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ABSTRACT 

 

 

 Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. 

Much has been discovered in recent decades regarding ALL biology, and the outcome of 

patients with ALL has vastly improved, especially in pediatric ALL patients. Despite 

very promising overall cure rates, patients who relapse have a greatly decreased 

prognosis with survival rates ranging from 30-60%. These numbers stand to improve 

even further with new targeted therapies that seek to improve or maintain cure rates while 

reducing treatment related toxicities which affect patients both acutely and chronically.  

 

Glucocorticoids (GCs) are essential components of modern chemotherapeutic 

intervention for ALL. Resistance to glucocorticoids is an important factor in determining 

early treatment response and overall patient survival. Reduction of glucocorticoid 

induced toxicities, such as osteonecrosis, can significantly affect patient quality of life 

and are associated with high dose glucocorticoid treatment in pediatric patients. Both 

endogenous and exogenous glucocorticoids exert their mechanism of action through 

various pleiotropic effects that regulate numerous cellular functions and can cause 

selective cytotoxicity in lymphoid malignancies. The complex mechanism of action of 

glucocorticoids is evident in the number of diverse clinically relevant molecular 

pathways that have been previously associated with resistance to glucocorticoids in ALL. 

 

The identification of genomic and epigenomic mechanisms of glucocorticoid 

resistance are important for improving ALL treatment outcomes. We used an agnostic 

genome-wide method to interrogate multiple types of genomic information (mRNA and 

miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels) in primary human 

acute lymphoblastic leukemia cells. We identified 463 genomic features associated with 

glucocorticoid resistance. Gene-level aggregation by a novel statistical method (TAP) 

identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR 

screening. Upon review of known glucocorticoid resistance mechanisms, we directly 

identified 30 of 38 (79%) genes/miRNAs and all 38 known resistance pathways, 

revealing 14 of 15 of our top candidate genes were not previously associated with 

glucocorticoid-resistance. CELSR2, the top novel gene downregulated in glucocorticoid 

resistant ALL was corroborated by single cell RNAseq and network-based transcriptomic 

modeling (NetBID). shRNA knockdown of CELSR2 recapitulated glucocorticoid 

resistance in human leukemia cell lines and revealed a synergistic drug combination 

(prednisolone and venetoclax), based on high BCL-2 expression, that was able to mitigate 

glucocorticoid resistance in mouse xenografts. 

 

In summation, we illustrated the power of a multi-dimensional integrative 

genomic strategy for elucidating genes and pathways conferring glucocorticoid resistance 

in patients with ALL. These findings will provide important new targets for treating 

glucocorticoid resistant ALL. 
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CHAPTER 1.    INTRODUCTION 

 

 

Acute Lymphoblastic Leukemia (ALL) 

 

Acute lymphoblastic leukemia (ALL) is a malignant neoplasm composed of 

immature white blood cells known as lymphoblasts which can accumulate in the 

peripheral blood, bone marrow and other organs causing tissue damage and inhibiting 

normal hematopoietic cell development. The most common presenting features of 

childhood ALL (occurring in more than 50% of cases) at or prior to diagnosis are 

hepatomegaly, splenomegaly, pallor, fever and bruising.1 Immunophenotype lineage 

determination by flow cytometric analysis of extracellular surface markers can classify 

the leukemia as either the more common B-lineage ALL (85% of cases) or T-lineage 

ALL.2 

 

 

Prevalence 

 

ALL is the most prevalent type of cancer in children accounting for 25% of all 

childhood cancer diagnoses with an estimated 3,000 cases per year in children from ages 

1-19 (peaking in incidence from ages 2-4 in industrialized countries). Notably, there has 

been an upward trend in pediatric ALL incidence over the past 40 years.3,4 Recent studies 

have proposed that early exposure to infections (i.e. infant day care attendance) may 

provide protection from childhood ALL.5,6 

 

 

Molecular Subtypes of ALL 

 

The majority of B-ALL (approximately 75%) exhibit aneuploidy or have 

recurring large chromosomal rearrangements that have been shown to be important in 

leukemogenesis,7,8 but these are unable to fully explain the complex biology of the 

disease.9 Until the last decade, ALL was described by either aneuploidy resulting in large 

chromosomal gains (hyperdiploidy) or losses (hypodiploidy) or by four more commonly 

observed translocations including 25% of patients with t(12;21) [ETV6–RUNX1],5% of 

patients with t(1;19) [TCF3–PBX1], 3% of patients having t(9;11) [BCR–ABL1] and 5% 

of patients who have MLL gene translocations.  

 

These genetic changes have important prognostic significance. For example, 

ETV6-RUNX1 ALL has a favorable prognosis (97.6% vs 83% 5-year EFS).10 Conversely, 

BCR-ABL1-translocation is a high-risk feature but has been more successfully treated 

recently since the inclusion of targeted tyrosine kinase inhibitors into clinical protocols.11 

Genome-wide DNA and RNA sequencing has identified many submicroscopic alterations 

that may help define new molecular subtypes of ALL, Also, there are alterations seen in 

many protooncogenes (Ras pathway), tumor-suppressors (e.g. CDKN2A/B) and B-cell 

developmental genes (PAX512 and IKZF113) which in the case of PAX5 have led to the 

discovery of new distinct molecular subtypes of ALL (PAX5 P80R and PAX5alt) that 
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bring the current total to 23 unique molecular subtypes of B-ALL.14 Even with the 

exceptional advances in understanding the genomic landscape of ALL, the precise 

mechanisms underlying the pathogenesis of ALL are not fully understood, and further 

study is required to derive the initiating genetic lesions in many cases.  

 

 

Germline Variation Involved in ALL Development 

 

In contrast to studies looking at acquired somatic variants, the host genome and 

inherited germline polymorphisms have arisen as important factors susceptibility of 

individuals to develop childhood ALL and have been found to also affect the severity of 

the resulting disease. It was discovered that there is a link between germline mutations in 

the tumor suppressor TP53 that are known to cause Li-Fraumeni Syndrome and an 

increased incidence of hypodiploid ALL in affected patients.15 Also, recurrent inherited 

heterozygous germline mutations within the octapeptide domain of the PAX5 gene were 

discovered by studying two unrelated families and were highly associated with ALL 

occurrence in these patients.16 Genome-wide association studies (GWAS) identified 

germline variants in genes associated with increased risk of ALL occurrence ARID5B, 

IKZF1, CEBPE, ETV6,CDKN2A and PIP4K2A-BMI1.17-19 Also, GATA3 SNPs were 

associated with increased incidence of Ph-like ALL and increased risk of relapse which 

served as an example that inherited variants can cause development of specific subtypes 

of ALL.20 

 

 

Refinement of ALL Therapy and Improved Outcomes 

 

Over the last 50 years, there have been exceptional gains in the prognostic outlook 

for pediatric ALL. From the inception of St. Jude Children’s Research Hospital in 1962, 

the cure rate for ALL was less than 10% and it has now increased to greater than 90%.21 

Recently, similar cure rates have been achieved in nationwide multi-center protocols with 

the most recently completed Children’s Oncology Group study AALL0331 reporting an 

89% 6 year event-free survival (EFS) and 95.5% overall survival rate in children with 

newly diagnosed standard risk (SR) ALL.22 These improvements can be attributed to a 

number of important advances. Initially, multi-agent chemotherapy regimens with longer 

duration, methods to reduce secondary infection and reduction in CNS involvement by 

targeted therapy provided the first wave of improvement in patient outcomes. More 

recently, refinements in treatment protocols have been derived from an increased 

understanding of the biological heterogeneity of ALL and the ability to monitor minimal 

residual disease (MRD)23,24 which has allowed for refinement of protocols to stratify 

patients based on risk of relapse to greatly maximize cure rates while reducing toxicity. 

Despite the vast improvements in treatment outcome, ALL remains a leading cause of 

childhood cancer-related death. Relapsed ALL though occurring at a much lower rate has 

a very poor prognosis with an overall survival rate of 30-60%.25-28 Assessment of drug 

resistance shows that leukemia blasts are more resistant to a variety of agents at relapse 

than at diagnosis and both de novo and acquired resistance are thought to be key 

determinants of relapse in ALL.29,30 Great efforts have been made to discover ways to 
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prevent drug resistance in ALL in hopes of decreasing the occurrence of toxicity caused 

by conventional chemotherapy while maintaining or improving treatment outcomes.  

 

 

Glucocorticoid Mechanism of Action 

 

The glucocorticoid receptor (GR) is a member of the steroid hormone receptor 

family of nuclear receptors. It functions as the receptor for the endogenous glucocorticoid 

cortisol. The function of endogenous glucocorticoids is to minimize inflammatory 

response through control of the Hypothalamic-Pituitary-Adrenal Axis.31 Synthetic 

glucocorticoids (e.g. dexamethasone and prednisone/prednisolone) can also bind the GR 

with high affinity and have been used therapeutically to treat inflammatory conditions 

such as rheumatoid arthritis.32 The inactive glucocorticoid receptor is bound in the 

cytosol by chaperones heat shock proteins HSP70 and HSP90 and co-chaperones (e.g. 

FKBP52). Glucocorticoids enter the cell and bind to the inactive glucocorticoid receptor 

and cause it to dissociate from its chaperone proteins.33 The unbound glucocorticoid 

receptor is then translocated to the nucleus and can homodimerize with other 

glucocorticoid receptor monomers while binding to DNA at glucocorticoid response 

elements (GREs) to induce gene transcription (transactivation) or repress gene expression 

either directly or indirectly (transrepression). Binding site availability may vary based on 

tissue-specific chromatin accessibility. 

 

 

Positive Glucocorticoid Receptor Functions 

 

The most commonly accepted mechanism of transactivation suggests that the GR 

dimerization causes a conformational change in the GR and then it recruits co-factors like 

histone acetyl transferases (HATs) leading to proximal opening of the chromatin to 

facilitate gene expression. It has recently been observed that monomeric GR binding at 

“half-sites” can occur and drive transcription through transactivation and at negative 

GRE sites (nGREs)34 to repress gene expression in the same manner. It has been shown 

that exogenous GCs favor homodimeric GR mechanism and disrupt these “half-

sites”.35,36 

 

 

Negative Glucocorticoid Receptor Functions 

 

The GR can exert negative effects on gene expression by a number of 

mechanisms. One important mechanism of direct transrepression is through protein-

protein interactions known as “tethering” where monomeric GR cross-talks with another 

transcription factor (TF). This can also be seen in the context of transactivation in some 

cases involving assistance from co-factors. Selection of binding partners is a precise 

mechanism based on the specific DNA binding sequence.37,38 Both monomeric and 

dimeric GR can also compete for overlapping binding sites to act as a repressor by 

blocking binding of other transcription factors. It has been recently discovered that both 

inverted repeat nGREs exist to which agonist bound GR can bind two monomers with 
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reverse polarity to repress expression,34 in some cases the GRβ isoform can compete for 

active GRα binding sites and repress expression of target genes.39  

 

 

Non-genomic Glucocorticoid Receptor Functions 

 

There are also other factors that can affect the mechanisms of action of the 

glucorticoid receptor such as post-translational modifications (phosphorylation, 

acetylation, ubiquitination, methylation, nitrosylation and SUMOylation) that can 

regulate a wide array of GR functions. It has been observed previously that there are 

glucocorticoid induced effects that occur very rapidly (seconds to minutes) which belies 

the fact that there must be non-genomic GR mechanisms, most of which are thought to be 

initiated in the cytoplasm.40 These mechanisms also include membrane bound GR which 

has distinct signaling functions41,42 and the ability of the GR to regulate transcription of 

mitochondrially expressed genes the trafficking of which may be mediated by a Bag-1 

mediated BCL2/GR protein complex that can translocate into the mitochondria and effect 

function.43-46  

 

In summary, the glucocorticoid receptor has a number of complex and diverse 

functions and regulatory mechanisms which can be highly tissue specific and provide a 

variety of signals to the cell. 

 

 

Glucocorticoid Treatment in ALL 

 

Glucocorticoids have been essential components of curative chemotherapy 

regimens for many decades, and response to this class of drugs remains pivotal in 

determining early treatment response and treatment outcome.47 Glucocorticoids exhibit 

cell type specific cytotoxicity in lymphoid malignancies and cause cells to inhibit 

cytokine production, undergo cell cycle arrest and apoptosis. Initially, prednisolone was 

the most commonly used glucocorticoid in ALL therapy, but dexamethasone use has 

increased in recent years because of reports that it is better able to prevent CNS 

infiltration, has a longer half-life and ability penetrate the CNS. However, prednisolone 

has shown in a number of studies to be associated with lower incidence of an important 

dose limiting toxicity of glucocorticoid treatment which is osteonecrosis.33 Ex vivo 

prednisolone response profiling of primary leukemia cells to glucocorticoids was shown 

to be highly correlated with patient response to therapy and treatment outcome.48,49 

 

 

Introduction to Pharmacogenomics 

 

Pharmacogenomics is the study of the role of genetics as it relates to drug 

response essentially combining the two fields of genomics and pharmacology. Response 

to drug therapy can vary greatly in a population and adverse drug responses (ADRs) are a 

leading cause of patient mortality in hospitals.50 Some patients may have genetic 

characteristics that make them highly susceptible (sensitive) to drug therapy where they 
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may need a lower dose of a drug than an average patient and could be at risk to develop 

adverse drug reactions within a normal dose range. Other patients may be poorly 

responsive to the drug (resistant), meaning it takes a larger dose to achieve desired 

therapeutic outcome. Depending on the drug being administered and its therapeutic 

window there may be dose limiting toxicities at higher concentrations of the drug.51,52  

 

Pharmacogenomic mechanisms can be pharmacokinetic in nature involving 

difference in drug absorption, distribution, metabolism or excretion (ADME) or 

pharmacodynamic in nature involving the effects of the drug on the body. Application of 

pharmacogenomic techniques in pediatric ALL and other diseases provides new avenues 

to discover therapeutic targets to reduce resistance and toxicity and have shown 

promising results in prior studies.53 Anticancer agents provide particularly challenging 

pharmacogenomic questions because of their narrow therapeutic index which factors in 

determining the clinical actionability of a variant when implementing pharmacogenomics 

in the clinical setting.54 

 

 

Hypothesis and Specific Aims 

 

 Previous research by our group and other groups has shown that glucocorticoid 

resistance in ALL is defined by a diverse array of genetic changes that can be defined by 

alterations in important cellular processes that are in many cases involved in the 

downstream pleiotropic effects of glucocorticoid treatment. Though many studies have 

looked at glucocorticoid resistance in childhood ALL, relevant clinical strategies have not 

been developed or implemented to combat this very important challenge. Key 

mechanisms and actionable targets that are significant in large scale genome-wide 

clinical genomic studies remain widely undiscovered due in part to the lack of 

prioritization by large-scale in vitro functional candidate gene validation.  

 

We hypothesize that an integrated polygenomic interrogation of primary ALL 

cells coupled with agnostic genome-wide CRISPR/Cas9 screening of glucocorticoids in 

leukemia cell lines will identify novel genomic/epigenomic alterations involved in 

previously undiscovered regulatory mechanisms of glucocorticoid resistance in ALL. To 

validate our hypothesis we propose the following specific aims. 

 

 

Aim 1: Genome-Wide CRISPR/Cas9 Knockout Screening 

 

To use genome wide CRISPR/Cas9 knockout screens to identify genes in human 

acute lymphoblastic leukemia (ALL) cell lines that increase resistance to glucocorticoids. 
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Aim 2: Integrated Polygenomic Analyses of Glucocorticoid Resistance in Patient 

ALL 

 

To determine whether variants in genes identified in genome wide CRISPR/Cas9 

screens of ALL cell lines are also associated with glucocorticoid resistance genes in 

primary leukemia cells from newly diagnosed ALL patients (de novo resistance).  

 

 

Aim 3: Functional Mechanisms of Candidate Resistance Genes 

 

To recapitulate drug resistant phenotypes in human ALL cell lines and/or patient 

derived xenografts by manipulating the expression of candidate genes, as a strategy to 

better understand biological pathways that are perturbed by genomic variants associated 

with glucocorticoid resistance. 
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CHAPTER 2.    THE HALLMARKS OF GLUCOCORTICOID RESISTANT ALL 

 

 

De Novo versus Acquired Resistance 

 

Currently, there are two main proposed mechanisms for how drug resistance 

occurs in cancer cells. De novo (intrinsic) resistance which postulates that mutations or 

other genomic changes are harbored at initial diagnosis either through somatic change, 

inherited variance or other phenomenon that may not be directly involved in the 

acquisition of the cancer phenotype or the malignancy of disease. This theory relies on 

the heterogeneity of cancer at diagnosis and the fact that the genetic alteration must 

provide selective advantage for the cells to resist death from drug treatment even if only a 

small subset of the initial population harbors a selective advantage and persist. Acquired 

resistance mechanisms are described as new genetic alterations leading to drug resistance 

in cells that are not present at initial diagnosis but acquired either by new mutations that 

arise by DNA damage from conventional cytotoxic therapies or other activation of 

secondary lesions not found at diagnosis.55,56 Proper resolution to determine whether 

these are truly acquired lesions caused by drug-induced DNA damage and that they are 

not present at a low frequency initially (undetectable in bulk sequencing) is lacking. 

Recent studies in single cell sequencing have shown that low frequency mutations not 

seen in bulk sequencing may account for some of the unobserved mutations that appear at 

relapse and that these methods may allow for determination of mutation acquisition 

order.57 

 

 

Multidimensional Modalities of Drug Resistance 

 

 There are many potential ways that drug resistance can arise in ALL. There are 

three main categories that we will use to describe the landscape of glucocorticoid 

resistance in ALL in this chapter Figure 2-1. 

 

 

Genomic Determinants 

 

Genomic determinants of drug resistance could be somatic coding or non-coding 

mutations, copy number variants, germline polymorphisms or other direct changes to the 

DNA sequence of either the cancer cells or the patient’s germline that cause the patient to 

be resistant to drug therapy. Another potential genomic determinant could be changes in 

the mRNA expression that cause the cancer cells to be resistant which could be regulated 

by a variety of external factors.  

 

 

Epigenomic Determinants 

 

 Resistance can also arise from changes in epigenetic factors such as DNA 

methylation which can directly affect gene expression. Also, changes in chromatin   
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Figure 2-1. Modalities of drug resistance 

Drug resistance can be caused by a diverse array of mechanisms. At the genomic level, 

there can be mutations or copy number alterations. In some cases, epigenomic changes 

such as DNA methylation or chromatin structural changes can cause resistance. Also, 

non-genomic factors such as miRNAs, protein-protein interactions post-translational 

modifications or other external mechanisms can lead to the drug resistant phenotype. 
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accessibility due to altered expression or function of SWI/SNF complex components or 

the histone marks that determine the heterochromatin state of the DNA are known to have 

important functional roles in the regulation of gene expression and could provide global 

phenotypic changes when altered especially in the context of resistance. 

