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Abstract

Mahdieh Shabanian

Developing Deep-Learning Methods for Diagnosis and Prognosis of
Pediatric Progressive Diseases Using Modern Imaging Techniques

Purpose and Rationale. Central nervous system manifestations form a significant burden
of disease in young children. There have been efforts to correlate the neurological disease
state in tuberous sclerosis complex (TSC) with imaging findings as a standard part of patient
care. However, such analysis of neuroimaging is time- and labor-intensive. Automated ap-
proaches to these tasks are needed to improve speed, accuracy, and availability. Automated
medical image analysis tools based on 3D/2D deep-learning algorithms can help improve
the quality and consistency of image diagnosis and interpretation of cognitive disorders
in infants. We propose to automate neuroimaging analysis with artificial intelligence algo-
rithms. This novel approach can be used to improve the accuracy of TSC diagnosis and
treatment. Deep learning (DL) is among the most successful types of machine learning and
utilizes deep artificial neural networks (ANNs), which can determine efficient feature repre-
sentations of input data. DL algorithms have created new opportunities in medical image
analysis Applications of DL, specifically convolutional neural networks (CNNs) in medical
image analysis, cover a broad spectrum of tasks, including risk prediction/estimation with
a machine learning system trained on these classification tasks.

Study Population. We reviewed an NIMH Data Archive (NDA) dataset that was collected
in 2010. We also reviewed imaging data from patients and normal cases from birth to 8
years of age acquired at Le Bonheur Children’s Hospital from 2014 to 2020. The University
of Tennessee Health Science Center Institutional Review Board (IRB) approved this study.

Research Design and Study Procedures. This thesis 1) Presents the first 2D/3D fusion
CNN models to estimate brain age of infants from birth to 3 years of age. It also 2) Presents
the first work to look at the whole-brain network to automatically distinguish TSC brain
structural pathology from normal cases using a 3D CNN model.

Conclusions. The study findings indicate that deep neural networks tackle the problem
of early prediction of cognitive and neurodevelopmental disorders and structural brain
pathology based on MRI automatically in TSC children. It is the hope of the author that
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analysis of MRI images via methods of deep learning will have a positive impact on
healthcare for infants and children at risk of rare diseases.
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Chapter 1

Deep Neural Networks in Medical Imaging

1.1 Introduction

Traditionally, machine learning models are trained to perform useful tasks based on features
manually extracted from raw data or are engineered using other classical machine learning
models. In deep learning (DL) networks, computers learn high-level features automatically,
directly from raw data, bypassing an often difficult feature engineering step. Automatic
feature detectors represent a significant difference between DL algorithms and more classical
machine learning. Yann et al. published a review paper titled “deep learning” in Nature to
help readers understand the fundamental strengths of deep learning algorithms (LeCun,
Bengio, and G. Hinton, 2015; Litjens et al., 2017), and also provided a general overview
of deep learning algorithms in radiology (Litjens et al., 2017). Since 2019 DL algorithms,
specifically convolutional neural networks (CNNs), have become widely used for analyzing
medical images. In medical imaging, the interest in DL is mostly driven by CNNs that
can uncover non-obvious, useful features of images. With a deep neural network, many
image features are typically preserved in image analysis. Some potent preferences are
embedded in CNNs: W. Wang et al., 2019; Yamashita et al., 2018, explain how CNNs
provide powerful image analysis while lessening pre- and post-processing tasks needed to
extract higher level features that reduce an image to its key features, thus enabling easier
classification (Shabanian et al., 2019). Various types of CNNs were developed recently, and
all have the potential to contribute to the accuracy and speed of image classification or
automatic segmentation. CNNs can learn high-level hierarchies of features automatically
by backpropagating errors through multiple blocks and layers, such as convolutional layers,
max-pooling layers, and fully connected layers used for image classification tasks (W. Wang
et al., 2019).

1.2 Structure of Convolutional Neural Networks

CNNs are able to learn spatial hierarchies of features automatically and adaptively using
multiple building blocks, such as convolutional layers, pooling layers, and fully connected
layers. In fact, CNN is trained through backpropagation and gradient descent to generate
an error signal that measures the difference between the estimation of the network and the
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Figure 1.1: CNN architecture in simple word.

target value (Figure. 1.1). A CNN uses this error signal to change the weights or parameters
for more accurate classification or segmentation (Nielsen, 2015). CNNs typically have
several convolution layers, pooling layers, and fully connected (FC) layers at the end, which
compute the final outputs (Figure. 1.2). The performance of the model is calculated under
weights and kernels with a loss function through forward propagation on a training dataset.
All learnable parameters, such as weights and kernels are updated based on the loss value
through backpropagation with a gradient descent optimization algorithm.

1.2.1 Hardware and Software

Training CNNs usually requires a graphic processing unit (GPU) with its memory matched
to the number of parameters in the network. GPUs led to the remarkable rise of DL. Techni-
cally, GPUs increase speed by 10 to 50 times of CPU-based work for training deep neural
networks. The AlexNet developed by Krizhevsky et al. owes its success to its architecture
(Krizhevsky, Sutskever, and G. E. Hinton, 2017), in which the power of calculation is based
on the GPU. Several open-source DL libraries provide efficient GPU implementations of
deep neural networks, including one focused on convolutions (LeCun, Bengio, and G. Hin-
ton, 2015). Other distinct deep learning frameworks include ones by Google Research which
released TensorFlow in 2015 (Abadi et al., 2015); it provides C++ and Python interfaces
and is used by Google AI. Google’s engineers developed Keras (Chollet, 2015) , a popular
framework that provided the Python interface in 2017. Facebook’s AI Research lab (FAIR)
developed and released PyTorch (Paszke et al., 2019) for the first time in 2016.
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Figure 1.2: CNN architecture in the training process.

Figure. 1.3 shows the popularity between Tensorflow and PyTorch as two excellent
frameworks for developing and researching deep learning applications in 5 past years
through Google Trends. TensorFlow framework is a powerful, mature and popular deep
learning library in part because it has strong visualization capabilities. TensorFlow frame-
work has several options for high-level model development in both classification and
segmentation tasks. PyTorch is new framework that is very popular in medical imaging
fields and is gaining momentum fast. We worked with TensorFlow(Keras) and PyTorch in
this research.

PyTorch and Keras are both excellent for deep neural networks applied for imaging
tasks. Both frameworks extract top features of image sets, thereby making it challenging to
select which one is better in medical tasks. Indeed, Keras consist of more mature library but
PyTorch has powerful libraries especially relevant in medical imaging field.

