduction

The work discussed in this dissertation involved the development of novel
radiotracers through the incorporation of PET radionuclides that may provide a way to
aid in the therapy planning of NB patients. NB is a childhood disease that has an overall
survival rate that could be improved and the high-risk group is the most in need with a 5-
year event-free survival of <50%.2"

The design and development of new radiotracers for specific enzymes or
receptors to identify disease states has been the topic of discussion in the molecular
imaging community for years. The projects discussed in Chapters 2 and 3 provide a way
to image a target that could be intentionally expressed to increase the activation of a
prodrug at a desired location or to examine the entire body for the presence of a receptor
that would indicate what therapy path the clinicians should pursue in that individual
patient. The focus of both projects was to synthesize novel radiotracers that could help
the therapy planning by targeting the CE and TrkB. This was a multi-disciplinary
undertaking, using techniques from organic chemistry, nuclear medicine, radiochemistry,
biochemistry, pharmacokinetic (PK), and veterinary sciences to design and test the
radiotracers.

Imaging Carboxylesterase Project

The project discussed in Chapter 2 covered the design of novel radiotracers
targeted to CE. The previous work by colleagues at SICRH had an opportunity to
improve their method of monitoring the upregulation of a specific CE through NDEPT'*
23,2526 at NB tumors. The current method was through immunohistochemical staining of
the dissected tumor. The benefit of PET radiotracers is that it is administered at a sub-
pharmacological'? dose that allows clinicians to observe the physiologic process without
the imaging agent perturbing the process or causing a therapeutic effect. These
radiotracers are biologically active, so the biological process can be monitored in real
time with PET imaging technology.

Analysis of the selective CE inhibitors led to a library of compounds that could be
designed with a radionuclide as a substituent or substituted for the non-radioactive
isotope. The radiosynthetic precursors and standards of the benzil and the phenyl
pyridinyl-1,2-dione compounds were synthesized to validate the radiotracers through
direct comparison using typical analytical equipment capable of detecting radiation.

Automated radiosynthetic technology was used to synthesize the radiotracers.

The addition of microwave technology reduced the radiolabeling step from 45-minute
reaction time to a 7-minute reaction time. The reduction in the radiosynthetic scheme is

80



vital in PET radiotracer development. Every minute reduction of the synthesis scheme
provides more time for the radiotracer to utilize the effective half-life.

The benefit of reduced reaction time did not overcome the inconsistencies
encountered with the radiochemical yield. The variations may have been due to the
solubility of the benzil compounds and is the reason why the phenyl pyridinyl-1,2-dione
compounds were suggested as an alternative library. The greater solubility of the phenyl
pyridinyl-1,2-dione!® compounds did not improve the radiochemical yield. The
radiosynthetic scheme was adapted for the microfluidics flow chemistry system that
reports to produce higher yields, higher purity, and faster reaction times using less
precursor. The optimization did not improve the radiochemical yield beyond what was
achieved on the PETChem automated radiosynthesis system. These combined data
shifted the focus back to the design of the radiosynthetic standards. Colleagues in the
CBT department continue to design selective CE inhibitors and a new library of
compounds that has improved chemical properties could benefit from the radiochemistry
development that this project has developed.

Imaging Tropomyosin Receptor Kinase B Project

The project discussed in Chapter 3 described the synthesis of the novel TrkB
inhibitor radiotracers and the design of benzyl protected radiosynthetic precursors that
allow for the selection for ''C methylation. The exact mechanism of action of cell
survival through the presence of TrkB is still under investigation. Current literature
suggests that the presence of TrkB in NB tissue could be associated with an unfavorable
prognosis and promotes resistance to chemotherapeutic agents through the intracellular
signaling cascade.?® 40-62:66.93. 137-144 Qince the Trks are selectively activated by a specific
NT, it could be interpreted that selective radiotracers would be able to identify the
presence of a specific Trk. The focus was to identify a selective TrkB inhibitor that could
be used as a lead molecule for the development of the radiochemistry and evaluate its
capacity as an imaging agent.