 

 

Non-genomic Mechanisms 

 

Non-genomic mechanisms also are likely to play a role in drug resistance. 

miRNAs can act both post-transcriptionally and post-translationally to affect the 

expression of genes and functions of proteins and can cause glucocorticoid resistance if 

they are dysregulated. Changes in cell metabolism are another avenue of resistance 

especially to glucocorticoids which exert some of their cytotoxic effect by altering 

glucose metabolism. There could also be changes in drug metabolizing enzymes or 

transporters that alter the amount of available drug able to reach its target and lead to 

resistance. Also, changes that affect proteins directly such as posttranslational 

modifications that lead to increased turnover or decreased stability may be another path 

to resistance. 

 

 

Hallmark Pathways of Glucocorticoid Resistant ALL  

 

In this section we will discuss the many diverse pathways that have been 

identified previously to be associated with glucocorticoid resistance in ALL. 

 

 

Glucocorticoid Receptor and Co-Factors 

 

 

GR Expression  

 

For over 35 years, it has been known that decreased glucocorticoid receptor 

expression impacts the prognosis for childhood acute lymphoblastic leukemia. Pui, et. al 

described that across a number of pediatric ALL cohorts low GR expression was 

associated with both induction failure and more frequent relapse, but when high-risk and 

standard risk were evaluated separately this was no longer related to outcome suggesting 

that it is directly related to the treatment efficacy and was not an independent factor.58 

 

 

GR Mutation 

 

There has been some evidence linking glucocorticoid resistance in ALL to 

somatic glucocorticoid receptor mutations. Initial studies reported that alternative first 

exons of the GR could affect the response of leukemic cell lines to glucocorticoids.59 

There have been subsequent reports that somatic mutations were not detected in 

glucocorticoid resistant patients,60 but in larger cohorts a number of deletions and 



 

11 

inactivating mutations have been identified that can lead to loss of GR function and 

increased relapse risk.12,61 In relapsed ETV6-RUNX1 ALL, mutations in NR3C1 were 

acquired through treatment, but it was not explored whether these may have existed at an 

undetectable frequency at diagnosis.62 Since GR mutations are rare, they cannot 

adequately account for the observed frequency of glucocorticoid resistance. Thus, it is 

likely that genes upstream or downstream of the GR must be involved in mediating 

glucocorticoid resistance. 

 

 

GR Degradation  

 

Altering the degradation rate of the glucocorticoid receptor has significant effects 

on the ability of cells to respond to glucocorticoid receptor activation by the addition of 

exogenous glucocorticoids in ALL and other models. Loss of function of the E3 ubiquitin 

ligase FBXW7 was associated with good prognosis and early glucocorticoid treatment 

response in childhood T-ALL.63 This specific degradation event is mediated by glycogen 

synthase kinase 3β (GSK3B) phosphorylation of GRα at serine 404 (S404) leading to its 

subsequent ubiquitination and proteasomal degradation.64 

 

 

Co-Factors 

 

 NCOR1 (nuclear receptor corepressor 1) mutations were previously associated 

with relapse in ALL.65 Also, higher expression of multiple HDAC family members 

(HDAC3, HDAC4, HDAC7 and HDAC9) which are also NCOR complex components 

were associated with poor prognosis. NCOR complex plays a role in disease outcome in 

ALL,66,67 likely through its relationship to glucocorticoid response. This is further 

evidenced by recurrent deletions, mutations and decreased expression in relapsed ALL of 

the transcription factor TBLXR1 which is a member of the NCOR complex.68 TBL1XR1 is 

involved in the degradation of NCOR and this is essential for gene activation by a 

number of nuclear receptors.69,70 

 

 Another transcriptional co-activator that has been implicated in glucocorticoid 

resistance is the cAMP responsive element binding protein (CREB) binding protein 

(CREBBP). Initially, it was observed that 18.3% of relapsed ALL cases had sequence or 

deletion mutations in CREBBP.65 CREBBP (CBP) functions as a histone acetyltransferase 

and can act as a scaffold for other proteins in the transcriptional complex.71 CBP can 

directly affect glucocorticoid responsive elements and that in some cases CREBBP is 

altered in resistant leukemia cell lines.65,72,73 In one study, it was found that CREBBP 

knockdown by shRNA was insufficient to cause glucocorticoid resistance in the 697 

leukemia cell line.74 
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Inflammasome Activation 

 

 NALP3 inflammasome pathway components NLRP3 and CASP1 were 

overexpressed in glucocorticoid resistant B and T-lineage ALL. This was observed at the 

mRNA level, and often coincided with decreased promoter methylation at NLRP3 or 

CASP1. It was further observed that overexpressing CASP1 in inflammasome activated 

leukemia cell lines resulted in significantly increased cleavage of the GR. This caused 

functional loss GR activity and decreased sensitivity to glucocorticoid induced cell death 

providing a functional mechanism derived from the initial clinical findings.75 

 

 TXNIP (thioredoxin interacting protein) is required for NLRP3 inflammasome 

activation in presence of high glucose induced oxidative stress.76 It also functions as a 

glucose feedback sensor which was confirmed via CRISPR/Cas9 knockout of TXNIP that 

showed a similar change in glucose transport to NR3C1 CRISPR knockout in the same 

patient derived cells. It was associated with glucocorticoid resistance in PDX models 

when knocked down and agonists for this protein synergized with glucocorticoids. TXNIP 

is regulated by PAX5 and IKZF1 which are critical B-cell developmental factors,77 and is 

known to be upregulated in leukemia cells when cells are treated with glucocorticoids.78 

TXNIP potentially provides a link between the inflammatory and the metabolic changes 

observed from glucocorticoid treatment and may lead to potential therapeutic targets in 

combatting glucocorticoid resistant ALL.  

 

 

Glycolytic Pathway 

 

 Regulation of glucose homeostasis is important for modulating prednisolone 

resistance. It was shown that prednisolone resistant ALL relies on increased glucose 

consumption and that inhibition of glycolysis sensitized prednisolone-resistant ALL cell 

lines to glucocorticoids.79 This suggests that at least some of the cytotoxicity of 

glucocorticoids in ALL can be attributed to their ability to negatively affect glucose 

uptake. Cells that can evade this glucose repressive effect may rely heavily on glycolysis 

which is an inefficient process for energy production and is achieved by upregulating 

genes such as GAPDH or other glycolytic components.80 Cells that can switch to 

glycolysis readily are able to resist treatment with glucocorticoids.  

 

 

Cytokine Signaling 

 

 Another mechanism of glucocorticoid resistance occurs when leukemia cells can 

alter expression and signaling in response to cytokines or other exogenous signals which 

can lead to large scale cellular changes both within the cell and externally. Interaction 

with the bone marrow microenvironment via stromal cells or normal T-cells can greatly 

influence the response of leukemia cells to drugs. It has been previously illustrated that 

combined treatment with IL-2 and IL-4 caused glucocorticoid resistance in T-cells 81,82 

and PBMCs83 which was able to be reversed with IFN-γ treatment. In these T-cells, p38/ 

MAPK activation was observed and was also abrogated by IFN-γ treatment or direct 
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p38/MAPK inhibition. In T-ALL, the IL-4 overexpression was attributed to 

glucocorticoid resistance because of hyperactivated lymphocyte cell specific kinase 

(LCK). IL-4 stimulation alone was sufficient to confer resistance in these T-ALL cells 

and PDXs and could be reversed with LCK gene silencing or inhibitors such as 

dasatinib.84 Aberrant LCK activation in prednisolone resistant patients was associated 

with upregulation of calcineurin/NFAT signaling and triggered IL-4 overexpression. 

Also, IL-2 or TLR7/8 agonist stimulation caused glucocorticoid resistance in CLL cells 

and could be reversed by treatment with the JAK inhibitor ruxolitinib.85 

 

 

IL-7 Receptor/JAK-STAT Signaling 

 

 In T-lineage ALL, mutations in the IL-7 receptor signaling pathway genes (IL7R, 

JAK1, JAK3), Ras pathway genes(KRAS, NRAS, NF1) and AKT were associated with 

steroid resistance and poor outcome. These alterations were observed mostly in the early 

thymic progenitor (ETP) or T Cell Leukemia Homeobox (TLX) ALL subtypes. 

Expression of mutant IL7R, JAK1, mutant or wild type NRAS, or AKT induced steroid 

resistance in T-ALL cell lines P12 Ichikawa or SUPT1), with no apparent change in L-

asparaginase or vincristine response. Strong activation of both MAP Kinase (MEK and 

ERK) and AKT signaling were implicated as causative mechanisms, and MEK, AKT and 

mTOR inhibitors all enhanced steroid sensitivity.86 In another study of non-ETP T-ALL 

JAK/STAT inhibition or IL7 removal was able to overcome glucocorticoid resistance.87 

 

 

Avoiding Apoptosis 

 

As noted in the initial description of the “Hallmarks of Cancer”, resisting cell 

death and avoiding normal apoptosis is a key factor in defining the cancer phenotype.88,89 

Thus, it stands to reason that avoiding apoptosis would also be a “hallmark” of 

glucocorticoid resistance in cancer. Arguably, because chemotherapeutics push cells 

towards death through normal processes this pressure may act as a selection event for 

cells that have advantageous changes in the apoptotic regulatory pathways. Apoptotic 

pathways can be disturbed in glucocorticoid resistant ALL in two main ways either there 

is decreased pro-apoptotic protein expression or function that normally promote apoptosis 

or there is higher expression of anti-apoptotic proteins either of which will disrupt the 

balance of the cell’s ability to carry out its cell death program in response to 

glucocorticoid treatment. 

 

 

Pro-apoptotic Mechanisms 

 

 

BCL2L11 (Bim) 

 

 The most well described pro-apoptotic protein involved in both the mechanism of 

action of glucocorticoids and resistance to them in ALL is BIM (BCL2L11). It has been 
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well described that glucocorticoid treatment induces BIM in leukemia cells.90-92 In a 

study of thirty matched patient bone marrow samples at either day 0 or day 8 following 

prednisolone monotherapy 25/30 patients (83%) had good response to PRED. 

Differential BCL2 family expression showed that the pro-apoptotic protein BIM showed 

significantly higher induction by prednisolone treatment in prednisolone responsive 

patients when compared to poor responders. Furthermore, BIM expression was highly 

predictive of response to prednisolone independent of molecular subtype, and BIM 

knockdown in leukemia cell lines caused glucocorticoid resistance.93 Recently, a study of 

genome-wide lymphocyte specific open chromatin identified an intronic GR binding 

region (IGR) at the BIM locus in a glucocorticoid sensitive cell line ALL-54S that was 

not observed in resistant cell line ALL-50R. Dexamethasone treatment induced much 

greater CTCF binding at the BIM IGR in the ALL-54S than ALL-54R. The BIM IGR 

was determined to be necessary mediator in the process of glucocorticoid induced cell 

death and resistance.94 

 

 

PMAIP1 

 

 PMAIP/Noxa which is a pro-apoptotic protein involved in the degradation of anti-

apoptotic MCL-1, and it has been shown that unlike BIM which is induced by activation 

of the glucocorticoid receptor to be directly repressed by treatment with glucocorticoids 

which may be a secondary effect of glucocorticoid treatment not related to its effect on 

resistance.95 PMAIP has also or  been proposed to be important for the regulation of 

glucocorticoid sensitivity in leukemia cells96 and may be regulated by phosphorylation 

state of the glucocorticoid receptor at either S211 which denotes active GR being 

imported to the nucleus or S226 which is a marker for GR nuclear export which is 

associated with GR inactivity.97 

 

 

Anti-apoptotic Mechanisms 

 

 

BCL2 

 

 The opposing mechanism to loss of pro-apoptotic protein induction (e.g. BIM) 

leading to resistance is defective repression of or higher expression of anti-apoptotic 

protein expression. The namesake of this class of proteins is known as BCL2 (B-cell 

lymphoma 2). Opposing regulation of BIM and BCL2 modulates the resistance of acute 

lymphoblastic leukemia to glucocorticoid induced apoptosis in both cell lines and patient 

derived xenografts (PDXs).95 In prednisolone resistant PDXs, GR was not able to bind at 

the KLF13 promoter and subsequent KLF13 expression was not increased resulting in 

sustained high expression of MYB and its target BCL2.98 
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MCL1 

 

 Another anti-apoptotic member of the BCL2 family MCL1 was highly expressed 

in glucocorticoid resistant pediatric ALL80 and MLL rearranged infant ALL.99 Treatment 

with rapamycin (mTOR inhibitor) was able to induce sensitivity to glucocorticoids 

through an unknown mechanism of MCL-1 repression after being discovered as a 

potential glucocorticoid sensitizing agent in a chemical genomics screen100 Obatoclax, a 

pan inhibitor of BCL-2 family proteins, could also overcome MCL-1 associated 

glucocorticoid resistance in ALL cell lines. Recently, a specific MCL-1 inhibitor was 

been developed which may provide new ways to target this in glucocorticoid and other 

BCL2 inhibitor resistant cancers.101 

 

 

Smac/Diablo 

 

 BV6,a Smac/Diablo mimetic compound synergized with glucocorticoids in 

patient derived xenografts of leukemia cells and in leukemia cell lines. This represents a 

distinctly different pathway from traditional BCL2 family in resistance to glucocorticoid 

treatment mediated through the ripoptosome. This may function independently of the 

glucocorticoid receptor because some of the most significant effects were observed in the 

Reh leukemia cell line which harbors a homozygous nonsense mutation in the 

glucocorticoid receptor.102 

 

 

Kinase Signaling 

 

 

Ras/MAPK Pathway 

 

 Ras pathway mutations (KRAS, NRAS, NF1, FLT3 and PTPN11) are common at 

diagnosis in childhood ALL (ranging from 35-44%), but it has been shown that clones 

are retained at relapse in many cases, and that the incidence of relapse is higher in cases 

with Ras pathway mutations.103,104 Some Ras pathway mutations were found to be 

acquired (38.9%), but in many cases the mutations were present at initial diagnosis in 

bulk sequencing. This does not preclude the possibility of low frequency mutations that 

evade detection at diagnosis which was addressed in this study with some success and 

may be further understood as single cell sequencing methods improve.105 Ras mutations 

have also been shown to have a direct impact on the prognosis of MLL-rearranged infant 

ALL they had higher white blood cell counts at diagnosis and also were more resistant to 

glucocorticoids in vitro.106 A study in T-ALL patients with JAK1 or KRAS mutations 

were more steroid resistant and had poorer prognosis than non-mutated patients. Ectopic 

expression of mutant or wildtype NRAS confirmed the clinical finding and induced 

steroid resistance in T-ALL cell lines.86 Furthermore, KRAS G13V mutations were 

associated with ex vivo prednisolone resistance in patients. Consequently, Ras mutations 

have been proposed as a predictive biomarker for treatment with MAPK inhibitors. 

Downstream inhibition of the MAP kinase pathway via trametinib was able to synergize 
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with glucocorticoids reducing resistance in ALL cell lines and primary patient leukemia 

cells. Knock down of MAPK family members MEK2 and MEK4 was also able to 

sensitize ALL cell lines.107 

 

 

 

PI3K/AKT/mTOR Signaling 

 

 mTOR (mechanistic Target of Rapamycin) kinase signaling is an important 

signaling pathway for a number of cellular functions (e.g. growth, survival and 

autophagy) and has arisen as a central regulator of cellular homeostasis in response to 

nutrient deprivation and other external insults.108 Genes both upstream and downstream 

of mTOR have been identified as important in resistance of leukemia to glucocorticoid 

induced apoptosis. AKT phosphorylation of mTOR in B and T lineage ALL cell lines 

was able to impair glucocorticoid induction of apoptosis by increasing the expression of 

MCL-1 and as stated previously it was seen that sirolimus (rapamycin) was able to 

sensitize cells and reverse MCL-1 mediated glucocorticoid resistance.100 Subsequent 

investigation showed that the glucocorticoid sensitization induced by mTOR inhibition 

was facilitated by autophagy dependent necroptosis mediated through RIPK1 kinase.109  

 

Another study showed that AKT phosphorylates GR at S134 and decreases its 

nuclear localization blocking downstream transcriptional targets of GR, and that AKT 

inhibitors can sensitize cells to glucocorticoids.110 Downstream mechanisms of this 

pathway have also been associated with glucocorticoid resistance. AKT phosphorylation 

inhibited BAD (a pro-apoptotic BCL2 member) and direct AKT mediated 

phosphorylation of XIAP (an anti-apoptotic factor) prevents its ubiquitination and 

degradation.111 Upregulation of metabolic pathway genes by AKT was associated with 

glucocorticoid resistance in T-ALL by acting in direct opposition to the metabolic 

inhibition caused by glucocorticoids treatment.112 A genome-wide shRNA screen in the 

NALM-6 B-precursor ALL cell line identified PI3K pathway genes (PIK3CB2, PIK3CD 

and IL7R) were associated with resistance to glucocorticoids through their interaction 

with the B-cell receptor. Idelalisib (PI3Kδ inhibitor) treatment or knockdown of 

endogenous PI3K inhibitory phosphatase PTEN sensitized cells to glucocorticoids in B-

ALL.113  

 

Furthermore, inhibition of the de-ubiquitinating enzyme USP9X (Ubiquitin 

Specific Peptidase 9 X-Linked) which is highly expressed in B-ALL sensitized cells to 

prednisolone induced apoptosis, and when knocked down in the RS4;11 leukemia cell 

line downregulated MCL-1, BCL-2/BCL-XL and increased BAX levels. This was 

attributed to reduced mTORC1 phosphorylation of its substrate S6K1.114 

 

 

Src/Fyn/Lck Pathway 

 

 The Src-family kinases Lck and Fyn are critical in T-cell receptor (TCR) 

transduction.115 It was shown that in MLL-rearranged infant ALL that overexpression of 
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S100A8 and S100A9 was associated with prednisolone resistance because of failure of 

cells induce free cytosolic calcium Ca (2+), and this was mitigated by treatment with the 

Src kinase inhibitor PP2.116 Also, high ANXA2 expression and activation via Src kinase 

phosphorylation requiring its adapter protein p11 (S100A10) caused prednisolone 

resistance in MLL-rearranged infant leukemia. shRNA knockdown of ANXA2, FYN, LCK 

or S100A10 all were individually sufficient to inhibit ANXA2 phosphorylation and cause 

sensitization to prednisolone.117 EMP1 (a gene involved in adhesion to stromal cells) was 

associated with poor prognosis in B and T-ALL due to its association with prednisolone 

resistance. Pathway analysis confirmed that EMP1 signals through the Src kinase family 

and that this is a possible mechanism for its normal function in maintaining interactions 

with the stromal microenvironment.118 As described above the association with LCK and 

the IL-7 receptor pathway has been described in great detail in T-ALL. Collectively, 

these data suggest that Src kinase family inhibitors are a promising option for therapeutic 

intervention to mitigate glucocorticoid resistance in both B and T lineage ALL. 