1.2.2 Deep-Learning Algorithms in Biomedical Image Analysis

Many image diagnosis tasks require an initial search to identify abnormalities. Measurement
of lesions is often done, a task that can have significant variability between radiologists.
If there are prior images, then any changes over time are closely examined. Automated
medical image analysis tools based on DL algorithms could be helpful tools in adding
objective, algorithmic elements to image interpretation. This approach has opened new
doors in medical image analysis. DL applications in medical image analysis are available
for many imaging modalities, including X-Ray, CT and MRI. Especially comprehensive,
useful surveys of deep learning in medical imaging include these: (LeCun, Bengio, and
G. Hinton, 2015; Yamashita et al., 2018; Mazurowski et al., 2019).
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Figure 1.3: Popularity of Keras versus Pytorch in the 5 past years. A value
of 100 is the peak popularity for the term. A value of 50 means that the term
is half as popular. A score of 0 means there was not enough data for this
term (Google Trends - Interest in Pytorch Verses Keras Over Five Years 2021).
Data source: Google Trends (https://www.google.com/trends)

1.2.3 2D versus 3D CNN Model

The development of 3D CNNs remains at an early stage because of their complexity,
especially in medical image interpretation. Around 2018-2019, exponential growth was
seen in using 3D deep learning models in medical imaging (Singh et al., 2020). Their review
paper also described the development of 3D CNN from machine learning roots in detail.

Convolutions of 2D CNNs are used to derive features only from spatial dimensions
in 2D feature maps. 2D CNNs take a 2D matrix as an input, such as image slices. Therefore,
information from adjacent slices is unavailable. With this approach, information is more
likely to be lost from interest regions of the brain in specific diseases because the brain
is a 3D structure. Figure. 1.4 a shows the 2D filter (kernel) in 2D CNN used to extract
spatial-spectral features.

The 3D CNN architectures using volumetric convolutions are very useful DL meth-
ods for analyzing volumetric imaging data. The 3D CNN mathematical model is very
similar to 2D CNN and is obtained by adding one extra dimension. Volumetric image
analysis is a time-consuming process that currently requires expert knowledge, especially
for medical images such as MRI images that use the Neuroimaging Informatics Technology
Initiative (NIfTI) format (Ueda et al., 2019; Cole et al., 2017). For the first time, Cole et al.
showed that 3D-CNN could accurately estimate developmental brain age from MRI data
using healthy adult samples as control images. Additionally, the authors demonstrated 3D
CNNs are more effective and less likely to miss regions of interest in medical images of the
brain.

3D convolution applies a 3D filter (kernel) to the dataset, and this filter moves in
3-directions (x, y, z) to calculate low-level feature representations at particular sites.

https://www.google.com/trends
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Figure 1.4: Illustration of convolution. (a) illustration of a 2D filter to
extract spatial features and (b) illustration of a 3D filter to extract
spatial-spectral features.

Figure. 1.4 b shows that 3D CNNs filters help prevent loss of the region of interest
that occurs in 2D medical images. CNNs apply a filter to the input to create a feature map
to summarize detected features in the input. Filters, such as line detectors, edge locations,
and curved lines as sections of surfaces, are portions of CNN-innovations that are learned
during training in the context of a multi classification problem. Statistical tests indicated
that the 3D CNN model was able to classify 2D MRIs more accurately than the 2D CNN
model. 3D CNNs can use entire image volume rather than individual slices such as 2D
CNNs; this feature includes more information (e.g., relationships between consecutive
slices). Implementation of 3D models can also be more difficult on commonly available
GPU cards due to their large memory consumption. A 3D model has better performance
when sufficient training data and powerful computational hardware are available. Several
articles demonstrated the performance of 3D CNN on MRI brain scans (Jnawali et al., 2018;
Gao, Hui, and Tian, 2017). Using 3D CNN models, we can now observe subtle micro- and
macro-structural changes, as well as aberrant connectivity variances that may go undetected
at an age where early intervention could have impacted patient care. In addition, these
findings may be undetectable by the human eye until much later in the child’s development,
preventing implementation of an early treatment plan.

1.3 Specific Aims and Hypotheses

The primary purpose of this research was to develop novel deep learning models in medical
imaging analysis based on MRIs to classify neurodevelopmental age and detect brain
abnormalities in children. We showed in this research how to use the novel deep learning
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models on a small number of samples, and we compared 2D and 3D models in the following
chapters.

We were guided by the following:

Aim 1. We hypothesize that a custom fusion deep learning approach (a 3D Convolutional
Neural Network, 3D CNN) could be used to differentiate age-appropriate brain
development from retarded development based on multi-modal MRI sequences. As
it will be shown, this is not the case, and we examine possible reasons by providing
different types of reduced information to the DL approach: 3D data, 2.5D data, and
2D data. The ultimate aim of this work is to approach a continuous (rather than
age-group stratified) estimation of the developmental brain age from MRI. But even a
classification into age groups will help identify patients with developmental delay and
serve as an objective finding that could help lessen inter-observer and intra-observer
variability. More objective findings could also be used to risk-stratify different patient
populations.

Aim 2. We hypothesize that custom 3D deep learning models can help in the early iden-
tification of TSC anatomical abnormalities and tuber features using standard brain
MRI sequences for TSC cases at risk of developing epilepsy (and subsequent neurode-
velopmental delay). Neuroimaging is important for detecting TSC brain lesions that
can contribute to the neurological disease process, even during fetal development.
Although neuroimaging analysis is time-consuming and labor-intensive, automated
deep learning approaches to neuroimaging analysis could improve detection of TSC
structural brain pathologies by comparison with MRI from normal subjects. Accu-
rately detecting epileptogenic zones in TSC cases may assist physicians with more
rapid and reliable identification of TSC cases at high risk of epilepsy.
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Chapter 2

Neurodevelopmental Disorders

2.1 Introduction

Determining if the brain is developing normally is a key component of pediatric neuroradi-
ology and neurology. Brain magnetic resonance imaging (MRI) of infants demonstrates a
specific pattern of development beyond simply myelination. While radiologists have used
myelination patterns, brain morphology and size characteristics to determine age-adequate
brain maturity, this requires years of experience in pediatric neuroradiology. With no stan-
dardized criteria, visual estimation of the structural maturity of the brain from MRI before
three years of age remains dominated by inter-observer and intra-observer variability. A
more objective estimation of brain developmental age could help physicians identify many
neurodevelopmental conditions and diseases earlier and more reliably. Such data, however,
is naturally hard to obtain, and the observer ground truth is not much of a gold standard
due to subjectivity of assessment.