A new imaging radiotracer could also influence total health care costs. One key
aspect of a successful radiotracer is that it could provide clinical information that is not
available by alternative, cheaper methods.'*> According to the NCI at the NIH website, a
pathology report can take up to 10 days to get the preliminary report and much longer if
additional information is desired as to the gene expression of the tissues in question. The
cost of a needle, core, or large tissue biopsy carries a large burden on medical costs for
both insurance companies and self-pay individuals. Each additional person that handles
the sample escalates the cost of the procedure and each test performed on the tissue
sample keeps adding to the total of the medical bills yielding a total cost of anywhere
from $5-10 thousand or greater. Compared to a single PET scan that would yield a total
cost of approximately half'*® and could have a turn-around time of less than 24 hours for
the report.
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There is increasing interest in Trks and the role they play in cancer as seen with
the development of pan-Trk selective inhibitors that are in Phase 1 clinical trials, and the
development of PET radiolabeled pan-Trk inhibitors."”® The Trks have considerable
structural similarity with a peptide sequence identity of approximately 50%, but are only
activated by distinct NTs. The current direction of Trk inhibition is through non-selective
compounds. The design of selective inhibitors is challenging, but the potential benefit to
patients could be worth the struggles.

The ideal goal of this project was to develop a TrkB selective radiotracer that
could identify the presence and sites of upregulation of TrkB, allowing for the
modification of therapy to benefit patients. If a pan-Trk selective radiotracer is used, then
there is no way to differentiate TrkA, a beneficial prognostic factor, from TrkB, a
negative prognostic factor, thus neglecting to provide any guidance to the therapy of
patients.

The 7,8-dihydroxyflavone and its derivatives or ANA-12 may be the path to
pursue for selective TrkB radiotracers by targeting the extracellular domain. Although
the 7,8-dihydroxyflavone is an agonist of the TrkB receptor, the sub-pharmacological
dose should not cause a therapeutic effect. There is still a concern that even a sub-
pharmacological dose could cause a cascade of the TrkB system and negatively affect the
patient. Continued medicinal chemistry development is needed to identify a compound
that could utilized the radiosynthesis optimizations of this body of work. The data
reported here did not produce a radiotracer that could be used for patient care today, but
the data is valuable and provides a glimpse as to the possibility of what could happen
tomorrow.

This research allowed for the development of novel radiotracers that could be
applied to the future design of Trk compounds, Figure 4-1. One area of improvement
regarding the aminoquinazolines could be found in the active isomer of these racemic
compounds. The individual isomers were tested for the ICso against the Trks, see
previous Table 3-4. Based on this information the cell uptake, biodistribution, and
dynamic PET image were repeated with the R isomer, yielding no significant difference
from the racemic data.

Final Thoughts

NB is a challenging disease that has room for improvement in the overall survival
of patients. Researchers from numerous scientific disciplines are collaborating to find
new ways to diagnose and treat these patients. The projects discussed here cover two
possible routes to achieve this goal in hopes to provide a benefit to a patient population in
need.
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Figure 4-1. New Trk inhibitors under investigation that have radiotracer
potential.

Sources: Yang, Q.; Modi, P.; Newcomb, T.; Queva, C.; Gandhi, V., Idelalisib: First-in-
Class PI3K Delta Inhibitor for the Treatment of Chronic Lymphocytic Leukemia, Small
Lymphocytic Leukemia, and Follicular Lymphoma. Clin Cancer Res 2015, 21 (7), 1537-
42. Bernard-Gauthier, V.; Aliaga, A.; Aliaga, A.; Boudjemeline, M.; Hopewell, R.;
Kostikov, A.; Rosa-Neto, P.; Thiel, A.; Schirrmacher, R., Syntheses and evaluation of
carbon-11- and fluorine-18-radiolabeled pan-tropomyosin receptor kinase (Trk)
inhibitors: exploration of the 4-aza-2-oxindole scaffold as Trk PET imaging agents. ACS
Chem Neurosci 2015, 6 (2), 260-76.
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