 

 

cAMP/AMPK Pathway 

 

 cAMP signaling is a well described signaling pathway and has implications in a 

variety of phenotypes. One important component of cAMP signaling are 

phosphodiesterases (PDEs) which degrade the phosphodiester bond in second messengers 

cAMP and cGMP. They regulate the localization, duration and amplitude of cAMP 

signaling within subcellular domains.119 It was first discovered that germline PDE4B 

mutations were associated with relapse in pediatric ALL.19 It was further observed that 

PDE4 inhibitors could alter the levels of the glucocorticoid receptor in CLL cells and 

sensitize them but not in circulating hematopoietic cells.120 AMPK, an inhibitory kinase 

for the conversion of ATP to cAMP which is a critical step in cAMP signaling sensitized 

cells to glucocorticoids when inhibited which is in concordance with previous findings.77 

 

 

Epigenomic Mechanisms of Glucocorticoid Resistance in ALL  

 

 

Chromatin Modifiers (SWI/SNF) 

 

 The glucocorticoid receptor acts on many of its targets through direct 

transcriptional activity. To bind directly to DNA and effectively modulate transcription 

dynamic structural changes in chromatin are required. The SWI/SNF chromatin 

remodeling complex is essential in this efficient restructuring of chromatin, especially in 

the case of nuclear receptors.121,122 SWI/SNF components SMARCA4, SMARCB1 and 

ARID1A all exhibited decreased expression in glucocorticoid resistant primary acute 

lymphoblastic leukemia.123 SNPs in the promoter of SMARCB1 were also associated with 

glucocorticoid sensitivity in lymphoblastoid cell lines which was attributed in part to the 

alteration of a PARP1 binding site.124 
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Histone Modifiers 

 

 Another way the chromatin landscape can be regulated is through post-

translational modification of histones which are proteins that the DNA is “wound” around 

in its heterochromatin (closed) state. One major amino acid residue that is known to be 

modified with important functional consequences in signaling for chromatin remodeling 

complexes to act on DNA and either open or close it are lysine residues which are most 

commonly either acetylated in the cases of open chromatin 125-127 or mono-, di- or tri-

methylated which can signal the chromatin to be in a closed state.128 These marks are 

commonly found at promoter or enhancer regions in the DNA where the regulation of 

gene expression is most highly affected.  

 

One family of enzymes that catalyzes the methylation of histones are the lysine 

methyltransferases (KMT2A or KMT2D) these were originally referred to as MLL (mixed 

lineage leukemia) genes. Commonly altered in ALL, MLL-rearranged leukemias have 

been designated as a unique molecular subtype. MLL Patients exhibit poor response to 

therapy and are more commonly younger individuals, especially infants.9,129 Nearly 80% 

of infant leukemias have MLL rearrangement, and it has been shown in several studies 

that in both B-lineage leukemia and T-lineage leukemia MLL rearranged leukemias were 

more resistant to glucocorticoids especially those with the t(4;11) translocation.112,130 In a 

study in T-ALL, it was shown that changes in expression in wild-type (non-rearranged) 

MLL also can contribute to glucocorticoid resistance.130 

 

Other epigenomic factors may be potential targets to combat glucocorticoid 

resistant leukemia. In GC poor responsive patient leukemias where the BIM gene is 

silenced the HDAC inhibitor vorinostat was able to recover antileukemic efficacy in 

leukemia xenograft models of ALL.131 Overall, epigenomics is still a burgeoning field of 

research, and there is great effort to understand the epigenomic landscape of leukemia 

especially in the case of glucocorticoid resistance. With advances in the ability to 

interrogate and deconvolute the 3D interactions of chromatin and the epigenetic “code” 

the future of epigenomics in the context of drug resistance is very promising. 

 

 

B-Cell Development Factors 

 

 ALL development can often be attributed to specific genetic lesions or 

developmental blocks in normal development of B-cells leading to aberrant growth of 

leukemic cells that can ignore normal differentiation signals leaving cells in an immature 

state. Normal B-cell development is controlled by a number of transcription factors 

known to regulate lineage specific development.132  

 

 

PAX5 

 

PAX5 is a transcription factor that is critical in mediating the maturation of B-

cells by repressing the expression of non-lineage specific genes and upregulating the 
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expression of genes involved in B-lymphoid signaling.132-134 Alterations in PAX5 increase 

susceptibility to and are common in acute lymphoblastic leukemia occurring in over 40% 

of all cases. They exert their leukemogenic effect by altering the normal B-cell 

transcriptional program leading to aberrant growth and malignant phenotype. 12,135 PAX5 

was differentially expressed between glucocorticoid sensitive and resistant leukemias, 

and this resistance was associated with the altered maturation state of the cells. In patient 

derived pre-B ALL cells, expression of a dominant negative mutant of PAX5 was able to 

cause glucocorticoid resistance. Also, cells expressing a PAX5 haploinsufficient mutant 

were glucocorticoid resistant which could be recovered by addition of wild-type PAX5.77 

 

 

IKZF1 

 

IKZF1 is another important B-cell developmental factor that is frequently mutated 

in ALL. It has been associated with poor prognosis likely due to its high frequency in 

thehigh-risk ALL subtypes BCR-ABL1+ and BCR-ABL1-like ALL.12,13 Similar to PAX5, 

patient derived B-ALL expressing haploinsufficient IKZF1 exhibited glucocorticoid 

resistance and this could be recovered by addition of wild-type IKZF1. Dominant 

negative IKZF1 was able to cause resistance when transduced into wild-type patient 

derived B-ALL cells. It was postulated that PAX5 and IKZF1 act as metabolic 

gatekeepers in which loss of function increased glucose uptake and ATP levels which 

was likely causative in the ability to resist the effects of glucocorticoid induced apoptosis. 

This was proposed as an explanation for why glucocorticoids are effective against 

lymphoid but not myeloid malignancies.77 CRISPR/Cas9 screening was performed to 

identify transcriptional targets of PAX5 and IKZF1 and three genes were identified 

NR3C1 (GR), TXNIP (involved in inflammation, reactive oxygen sensing and glucose-

feedback) and CNR2 (cannabinoid receptor 2). They confirmed these initial findings by 

showing that TXNIP and CNR2 agonists were able to strongly synergize with 

glucocorticoids.77 

 

 

Drug Metabolism and Transport 

 

GSTM1 is an enzyme involved in detoxification, metabolism of xenobiotics and 

the negative regulation of apoptosis signaling cascades. Germline genetic polymorphisms 

in GSTM1 were associated with a greater risk of relapse in pediatric high risk ALL with 

corresponding decreased gene expression in GSTM1.136 GSTM1 inhibited glucocorticoid 

induced apoptosis by suppressing Bim expression in two T-ALL cell lines, presumably 

via down-regulation of both p38-MAPK and upregulation of NF-kappaB p50.137  

 

There is evidence that enzymes involved in the metabolism of steroids such as 

11β-hydroxysteroid dehydrogenase 2 (HSD11B2) which converts active glucocorticoids 

into inactive glucocorticoids which cannot bind to GR. HSD11B2 inhibition by 

carbenoxolone made T-ALL cell lines more sensitive to glucocorticoid treatment.138 
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Non-genomic Mechanisms of Glucocorticoid Resistant ALL 

 

 miRNAs have been shown to be important in the post-transcriptional and post-

translational regulation of gene expression. Recently, a set of miRNAs mir-27a, mir-223 

and mir-708 were found to be associated with clinical outcome in childhood ALL, but in 

this study only miR-708 was found to be associated with in vivo response to 

glucocorticoids.139 miR-128b was differentially expressed in relapsed vs. non-relapsed 

childhood ALL139 and was shown to be associated with poor prognosis in MLL-AF4 

ALL along with miR-221 and downregulation of these miRNAs led to glucocorticoid 

resistance. Re-expression of both miR-128 and miR-221 (which down-regulates 

CDKN1B) sensitized two ALL (MLL-AF4) cell lines to glucocorticoids.140 However, 

miR-221 has conflicting reports as a study in multiple myeloma showed that inhibition of 

miR-221 sensitized cells to glucocorticoids.141 These findings illustrate one example of 

how non-genomic mechanisms may provide promising discoveries for the future of drug 

resistance in ALL. 
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CHAPTER 3.    METHODOLOGY* 

 

 

Patients 

 

The sensitivity of primary leukemia cells to prednisolone was determined ex vivo 

for a total of 444 patients aged 18 years or younger with newly diagnosed ALL. Of these, 

298 patients were enrolled in the St. Jude Total Therapy XV (TOTXV, NCT00137111) 

or XVI (TOTXVI, NCT00549848) protocol, the initial 225 were the “discovery” cohort 

and the subsequent 73 constituted a validation cohort. We also used publicly available 

mRNA expression data and prednisolone LC50 values for 145 European pediatric ALL 

patients previously described in detail 62 as a second validation cohort. Also, 45 T-

lineage leukemia patients from St. Jude Total Therapy XV or XVI protocols were 

included for investigating ALL subtype differences in prednisolone sensitivity. Leukemia 

cells from an additional cohort of 335 patients with ALL were studied: 226 pediatric 

patients (14 St. Jude Total Therapy XV, 182 St. Jude Total Therapy XVI [73 from 

validation cohort] and 30 from St. Jude Total Therapy XVII) and 109 adult patients (66 

from the Eastern Cooperative Oncology Group, 33 from M.D. Anderson Cancer Center, 8 

from the University of Chicago and 2 from the Alliance for Clinical Trials in Oncology) 

were included to further assess the expression of CELSR2; in a subset of these patients 

(n=96) the sensitivity to venetoclax was measured. The level of minimal residual disease 

(MRD) in bone marrow was determined by flow cytometry and/or polymerase chain 

reaction at day 15-19 and after completion of induction, as previously described.24 

Written informed consent was obtained from all patients or their parents or guardians. 

The use of these samples was approved by the institutional review board at St. Jude 

Children’s Research Hospital. 

 

 

Mice 

 

Unconditioned mice were seven to nine weeks old when injected with leukemia. 

Daily observations were carried out on the mice and they were sacrificed when leukemia 

cells reached 50% in the peripheral blood, or the veterinarian determined they showed 

clinical symptoms (ruffled fur, respiratory stress, hindlimb paralysis, or significantly 

decreased mobility).This study was performed in accordance with the recommendations 

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. Mice were maintained in an American Association of Laboratory Animal Care 

accredited facility and were treated using a protocol approved by the St. Jude Animal 

Care and Use Committee (Protocol Number: 580-100498) in accordance with NIH 

guidelines. NOD. Cg-Prkdc scid Il2rg tm1Wjl/SzJ (NSG) mice were obtained from the 

St. Jude colony for all experiments and were kept under pathogen free conditions. 

 

 

-------------------- 
*Portions of chapter from previously published article; final submission modified with permission. Autry, 

R. J. et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute 

lymphoblastic leukemia. Nature Cancer, doi:10.1038/s43018-020-0037-3 (2020).142 

https://doi.org/10.1038/s43018-020-0037-3
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Animals were sacrificed by carbon dioxide asphyxiation using the gradual 

displacement method, consistent with the American Veterinary Medical Association 

Guidelines for the Euthanasia of Animals: 2013 Edition. Great efforts were made to 

minimize suffering.  

 

 

Human Leukemia Cell Lines 

 

Human B-lineage acute lymphoblastic leukemia cell lines (NALM-6 and 697) 

were maintained in RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 

2mM L-glutamine at 37º C with 5% CO2. CELSR2 knockdown cell lines were generated 

in NALM-6 and 697 cells transduced with lentivirus containing short-hairpin RNA 

targeting CELSR2 (MISSION pLKO.1-puro shRNA TRCN0000011243; sequence : 5’- 

CCGGGCCACTGAAGACACTGACATACTCGAGTATGTCAGTGTCTTCAGTGGC

TTTTT or TRCN0000011240 sequence: 5’-

CCGGCGCTTGGACAAAGGGAACTTTCTCGAGAAAGTTCCCTTTGTCCAAGCG

TTTTT; Sigma-Aldrich) or a non-targeting control (MISSION pLKO.1-puro Non-

mammalian shRNA control (SHC002); Sigma-Aldrich), and selected in media containing 

5µg/mL puromycin. PAX5 knockdown NALM-6 cell lines were generated by transducing 

with lentivirus short-hairpin RNA targeting PAX5 (MISSION pLKO.1-puro shRNA 

TRCN0000016059; sequence: 5’- 

CCGGCCCTCAGTATTCCTCGTACAACTCGAGTTGTACGAGGAATACTGAGGG

TTTTT; Sigma-Alrich) or a non-targeting control (MISSION pLKO.1-puro Non-

mammalian shRNA control (SHC002); Sigma-Aldrich), and selected in media containing 

5µg/mL puromycin. 

 

GR rescue experiments were performed by stable lentiviral transuction of non-

target control or shRNA targeting CELSR2 transduced NALM-6 cells with plx304 vector 

(Addgene) with cDNA of GR (Origene; RC220189) tagged with V5 or GFP control. 

These cells were then selected with 15µg/mL Blasticidin and 5µg/mL Puromycin and 

assessed for in vitro prednisolone sensitivity at 72hr. 

 

To constitutively express Cas9 in the NALM-6 cell line, we transduced cells with 

lentivirus containing the Cas9 expression vector (Addgene: 52962) and selected cells in 

media containing 15µg/ml blasticidin (Sigma-Aldrich). 

 

 

Prednisolone Ex Vivo Resistance Assay  

 

Primary leukemia cells were isolated from the bone marrow or peripheral blood of 

newly diagnosed ALL patients, and tested for prednisolone sensitivity by MTT assay, as 

previously described.75,80 In brief, cells were seeded in a 96-well plate at a concentration 

of 2x106 cells/mL for primary cells, in phenol red-free RPMI 1640 medium 

supplemented with 20% FBS, 2 mM L-glutamine, 100 IU/mL penicillin, 100 µg/mL 

streptomycin, 0.25 µg/mL Amphotericin B, and 1X insulin-transferrin-selenium 

supplement or 2.0x105 cells/mL for ALL cell lines, in phenol red-free RPMI 1640 with 
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10% FBS and 2mM L-glutamine. In wells of round-bottom 96-well plates, 80 µL of each 

cell suspension was combined with 20 µL of methylprednisolone at varying 

concentrations (Solu-Medrol®, Pfizer) diluted serially. Plates were incubated at 37º C in 

5% CO2 for a total of 96 hours (primary ALL) or 72 hours (ALL cell lines).10 µL of 5 

mg/mL MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide) was added 

to each well for the final 6 hours of incubation. Acidified isopropanol was used to 

solubilize formazan crystals and absorbance was measured at 562 nm with a background 

correction of 720 nm, (uQuant, BioTek Instruments). For ALL cell lines, the 

CellTiterGlo® Assay (Promega) was used to measure prednisolone LC50. For patients 

enrolled on St. Jude TOTXV or TOTXVI protocols LC50 was determined at St. Jude 

Children’s Research Hospital. Publicly available data from European patients had been 

previously assayed in The Netherlands by MTT as previously described.80 Patients from 

all cohorts were classified as resistant (≥ 64µM) or sensitive (<0.1 µM), according to 

previously described criteria.75 For a subset of patients included in the whole exome 

sequencing mutation analysis who did not have prednisolone LC50 determined, their 

dexamethasone LC50 values were used after multiplying by a factor of eight to adjust for 

the difference in potency.  

 

 

Gene Expression by Microarray 

 

Total RNA was harvested from primary leukemia cells obtained from 203 patients 

at diagnosis using TRI Reagent (Molecular Research Center, Inc.). Gene expression was 

assessed in the Hartwell Center for Bioinformatics & Biotechnology at St. Jude 

Children’s Research Hospital using either HG-U133A (GPL96) or HG-U133 Plus 2.0 

(GPL570) microarray platforms (Affymetrix), according to the manufacturer’s protocol. 

The “affy” Bioconductor R-project package or Affymetrix Microarray Suite version 

5.080,144,145 was used to implement the MAS5 algorithm for processing the gene 

expression data. 

 

 

Gene Expression by RNA Sequencing  

 

Total RNA was harvested from 217 patients enrolled on St. Jude protocols (13 

from St. Jude TOTXV, 176 from St. Jude TOTXVI and 26 St. Jude TOTXVII) and 103 

adult patients (62 from the Eastern Cooperative Oncology Group, 32 from M.D. 

Anderson Cancer Center, 7 from the University of Chicago and 2 from the Alliance for 

Clinical Trials in Oncology), and total stranded RNA sequencing was performed. Total 

RNA was harvested from primary ALL samples using TRI reagent. In ALL cell lines, 

total RNA was isolated using the RNAeasy Mini kit (Qiagen), and stranded mRNA 

sequencing was performed. All RNA sequencing was carried out via the Illumina HiSeq 

platform by the Hartwell Center for Bioinformatics and Biotechnology at St. Jude 

Children’s Research Hospital. 
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DNA Methylation Analysis 

 

DNA was isolated from the bone marrow or peripheral blood of 178 newly 

diagnosed leukemia patients using the Blood and Cell Culture DNA kit (Qiagen). DNA 

methylation status was interrogated genome-wide using either the Infinium 

HumanMethylation27 BeadChip kit or the Infinium HumanMethylation450 BeadChip kit 

in accordance with the manufacturer's protocol (Illumina). HumanMethylation27 

BeadChip experiments were performed at either the Emory Integrated Genomics Core 

(EIGC; Atlanta) or the Wellcome Trust Centre for Human Genetics Genomics Lab 

(Oxford). HumanMethylation450 BeadChip experiments were performed at the Heflin 

Center for Genomic Science at the University of Alabama at Birmingham (Birmingham, 

Alabama, USA). Beta–values (β)146 were derived from the raw output for each CpG site. 

Individual loci were grouped according to ENCODE criteria147; DNA methylation status 

was classified as: hypomethylated (β ≤0.2), hemimethylated (β >0.2 < 0.6) or 

hypermethylated (β ≥ 0.6).  

 

 

SNP Analysis 

 

DNA was extracted from ALL cells from bone marrow or peripheral blood 

samples from 184 newly diagnosed patients using the Blood and Cell Culture DNA kit 

(Qiagen). DNA samples were genotyped using the Affymetrix GeneChip Human 

Mapping 500K set or the SNP 6.0 array (Affymetrix). The arrays were scanned, and 

genotype calls were made using the BRLMM algorithm as implemented in the GTYPE 

software (http://www.affymetrix.com/products/software/specific/gtype.affx) as 

previously described.148 SNPs were excluded for call rates of less than 95% amongst all 

patients or a minor allele frequency less than 1%. SNPs were annotated to genes for 

further comparative analysis between methods only if they were an expression 

quantitative trait locus (eQTL) as defined by Haploreg v 4.1. 