Neurodevelopmental disorders (NDDs) are a diverse group of conditions character-
ized by delayed milestones involving cognition, communication, behavior, and motor skills.
Infancy and early childhood are characterized by rapid cognitive development, especially
in the first three years of life. This cognitive development is mirrored by changing brain
structure, function, and connectivity. Many pediatric diseases impair this development.
Therefore, brain-developmental-age estimation is crucial to determine if a child’s brain is
developing normally. Magnetic resonance imaging (MRI) based neuroimaging of infants
offers qualitative information such as myelination patterns and brain morphology. MRI
also offers quantitative information such as head circumference, brain volume, and water
content. Neuroimaging is critical for determining the impact of pediatric brain diseases,
in particular when patient images are compared to a healthy clinical sample of normal
brain development, to help categorize the patient with many infant diseases, including: a)
prematurity Van Bel, Vaes, and Groenendaal, 2019, b) hypoxic ischemic encephalopathy
(HIE) of the newborn Shetty et al., 2019, c) congenital cytomegalovirus (cCMV) infection
Grinberg et al., 2019, d) bacterial meningitis, e) herpes simplex virus encephalitis (HSVE)
Ramirez et al., 2018, f) pediatric epilepsy,Gupta et al., 2020 g) cerebral palsy (CP), h) tuber-
ous sclerosis complex (TSC) Sánchez Fernández et al., 2020 and many other genetic and
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non-genetic disorders.

2.2 Neurodevelopmental Disorders in Children

Newborns with brain disorders are at increased risk of severe long-term motor deficit
and cognitive delay. Detecting these conditions earlier, even before birth, could help
health care professionals and prevent mitigate morbidity. The developing brain’s distinct
morphological changes are the basis of image-based brain age determination. In light
of observer variability and the complex information for humans must assess, computer-
based automated brain-developmental age estimation (BDAE) could offer an important
automated second opinion in patients with mild cognitive impairment and/or a tool to
monitor neurodevelopment in patients with known chronic neurologic diseases.

For infants, both imaging and computational approaches to BDAE have yet to achieve
an acceptable level of consensus. At 38-40-weeks of normal in utero development, normal
newborn features are found on MRI, the brain’s pattern has nearly normal adult sulcal
pattern. Corticospinal tracts are hyperintense on T1w compared to the rest of the brain.
On T2w images, we have hopointensity in the dorsal brain stem. this results come from
high water content and lack of myelination, is significantly different from older infants. In
the first year of life, myelination occurs very rapidly with gray matter migrating from its
origin in the periventricular region to the cortex. Anatomical, histological, and functional
properties change rapidly thereafter and lead to many computational challenges not seen
in adult models. Neonatal brain development, as observed by MRI, can be roughly divided
into four distinct temporal stages Paus et al., 2001:

1. Newborn pattern; myelination only present along the posterior limbs of the internal
capsule and perirolandic regions. The major sulci and gyri are well developed.
Myelination involves the genu of the corpus callosum, although a majority of the T1w
and T2w signal remains switched around 3 months. The majority of the white matter
is hyperintense in T2w, making it difficult to differentiate from cerebral edema.

2. 12 months pattern; Characterized by further progression of myelination anteriorly
(5-9 months of age), superiorly, and laterally. The splenium of the corpus callosum
becomes myelinated during this time. Around 12 months, the rate of myelination
drops off, with tissue contrast more closely resembling a fully developed brain on
T1-weighted imaging.

3. 24 months pattern; After 2 years, essentially the adult myelination pattern is seen on
T1-weighted imaging, however T2-weighted sequences will still have areas of bright
signal that are not found in an adult.

4. 36 months pattern; T2 hyperintense signals consistent with white matter tracts that
have yet to be myelinated can be found in the young adult, especially in the frontal
lobes.
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Without biomarkers to diagnose NDD or quantitative assessment of neurological
pathology in infants, these NDDs are identified through physical exams and imaging tests.
Then improvements in the identification of MRI abnormalities is needed in infants to predict
long term damage and to assign earlier interventions. Automated BDAE algorithms applied
to infants who were imaged with MRI in clinical care could thus provide a reproducible,
automated second opinion to the clinicians’ assessment. Current pediatric neuroradiology
assesses the age of the patient predominantly from myelination of the brain and brain
volume. Such an approach suffers from interobserver and intraobserver variability. Arti-
ficial intelligence algorithms may make it possible to evaluate early signs of delayed age
more objectively and quantitatively for each patient. Deep learning (DL) is one of the most
successful variants of machine learning, utilizing deep artificial neural networks (ANNs).
These hierarchically organized ANNs are able to learn efficient feature representations of
input data Mostapha and Styner, 2019; Jahangard, Zangooei, and Shahedi, 2020; Hosseini,
Chen, and Jablonski, 2020; Cui et al., 2020. State-of-the-art BDAE approaches use manually
extracted features, preventing subsequent machine learning approaches from fully exploit-
ing the content inherent in sequences of MR images J. Wang et al., 2014; Franke et al., 2010;
Lao et al., 2004.

We hypothesize that a custom 3D deep learning approach (a 3D Convolutional Neu-
ral Network, 3D CNN) could be used to differentiate age-appropriate brain development
from retarded development based on multi-modal MRI sequences. As it will be shown, this
is not the case, and we examine possible reasons by providing different types of reduced
information to the DL approach: 3D data, 2.5D data, and 2D data. The ultimate aim of
this work is to approach a continuous (rather than age-group stratified) estimation of the
developmental brain age from MRI. But even a classification into age groups will help to
identify patients with developmental delay and serve as an objective finding that could help
eliminate interobserver and intraobserver variability. It could also be used to risk-stratify
different patient populations.