 

 

miRNA Expression Analysis 

 

Total RNA was extracted from ALL cells isolated from bone marrow or 

peripheral blood samples from 163 newly diagnosed patients. All microRNA expression 

microarrays were analyzed in the Hartwell Center for Bioinformatics & Biotechnology at 

St. Jude Children’s Research Hospital, as previously described.149 High-quality RNA was 

hybridized to miRCURY LNA 10.0 (GPL7722) generated from ready to spot probe sets 

or preprinted 6th generation miRCURY LNA microRNA microarrays (GPL11434) in 

accordance with the manufacturer’s protocol (Exiqon, Woburn, MA). Upon removal of 

background signal data were log2 transformed and quantile normalized prior to analysis. 

 

 

http://www.affymetrix.com/products/software/specific/gtype.affx
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Copy Number Alteration Analysis 

 

DNA was extracted from ALL cells isolated from 184 newly diagnosed patient 

bone marrow or peripheral blood samples, as described above to obtain data with the 

Affymetrix Genome-wide Human SNP Array 6.0. To identify copy number abnormalities 

for each sample, the SNP arrays were processed as follows. For each probe-set, we 

computed the raw signal as the mean of the log-transformed CEL file intensities across 

all probes annotated to that probe-set. Noting that the distribution of raw signals differed 

according to probe type (copy number or genotyping), we then transformed raw signals to 

have the same mean and variability across probe types. Probes were categorized by 

quintiles of the GC content according to Affymetrix annotations. For each probe 

category, the raw signals were median centered. After median centering, a pooled 

standard deviation estimate was computed as the square root of the average of first 

differences 150 within each probe category. Then, for each probe category, the median-

centered signals were divided by the Rice (1984)150 standard deviation estimate based on 

first differences. After this re-centering and scaling, the distribution of signals for each 

probe category had median 0 and Rice standard deviation of 1. These signals were then 

multiplied by the pooled standard deviation so that the relationship of the processed 

signals to actual copy number more closely approximated that of the original signals. 

After this re-scaling, all probe categories had signal distributions centered at zero with 

scale comparable to that of the original raw signals. These processed signals were 

provided as input to the circular binary segmentation algorithm.151,152 The endpoints of all 

segments were used to empirically partition the genome into a series of non-overlapping 

regions to represent results in a matrix form with the segment mean of each subject 

(matrix column) for each region (matrix row). These segmentation results were post-

processed by first inferring copy numbers (CN=0, 1, 2, 3, 4) based on segment means. 

Histogram of segment means for all inferred segments were generated and a clear 

trimodal distribution was shown with center mode at 0 corresponding to CN=2. The 

nadirs (+/-0.2) between the center mode and two adjacent modes were chosen to be used 

as cutoff for copy number gain or loss. Among copy number loss segments, we further 

assigned those with mean less than 3 median absolute deviation(MAD) from the median 

of all CN loss segments as CN=0. Similarly, we assigned those segments with mean 

above 3 MAD from the median of all CN loss segments as CN=4. After copy number has 

been assigned, adjacent segments with same CNs across all patients in the study cohort 

were further collapsed for downstream analysis. The detection, prevalence estimates, and 

association results for CNAs should be considered preliminary in that they are limited by 

the resolution of the microarray platforms used in this study. These analyses were 

performed using the DNAcopy package developed for R software. 

 

 

Whole Exome Sequencing Coding Variants 

 

DNA was extracted from ALL cells isolated from bone marrow or peripheral 

blood from 201 newly diagnosed pediatric B-lineage leukemia patients using Blood and 

Cell Culture DNA kit (Qiagen). Alignment was performed to the reference human 

genome assembly GRCh37-lite with BWA and analyzed as previously described using 
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matched germline sample as reference for somatic mutations.153-155 Mutations were 

filtered for non-synonymous variants only in the coding region (excluding 3’ and 5’UTR 

variants). They were then aggregated to individual genes and gene-level clustering via the 

Ward method was performed using Euclidean distance. 

 

 

Hierarchical Clustering of Genomic Features 

 

Each individual genomic feature type (mRNA, miRNA, DNA methylation, SNP, 

CNA and SNV/Indels) was rank ordered based by their linear regression p-values for 

association with prednisolone LC50. Instanced hierarchical clustering was performed in a 

stepwise fashion beginning with the two most statistically significant probes. For each 

instance, Fisher’s Exact Test (FET) was utilized to assess how well the clustered data 

could segregate resistant and sensitive leukemias when the highest clade of the 

dendrogram was split in two. Probes were added individually at each instance and 

hierarchical clustering and Fisher’s Test calculations were repeated for up to 500 probes. 

Fisher p-values for the different patient cohorts were combined using meta-analysis 

(Stouffer’s method) and the combination of probe sets that generated the lowest meta-

analysis p-value was used as the signature for each individual feature type. 110,000 

rounds of permutation were performed on the data to determine the likelihood that the 

observed meta clustering p-values for each feature was due to chance. Analyses were 

carried out in R using packages gtools, gdata, bitops, caTools, gplots, and amap. All data 

were clustered using the hcluster function in R using the “ward” method and distance 

used was “correlation” for all features except WES (“Euclidean”) and SNPs (“binary”). 

All FDR corrected values were calculated using the Benjamini-Hochberg correction 

method for cutoffs of selected feature lists and can be found in Supplementary Tables  

1-9 for each respective feature type. 

 

 

Connectivity Among Genomic Features 

 

To determine connectivity between mRNA expression and each of the other 

genomic feature types, we compared expression levels with each genomic feature type 

for all samples interrogated for both features.  

 

Associations between DNA methylation and gene expression were deemed 

significant if there was a negative and statistically significant (p < 0.05) association 

according to linear regression (patient cohort included as a covariate), and the CpG site 

was within 100 kb of the gene’s transcription start site. Connections between DNA 

methylation probes found to be inversely associated with expression of genes in the 

prednisolone resistance mRNA signature were included only if the methylation probe 

was also significantly associated with prednisolone LC50 (p < 0.05).  

 

Connections between miRNA expression and gene expression were required to 

meet the following conditions: a negative association by linear regression (p-value < 

0.05) and the gene’s transcript contains a miRNA binding site based in either of two in 
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silico prediction databases (miRaNDA or miRDIP) or a database of experimental 

evidence of biological connection from public databases (mirTarbase). Connections 

between SNPs, CNAs, SNVs/Indels and gene expression were required to have a linear 

regression p-value < 0.001 in both patient cohorts. 

 

 

Genome-Wide CRISPR Knockout Screens 

 

We transduced 12x106 NALM-6 human leukemia cells that were constitutively 

expressing Cas9 protein with either GeCKOv2 library A or B by spinfection for 2hr at 

568g at a MOI between 0.3-0.5 to ensure only one gRNA per cell, as previously 

described.156 Both libraries contained 6 gRNAs per gene and 1000 non-targeting controls 

and library A contained 4 gRNAs per miRNA. Cells were selected with 15ug/ml 

Blasticidin (Cas9) and 5ug/ml Puromycin (gRNA) to ensure that cells contained both 

gRNA and Cas9 protein. Representation of gRNAs was verified by sequencing the gRNA 

region using a two-step nested PCR reaction to amplify the region, as previously 

described.156,157 For each library, 2x107 cells were treated with 100µM prednisolone for 

72hr. After 72hr, viability of these cells ranged from 10-20% for all treatments. Cells 

were grown out until they reached >90% viability, and DNA was extracted using the 

Blood and Cell Culture Maxi kit (Qiagen). The gRNA region was sequenced via Illumina 

HiSeq 2500 using single reads in rapid run mode and gRNA enrichment/depletion 

analysis performed using the MaGeCK algorithm.158,159 Genes that were not expressed 

based on RNA-seq of the NALM-6 cell line were removed from the analysis, and at least 

4 significant (p<0.005) gRNAs were required to be included in the gene-level knockout 

reduced analysis. Gene level aggregation of gRNAs was performed using logit p-value 

transformation method in the R package metap. Effect sizes were calculated as Cohen’s 

D. 

 

 

Integrated Gene Level (TAP) Analysis 

 

To assess a known gene’s potential involvement in leukemia cell 

sensitivity/resistance to prednisolone, we combined evidence from all six genomic 

features within or in proximity to (50kb) every known human gene. Each genomic feature 

was evaluated individually for its association with prednisolone LC50, features that were 

significant (linear regression p <0.05) were included in the overall gene level model. A 

hybrid permutation approach was used along with a non-parametric smooth CDF 

(cumulative distribution function) with a variation diminishing spline to obtain a TAP 

(Truncated Aggregation of P-values) statistic for every gene.160,161 Adaptive thresholding 

was used, as previously described to define the threshold of significance.162 Genes 

meeting this threshold were used to select top candidate genes for further analysis. 

Annotation of genomic features to gene regions: We downloaded from the UCSC 

<https://genome.ucsc.edu/index.html> the genomic locations of all 19,725 mapped 

human genes. A genomic feature with genomic location information, (i.e. mRNA 

expression probeset, CpG methylation marker, SNP, SNV/in-del from WES and CNV 

segment) is annotated to a gene region if the feature is either inside the gene (between the 

https://genome.ucsc.edu/index.html


 

28 

beginning of the first exon and the end of the last exon), or within or overlaps with (in 

case of CNV segment) the region 50 kb up and down stream of the gene.  

Truncated Aggregation of P values (TAP) statistic: Each genomic feature annotated to a 

gene region was tested individually for its association with the prednisolone LC50 by 

linear regression, with treatment protocol (TOT-XV and TOT-XVI) as a covariate, the P 

value of the t test of the regression coefficient on the genomic feature is obtained, 

representing the level of statistical evidence on the genomic feature’s association with 

LC50 (a single piece of evidence). The P values are then combined to form the TAP 

statistic in a modified form of Fisher transformation Equation 3-1. 

 

           (Eq. 3-1) 

 

where M is the number of genomic features interrogated on the various assay platforms 

and annotated to the gene region; I(A) is the indicator of condition A, I(A)=1 (0) if A is 

true (false); and δ is a truncation threshold which was set to 0.05 in our analysis 

following.163 The truncation is included here to better contrast small P values out of a 

possibly large set of P values (a gene region can contain dozens or hundreds of genomic  

features). 

 

 

Hybrid Permutation Test 

 

Assessment of a gene region’s potential involvement in the biological process 

underlying leukemic cells’ sensitivity/resistance to prednisolone was formulated by 

testing the null hypothesis that none of the interrogated genomic features annotated to 

gene region is associated with LC50, vs. the general alternative hypothesis which states 

that the null hypothesis is false. The test can be carried out using the statistic T defined 

above. To compute the statistical significance (P value) one needs to know (or adequately 

approximate) the probability distribution of T under the null hypothesis. Notably this 

statistic is not a sum of independent log-transformed P values because the genomic 

features are generally related (e.g., SNPs in LD, reduced mRNA expression due to CpG 

methylation, etc.), and the truncation adds more complexity. In principle a permutation 

test can be performed, where in each round the LC50 and covariate data points are 

randomly permuted together, and the P value of each individual genomic feature, and 

then the test statistic T are recomputed based on the permutated data. In each permutation 

round genome-wide association tests have to be conducted on several platforms, and to 

reflect high significance level at least 100,000 permutations is necessary; this can be 

extremely time consuming.  

 

To introduce computational and statistical efficiency, we took a hybrid 

permutation test approach with the following steps: (1) Perform a few hundred 

permutation rounds to obtain a set of observations of the test statistic under the 

(simulated) null hypothesis: T_b, b=1,⋯, B. The number of permutations was set to 

B=200 in our analysis. (2) Transform the observations onto the unit interval [0,1] by a 

probability integral transformation, 〖W_b=F_0 (T〗_b), b=1,⋯, B, where F_0 is the 



 

29 

null cumulative distribution function (cdf) of the test statistic under the null hypothesis, 

derived under the condition that the P values are independent. Clearly naively applying 

this cdf to compute the statistical significance for a gene region will inflate the type-I 

error rate because the P values are not independent. Our approach then is to properly 

correct this cdf by combining permutation (resampling), probability integral 

transformation, and non-parametric smoothing as described in the next two steps. (3) 

Construct a nonparametric smooth cdf F ̂_W on [0,1] using the approach described in,161 

where variation diminishing spline160 was chosen as the smoothing kernel for its good 

numerical and analytical properties. (4) Construct an estimator of the cdf of T under the 

null hypothesis by back-transformation F ̂_T (x)= F ̂_W (F_0 (x)). Here F ̂_W is a non-

parametric correction to F_0. The P value is computed as P=1-F ̂_T (T_obs ). It is shown 

in160 that proper non-parametric smoothing can introduce substantial efficiency. Results 

from the simulation study (see below) show that this procedure works quite well even 

with as few as 200 permutations.  

 

 

Significance Threshold Adjusting for Massive Multiple Tests 

 

The TAP test was applied to 19,725 gene regions, generating 19,725 gene-level p-

values. The significance threshold was determined by applying the adaptive threshold 

criteria developed in,162 which has been implemented in R and applied to the 19,725 p-

values. 

 

 

A Simulation Study 

 

To gauge the operating performance of the TAP method, we conducted a 

simulation study with 10,000 simulation rounds. We simulated the data of a gene region 

mimicking our observed data on the NLRP3 gene region (chr1: 247529458-247662406 

plus 50kb up and down stream), assuming 47 SNPs, 2 CpG methylation loci, 1 CNV 

segment and 1 gene expression probe are measured. To maintain the LD structure of the 

SNPs, we downloaded the genotypes of the 47 SNPs from the One-thousand Genomes 

Project (http://www.internationalgenome.org/data), totally 2,504 samples. Then 

nucleotides of the 47 SNPs in one copy of a chromosome were treated as a copy of a 

pseudo-chromosome. Thus, we had 5,008 copies of pseudo-chromosomes from 2,504 

samples. Those pseudo-chromosomes were randomly paired to form simulated genotypes 

for the 47 SNPs. Methylation levels were considered as ordinal variables. For one 

methylation loci, we assumed the probabilities of high, medium and low methylation to 

be 0.4, 0.4 and 0.2 respectively, and for the other 0.3, 0.1 and 0.6 respectively. The copy 

number status probabilities (loss, no change and gain) were set as 0.7, 0.2 and 0.1. The 

logarithm of gene expression (log(expr)) was modeled by a linear relationship with the 

genotypes of 2 selected SNPs (SNP1, SNP2), the 2 methylation loci (meth1, meth 2) and 

the copy number locus (cn) Equation 3-2: 

 

           
 (Eq. 3-2) 

http://www.internationalgenome.org/data


 

30 

 

The continuous phenotype y was generated by a simple linear regression mode Equation 

3-3. 

 

          (Eq. 3-3) 

 

Here e and ϵ are independent random errors set to follow the standard N(0,1) 

distribution. Different coefficient (beta) values were used to depict effect sizes (see tables 

below); beta=0 corresponds to the null hypothesis. We simulated several scenarios 

defined by two truncation thresholds δ=0.05,0.2, several different values of β, and a few 

nominal significance levels. The sample size was set to n=300, and the number of 

permutations was set to B=200 in all scenarios. Estimated power (sensitivity, rows for 

β≠0) and level (1 minus specificity, row for β=0) are compiled in Table 3-1 and Table 

3-2. 

 

The TAP test by the hybrid permutation procedure can hold the nominal 

significance levels well (good control on false positive probabilities); while provides 

good statistical power (sensitivity) to detect meaningful effect sizes (|β|>0.3). As 

expected, power/sensitivity decreased as the truncation threshold δ was relaxed from 0.05 

to 0.2. 

 

 

Statistical Significance of Top Candidate Genes 

 

We estimated the probability that finding 15 genes by all three of methods of 

genomic interrogation is due to chance by considering the two aspects in genome-wide 

tests: the probability of capturing one non-associated gene by chance (producing a false 

positive), and the multiplicity. First, for any given gene, let PG, TAP and CR be 

respectively the event that the gene is captured by chance in the polygenomic, TAP and 

CRISPR analyses. The CRISPR experiment is completely separate from the other two 

analyses, and thus is fully independent. By conditional probability, the event of “being 

captured in all three analyses” has the probability Equation 3-4: 

 

           
 (Eq. 3-4) 

 

Because PG and TAP were done on the same cohort, the results of the two 

analyses can be highly associated; which raises the concern of whether a false positive 

captured in one analysis is also captured in the other analysis. Quantitatively this is 

reflected by the conditional probability Pr(PG|TAP). We here conservatively assume that 

this probability is very high, Pr(PG|TAP)=0.9. Pr(TAP) and Pr(CR)are the respective P 

value thresholds in the TAP and CRISPR analyses, each was determined with accounting 

for massive multiple tests: Pr(TAP)=0.00053838 and Pr(CR)=4.1707×10-8. Thus 

π*=2.0209×10-11. Next consider multiplicity. Even if our results were presented at the 

gene level, significance tests were performed on individual genomic features of mRNA 

and microRNA expressions, methylation probes, SNPs, SNVs/in-dels from WES, CNV   
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Table 3-1. Estimated power TAP (δ = 0.05) 

  

 Nominal significance levels α 

β 0.05 0.01 0.005 0.001 

-0.5 1 0.9989 0.9998 0.8899 

-0.4 0.9979 0.97 0.8625 0.5973 

-0.3 0.9401 0.7512 0.4749 0.1944 

-0.2 0.5456 0.2725 0.106 0.03 

-0.1 0.1205 0.0405 0.0141 0.0021 

0 0.0475 0.0162 0.0047 0.0009 

0.1 0.1237 0.0409 0.0131 0.0026 

0.2 0.549 0.2638 0.1016 0.0235 

0.3 0.94 0.753 0.4796 0.1909 

0.4 0.9978 0.9697 0.8607 0.5883 

0.5 1 0.9979 0.9819 0.8907 

 

 

 

 

Table 3-2. Estimated power TAP (δ = 0.2)  

 

 Nominal significance levels α 

β 0.05 0.01 0.005 0.001 

-0.5 0.9997 0.9919 0.9434 0.7333 

-0.4 0.9801 0.9192 0.7537 0.3952 

-0.3 0.8196 0.6077 0.3551 0.1037 

-0.2 0.404 0.2022 0.079 0.0162 

-0.1 0.1056 0.0359 0.0088 0.001 

0 0.0493 0.0156 0.0038 0.0003 

0.1 0.1084 0.0375 0.0091 0.0009 

0.2 0.4027 0.1995 0.0729 0.0098 

0.3 0.833 0.6189 0.3549 0.107 

0.4 0.9795 0.9191 0.7405 0.3861 

0.5 0.999 0.9927 0.9479 0.7344 
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segments and CRISPR probes. The mRNA and microRNA expressions, methylation 

probes, SNPs, SNVs/in-dels from WES and CNV segments were tested twice (once in 

PG and once in TAP), resulting in 1,861,210 tests; and there were 13,267 tests in 

CRISPR. So, we regard the study-wide multiplicity as m=1,874,477. The number of 

genes captured in all three analyses purely by chance, N, can be modeled by a random  

variable following the Binomial(m,π*) distribution. Thus Pr(capturing ≥15 genes in all 

three analyses purely by chance)=Pr(N≥15) which is described in Equation 3-5. 

 

           
 (Eq. 3-5) 

 

Therefore, the probability of capturing 15 genes in all three analyses purely by chance is 

extremely small (8.2x 10-79). 

 

 

Single Cell RNA Sequencing 

 

To interrogate the expression of genes at the single cell level in patients who were 

either sensitive or resistant to prednisolone in vitro, primary patient ALL cells were 

collected at diagnosis and incubated for 96 hours with or without prednisolone. Patient 

cells were re-suspended at a concentration of 2x106 cells/mL in culture media, as 

described above. On day zero, 80 µL of cells were plated in round bottom 96-well plates. 

Cells were incubated for 4 days with either 63µM prednisolone or no drug, collected and 

washed with 50 µL of PBS and 150µL total volume was collected. Both control and 

treated samples were processed and subjected to single cell RNA-sequencing on the 10x 

Genomics platform. The Cellranger software from 10x Genomics was used to 

demultiplex each of the samples, align the demultiplexed reads to the hg19 human 

genome, collapse PCR duplicate reads into UMIs, and generate a matrix of UMI counts 

for each cell and Ensembl ID combination. 

 

All UMIs aligning to ribosomal protein-coding or mitochondrial genes were 

removed from the count matrices. Cells were removed if less than 500 genes were 

detected from the remaining UMIs. UMI counts within a cell were normalized by 

dividing each UMI count by the total UMI count across the cell, scaling by the median 

total UMI count across all cells from the four samples, adding a pseudocount of one, and 

taking the natural logarithm. 

 

PCA was performed jointly on control and treatment samples from each patient. 

The first 40 principal components of overdispersed genes were used to generate a two-

dimensional embedding of cells using the Barnes-Hut implementation of tSNE with a 

perplexity of 30.164 Dispersion was calculated as described elsewhere165 and as 

implemented in Seurat (https://github.com/satijalab/seurat), with overdispersed genes 

being genes in each bin that have z-scores at or above 1.4 (n = 922 genes for sensitive 

and n=663 for resistant). 

https://github.com/satijalab/seurat


 

33 

 

Cell-cell Euclidean distance matrices were computed jointly for control and post-

treatment samples of each patient using the over-dispersed genes. Hierarchical clustering 

of the cells using the Euclidean distance matrix was performed using the Ward method.166 

Clusters were then identified using DynamicTreeCut, an iterative cluster partitioning and 

agglomeration method.  

 

Clusters with at least 20% of the component cells expressing CD19 were 

classified as B cells. The null hypothesis that the proportion of CD19+ cells between 

control and treatment samples for each patient was tested using the prop.test function in 

R, and differential expression of genes was tested using the Wilcoxon rank sum test as 

implemented in the Seurat R package. This resulted in seven clusters for the resistant 

patient and eleven clusters from the sensitive patient (Figure 3-1a,d) 

 

Clusters of the B-lineage leukemia cells were identified based on the expression 

of CD19 in the component cells. Other cell types were identified by identifying the most 

highly differentially expressed genes in each cluster that are known markers of 

hematopoietic lineage (e.g. T-cells, red blood cells; Figure 3-1b,e). The sensitive patient 

in our single cell analysis had a B-lineage ALL with P2RY8-CRLF2 fusion. The resistant 

patient in this analysis had a BCR-ABL positive B-lineage ALL. 

 

 

Immunoblot 

 

Cells were pelleted at 500xg. Lysates were prepared in RIPA buffer (Sigma-

Aldrich) containing cOmplete Protease Inhibitor Cocktail (Roche Life Science) and 

PhosStop (Sigma-Aldrich). Equivalent amounts of extract (20 µg) were separated on 3-

8% Novex Tris-Acetate polyacrylamide gels (Thermo Fisher Scientific) and transferred 

to polyvinylidene fluoride (PVDF) membranes (0.2 µm). Non-specific binding was 

blocked with 5% Milk in TBS with 0.05% Tween-20 for at least 1hr prior to incubation 

of membranes with primary and secondary antibodies. Primary antibodies used were 

rabbit anti-CELSR2 monoclonal (Cell Signaling; D2M9H) diluted 1:1,000, mouse anti-

BCL2 monoclonal (Cell Signaling;124) diluted 1: 1,000, mouse anti-BIM 

monoclonal(Cell Signaling;C34C5) diluted 1:1,000, mouse anti GR(BD Biosciences ; 

#611227) diluted 1:1,000 ,mouse anti p-JNK (Santa Cruz Biotech; sc-6254) diluted 

1:500, rabbit anti cJun (Cell signaling; 9165), rabbit anti phospho-cJun Ser63 (Santa Cruz 

Biotechnology; sc-822 ) diluted 1:500, rabbit anti NFAT1 (Cell Signaling ; 4389 ) diluted 

1:1,000, SAPK/JNK (Cell Signaling ; 9252) diluted 1:1,000 , mouse anti GAPDH (Santa 

Cruz Biotechnology; sc-47724), mouse anti PAX5 (Cell Signaling ;12709) diluted 

1:1000mouse anti BCL2 (Cell Signaling; 15071) diluted 1:1000, mouse anti 

glucocorticoid receptor (BD Biosciences; 611227) diluted 1:1000 rabbit anti LaminB1 

(Cell Signaling; 12586) diluted 1:1000 and anti-β-actin (Sigma-Aldrich; A5441) diluted 

1:100,000. Membranes were then incubated with appropriate HRP-Conjugated IgG 

secondary antibodies (Jackson Immunoresearch) and developed with SuperSignal West 

Femto chemiluminescent substrate (Thermo Fisher Scientific) prior to signal acquisition 

using an Odyssey Fc Imager (LI-COR). Image processing and signal quantification were  
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Figure 3-1. Single cell transcriptomics defines distinct expression signatures in 

primary B-ALL cells 

(a.) Clustering of bone marrow cells from a prednisolone sensitive patient (n=2,427 

control cells; n= 924 treated cells) based on top 1000 most highly expressed genes (b.) 

Identification of distinct cell populations in a prednisolone sensitive patient CD19+ B-

cells (red), CD3E+ T-cells (blue), ALAS2+ Erythrocytes (purple) and CD14+ 

Macrophages (green) (c.) Control vs. treatment for all cell clusters in prednisolone 

sensitive patient (red = control, blue = treated) (d.) Clustering of bone marrow cells from 

a prednisolone resistant patient (n= 686 control cells; n=759 treated cells) based on top 

1000 most highly expressed genes (e.) Identification of distinct cell populations in a 

prednisolone resistant patient CD19+ (red) and CD3E+ T-cells (blue) (f.) Control (C) vs. 

treatment (T) for all cell clusters in prednisolone resistant patient (red = control, blue = 

treated) 
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performed with Image Studio software (Version 4.0; LI-COR). Nuclear/Cytoplasmic 

protein extraction was performed using the NE-PER Nuclear and Cytoplasmic Extraction 

kit (ThermoFisher) using standard protocol. 

 

 

ChIP-seq and ATAC-seq 

 

ChIP-seq was performed as previously described.167 Briefly, 20 million NALM-6 

cells were crosslinked using 1% formaldehyde and sonicated on a Diagenode Bioruptor 

Plus sonicator. Chromatin immunoprecipitation was performed using 5µg anti-PAX5 

antibody (Abcam, ab15164). ChIP-seq and input control libraries were run on an Illumina 

HiSeq4000 next-generation sequencing machine using single-end 50bp sequencing, reads 

were mapped to the hg19 reference genome using BWA and binding sites were called 

using MACS2 peak caller. ATAC-seq was performed using the Fast-ATAC protocol.168 

 

Briefly, 10,000 cells were transposed in a cocktail containing 1% digitonin. 

Following transposition, DNA was collected using the Qiagen MinElute Reaction 

Cleanup Kit (Qiagen #28204) and amplified for 5 cycles using barcoded Nextera PCR 

primers. A quantitative PCR reaction was performed on an Applied Biosystems 

QuantStudio 3 Real-Time PCR machine using 5uL of PCR product to determine the 

additional number of PCR cycles required. PCR products were subsequently re-amplified 

for the appropriate number of additional PCR cycles and DNA was size-selected using 

SPRIselect beads (Beckman Coulter, B23317). ATAC-seq libraries were run on an 

Illumina HiSeq4000 next-generation sequencing machine using paired-end 100bp 

sequencing, reads were mapped to the hg19 reference genome using Bowtie2 and open 

chromatin sites were called using the MACS2 peak caller. 

 

 

Previously Reported Mechanisms of Prednisolone Resistance 

 

To assess the performance of our agnostic polygenomic method to identify genes 

that confer resistance to glucocorticoids, we used Illumina BaseSpace® Literature 

Correlation Engine to perform a literature search to identify all genes previously reported 

to confer resistance to glucocorticoids (performed January 2018). The search terms 

“glucocorticoids, leukemia” were used for our initial search, with a secondary filter of 

“resistance”. This resulted in 426 total publications, which we narrowed using the “genes 

and proteins” tab set on the “top 1000” setting and exporting the list of top word cloud 

tags that were found from our search. This list of word cloud tags was entered into the 

HUGO database (https://www.genenames.org/cgi-bin/symbol_checker); the resulting list 

was trimmed by removing unmatched terms. This generated a list of 347 unique genes 

published through 2016. We also included genes published in papers from January 2017-

January 2018 that were found by a PubMed search using search terms “glucocorticoids, 

resistance, leukemia” with results limited by publication date, yielding 27 additional 

publications. 

 

https://www.genenames.org/cgi-bin/symbol_checker
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 For all genes included in our tabulation of known genes previously associated 

with glucocorticoid resistance, we required a published report linking the gene to poor 

patient response (i.e. remission induction failure, persistence of minimal residual disease 

[MRD], or disease relapse) or glucocorticoid resistance as measured in primary ALL 

cells and that the gene/pathway was confirmed through either direct manipulation or 

chemical inhibition in a human cell culture model or patient derived xenograft (PDX). 

Using the aforementioned methods and criteria, a table of “known mechanisms” was 

generated (Supplementary Table 7) and comparisons were then made to genes 

identified as significantly related to glucocorticoid resistance by our three methods 

(polygenomic, TAP, CRISPR screening), using either all genes identified by any one of 

these methods or using the subset of genes identified by two or more of these methods. 

Direct matches of genes were considered the strongest evidence. Genes that were not 

directly matched were considered to have an associated pathway component if they were 

found by searching for the gene in STRINGdb with the following criteria: 1) Only 30 

first shell interactors with a correlation > 0.7 (high confidence), 2) only “Text-mining”, 

“Experiments”, “Databases”, “Co-expression” were used to define informative data 

sources. In all cases, concordance of directionality of the relationship was required 

between published genes and those discovered in our analyses. 

 

 

NetBID Analysis to Identify Drivers of GC-Resistance in ALL Patients  

 

One pitfall from the conventional gene expression analysis is that important 

signaling proteins might not change at individual mRNA expression level, thus network-

based methods were used to infer master regulator activity which would help overcome 

this pitfall. We applied the network-based integrative NetBID169 algorithm to identify 

“hidden” drivers in GC-resistant primary leukemia cells (ALL cells from patients) using 

gene expression profiles. First, NetBID used an improved version of ARACNE 88, an 

information theory-based algorithm to reverse-engineer a B-ALL specific interactome 

(BALLi) from RNA-seq profiles of B-ALL primary B-All patients (N=185) from 

TARGET170 project against 1,673 transcription factors and 6,247 signaling proteins 

annotated by Gene Ontology.171 With parameters NB=100, e=0 and p=1e-7, the data-

driven BALLi resulted in 21,655 nodes and 830,213 edges. Then we applied ‘netbid’ 

function (signed=TRUE) in NetBID package, which used z-normalization and z-statistic 

for activity inference and Bayesian linear modeling for differential activity analysis, to 

compare resistant (level=3) versus sensitive (level=1) as well as intermediate (level=2) 

vs. sensitive ALL patients from TOTXV and TOTXVI cohorts respectively and then 

applied ‘netbidi’  function, which used Stouffer’s method, to integrate results from 

TOTXV and TOTXVI cohorts that used two different microarray platforms (HG-U133A 

and HG-U133_Plus_2). In TOTXV cohort, we observed and removed the batch effects 

from sample source by using the “removeBatchEffect” function in limma.172 Finally, the 

48 top drivers were selected by the following criteria: network size > 50, p < 5x10-5 in 

TOTXVI and integrated (combined) analysis of highly-resistant vs. sensitive patients, and 

that the intermediate vs. sensitive and the resistant vs. sensitive results were concordant. 

The NetBID package can be found online at: https://github.com/jyyulab/NetBID. 

 

https://github.com/jyyulab/NetBID
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Drug Synergy Experiments and Response Surface Modeling 

 

Relationship of response was determined when prednisolone was given alone or 

in combination with three concentrations of venetoclax using both NALM-6 cells (10nM, 

100nM, 1µM) and 697 cells (1nm, 10nm, 50nm). Concentration ranges of venetoclax 

differed because of differences in sensitivity to venetoclax between the two cell lines. 

Viability assays were carried out using Cell Titer Glo. In synergy experiments with 

primary leukemia cells from patients, 1nM, 10nM and 100nM concentrations of 

venetoclax were used to assess synergy with prednisolone. Response surface modeling, a 

well-established method calculating synergy in drug combinations173,174 as implemented 

in MATLAB version R2016a (MathWorks), was performed to evaluate changes in the 

response of cells to prednisolone and venetoclax alone or in combination at three 

concentrations (low, medium, high).175-177 A drug combination was considered 

synergistic if the (α) which represents the change in response relative to additive model 

was positive and antagonistic if this value was negative. Results were confirmed using 

two other established models (Loewe’s Additivity and ZIP) using the synergyfinder R 

package (data not shown).178 

 

 

In Vivo Drug Combination Studies 

 

NALM-6 cells were injected into non-irradiated 8-12 week old female NSG mice 

(100,000 cells/mouse). Treatment was started three days post injection and continued 

until the endpoint was reached for each mouse. Mice were treated with either continuous 

dexamethasone (4mg/L) alone, venetoclax alone (50 or 100mg/kg), as previously 

described179 or either dosage of venetoclax in combination with dexamethasone. 

Dexamethasone was given daily in drinking water with tetracycline (1g/L; Sigma-

Aldrich, St. Louis, MO), and half of each week the water contained Sulfamethoxazole 

(600 mg/L) and trimethoprim (120mg/L; from Hi-Tech Pharmacal, Amityville, NY). 

Mice were randomized following injection. Mice were sacrificed when they became 

moribund for any reason, as determined by the veterinarian. 

 

 

Flow Cytometry 

 

Blood was collected from the retro-orbital sinus, facial vein, or tail vein of 

anesthetized mice to assess engraftment of human ALL cells. Blood was lysed with the 

BD FACS Lyse Wash Assistant (BD Biosciences, San Jose, CA). Cells were stained with 

antibodies to human CD19 (eBioscience;45-0199-42, PerCP-Cy 5.5) and mouse CD45 

(Tonbo; 20-0451-U100, APC). Samples were assayed on the BD LSR II or LSR Fortessa 

(BD Biosciences) and analysis was performed with FlowJo version 10 (FlowJo, LLC, 

Ashland, OR).  
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Statistics and Reproducibility 

 

All statistical analyses were performed using R software or Graphpad Prism 8 

unless otherwise stated. For box plots unless stated explicitly, upper and lower values in 

each box depict the 75th and 25th percentiles, respectively, the solid line represents the 

median, and the top and bottom of each dashed vertical line depict the most extreme data 

points that were no more than 1.5 times the interquartile range (75th percentile–25th 

percentile) from the box. All bar plots are representing mean ± standard deviation (S.D.) 

and each dot represents and independent experiment or sample. For all analyses 

comparing means of groups student’s t-test was performed, Chi-Squared analysis was 

used for MRD group data, linear model was used as the predominant method for 

statistical significance in genome-wide analyses using LC50 as a continuous variable and 

Fisher’s tests were used to describe clustering of genomic data vs LC50. Customized 

methods were also used such as NetBID which relied on Bayesian inference and used z-

scores to report significance169 and the TAP method which utilized a hybrid permutation 

and an adaptive thresholding approach to assessing statistical significance of higher order 

problems. 

 

 

Data Availability  

 

DNA methylation, gene expression and ChIP-seq data are available at the Gene 

Expression Omnibus (GEO) under accession GSE66708. miRNA data can be found at 

GEO under the accession number GSE76849. Cell line RNA-seq data can be found at 

GEO under the accession number GSE115384. Validation cohort #1 RNA-seq data from 

73 of the 320 patients in the independent second cohort can be found at GEO under the 

accession GSE115525. Additional RNA-seq data from validation cohort #1 (n= 247) can 

be found at GEO under GSE124824. PAX5 CHIP-seq can be found at GEO under the 

accession GSE115764. Cell line ATAC-seq data can be found at GEO under the 

accession GSE129066. Genotype data can be found in dbGaP at 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000638.v1.p1  

 

 

Code Availability 

 

Code used to generate for the polygenomic and TAP analyses can be found on 

GitHub at https://github.com/evanslabSJCRH/Polygenomic-Analysis. The NetBID code 

can be found at https://github.com/jyyulab/NetBID. Any custom code generated for our 

analyses not specifically listed here or in the text may be requested from Dr. William E. 

Evans (William.Evans@stjude.org). All R packages or other software used are listed in 

methods section for each relevant analysis. 

 

 

  

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000638.v1.p1
https://github.com/evanslabSJCRH/Polygenomic-Analysis
https://github.com/jyyulab/NetBID
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CHAPTER 4.    RESULTS* 

 

 

Introduction 

 

Drug resistance is a major cause of treatment failure for disseminated human 

cancers.180 Acute lymphoblastic leukemia (ALL) has long served as a model for 

developing curative chemotherapy for disseminated malignancies. Long-term disease-

free survival in childhood ALL has increased dramatically in recent decades, with 5-year 

event-free survival approaching 90%, yet drug resistance makes it less curable in adult 

patients and it remains a leading cause of cancer deaths in children.21 Much of the 

improvement in cure rates can be ascribed to refinement of therapy based on improved 

understanding of clinical and biological characteristics of the disease and the 

intensification of treatment when there is poor early response or persistence of minimal 

residual disease (MRD).21,47,181,182 Glucocorticoids, such as prednisone (PRED) and 

dexamethasone (DEX), are essential components of curative combination chemotherapy 

for ALL in adults and children31 and the intrinsic sensitivity of ALL cells to 

glucocorticoids, as measured ex vivo, is predictive of treatment outcome (event-free 

survival or survival) in childhood ALL. 48,49,180,183 Although several mechanisms of 

leukemia cell resistance to glucocorticoids have been identified,33,184-186 the genomic and 

epigenetic determinants of de novo glucocorticoid resistance remain poorly understood. 