2.3 Deep Learning Based Modeling of Brain Age

The fundamental strengths of deep learning algorithms LeCun, Bengio, and G. Hinton,
2015, as well as their utility in radiology Litjens et al., 2017 are undisputed. deep learning
can be considered the state of the art methodology for image classification, which in this
work we want to explore for the task at hand. DL algorithms, specifically convolutional
neural networks (CNNs), have become widely used for analyzing medical images. The
inferential bias of CNNs explains how CNNs provide powerful image analysis, W. Wang
et al., 2019; Yamashita et al., 2018, while lessening pre- and post-processing tasks, thus
enabling easier classification. Various architectures of CNNs were developed over the past
10 years, offering potential to increase the accuracy and speed of image classification or
automatic segmentation (Sarvamangala and Kulkarni, 2021).
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Though conceptually convincing, the use of 3D CNNs for medical image analysis
tasks is challenging because of their computational complexity. Nevertheless, 3D deep
learning models are being used increasingly in medical imaging Singh et al., 2020, which
is particularly relevant for classification tasks. Otherwise, the per-slice classification in-
formation derived from a 2D CNN would need to be integrated secondarily, or even be
disregarded entirely by only classifying a predetermined single slice. A 3D CNN architec-
ture, on the other hand, is the natural choice for analyzing volumetric imaging data. 3D
CNN have been shown to accurately estimate developmental brain age from MRI data using
healthy adult samples Cole et al., 2017. Statistical tests and multiple publications indicate
that 3D CNN models were able to classify MRIs more accurately than the 2D CNN models
in sufficiently large datasets. Hong et al., 2020; Shabanian et al., 2019; Jnawali et al., 2018;
Gao, Hui, and Tian, 2017. In this chapter, however, we show that a 2D CNN achieves a per-
formance superior to that of the best 3D network we designed for the available cases of rare
genetic and neurological disorders and the concomitant images. In the meantime, we work
with radiology to obtain images in similar cases meeting similar medical classifications,
even though they are rare.

2.4 Materials and Methods

2.4.1 Dataset

We obtained 552 normal MRI scans (equaling 184 sets of T1w, T2w, and PDw sequences)
of 84 infants from the NIMH Data Archive (NDA). Some records were for infants who
had several exams at different ages. In all training-validation splits, we ensured that these
patients were always assigned to training or validation sets only. The patients ranged in age
from 8 days to 3 years, spanning a critical developmental period to enable early diagnosis
of neurological sequelae. The infants were scanned with 1.5T MRI while awake or during
natural sleep without sedation. MRI acquisition generally lasted 30–45 minutes on a 1.5T
scanner with a 2D sequence that minimized scan duration for the newborn to 3 years group.
The axial scans consisted of a 2D T1-weighted (T1W) spin echo and a T2-weighted (T2W)
2D turbo spin-echo sequence. The T1W sequences utilized repetition time (TR) 500, echo
time (TE) 12, 90-degree flip angle, and 3-mm slice thickness. The T2W and PD-weighted
(PDW) scans utilized TR 3500, TE 15-17 (115-119), and 3-mm slice thickness. The T1W and
T2W scans were nominally 1×1×3 resolution (1×1×3 or .97×.97×3) with a matrix of 256 x
192 mm. Most scans were obtained using a Siemens Medical Systems (Sonata, Magnetom)
scanner, another site used a GE Signa Excite scanner (GE Healthcare, Chicago, IL) to obtain
less than half of the scans. Sanchez, Richards, and Almli, 2012.

All our models were trained on a personal computer (NVIDIA TITAN RTX GPU,
Python 3.7.9, TensorFlow 2.1.0). 1

1Codes are available in Appendix C



Chapter 2. Neurodevelopmental Disorders 11

2.4.2 Model Details

For our estimation of brain developmental age, we designed custom 2D, and 3D fusion
CNN architectures. We slightly downsampled all MRIs to 250x250x40 voxels and we
cropped a center region to 150×150×20 voxels for 3D model and to 150×150 for 2D model to
reduce computational complexity while maximizing the amount of information retained
from the original resolution.

Our 3D proposed architecture has four scale level blocks consisting of following
parts:

a. 2-2-2-1 (3x3x3) convolutional layers followed by

b. 2x2x2 max pooling layers,and a global average pooling layer before

c. three fully-connected (FC) layers that lead into

d. the SoftMax four-class output layer

The convolutional blocks feature 32, 64, 96, and 128 channels, respectively. We
used two blocks of 2x2 convolutional layers, four 64 channels and two 128 channels for
our 2D proposed model with 2x2 max pooling and three FC layers as a simple model.
Following best practices, cross-entropy divergence loss and the Adam optimization algo-
rithm (lr=0.001) were used for the loss function and optimizer, respectively in both the
2D (368,580 parameters) and the 3D model(392,516 parameters). The model weights were
randomly initialized. Since no separate test data was available, we used a stratified 5-fold
cross-validation scheme to train and validate all CNN models. In 84 patients with partially
multiple visits, this resulted in 139-154 images in the training set and 30-45 images in
the validation set. We performed data augmentation to reduce potential overfitting and
monitored training and validation loss accordingly. Each image in the training set of both
models was augmented by L/R flipping, static rotations around the z axis by ±15 degree,
and random rotations of ±15-45 degree. Table 2.1 and Table 2.2 show the 2D and 3D fusion
CNN model in detail.

2.5 Exprimental Evaluations

To measure the performance of classification of MRIs in each category, we calculated six met-
rics in the entire validation dataset: positive predictive value (PPV), true positive/negative
rate (TPR, TNR), F1-score (FS), accuracy (ACC), area under the receiver operating charac-
teristic curve (AUROC) and Matthew’s Correlation Coefficient (MCC). These metrics are
useful to characterize the performance of models in multi-classification tasks on imbalanced
datasets, where accuracy is a misleading metric if reported alone (Vidiyala, 2020). We
reported the metrics according to the four classes of brain developmental age and the
classification errors in a normalized confusion matrix for the most accessible visualization.
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Table 2.1: 2D CNN model for early fusion.

Table generated by Python.
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Table 2.2: 3D CNN model for early fusion.

Table generated by Python.
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Figure 2.1: Accuracy/loss in 2D CNN in T1w, averaged for 5 folds.

Table 2.3: Overall statistical results in T1w.

Overall Statistical Results/Metrics

CNN Model Acc TPR PPV TNR F1 MCC

2D CNN 0.81 0.81 0.79 0.94 0.80 0.74
2.5D CNN 0.58 0.58 0.63 0.85 0.59 0.43
3D CNN 0.77 0.77 0.78 0.92 0.78 0.69

2.6 Results

2.6.1 Baseline Experiment

Several studies used only T1-weighted MRI volumes to estimate brain age using CNN
Cole et al., 2017; Jnawali et al., 2018; Ueda et al., 2019. Therefore, we initially performed
a corresponding experiment using only the T1w scans in our proposed CNN models. We
compared them through 5-fold cross-validation similar to the methodology used when
evaluating the fusion models. Dropout (0.7) and (0.2) used respectively in first and second
FC layers and batch normalization further help to improve model convergence.