Whole genome sequencing offers a comprehensive approach for identifying sequence 

variants that confer drug resistance, but this technology does not assess the complex 

interaction of multiple genomic, transcriptomic and epigenetic mechanisms.187 In the 

current study, we integrated genome-wide interrogation of multiple genomic and 

epigenetic features of primary leukemia cells to identify genes associated with drug 

resistance, using glucocorticoids as a model. This directly identified over 78% of genes 

and 100% of pathways previously associated with glucocorticoid resistance and further 

revealed 14 genes not previously known to confer glucocorticoid resistance. Collectively, 

this represents an agnostic, multi-dimensional genome-wide strategy for discovery of 

genomic mechanisms of drug resistance in primary cancer cells. 

 

 

Results 

 

 

Drug Sensitivity and Treatment Response 

 

The sensitivity to prednisolone of primary leukemia cells from bone marrow 

aspirates of 225 newly diagnosed patients with B-lineage ALL ranged over 5 orders of 

 

-------------------- 
*Portions of chapter from previously published article; final submission modified with permission. Autry, 

R. J. et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute 

lymphoblastic leukemia. Nature Cancer, doi:10.1038/s43018-020-0037-3 (2020).142
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magnitude (LC50 0.00176 -1387.4µM) (Figure 4-1a). 

 

Using previously reported criteria, patients with prednisolone LC50 values <0.1 

µM were classified as sensitive, those >64 µM were classified as resistant, and the 

remaining patients were designated as intermediate sensitivity.75 Patients whose leukemia 

cells were intermediate or resistant to prednisolone were significantly more likely to have 

minimal residual disease (MRD) >1% at day 15-19 of remission induction therapy (p=1.3 

x10-5; Figure 4-1b). Likewise, MRD at the end of remission induction therapy, on day 46 

of St. Jude Total XV protocol (TOTXV) or day 42 of St. Jude Total XVI protocol 

(TOTXVI), was more likely to be >0.1% in patients whose leukemia cells were 

intermediate or resistant to prednisolone (p=1.1 x10-4; Figure 4-1b). These MRD levels 

have been previously associated with a significantly worse event free survival.188-190 

 

 

Polygenomics of Glucocorticoid Resistance 

 

Six distinct genomic/epigenetic features were interrogated genome-wide in 

primary leukemia cells and assessed for their association with prednisolone resistance 

(LC50) in two independent patient cohorts [Figure 4-2]. Hierarchical clustering of each 

feature type was performed to identify genomic features (mRNA, miRNA, CpG 

methylation, single nucleotide polymorphisms [SNPs], copy number alterations [CNAs] 

and SNV/Indels [WES]) that best discriminated prednisolone sensitive and resistant ALL 

(Supplementary Table 1). These analyses identified 254 mRNA expression probes 

(permutation p-value < 8.2x10-5), 203 CpG methylation sites (permutation p-value < 

1x10-5 ), 49 miRNA probes (permutation p-value  < 1x10-5), 380 SNPs (permutation p-

value< 1x10-5), 25 CNA segments (permutation p-value < 4.5x10-4) and 227 WES 

mutations (permutation p-value < 1x10-5 ) that best individually discriminated 

prednisolone resistant from prednisolone sensitive ALL (Figure 4-3; Figure 4-4a-b; 

Supplementary Table 1). This mRNA expression signature was verified in two 

independent validation cohorts (Figure 4-4c-d). Collectively, these features identified 

192 distinct genes associated with prednisolone resistance. 

 

Connectivity of these genomic features (miRNA, methylation, SNPs, CNAs and 

SNV/Indels) was initially assessed based on significant relation to mRNA expression and 

filtered based on biologically relevant criteria (cis CpG site or miRNA binding site as 

described in Methods), revealing that the expression of 94% of the significant mRNAs 

was significantly associated with at least one of the other genomic features and five were 

connected to all other features (IDI1,ITPR3, PTPRF, WNK1, and PAX5; Supplementary 

Table 2). mRNA expression probes that were associated with LC50 in the polygenomic 

analysis were also associated with treatment response, as assessed by the in vivo level of 

residual leukemia on day 15-19 and day 42-46 of remission induction treatment (Figure 

4-4e). Prednisolone LC50 across all subtypes revealed some ALL subtypes that were more 

resistant than others, but prednisolone resistant and sensitive cases were documented in 

all major subtypes (Figure 4-4f) 

 

Genes identified in the polygenomic analysis (Figure 4-3) were interrogated for  
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Figure 4-1. De novo sensitivity of primary leukemia cells to prednisolone and 

clinical treatment response 

a) Distribution of prednisolone LC50 values in the discovery cohort, comprising children 

with acute lymphoblastic leukemia enrolled on two consecutive research protocols at St. 

Jude (n=119 and n=106 ALL patients, respectively) depicting >10,000- fold range in ex 

vivo sensitivity. Horizontal dashed lines depict LC50 values discriminating prednisolone 

sensitive, intermediate and resistant cases using previously reported values.75 b) The 

percentage of patients who had minimal residual disease (MRD) in their bone marrow at 

day 15-19 of treatment (MRD ≥ 1%) or at day 42-46 of treatment (MRD ≥0.1%) differed 

significantly based on prednisolone sensitivity (Chi-Square test p-value; n=221 ALL 

patients). 
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Figure 4-2. Polygenomic analysis workflow 

(a.) Flowchart depicting cohorts, genomic assays and detailed analysis pipeline for 

polygenomic analyses of multiple feature types (mRNA, miRNA, DNA methylation, 

SNVs, CNVs and WES mutations) as determinants of prednisolone sensitivity in patients 

diagnosed with acute lymphoblastic leukemia (“lm” = linear model). (b.) Table 

describing age, race, gender and molecular subtype of discovery cohort (n=225 patients) 

from polygenomic analysis. The P-values represent differences between the discovery 

cohort enrolled on the two clinical trials (Fisher’s Exact Test p-value; Total 15 and Total 

16). 
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Figure 4-3. Polygenomic analyses identify genomic features related to 

prednisolone resistance 

Leukemia cell mRNA, miRNA, DNA methylation, copy number alterations (CNAs), 

single nucleotide polymorphisms (SNPs) or coding SNVs/Indels (by WES) that 

significantly discriminate prednisolone sensitive and resistant ALL, by hierarchical 

clustering in the discovery cohorts (TOTXV and TOTXVI). Each column represents an 

individual patient’s ALL cells, those labeled at the top with green are sensitive and those 

with red are resistant to prednisolone; each row indicates a different probe. (Center panel) 

mRNA expression vs prednisolone LC50: heat map depicts high (red) or low (blue) gene 

expression relative to the mean signal for that probe set in the entire cohort [n=254 

mRNA probes; n= 203 patients]. (Top left) heat map for miRNA expression versus LC50; 

red and blue denote higher versus lower expression relative to mean signal for probe 

amongst the entire cohort [n=49 miRNAs; n=163 patients]. (Top Right) DNA 

methylation versus LC50; red and blue denote higher versus lower methylation signal 

[n=203 CpG probes; n=178 patients] (Bottom left) single nucleotide polymorphisms 

(SNPs) associated with LC50 blue = AA, orange = AB, purple = BB [n=380 SNPs; n=184 

patients]. (Bottom right) copy number alterations (CNAs) associated with LC50; red = 

copy gain, blue = copy loss, orange = copy neutral [n=25 CNAs; n= 184 patients]. 

(Bottom center) SNVs and Indels by WES [n=227 SNVs/Indels] associated with LC50; 

purple = mutation, orange = non-mutated. (Lines) lines connecting probe sets are drawn 

where significant associations were found between mRNA expression levels and a 

specific peripheral genomic feature. DNA methylation and miRNA connections were 

required to be significantly negatively associated with mRNA expression; DNA 

methylation probes were also required to be within 100kb of the gene encoding the 

mRNA and miRNAs were required to have a predicted binding site in the gene and/or 

experimental evidence from literature. Connections between SNVs/Indels and mRNA are 

provided in Figure 4-4a. P-values for each heatmap (at top) indicate the results of 

Fisher’s exact tests comparing the distribution of sensitive and resistant cases when the 

highest level of the dendrogram is split in two. Overall clustering P-values for each 

heatmap (at bottom) are the result of Stouffer’s meta-analysis of corresponding individual 

Fisher’s exact test (two-sided) p-values within each cohort. 
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Figure 4-4. Validation of gene expression signature, relation to treatment 

response and WES variant connectivity 

(a.) Connectivity between polygenomic signatures for mutation (n=227 mutations) and 

mRNA expression (n=254 mRNA probes; Fisher’s Exact Test clustering p-values and 

linear model p-value for connectivity). (b.) Characteristics of WES mutations with linear 

model p-value <0.05 vs. LC50. (SIFTcat Del = Deleterious and Tol = Tolerated). (c.) 

RNA sequencing of ALL cells from St. Jude Total XVI patients (n=73 patients; 

validation cohort #1; Fisher’s Exact Test clustering p-value) clustered with gene 

expression signature from discovery cohort analysis. (d.) Publicly available 

DCOG/COALL patient cohort (n=145 patients; validation cohort #2; Fisher’s Exact Test 

clustering p-value) clustering with gene expression signature from patient discovery 

cohort. (e.) Clustering of gene expression vs. LC50. Red denotes genes correlated with 

LC50 or minimal residual disease (MRD) in positive direction. Blue denotes genes 

correlated in negative direction with LC50 or MRD. Clustering performed to show 

concordance of genes discriminating LC50 or MRD. (f) Boxplot denoting Prednisolone 

LC50 in patients from discovery cohort with the major ALL molecular subtypes. Red 

circles denote prednisolone resistant patients, green denotes sensitive patients, and black 

denotes intermediate sensitivity. Upper line is the upper quartile (75%) middle line is the 

median and lower line is lower quartile (25%) boundary for prednisolone LC50. 
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relevant pathway connections (Supplementary Table 3), that included  B-cell 

development (PAX5 mRNA, FLT3 methylation and SNV/Indel, ITGA4 SNP eQTL) , B-

cell receptor signaling (e.g., CD19 methylation, PAX5 mRNA, TCF3 mRNA), non-

canonical Wnt signaling (CELSR1/2 methylation and mRNA, ROR1 mRNA), IL7R-

signaling (e.g., IL2RG mRNA, JAK3 SNP eQTL), SWI/SNF complex (SMARCA4 

mRNA), TGF-B signaling, apoptosis signaling (BCL2 methylation, FAS mRNA), drug 

transporters (ABCC1 methylation), and inflammatory signaling (CASP1 methylation and 

mRNA, NLRP3 methylation). 

 

 

Gene Level Integration of Multiple Genomic Variants 

 

To assess the influence of each gene on prednisolone resistance, we aggregated p-

values of all genomic features within 50 kilobases upstream or downstream of the coding 

region for all annotated human genes (n = 19,725), to obtain a gene-level TAP (Truncated 

Aggregation of P-values) statistic with its associated p-value (see Methods). This 

identified 903 genes associated with prednisolone resistance (p<5.38x10-4; Figure 4-5a; 

Supplementary Table 4). Figure 4-6 illustrates four gene-level plots and their TAP 

statistic. SMARCA4 and NLRP3 illustrate genes previously associated with prednisolone 

resistance,75,123 whereas CELSR2 and PTTG1IP illustrate the top two novel genes in 

current study (Figure 4-6; Supplementary Table 5). Many of these genes, 118/463 

(25%), are common between the gene-level TAP analysis and the polygenomic analysis 

that assessed each feature independently (Figure 3c). Pathway analysis of genes 

significant in the TAP analysis is detailed in Supplementary Table 3.  

 

 

Validation by Genome-wide CRISPR Knockout Screen  

 

To validate hits by an orthogonal method, we performed genome-wide 

CRISPR/Cas9 knockout screening using the GeCKOv2 library.157 In cells treated with 

100uM prednisolone, we identified 1024 genes that were significantly “knockout 

enriched” in prednisolone resistant leukemia cells (FDR < 5.2x10-7; Figure 4-5b; 

Supplementary Table 6). NR3C1, the gene encoding the GR, was the top “knockout 

enriched” gene (p= 4.6x10-78). This screen identified genes affecting multiple cellular 

functions, including several pro-apoptotic genes (BAK1, PMAIP, APAF1, CAPN3/10) 

and genes involved in GR signaling, cell-cell communication genes (ITGA5/B1,CELSR2), 

modulators of GR transcriptional activation (NRIP1, JUN), inhibitors of NF-kB kinase 

(IKBKB, IKBKG), B-cell developmental genes (BCL6), glucocorticoid biosynthetic 

components (HSD3B1/7, CYP11B1), cytokine signaling genes (e.g.,IL4R, IL1RAPL2), 

toll-like receptor signaling (TLR6, IRAK3, TNF), inhibitors of PI3K signaling genes 

(PTEN), and other genes previously associated with glucocorticoid resistance (TBL1XR1 

and CNR2). When the knockout enriched genes were used to perform clustering on the 

RNA-seq from a 320 patient validation cohort, this significantly discriminated resistant 

and sensitive leukemias (clustering p- value = 0.006). 

 

We also identified 1000 genes that were significantly “knockout reduced” (i.e.   
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Figure 4-5. Genomewide orthogonal validation identifies CELSR2 as a key 

mediator of glucocorticoid resistance 

(a.) Manhattan plot of gene-level aggregated p-values (TAP statistic) for all 19,725 genes 

(n= 203 patients) (illustrated in regional plots for four genes in Figure 4-6). Circles 

above the blue dotted threshold line represent genes only significant in TAP analysis, 

squares depict genes significant in both the TAP and CRISPR screen, triangles represent 

genes significant in both the polygenomic analysis and the TAP analysis, and red stars 

depict the 15 genes significant in all three analyses (linear regression p-value cutoff 

[adjusted for massive multiple testing by adaptive thresholding] = 5.38x10-4). (b.) -log10 

p-values for genes (n=19,050 genes in two replicate experiments) interrogated in the 

CRISPR knockout screen (“knockout enriched”). The threshold for statistical significance 

(logit gene-level one-sided p= 4.0x10-8 [FDR adjusted p = 5.2x10-7]) of association with 

prednisolone resistance is depicted by the horizontal dotted line. (c.) Venn diagram 

showing overlap among genes significant in each analysis with 15 genes significant in all 

three analyses. (d-e) CELSR2 mRNA expression in leukemia cells from newly diagnosed 

patients enrolled on St. Jude clinical trials, grouped based on prednisolone sensitivity 

(LC50) in (d.) the discovery cohort (n=203; linear model p-value) and (e.) an independent 

validation cohort (n=320; linear model p-value). (f-g) NR3C1 mRNA expression in 

leukemia cells from newly diagnosed patients enrolled on two St. Jude clinical trials, 

grouped based on CELSR2 expression (low ≤ lower quartile, high ≥ upper quartile and 

intermediate falls between the upper and lower quartile of CELSR2 expression) in (f.) the 

discovery cohort (n=203; linear model p-value) and (g.) an independent validation cohort 

(n=320; linear model p-value). (h.) Representative western blot and bar graph quantifying 

(n=3 biologically independent experiments) knockdown of CELSR2 (mean ± SD) in two 

human B-lineage leukemia cell lines (NALM-6 two tailed t-test p-value = 0.0026 and 697 

two-tailed p-value = 0.0081; ** = <0.01; cropping performed uncropped image available 

as source data). (i.) Prednisolone LC50 values in human ALL cells lines (NALM-6 and 

697) expressing CELSR2 shRNA (~70% knockdown) or non-target control (results of 

triplicate experiments). For all boxplots, horizontal bars depict medians and boxes 

represent 25th and 75th percentiles, whiskers represent ±1.5x interquartile range (IQR); 

p-values are two-tailed t-test). 
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51 

Figure 4-6. Gene level integration of genomic variants related to prednisolone 

resistance 

Each panel depicts -log10 p-values for the association of the indicated genomic feature 

with prednisolone LC50, and the aggregated gene-level linear model p-value based on all 

genomic features is shown for each gene at the top right. Red triangles represent mRNA 

probes within the gene body, orange diamonds depict copy number variants, blue squares 

are DNA methylation probes, grey circles SNVs, and purple circles miRNAs within 50kb 

upstream or downstream of gene region (n=203 patients). (a.) SMARCA4, a component of 

the SWI/SNF complex, has been previously linked to glucocorticoid resistance in 

pediatric ALL.123 (b.) NLRP3 encodes NALP3, an inflammasome component that 

activates caspase 1, and has been previously associated with ALL resistance to 

glucocorticoids.75 (c.) PTTG1IP encodes the pituitary tumor-transforming gene 1 protein-

interacting protein that interacts with the proto-oncogene PTTG1 (also known as securin). 

(d.) CELSR2 is a G-protein coupled receptor involved in non-canonical Wnt signaling. 

PTTG1IP and CELSR2 are novel genes from the current study associated with 

glucocorticoid resistance. 
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depletion of gRNAs targeted to knockout these genes, FDR < 1.19x10-14; 

Supplementary Table 6), suggesting their absence enhanced glucocorticoid sensitivity. 

This revealed genes associated with various signaling pathways such as inflammasome 

activation (NLRP3, NLRC3, CARD11/17), NF-kB signaling (NFKB2, NFKBIB), 

JNK/SAPK signaling (e.g., MAPK9[JNK2], RAC2), PI3K signaling (PI3KR1/3, PI3KR3, 

PRKCB), apoptotic proteins (FAS), TNF signaling and growth factor signaling (FGFR2, 

FGF10) [Supplementary Table 3]. The knockout reduced genes were also able to 

discriminate glucocorticoid resistant and sensitive leukemias in the 320 patient validation 

cohort (clustering p-value = 1.7x10-5). 