The training progress of this model is pictured in Figure 2.1 in terms of train-
ing/validation accuracy and loss averaged over the five folds. Training resulted in a
micro-averaged 81% validation accuracy. Table 2.3 provides the accuracy (Acc), recall
(TPR), precision (PPV), specificity (TNR), F1-score and MCC for this and the compared
inferior 2.5D and 3D CNNs. We observe that in our setting, the 2D CNN model outperforms
the more complex architectures. In small validation test datasets, we hypothesize that
complex architectures like 3D CNN models are not an appropriate option.
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Figure 2.2: 3D CNN architecture for early fusion.

Figure 2.3: Accuracy/loss in 2D fusion CNN, averaged for 5 folds.

2.6.2 3D Fusion CNN versus 2D Fusion CNN in Brain Age Classification

The early fusion of this data was to concatenate the three MRI sequences into the channel
dimension of the input image. We trained our proposed fusion CNN models multiple times
before selecting a set of hyperparameters that we used in all subsequent experiments. Table
2.4 shows the detailed metrics for this and the compared 3D in fusion models.The proposed
2D fusion model outperformed the 3D model at a 90% accuracy across the cross-validated
validation.

Figure 2.2 shows the 3D CNN architecture using the early fusion strategy on sets of
184 fusion inputs consisting of MR-T1w, T2w and PDw MRI sequences. Our approach to
early fusion of this data is to concatenate the three MRI sequences into the channel dimen-
sion of the input image. Note that there is considerable motion between the contrast which
we didn’t account for through image registration. We trained our proposed fusion CNN
models multiple times before selecting a set of hyperparameters (epochs to train, learning
rate schedule, early stopping criteria etc.) that were used in all subsequent experiments.

The averaged training/validation accuracy and loss of the 2D fusion CNN model is
depicted in Figure 2.3, and Table 2.4 shows the detailed metrics for this and the compared
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Table 2.4: Overall statistical results in the fusion CNN models.

Overall Statistical Results/Metrics

CNN Model Acc TPR PPV TNR AUROC F1 MCC
Kappa
95% CI

2D CNN 0.90 0.90 0.90 0.97 0.99 0.90 0.86 (0.79-0.92)
2.5D CNN 0.87 0.87 0.86 0.92 0.98 0.87 0.83 (0.74-0.90)
3D CNN 0.86 0.86 0.85 0.91 0.98 0.86 0.83 (0.75-0.89)

(a) (b)

Figure 2.4: Confusion matrices for (a) 2D and (b) 2.5D fusion CNN.

2.5D and 3D in fusion models, followed by the normalized confusion matrices in Figure 2.4
and Figure 2.5. Consistent with the results on the T1w data alone, the proposed 2D fusion
model outperformed the other architectures at a 90% accuracy across the cross-validated
validation.

We observed that using the fusion of common three MRI sequences improved per-
formance in estimating brain developmental age. Despite the small dataset, the proposed
simple 2D fusion CNN model achieved high accuracy in estimating brain developmental
stage accurately. The fusion of multiple MRI sequences helped to extract more hierarchical
features from the images. In infants, T1w, T2w and PD sequences were crucial to estimation
of brain development. We compared the overall statistical results of the proposed 2D and
3D CNN models using fusion of MRI sequences. While 3D CNNs are supposed to yield
higher performance for analyzing volumetric data, we achieved better performance using
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Figure 2.5: Confusion matrix for 3D fusion CNN.

the 2D fusion CNN model. We hypothesize that in cases where very little data is available,
it is not possible to extract predictive information from the convolutional layers in the 3D
model, since the variability of the ”normal” is too high to be captured in the limited dataset.
Therefore, the use of the 2D model provides an advantage, although it is likely that in a
scenario with more data the 2D model might be surpassed by a 3D model. CNN fusion
models might be able to detect subtle micro- and macro-structural changes and aberrant
connectivity variances that might go undetected at an age where early intervention could
impactpatient care. In addition, these findings may be undetectable by the human eye until
much later in the child’s development, preventing implementation of an early treatment
plan. This paper illustrated that better performance could be obtained by passing the whole
MRI volume from three MRI sequences into the 2D fusion CNN model.

2.7 Summary of Results

We compared the overall statistical results of the proposed 2D, 2.5D, and 3D CNN models
using T1w and fusion of MRI sequences. While analysis of volumetric data using 3D CNNs
would be expected to perform better, we achieved better performance using the 2D fusion
CNN model. We hypothesize, also based on the additional 2.5D experiment, that in a
setting with only few data, the extraction of predictive information in the convolutional
layers is not possible in the 3D model, since the variability of the "normal" is too large to be
captured in the limited data. Therefore, the 2D model has an advantage, though it is likely
that in a scenario with small data, it might be surpassed by a 3D model. Further statistical
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Table 2.5: Overall statistics in T1w/fusion MRI using 2D CNN model.

Overall Statistical Results/Metrics
CNN Model Acc TPR PPV TNR AUROC F1 MCC
2D CNN /T1w 0.81 0.81 0.79 0.94 0.98 0.80 0.74
2D Fusion CNN 0.90 0.90 0.90 0.97 0.99 0.90 0.86

results showed – much in line with the clinical hypothesis – that the fusion of multiple MR
sequences improves the performance of age estimation in infants (Table 2.5).

Stacking multiple MRI sequences might help to find high-level features associated
with age from different MRI sequences. Therefore, CNN fusion models might be able
to detect subtle micro- and macro-structural changes, as well as aberrant connectivity
variances that may go undetected at an age where early intervention could have impacted
patient care. In addition, these findings may be undetectable by the human eye until much
later in the child’s development, preventing implementation of an early treatment plan.
This research showed better performance by passing in the whole MRI volume from three
MRI sequences into the 2D fusion CNN model.

2.8 Discussion

Our counterintuitive finding was that a small model (in terms of depth and number of
trainable parameters) outperformed more complex models with higher numbers of levels
and parameters. Our result needs to be replicated on a larger, less redacted dataset in future
research and the special value of working with 2D images needs to be elaborated upon
with respect to voxel size and volume of tissue in the voxels. Ablation studies may provide
exemplary methods for selecting optimal model complexity with regard to the classification
task and the available dataset(s). The major goal of this work is to show that 2D CNN
works better in the small number of samples. The original dataset has four age classes,
even though the number of cases was too small specifically in 24 months to achieve reliable
performances. Despite the small dataset, our method achieved high accuracy, and therefore
suggests that further work is warranted to test whether BDAE using 2D fusion CNN might
have a role in patient care.

Based on these results, 2D fusion CNNs could be used to determine the trajectory
of normal brain development and neurodevelopmental age within the first three years of
life. This approach could also prove useful of fusion multiple MR sequences in identifying
otherwise undetectable abnormalities in brain development to improve performance.
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Chapter 3

TSC Structural Brain Pathology Detection

3.1 Introduction

Of people born with mutations causing tuberous sclerosis complex (TSC) and demonstrating
symptoms in childhood, neurological involvement is a leading cause of death. Such
neurological involvement, including epilepsy, can cause significant long-term sequelae
in children (Jóźwiak, 2021; Hulshof, Benova, et al., 2021). Recent research demonstrates
a correlation between tuber load and outcome. Although this relationship is complex,
tubers are associated with epilepsy (Cohen et al., 2021), affecting more than 90% of patients
with TSC and may become intractable. Brain involvement in TSC can be detected by
magnetic resonance imaging (MRI). Still, neuroimaging analysis is time- and labor-intensive,
begging the need for automated approaches to these tasks to improve speed, accuracy, and
availability. In this light, we explored the general feasibility of using three-dimensional
convolutional neural networks (CNNs) to automatically enhance image diagnosis quality
and consistency to identify anatomical abnormalities in TSC children. We trained the
3D CNN on axial T1-weighted, axial T2-weighted FLAIR, and 3D T1-FSPGR weighted
images from 296 TSC and 245 Normal cases from birth to 8 years of age, acquired at Le
Bonheur Children’s Hospital, were acquired with IRB permission. In the best performing
DL approach, our model had an accuracy of 0.82 [95% CI:0.75-0.90] with 0.90% AUC.

3.2 Tuberous Sclerosis Complex in Children

Tuberous sclerosis complex (TSC), a rare autosomal dominant multisystem disorder, exhibits
a phenotype that is both age-dependent and highly variable. Central nervous system
manifestations form a significant burden of disease in young children with TSC (Henske
et al., 2016; Curatolo, Moavero, and Vries, 2015). Epilepsy affects 90% of TSC patients, and
70% experience their first seizure during the first years of life (Gupta et al., 2020). Up to 60%
of TSC patients develop drug-resistant epilepsy (Gupta et al., 2020; Jeong, Nakagawa, and
Wong, 2017), and 50% of patients exhibit intellectual disability, behavioral problems, and
autism spectrum disorder (ASD) (Curatolo, Moavero, and Vries, 2015; Jeste et al., 2016; Torre-
Ubieta et al., 2016; Capal et al., 2017). Clearly, intervention to limit the neurological issues for
patients with TSC represents a significant unmet need. Early identification and treatment
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of infants with TSC at risk of developing epilepsy (and subsequent neurodevelopmental
delay) greatly improve outcomes. The international TSC guidelines call for MRI evaluation
of the child’s brain at diagnosis (Northrup et al., 2013). Neuroimaging is important for
detecting TSC brain lesions that can contribute to the neurological disease process, even
during fetal development (Hulshof, Slot, et al., 2021). Although neuroimaging analysis
is time-consuming and labor-intensive, automated approaches to neuroimaging analysis
could improve detection of lesions that can lead to poor outcomes.

We propose to automate neuroimaging analysis with artificial intelligence algorithms.
This novel approach can be used to improve the accuracy of TSC diagnosis and treatment.
Deep learning (DL) is among the most successful types of machine learning and utilizes
deep artificial neural networks (ANNs), which can learn to efficiently extract and classify
feature representations of input data (Mostapha and Styner, 2019; Jahangard, Zangooei,
and Shahedi, 2020; Cui et al., 2020). DL algorithms have created new opportunities in
medical image analysis. Applications of DL, specifically convolutional neural networks
(CNNs), in medical image analysis cover a broad spectrum of tasks, including risk predic-
tion/estimation. With a machine learning system trained on this classification task, TSC
patients at risk for epilepsy might receive more tailored or earlier intervention based on an
imaging study included in their existing diagnostic work-up.

3.3 Materials and Methods

3.3.1 Data

We received Institutional Review Board (IRB) approval for this study, which was conducted
at the TSC Center of Excellence at Le Bonheur Children’s Hospital. We collected existing
longitudinal data from 98 TSC patients with multiple visits (2 to 11 visits) and 245 control
subjects with one visit. In total, we reviewed multiple MRI sequences from 296 TSC cases
with epilepsy and 245 controls from birth to 8 years of age who were imaged between 2014
and 2020. TSC patients and control subjects were imaged on a 1.5T GE scanner, 1.5T Toshiba
Scanner, 3T GE scanner, or 3T Siemens Scanner. The inclusion criteria for the control group
were children who had one brain MRI scan performed at Le Bonheur Children’s Hospital
which was interpreted as normal interpretation by a pediatric neuroradiologist .

We reviewed one 3D and two 2D sequences available in Neuroimaging Informatics
Technology Initiative (NIfTI) image volume format. The 3D images were obtained with a
sagittal T1-fast spoiled gradient-echo (FSPGR) sequence (TR/TE: 9-12/3-4.5; acquisition
matrix: 256 × 256; field of view: 22 mm2; inversion time: 450.00 milliseconds; flip angle:
13°; slice thickness: 1.2-0.8 mm with no space). The first 2D acquisition was an axial fast
spin-echo T2-weighted fluid attenuated inversion recovery (FLAIR) sequence (TR/TE:
8,000-10000/120-130; acquisition matrix, 512 × 512; field of view: 21 mm2; slice thickness:
4.0–5.0 mm with 1.0-mm space). A T1-weighted sequence completed the protocol (TR/TE:
variable/8-10; inversion time: 1,111 milliseconds; acquisition matrix: 256 × 256; field of
view: 21 mm2; slice thickness: 4.0 mm with 1.0-mm space).
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Table 3.1: Number of TSC and Normal Cases in each MRI sequence.

MRI Sequences #TSC Cases #Normal Cases
AX T2-Flair 266 246
AX T1 186 149
Sagittal T1-FSPGR 266 238

Figure 3.1: TSC/Normal balanced Train and valid dataset in AX T2 Flair.

The numbers of TSC and Normal cases that we reviewed in these three common
MRI sequences are different. Table 3.1 and Figure 3.1 show the exact number of TSC and
Normal cases that had these three common MRI sequences in this research.