 

 

Genes Significant by Multiple Methods 

 

As summarized in Figure 4-5c, 247 genes were significant by at least two 

methods and significantly discriminated resistance in the 320 patient validation cohort 

(clustering p-value = 0.001), as did the 118 genes significant by both TAP and 

polygenomic analyses (clustering p-value = 1.34x10-6), and the 50 genes in both CRISPR 

and the polygenomic analysis (clustering p-value = 6x10-4). Fifteen genes (CELSR2, 

MAPK13, PARD3, CALN1, DAP, RBMS2, PTTG1IP, NLRP3, FAM13A, TAOK3, 

DCLRE1A, RASGRF2, FBXO9, GALNT1 and TMEM126A) were significant by all three 

methods, thereby constituting the top candidate genes (Figure 4-5c; Supplementary 

Table 5), and they discriminated sensitive from resistant leukemias in the validation 

cohort (clustering p-value = 1x10-4). Only one of the 15 top candidate genes (NLRP3) has 

been previously associated with glucocorticoid resistance.75 The statistical likelihood of a 

gene being significant by all three methods by chance is very low (p = 8.2x10-79). 

 

 

Corroboration of Known Resistance Mechanisms 

 

To assess the robustness of our approach, we compared genes/miRNAs that were 

significantly related to glucocorticoid resistance in our analyses, to genes involved in 

previously published mechanisms of glucocorticoid resistance (35 genes and three 

miRNAs, identified as described in Methods, summarized in Supplementary Table 7). 

Of these 38 previously reported genes/miRNAs, 30 (79%) were found to be significant by 

one or more of our three methods. This improved to 38/38 (100%) genes/miRNA when 

we included other members of the involved resistance pathway using StringDB (strict 

criteria as defined in Chapter 3). 

 

 

CELSR2 Knockdown Alters Transcriptional Response and Prednisolone Resistance  

 

CELSR2 was the top novel candidate gene by all three methods, with decreased 

expression associated with glucocorticoid resistance in the discovery cohort (p= 3.3x10-

10; Figure 4-5d; Supplementary Table 5). CELSR2 remained significant after adjusting 

for leukemia molecular subtype (p < 9.5x10-6). Lower CELSR2 expression in 

glucocorticoid resistant ALL was subsequently validated in primary leukemia cells from 
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two independent validation cohorts, one comprising 320 pediatric and adult patients with 

newly diagnosed ALL (p= 8.3x10-8; Figure 4-5e), and the other comprising 145 pediatric 

patients with newly diagnosed ALL (p= 0.033). We also documented in primary 

leukemia cells that patients with low expression of CELSR2 (defined as mRNA ≤ the 

lowest quartile of expression) had significantly lower expression of the GR (NR3C1; 

Figure 4-5f,g; p-value= 1.7 x10 -4). We also observed 5 patients with copy number 

alterations in CELSR2, and 4 were resistant to glucocorticoids. Only two patients had 

predicted damaging missense mutations in CELSR2, one was prednisolone resistant and 

the other prednisolone intermediate sensitivity. Reduction of CELSR2 expression in two 

human ALL cell lines by shRNA (Figure 4-5h), significantly increased prednisolone 

resistance (LC50) compared to non-targeting control (Figure 4-5i). There was a 12.7-fold 

increase in LC50 in CELSR2 knockdown NALM-6 cells (0.026 ± 0.033µM vs 0.37 ± 0.1 

µM (mean ± s.e.m), p=7.8x10-5), and a 20-fold increase in LC50 in 697 cells  

(0.095±0.003 µM vs. 1.98±0.046 µM (mean ± s.e.m), p=9.0x10-4). 

 

To assess the mechanism of GC resistance, we identified differentially expressed 

genes and alterations in global transcriptional effects of glucocorticoids in CELSR2 

knockdown cells. Knockdown of CELSR2 led to a significant decrease in basal 

expression of the GR (NR3C1) in both NALM-6 cells (1.8-fold decrease; p= 1.34x10-7; 

Figure 4-7a), and 697 cells (1.3 fold-decrease, p= 4.3x10-5; [Figure 4-8a]). Decreased 

expression of total cellular GR in CELSR2 knockdown cell lines was more prominent 

after 24 hours of prednisolone treatment in the NALM-6 cell line (2.3-fold decrease; p = 

2.8x10-12; Figure 4-7b), and in the 697 cell line (1.44 fold-decrease; p= 1.45x10-5; 

[Figure 4-8b]). A second shRNA was used to confirm on-target specificity and 

phenotype (Figure 4-8c). Stable CELSR2 protein knockdown (Figure 4-8d) showed 

decreased glucocorticoid receptor protein expression (Figure 4-8e) in ALL cells. Stable 

re-expression of GR (97% of control) significantly re-sensitized leukemia cells to 

prednisolone (Figure 4-7c-d; two-tailed t-test p-value = 0.02).  

 

After activation of the GR with 24 hours of glucocorticoid treatment, many genes 

were differentially expressed in CELSR2 knockdown versus control ALL cells, including 

a robust upregulation of the antiapoptotic gene BCL2 in CELSR2 knockdown cells, 

documented at the transcriptional (2.5-fold increase; p= 3.7x10-12; Figure 4-7b) and 

protein level (1.3-fold increase; p = 0.0128; Figure 4-8f), consistent with the known 

repressive effect of activated GR on BCL2.191 BCL2L11 (Bim), a pro-apoptotic gene 

known to be up-regulated by glucocorticoids192 did not exhibit upregulation in CELSR2 

knockdown cells after 24 hours of prednisolone treatment (1.3-fold decrease, compared 

to a 1.8-fold increase in non-targeting control p= 4.6x10-6; Figure 4-8g), yielding a lower 

ratio of BIM/BCL2 protein expression in the CELSR2 knockdown NALM-6 cells after 24 

hours of prednisolone treatment. (Figure 4-8h). Genome-wide analysis of glucocorticoid-

induced gene expression changes in NALM-6 cells (3 replicate experiments) identified 

415 genes that were induced at least three-fold compared to untreated cells, 72% 

(298/415) of which had lower induction (at least 25% less induction) by prednisolone 

treatment in CELSR2 knockdown cells, consistent with lower GR (Figure 4-7e). 

Furthermore, 69 genes were repressed by at least three-fold in control cells, and 90%   
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Figure 4-7. CELSR2 knockdown decreases GR expression and attenuates 

glucocorticoid modulation of gene expression 

(a.) Volcano plot (n= 3 independent experiments) for untreated CELSR2 knockdown 

human leukemia cell line (NALM-6) vs. non-target control (NTC). Left side of plot 

depicts genes with reduced expression in CELSR2 knockdown cells and genes to the right 

exhibiting increased expression in CELSR2 knockdown cells. Orange and red symbols 

depict mRNAs with significant changes in expression (linear model p-value); red 

symbols have a fold change greater than 2. (b.) Volcano plot of gene expression after 24 

hours of 10µM prednisolone treatment of CELSR2 knockdown vs. non-target control 

ALL cells (NALM-6, n=3 independent experiments; linear model p-value). (c.) (left) 

NR3C1 protein quantification (n= 2 independent experiments) or (right) Prednisolone 

LC50 (n=3 independent experiments; mean ± SD) in Nalm6 NTC or shCELSR2 cells with 

either GFP control or re-introduction of NR3C1 (two tailed t-test p-value; * =p < 0.05 ,** 

= p <0.01, *** = p <0.001). (d.) Representative western blot of GR protein expression 

(n= 2 independent experiments) in NTC or shCELSR2 NALM-6 cells with or without 

GR re-expression. (e.) The 75 most highly upregulated (top) or downregulated (bottom) 

genes in human NALM-6 ALL cells after 24 hours treatment with 10µM prednisolone 

(n= 3 independent experiments). Blue and green bars depict mRNA expression in 

NALM-6 cells transfected with non-target control vector and gold bars depict blunted 

induction or repression in cells expressing shRNA for CELSR2 knockdown (mean ± SD). 

(Inset) Representative western blot (n= 3 independent experiments) showing significantly 

lower GR levels in CELSR2 knockdown cell lines compared to non-targeting controls, 

with or without prednisolone treatment for 24hr (cropping performed uncropped image 

available as source data). 
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Figure 4-8. CELSR2 knockdown blunts glucocorticoid responsiveness of 697 cells 

and increases sensitivity to venetoclax 

(a.) Volcano plot for untreated CELSR2 knockdown ALL cell lines vs. non-target control 

in 697 cell line (n= 3 independent experiments; linear model p-value). Left side of plot 

depicts genes with reduced expression in CELSR2 knockdown cells and genes to the right 

had increased in expression in CELSR2 knockdown cells. (b.) Volcano plot of gene 

expression after 24 hours of prednisolone treatment of CELSR2 knockdown vs. non-

target control ALL cells (697; n= 3 independent experiments; linear model p-value). (c.) 

Dose-response plot (mean ± S.D.; n= 3 independent experiments) of two shRNA 

constructs vs non-targeting control and un-transduced NALM6 leukemia cell line. (d.) 

CELSR2 (n= 3 independent experiments) (e.) NR3C1 (n= 3 independent experiments) (f.) 

BCL2 (n=5 independent experiments) (g.) BIM (n= 4 independent experiments) and (h.) 

Bim/Bcl2 protein expression (mean ± S.D; n=4 independent experiments; two-tailed t-

test p-values; * =p < 0.05 ,** = p <0.01, *** = p <0.001, **** = p <0.0001) in Nalm6 

cells comparing controls (NTC; solid bars) to CELSR2-knockdown (shCELSR2) either 

prior to prednisolone treatment (0HR) or after 24hr prednisolone treatment (24HR). (i.) 

The 75 most highly upregulated (top) or downregulated (bottom) genes after 24 hours 

treatment with 10µM prednisolone. Blue and green bars depict mRNA expression (mean 

± S.D.; n= 3 independent experiments) in 697 cells transfected with non-target control 

vector and gold bars depict cells expressing shRNA for CELSR2 knockdown. 
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(62/69) had at least 25% lower repression in CELSR2 knockdown cells (Figure 4-7e; 

Supplementary Table 8). Similar results were observed in the 697 cell line (Figure  

4-8i). 

 

 

Mitigation of Glucocorticoid Resistance Caused by Low CELSR2 Expression via 

Inhibition of BCL2 

 

Because the anti-apoptotic gene BCL2 was highly induced in CELSR2 knockdown 

cells after prednisolone treatment, we tested venetoclax (a BCL-2 inhibitor) for its ability 

to mitigate glucocorticoid resistance in ALL cells with low CELSR2 expression. When 

CELSR2 knockdown ALL cells were treated for 72 hours with prednisolone (0.954nM - 

4mM) and varying concentrations of venetoclax, synergy was evident in two human 

leukemia cell lines (NALM6 α =2.07; 697 α =2.47; Figure 4-9a.; Figure 4-10a,c), but 

synergy was greatly increased in leukemia cells in which CELSR2 was knocked down 

(NALM-6 α = 5.22; 697 α = 4.38; Figure 4-9b;Figure 4-10b,d), and confirmed using 

other methods for assessing drug synergy (Loewe’s additivity and ZIP method; data not 

shown). 

 

In mice inoculated with NALM-6 leukemia cells with shRNA targeting CELSR2, 

there was a significant prolongation of survival in mice treated with venetoclax 50 mg/kg 

plus dexamethasone, compared to dexamethasone alone (median survival 60 vs 69 days; 

p=0.0062; Figure 4-9d) or venetoclax alone (median survival 56 vs 69 days; p=0.0046; 

Figure 4-9d). In mice inoculated with NALM-6 leukemia cells with the non-targeting 

control shRNA (NTC), there was modest but significant prolongation of survival when 

treated with venetoclax 100 mg/kg plus dexamethasone compared to dexamethasone 

alone (median survival 39 vs 41 days; p=0.02; Figure 4-9c), whereas there was not 

significant improvement with the lower dosage of venetoclax (50 mg/kg) combined with 

dexamethasone (p=0.836; Figure 4-9c), consistent with greater synergy in ALL with 

lower CELSR2 expression. 

 

To verify these findings in primary leukemia cells, we documented that primary 

leukemia cells (n= 96 patients) that were resistant to prednisolone were significantly 

more sensitive to venetoclax (p=0.014; Figure 4-10e). As reported for other 

malignancies,193,194 higher BCL-2 expression in primary ALL cells was associated with 

increased sensitivity to venetoclax (p=2.5x10-3; Figure 4-10f). 

 

We also measured the effects of the two drugs given separately or together in 

primary leukemia cells isolated from the bone marrow or peripheral blood of six patients 

(3 freshly isolated and 3 xenograft samples). In the two prednisolone sensitive patients, 

we observed low levels of additivity/synergy, whereas in the four leukemias that were 

intermediate or resistant to prednisolone, we documented greater synergy based on 

significantly higher alpha values in all cases (Figure 4-10g). Three of the four 

prednisolone resistant patients exhibited much lower mRNA expression of CELSR2 and 

NR3C1 when compared to the prednisolone sensitive patients (Figure 4-10h), and 

primary ALL cells from all four of the prednisolone resistant patients exhibited decreased   
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Figure 4-9. Increased synergy and mitigation of glucocorticoid resistance by 

inhibition of BCL2 in ALL with low CELSR2 expression 

(a.) Response surface model (% Effect = % cell kill) depicting synergy between 

prednisolone and Bcl-2 inhibitor venetoclax in NALM-6 cells transduced with non-target 

control or (b.) CELSR2 knockdown ALL cells (n= 3 independent experiments; response 

surface model two-tailed t-test p-value). The (α) value indicates antagonism < 0 or 

synergy > 0, with higher values representing greater synergy. P-value assesses overall 

model fit. (c.) Percent survival of NSG mice inoculated with 100,000 NALM-6 non-

target control cells or (d.) 100,000 CELSR2 knockdown leukemia cells treated with either 

vehicle, dexamethasone alone (4 mg/kg), venetoclax alone (50 or 100 mg/kg) or 

combination of venetoclax with dexamethasone (n= 5 mice per treatment group; Log-

rank Mantel-Cox test p-values). 
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Figure 4-10. Venetoclax and prednisolone synergize in primary ALL with low 

CELSR2 expression and CELSR2 knockdown in cell lines disregulation of Bim/Bcl2 

axis 

(a.) Response surface model plot of cytotoxicity from prednisolone plus venetoclax at 

concentrations indicated for the 697 leukemia cell line transduced with non-targeting 

control vector. (b.) Response surface model plot for the 697 leukemia cell line transduced 

with CELSR2 shRNA knockdown vector (for a and b individual points represent n= 3 

independent experiments performed in technical duplicate; response surface model two-

tailed t-test p-value). The alpha (α) value indicates antagonism < 0 or synergy > 0 with 

greater synergy from higher value. P-value describes overall model fit. Individual plots of 

prednisolone effect (mean ± S.D.; n= 3 independent experiments) (c.) NALM-6 and (d.) 

697 leukemia cell lines at one concentration of venetoclax (mean ± S.D.; n= 3 

independent experiments). Black lines are non-targeting control cells and red lines are 

CELSR2 knockdown cells, dashed lines indicate predicted additivity curve fit based on 

single drug treatments; data left of the dashed lines represent additivity/synergy. Solid 

lines represent fit of measured values. (e.) Venetoclax sensitivity of independent cohort 

of patients (n=96 ALL patients) grouped based on prednisolone sensitivity (LC50) (f.) 

Bcl2 expression associated with sensitivity to venetoclax (n= 81 ALL patients) (g.) 

Primary ALL cells from patients (n=6 patient samples) and human leukemia cell lines 

assessed for additivity/synergy with prednisolone and venetoclax (for all box plots 

horizontal bars depict medians and boxes represent 25th and 75th percentiles, whiskers 

represent ±1.5x IQR; linear model p-values).(h.) mRNA expression (n=1 experiment run 

in technical triplicate) of CELSR2 in patient samples assessed for synergy. 
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ability to induce the pro-apoptotic protein BIM when treated with 10µM prednisolone for 

24 hours (data not shown). 

 

 

CELSR2 Is a Negative Hub Driver of Prednisolone Resistance 

 

We used NetBID,169 a data-driven systems biology approach, to reconstruct a B-

ALL-specific interactome (B-ALLi),composed of “hubs” representing central 

components of larger regulatory networks, using RNA-seq profiles of 185 B-ALL 

patients in the TARGET170 cohort (Figure 4-11a). B-ALLi identified hub drivers whose 

network activities differed significantly in prednisolone resistant versus sensitive 

leukemia cells from two patient cohorts (SJCRH TOTXV and TOTXVI; Figure 4-11b). 

Known glucocorticoid resistance genes including SMARCA4, PAX5, CASP1 were 

significantly enriched in NetBID top predictions (p=0.011, Figure 4-12a). Network 

topology analysis of the top 48 NetBID drivers (p<5 x10-5, Figure 4-11b; Figure 4-12b) 

identified CELSR2 as a hub that modulated other top drivers (Figure 4-11c). NetBID-

inferred activity of CELSR2 was markedly down-regulated (p=8.6 x10-8; Figure 4-11d) 

in prednisolone resistant relative to sensitive leukemias, as was the expression of 

CELSR2 (Figure 4-11b). More strikingly, CELSR2 regulons (Figure 4-12c) inferred by 

NetBID from baseline RNA-Seq profiles of B-ALL patients were significantly enriched 

among differentially expressed genes in ALL cells after CELSR2 knockdown (p=1 x10-4 

in NALM-6 and p=1 x10-3 in 697 cells, Figure 4-11e; Figure 4-12d). Several previously 

reported glucocorticoid resistance genes (e.g. TSC22D3, IL1B and TP53INP1), were also 

regulated by CELSR2 (p=1.8 x10-3 in NALM-6 and p=0.01 in 697; Figure 4-12e). 

 

 

CELSR2 Expression Is Significantly Related to PAX5 

 

NetBID analysis also identified CELSR2 as a top downstream target of PAX5 

(Figure 4-13a). For CELSR2, the most highly co-expressed gene in primary ALL cells 

was PAX5, which was highly positively correlated in leukemia cells from 203 patients 

(p= 3x10-11; Figure 4-13b). Accordingly, lower expression of PAX5 was observed in 

leukemia cells with higher prednisolone LC50 (p = 7.47x10-5; Supplementary Table 1). 