3.3.2 Model Details

We made all MRIs isotropic (1.0, 1.0, 1.0) and same size (200x200x100) for our model.
Our proposed 3D architecture has four scale-level blocks comprising 2-1-1-1 (3x3x3) con-
volutional layers, 2x2x2 max-pooling layers, a global average pooling layer, and three
fully-connected (FC) layers that lead into SoftMax. The convolutional blocks have 32, 64,
128, and 215 channels. We used batch normalization, dropout, regularization and global
average pooling and three FC layers. Following best practices, binary cross-entropy diver-
gence loss and the SDG optimization algorithm (lr=0.0001) were used for the loss function
and optimizer, respectively in this proposed 3D CNN architecture.

Table 3.2 and Figure 3.2 and show the proposed 3D CNN model, which has 2,068,117
trainable parameters. The model weights were randomly initialized. We had no separate
test data available, so we divided 296 TSC and 245 Normal cases into training (80%) and
validation (20%) data sets in each class. Then, we trained the same 3D CNN model for each
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Table 3.2: 3D CNN model (TS3DCNN) in binary TSC task.

2,068,117 total parameters. Table generated by Python.
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Figure 3.2: 3D CNN model in binary task.

MRI sequence and compared their results to identify TSC structural pathology like tubers
and nodules (Shahid, 2013).

3.4 Experimental Evaluations

To measure the model’s performance in MRI classification in each category, we calculated
five metrics in the entire validation data set: positive predictive value (PPV), true posi-
tive/negative rate (TPR, TNR), F1-score (FS), accuracy (ACC), and area under the receiver
operating characteristic curve (AUROC). These metrics are useful to characterize the per-
formance of models in classification tasks on imbalanced data sets where accuracy is a
misleading metric if reported alone (Vidiyala, 2020). We reported the metrics according to
the four brain developmental age classes. Classification errors are shown in a normalized
confusion matrix. All models were implemented on an NVIDIA TITAN RTX GPU using
Python 3.7.9 and TensorFlow 1.15.0. 1

3.5 Results

Based on cortical and subcortical tubers that will appear based on MRI signal intensity in
the frontal, parietal, temporal, and occipital cortex, we have examined the 3D CNN model
to identify anatomical abnormalities in TSC children from Normal using only one MRI
sequence. We compared the performance of three effective MRI sequences, such as T1-
weighted, T2-weighted FLAIR, and T1-FSPGR (1-mm isotropic voxels), which are the best
sequences for visualizing cortical tubers and detecting abnormal cortical development in
volumetric analyses. Some types of tubers are isointense on T1w and hyperintense on T2w
Flair. And other types of tubers are hypointense on T1w and homogenously hyperintense
or heterogenous on T2w Flair. Furthermore, the recent progress in 3D T1 FSPGR sequences
makes them valuable to identify anatomical abnormalities in TSC children.

1Codes are available in Appendix D.



Chapter 3. TSC Structural Brain Pathology Detection 24

Figure 3.3: Accuracy/loss in 3D CNN using T2w Flair.

Table 3.3: Overall statistical results in TS3DCNN models in each MRI
sequence.

Overall Statistical Results/Metrics

CNN Model Acc TPR PPV TNR AUROC F1 Kappa 95% CI
AX T2-FLAIR 0.82 0.82 0.82 0.80 0.90 0.82 (0.50-0.80)
AX T1 0.75 0.75 0.75 0.73 0.86 0.75 (0.75-0.89)
T1-FSPGR 0.71 0.71 0.71 0.70 0.77 0.72 (0.10-0.76)

The training/validation accuracy and loss for T2w is depicted in Figure 3.3. Table
3.3 shows the detailed metrics for comparing the three sequences that we reviewed to dis-
tinguish TSC anatomical abnormalities from normal, followed by the normalized confusion
matrices in Figure 3.4 and Figure 3.5. T2-FLAIR showed higher accuracy in diagnosing
TSC cases than T1-weighted and T1-FSPGR.

3.6 Comparison with BCH 2D TSCCNN Model

We compared our proposed TS3DCNN model with TSCCNN model from Boston Children’s
Hospital (BCH) (Sánchez Fernández et al., 2020). They used some 2D slices from T2 and
FLAIR axial MRIs for training the 2D CNN model. Their 2D CNN model consisted of: 2-2-2-
6 (2x2) convolutional layers followed by 2x2x2 max pooling layers that convolutional blocks
feature 64, 128, 256, and 512 channels, respectively; it included a GlobalAveragePooling
layer to flatten the input. They trained their 2D neural network with a batch size of 64
on 5634 samples in training,and validate on 248 samples. They achieved 83% accuracy in
validation dataset Figure 3.6.

Compared to our proposed TS3DCNN model, they used a deeper model and more
samples in training and validation, because they used two MRI sequences. We observe that
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(a) (b)

Figure 3.4: Confusion matrices for (a) T1-weighted, (b) T2-weighted
FLAIR.

Figure 3.5: T1 FSPGR confusion matrix.
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Figure 3.6: Accuracy/Loss in TSCCNN model.

the 3D CNN models improves performance in estimating over using one MRI sequence.
3D models help to extract more hierarchical features from images.

3.7 Discussion

To our best knowledge, this study is the first to demonstrate that 3D CNNs can be used
to identify TSC anatomical abnormalities and tuber features using standard brain MRI
sequences for TSC cases. An automatic 3D deep neural model helps to enhance image
diagnosis quality to detect anatomical abnormalities related to tubers in TSC children. Our
approach provides results from T1-weighted, T2-weighted FLAIR, and 3D T1-FSPGR brain
MRI to detect TSC cases from normals using the proposed 3D CNN model. Accurately
detecting likely epileptogenic tuber zone in TSC cases may assist physicians with more
rapid and reliable identification of TSC cases at high risk of epilepsy.
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Chapter 4

Conclusions, Discussion and Future Directions

4.1 Conclusions

Neuroimaging is vital for detecting brain lesions that may contribute to the neurologic
disease process, especially during infant brain development (Hulshof, Slot, et al., 2021).
There is an unmet need to optimize the anatomical identification of lesions, leading to
deleterious neurological outcomes and seizures in children. Prediction of anatomical
abnormalities at birth is still very challenging because of confounding factors in infant brain
development, including genetic and epileptogenic. It is especially difficult in infants due
to the small brain sizes, low image resolution and, artifacts due to motion, and especially
rapid structural changes during the first 3 months of age. Delayed brain development
in infants causes long-term neurological disorders, the impact of which can be lessened
by early intervention, especially during the first 3 years of age. Analysis of neuroimages
is time- and labor-intensive and in addition requires extensive training. In this situation
effective, automated approaches to the analysis tasks can improve the clinicians speed,
accuracy, and ability to bring the information inherent in MRI images to the diagnostic and
prescriptive aspects of providing patient care.