Recent studies have highlighted the importance of chromatin accessibility in the 

discovery of novel regulators of glucocorticoid resistance.94,98 ATAC-seq profiles of 

multiple human leukemia cell lines revealed open chromatin regions in proximity to the 

CELSR2 coding region. When combined with ENCODE transcription factor binding site 

data,147 PAX5 binding sites were found within the cis-regulatory elements of CELSR2 in 

the B-lymphocyte cell line GM12878 (Figure 4-13c). Furthermore, CHIP-seq peaks for 

PAX5 in NALM-6 ALL cells confirmed that PAX5 binds in these open chromatin regions 

in a leukemia cell line (Figure 4-13c). We constructed a multivariate model using the 

expression of all miRNAs associated with CELSR2 as co-variates along with PAX5 

mRNA, revealing that PAX5 expression accounted for about 25% of the variability in 

CELSR2 expression (p= 1.6x10-12), and mir-31-5p accounted for an additional 4% of the 

variability in CELSR2 expression (p=0.002). Alone, miR-31-5p was significantly 

negatively associated with CELSR2 expression (p= 0.001), as was PAX5 (p=3x10-11).  
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Figure 4-11. NetBID identifies CELSR2 as a hub driver of prednisolone resistance 

(a.) Schematic workflow representing NetBID algorithm (b.) Heatmap of top 48 NetBID-

predicted drivers from total of n=7,920 drivers inferred from the B-ALL interactome 

(n=185 patients) that were associated with prednisolone resistance (n=203 patients with 

gene expression and LC50). Drivers (as denoted by “symbol_regulon size”, e.g 

“CELSR2_399”) are ranked by integrated NetBID p-value. (Left) Combined NetBID 

results color-coded by z-score (red = positive, blue = negative) and labeled by p-value of 

integrated NetBID results of TOTXV and TOTXVI patient cohorts; Right: differential 

expression (DE) of each driver itself, color-coded by z-score and labeled by signed fold-

change of integrating the two cohorts (shown separately in Figure 4-12). (c.) Subnetwork 

of the top 48 drivers versus prednisolone LC50 in relation to one another (limited to top 

50 interactions for each driver ranked by mutual information of each hub gene) from B-

ALLi. Node size is proportional to the regulon size; nodes in green represent known 

resistance genes. Edges: width is proportional to mutual information, red is for positive 

and blue for negative Spearman correlations of the connecting nodes. (d.) CELSR2 

NetBID activities (horizontal bar depicts median and boxes represent 25th and 75th 

percentiles, whiskers represent ±1.5x IQR) in prednisolone resistant and sensitive patients 

from TOTXV and TOTXVI patient cohorts (Stouffer’s combined Bayesian generalized 

linear model “NetBID” p-value; n=203 patients). (e.) Enrichment of NetBID-inferred 

CELSR2 regulon (n= 399 genes) in differentially expressed genes (n= 222 genes) of 

CELSR2 knockdown vs. control in NALM-6 (top) and 697 (bottom) cell lines without 

prednisolone treatment. 
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Figure 4-12. NetBID identifies regulatory nodes of prednisolone resistance 

(a.) Enrichment of previously reported resistance genes (n=40 genes and miRNAs; 

Wilcoxon two-tailed p-value) in NetBID results. (b.) Heatmap of top 48 NetBID-

predicted drivers (‘symbol’_’regulon size’) are ranked by integrated NetBID p-value. 

Left: color-coded by z-score and labeled by p-value of NetBID results in TOTXVI, 

TOTXV, and combination (Comb); Right: differential expression of each driver itself, 

color-coded by z-score and labeled by signed fold-change in TOTXVI, TOTXVI and 

combination (Comb; Stouffer’s combined Bayesian generalized linear model “NetBID” 

p-value; n=203 patients). (c.) CELSR2 regulon from B-ALLi (n=399 genes). Legends of 

node and edge follow Figure 4-11c. (d.) Enrichment of NetBID-inferred CELSR2 

regulon (n=399 genes) in differentially expressed genes of CELSR2 knockdown vs. NTC 

in NALM-6 human ALL cell lines (n=222 genes; Wilcoxon two-tailed p-value) upon 

prednisolone treatment for 24hr (top) Blue lines inside the box indicate the down-

regulation of CELSR2 itself, labeled p-value and signed fold-change. (e.) Enrichment of 

previously reported resistance genes (n= 40 genes and miRNAs; Wilcoxon two-tailed p-

value) in differentially expressed genes of CELSR2 knockdown vs. NTC in NALM-6 

ALL cell lines without prednisolone treatment. 
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Figure 4-13. CELSR2 mRNA expression is related to PAX5 expression in primary 

ALL cells 

(a.) Subnetwork (top 50 interactions ranked by mutual information) of PAX5 and 

CELSR2 from B-ALLi (n=185 patients). Legends of node and edge follow Figure 4-11c, 

except that nodes in green are those in top 48 drivers (Figure 4-11b). (b.) CELSR2 

expression positively correlates with PAX5 expression in primary acute lymphoblastic 

leukemia cells (black line represents regression fit associated with linear model p-value 

and Rsq). (c.) Open chromatin regions defined by ATAC-seq in three sensitive and three 

resistant human leukemia cell lines and H3K27 acetylation from ENCODE in upstream 

5’ region of CELSR2. ENCODE binding site in GM12878 lymphoid cells for PAX5 and 

CHIP-seq peaks from NALM-6 cells for PAX5 binding are indicated at bottom of the 

plot. (d) PAX5 (**** = 3.5x10-5) (e.) CELSR2 (*** = 3.0x10-4) (f.) NR3C1(**** = 

3.2x10-5) protein expression (mean ± S.D.) in NALM-6 leukemia cell lines stably 

expressing shRNA knockdown constructs targeting PAX5 (n=4 independent experiments; 

two-tailed t-test p-values). 
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PAX5 knockdown in NALM-6 cells (Figure 4-13d) showed significant reduction in both 

CELSR2 (two-tailed t-test p-value =0.0003; Figure 4-13e) and NR3C1 (two-tailed t-test 

p-value<0.0001; Figure 4-13f). 

 

 

scRNA-seq Reveals Clonality of Resistance Genes 

 

We performed single cell RNA-seq on primary ALL cells from a patient with 

prednisolone sensitive leukemia (LC50 = 0.091µM) and from a patient with prednisolone 

resistant leukemia (LC50 = 1006µM). Primary leukemia cells from each patient were 

treated ex vivo with 63µM prednisolone or incubated in media without prednisolone, and 

single-cell RNA sequencing was used to generate clusters of surviving cells after 96 

hours, based on their gene expression profiles. As expected, the prednisolone sensitive 

leukemia had a pronounced reduction in CD19+ cells (Figure 4-14a,d; Figure 3-5a-c; p< 

2x10-16), whereas the resistant leukemia retained a high percentage of CD19+ cells after 

prednisolone treatment (Figure 4-14a; Figure 3-5d-f; Supplementary Table 9). Single-

cell RNA sequencing documented that the sensitive leukemia had higher CELSR2 

expression before treatment than the resistant leukemia, which had essentially 

undetectable de novo expression of CELSR2 (Figure 4-14b; FDR = 0.009). BCL-2 

expression was significantly higher in the resistant patient after prednisolone treatment 

compared to control, and greater than in the sensitive leukemia (Figure 4-14c,f; FDR = 

0.005; Supplementary Table 9).  

 

 

CELSR2 Is a Mediator of Non-canonical Wnt Signaling  

 

To assess the potential effects of CELSR2 on GR expression, we performed 

ATAC-seq to interrogate regulatory regions upstream of the NR3C1 gene in three 

glucocorticoid sensitive and three glucocorticoid resistant ALL cell lines, revealing 

enriched open chromatin for the GR in the sensitive cell lines compared to resistant ALL 

cells, in regions overlapping H3K27-acetylation peaks from ENCODE (Figure 4-15a-d). 

The REH cell line has a known stop gain mutation in NR3C1, which leads to 

glucocorticoid resistance independent of CELSR2. ENCODE transcription factor binding 

data revealed binding sites for TEAD4 (Hippo signaling), NFATC1 and the AP-1 

components cJun and fos within the upstream regulatory regions of NR3C1 (Figure 4-

15d).  

 

Because CELSR2 is known to regulate non-canonical WNT signaling,195 we 

quantitated the expression of NFAT, pJNK, cJun, phos-cJun and NR3C1 in CELSR2 

knockdown cells and control cells (Figure 4-16; Figure 4-15e-h). This documented 

significantly lower nuclear expression of phosphorylated JNK (p=0.015) and lower 

phosphorylation of its target cJun at serine 63 (p=0.0017), which was also evident in cells 

treated with prednisolone (24hr at 10µM; p=0.03). We also documented decreased 

nuclear GR levels in CELSR2 knockdown compared to control cells in both treated 

(p=0.03) and untreated (p=0.005) cells. Cytoplasmic levels of the GR were also  
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Figure 4-14. Single cell transcriptomic analysis verifies lower CELSR2 and higher 

BCL2 in glucocorticoid-resistant primary ALL cells 

(a.) Clustering of single cells (n= 2 patients) based upon the top 1000 most highly 

expressed genes. Both patients are independent of the discovery and validation cohorts; 

leukemia cells from one patient are sensitive (left) and one resistant to prednisolone 

(right). Clusters annotated to show CD19+ cells; red denotes control (untreated) and blue 

depicts cells after treatment with prednisolone 63µM for 96h (b.) CELSR2 expression 

from clustered single cell populations of sensitive and resistant patients either without 

treatment or after 96h prednisolone (c.) BCL2 expression from clustered single cell 

populations of sensitive and resistant patients (d.) Bar plot depicting greater proportion of 

sensitive leukemia cells (n=2,427 control cells; n= 924 treated cells) killed after treatment 

with prednisolone for 96h compared to resistant patient (n= 686 control cells; n=759 

treated cells; two proportion z-test p-value; **** = p <0.0001). (e.) Violin plot 

representing kernel density of gene expression (individual points represent single cells) of 

CELSR2 or (f.) BCL2 in CD19+ leukemia cell populations comparing prednisolone 

treated to untreated cells in sensitive (n=2,427 control cells ; n= 924 treated cells) or 

resistant patients (n= 686 control cells; n=759 treated cells; ** = p <0.01). 
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Figure 4-15. Chromatin status in glucocorticoid sensitive and resistant human 

ALL cell lines, and perturbation of non-canonical WNT signaling by reduction of 

CELSR2 expression 

(a.) ATAC-seq for six human leukemia cell lines, three prednisolone sensitive and three 

resistant cell lines depicting open chromatin in the region upstream of NR3C1 (n= 2 

independent experiments). (b.) H3K27Ac data from ENCODE (black box) showing 

lymphocyte regulatory region in GM12878 cell line (pink) (c.) RefSeq NR3C1 transcripts 

(d.) ENCODE transcription factor binding sites for PAX5, NR3C1, TEAD4 and non-

canonical Wnt effectors (NFATC1 and AP-1 [JUN and FOS]) (e.) Western blot and (f.) 

Barplot (mean ± S.D.) depicting total cellular protein expression of signaling components 

from planar cell polarity and Ca2+/NFAT non-canonical Wnt signaling protein CELSR2 

knockdown vs. control cells with or without 10µM prednisolone treatment for 24hr. (g.) 

Western blot and (h.) Barplot (mean ± S.D.) depicting cytoplasmic protein expression of 

signaling components from planar cell polarity and Ca2+/NFAT non-canonical Wnt 

signaling protein CELSR2 knockdown vs. control cells with or without 10µM 

prednisolone treatment for 24hr. 
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Figure 4-16. Perturbation of downstream non-canonical Wnt signaling leads to 

decreased GR expression and glucocorticoid resistance 

(a.) Representative western blot and (b.) Barplot (n= 3 independent experiments; mean ± 

S.D.) depicting nuclear protein expression of signaling components from the planar cell 

polarity and Ca2+/NFAT non-canonical Wnt signaling pathway, CELSR2 knockdown 

(shCELSR2) vs. non-target control cells (NTC) with or without 10µM prednisolone 

treatment for 24hr (two-tailed t-test p-values; * P < 0.05; ** P< 0.01***; P <0.001; **** 

P<0.0001). (c.) Schematic representation of non-canonical Wnt signaling, depicting 

proposed mechanism by which low CELSR2 expression leads to decreased expression of 

the GR (right panel). 
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significantly lower in CELSR2 knockdown cells compared to controls, in both 

prednisolone treated (p=0.03) and untreated (p=0.0002) cells (Figure 4-15g-h). 
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CHAPTER 5.    DISCUSSION* 

 

 

Although there are several known genetic and epigenetic mechanisms of 

glucocorticoid resistance in ALL, many leukemias are resistant for reasons that have 

remained unknown. To assess the potential of agnostic genome-wide interrogation of 

multiple forms of genomic and epigenetic variants to identify mechanisms of drug 

resistance in human cancer, we assessed de novo prednisolone resistance in primary ALL 

cells from newly diagnosed patients. The ex vivo sensitivity of ALL cells to 

glucocorticoids is related to treatment outcome in ALL49,180 and was related to the 

persistence of residual leukemia (MRD) in our patient cohort. We identified 655 inter-

related genomic features associated with 463 genes and 48 miRNAs that discriminated 

prednisolone sensitive and resistant ALL based on somatic variation in mRNA, miRNA, 

CpG methylation, SNPs, CNAs or SNVs/Indels. Notably, 94% of the mRNAs 

discriminating glucocorticoid sensitive and resistant ALL were statistically associated 

with one or more of the significant miRNA, cis CpG-methylation sites, SNPs, CNAs or 

SNVs/Indels within coding regions, indicating the interconnectivity of these genomic 

features.  

 

To assess the increased utility of interrogating multiple data types simultaneously, 

we performed multivariable analysis using a forward selection method to generate a best 

fit model using all feature types, yielding a model that explained ~47% of the variability 

in prednisolone LC50 (93% before bias correction). This model contained 32 features: 4 

mRNAs (CELSR2, FAM13A, NT5M and COBL) two of which are in our top 15 genes, 12 

methylation probes (including BCL2), 2 miRNAs and 14 SNPs (Supplementary Table 

1), supporting the use of multiple data types together in genomic studies of complex 

phenotypes (e.g., drug resistance). Furthermore, many features not included in the 

multivariable model were significantly related to other features in the model, providing 

enhanced confidence in the genes identified. Gene-level integration of these six genomic 

features identified 118 genes that were significantly associated with prednisolone 

resistance by both the polygenomic and the TAP methods. Fifteen of these genes were 

also significant in a genome-wide CRISPR-knockout screen, 14 of which have not been 

previously associated with glucocorticoid resistance. The statistical probability of 

capturing 15 genes in all three analyses by chance is extremely small (p= 8.2x10-79; see 

Chapter 3). 

 

To assess the robustness of our approach, we compared genes identified in the 

current analyses with genes previously associated with glucocorticoid resistance in 

ALL.19,58,59,61,63,65,68,75,77,85-87,100,107,109,110,113,114,116-118,120,123,136,137,139-141,196,197 This revealed 

that 30 of 38 (79%) genes previously shown to confer glucocorticoid resistance in ALL 

were directly identified by our agnostic, integrative polygenomic strategy. Some 

 

 

-------------------- 
*Portions of chapter from previously published article; final submission modified with permission. Autry, 

R. J. et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute 

lymphoblastic leukemia. Nature Cancer, doi:10.1038/s43018-020-0037-3 (2020).142 
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previously described genes such as CREBBP were not found directly, but genes known to 

be associated with their function (CREB1) were found. When we included genes in the 

same biological pathway, our method captured all 38 pathways previously shown to 

confer glucocorticoid resistance in ALL.  

 

Re-discovery of this large number of known mechanisms of resistance gives 

confidence that many of the novel mechanisms are likely genuine, either as independent 

mechanisms or as members of common pathways.  

 

CELSR2 was the top novel gene downregulated in glucocorticoid resistant ALL 

and decreasing CELSR2 expression recapitulated glucocorticoid resistance in human 

leukemia cell lines. This also revealed genes that exhibited significantly altered 

expression as a consequence of reducing CELSR2 expression, including markedly lower 

expression of the GR and higher expression of anti-apoptotic BCL2 following 

prednisolone treatment. We showed that co-administration of a BCL2 inhibitor 

(venetoclax) mitigated glucocorticoid resistance due to low CELSR2 expression, 

documenting greater synergy in ALL cell lines in which CELSR2 had been knocked 

down and in primary leukemia cells with low CELSR2 expression. Low CELSR2 

expression was documented in approximately half of glucocorticoid resistant ALL 

patients (48%), suggesting that co-treatment with venetoclax could impact a large number 

of patients and this combination may have even broader utility since other mechanisms of 

glucocorticoid resistance involve lower GR expression or function.75 We also observed a 

significant increase in survival in vivo in mice inoculated with CELSR2 knockdown ALL 

cells when venetoclax (50 mg/kg) was given in combination with glucocorticoids (Figure 

4-9c-d), consistent with our ex vivo findings of greater venetoclax sensitivity in primary 

leukemia cells and human ALL cells lines with low CELSR2 expression (Figure 4-9a-b). 

NetBID network analyses using interactome data generated in the independent 

TARGET170 cohort, corroborated many of the genes and pathways that we found 

significant, including CELSR2. This is consistent with CELSR2 and its network of 

interacting genes acting as a master regulatory network influencing the sensitivity of 

leukemia cells to prednisolone. 

 

CELSR2 is a membrane-bound G-protein coupled receptor that alters gene 

expression via non-canonical WNT signaling195 and HIPPO signaling,198 and is involved 

in cell-cell interactions. Manipulation of CELSR2 in ALL cells led to alterations in 

downstream non-canonical Wnt targets, increasing the expression of NFAT1 and cJun 

and decreasing the phosphorylation of cJun at the total protein level,199 consistent with 

the documented decreased activation of JNK via phosphorylation at Thr 183/Tyr 185. 

Increasing the level of cJun represses transcription of the GR,200 as we observed in 

primary ALL cells with low CELSR2 expression. We further documented significantly 

lower nuclear levels of phosphorylated JNK and phosphorylated cJun, which forms a 

heterodimer with FOS (AP1) to drive expression of NR3C1 (GR), consistent with lower 

NR3C1 expression we observed in ALL with low CELSR2 expression. In future studies, 

looking into targeting small molecules to CELSR2 or other associated non-canonical Wnt 

pathway components could be a promising strategy to more directly target this pathway 

in mitigating glucocorticoid resistance. Clinical trials have been developed looking at an 
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anti-ROR1(which is involved in non-canonical Wnt signaling and also an mRNA hit in 

the polygenomic analysis) monoclonal antibody (cirmtuzumab) in B-cell malignancies 

(NCT03088878), and a number of other Wnt targeted therapies have been developed that 

are in various stages of clinical development.201 

 

Taken together, we have shown that integration of agnostic multi-dimensional 

somatic genome variants can identify discrete mechanisms of drug resistance in primary 

leukemia cells, reliably rediscovering known mechanisms of resistance and revealing 

mechanisms not previously reported. Our findings indicate that interrogating multiple 

types of genomic variation improves the ability to discover mechanisms of resistance, 

compared to interrogating only one type of genome variation. Applying this strategy, we 

discovered a previously undescribed mechanism involving low expression of CELSR2 in 

approximately 50% of glucocorticoid resistant ALL patients, causing lower expression of 

GR and overexpression of BCL2, which can be mitigated by co-treatment with the BCL2-

inhibitor venetoclax. These findings represent a broad strategy for discovering genetic 

and epigenetic mechanisms by which cancer cells develop resistance to chemotherapy, 

and for revealing new therapeutic strategies to mitigate resistance. 
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