To approach this problem, we propose to leverage the high-dimensional data and
computing capabilities using machine learning. This approach is emerging to better under-
stand pathways to diagnose and treat disease accurately. We used deep learning to develop
an approach to optimize the anatomical pathology-neurological outcome relationship. Deep
learning has gained an increasingly critical role in brain MRI (LeCun, Bengio, and G. Hinton,
2015; Yamashita et al., 2018; Mazurowski et al., 2019). Through neuroimaging, deep learning
can assist in identifying disease markers and translate them into windows of opportunities
for interventions in diagnosis, treatment, and management of neurological disorders in chil-
dren with TSC. Convolutional neural networks (CNNs) have shown promise in a variety of
applications, including automatic diagnosis, biomarker identification, early detection, and
risk assessment for neurological conditions in children. CNNs are a type of deep learning
approach that automatically learns to detect patterns of interest in images. Convolutional
Neural Network is an excellent model for medical tasks when data are limited. We ad-
dressed this critical need by leveraging the information contained in the high-dimensional
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data using the Fusion CNN model. This approach has rapidly emerged as a new trend to
better understand pathways and accurately diagnose and treat disease.

Prediction of anatomical abnormalities at birth is still very challenging because of
some confounding factors in infant brain development, including genetic and epilepto-
genic. It is especially difficult in infants due to the small brain sizes, low image resolution
and, artifacts due to motion, and also rapid structural change across first 1-3 months of
age (discussed in Chapter 2). Despite these challenges, tuberous sclerosis complex is a
multisystem genetic disorder with a high prevalence of neurodevelopmental comorbidities
and a high risk of early-onset epilepsy in children. Approximately 90% of patients with
TSC develop medically refractory epilepsy. Refractory epilepsy can increase the risk of
impaired neurodevelopment and early death. Epilepsy affects 90% of TSC patients and
about 70% experience their first seizure during the first years of life. Up to 60% of TSC
patients develop drug-resistant epilepsy, and intellectual disability, behavioral problems,
and autism spectrum disorder are reported to affect 50% of patients. Prediction of long-
term neurological disorders and epileptogenic abnormality within the first few years of
age especially remains a desirable goal that would be helpful to obtain better treatment
planning and more informed assessment of patient outcomes. CNN models are useful when
important features are too complex to be detected directly, e.g., epileptogenic abnormality.

Our most astonishing finding is perhaps that a small fusion deep learning model (in
terms of depth and number of trainable parameters) performs much better than attempts
with deeper and complex models. Based on these results, Simple fusion CNNs using
stacking effective whole MRI volume from multiple MRI sequences could be used to deter-
mine the trajectory of identifying brain development disorders in rare genetic, neurological
disorders in small datasets (chapter 2). Usually, each subject has multiple MRI sequences
that our proposed model can detect effective sequences to diagnose (chapter 3) and then
fuse them as an input. Fusion is an intuitive approach for linking and integrating relevant
and complementary information from multiple MRI sequences into one fused body of
data to accurately diagnose in the early stage of neurodevelopmental disorders. Therefore,
with fused volumetric information, we seek via DL to obtain models of lesser complexity
and depth. In this light, we explored the general feasibility of using fusion CNN model
to automatically enhance image diagnosis quality and consistency to identify anatomical
abnormalities in children in the early stages.

Also, this approach could prove that fusion of multiple MR sequences is useful
in efforts to identify undetectable abnormalities in brain development in children. In
addition, these findings may be undetectable by the human eye until much later in the
child’s development, preventing implementation of an early treatment plan. CNN fusion
models might be able to detect subtle micro- and macro-structural changes and aberrant
connectivity variances that might go undetected at an age where early intervention could
impact patient care in early stages. Early identification and treatment of infants at risk of
developing neurodevelopmental delay greatly improve outcomes. While these findings
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offer amazing promise and hope for better patient outcomes, the logistics of implementing
this approach to a world-wide population of infants with a rare disease are complicated.

4.2 Recent Deep-Learning Methods in Medical Imaging

Deep learning applications have received much attention because they can surpass hu-
mans in many tasks, especially in image analysis. However, deep neural networks lack
reliability and explainability. Without these properties, few would comfortably trust them
in medical imaging tasks. And so, deep learning algorithms are considered as imperfect
black boxes. The complex underlying mechanism of deep learning models is difficult
to understand. Methods categorized as explainable artificial intelligence (XAI) methods
could tackle these aforementioned issues. Therefore, explainable artificial intelligence has
become a hot research topic these days in deep learning models, especially in medical tasks.
Providing explanations is the aim of XAI methods in deep learning models to be rational
and understandable by humans, physicians, and radiologists in medical imaging tasks.
Papastratis, 2021 provided a survey from recent methods, applications and frameworks.

Explainable artificial intelligence systems have been interested for other medical
tasks. Deep learning models have shown significant results especially in medical imaging
tasks. Recently, researchers have focused on explainable medical systems to assist medical
experts and provide useful explanations so that any physician can understand the predic-
tions of a system. In Brunese et al., 2020, the authors focused on coronavirus detection
through x-ray images. They developed a deep convolutional model for extracting features
from images to determine if the patient is healthy or affected by coronavirus. Then they use
Grad-CAM (Xu et al., 2020; Selvaraju et al., 2017) to provide visual explanations and mark
the areas of the x-ray that are affected by coronavirus.

ExplAIner framework (Spinner et al., 2019) helps physicians to understand machine
and deep- learning models in medical classification and segmentation tasks. In addition,
this framework consists tools for analyzing models by using explainable techniques, which
can help to monitor the optimization process for building better models. The explAIner
can provide interactive graph visualization of a model, performance metrics and integrate
high-level explainable methods to interpret it.

4.3 Future Directions

Following the work in this thesis, there are some exciting possible directions of continued
exploration. For instance, the collection of a larger, less redacted dataset to continue this
research is currently underway at our hospital. Comparing the reported results to new ones
on the new data will confirm our hypotheses and show more definitely how precisely age
estimation and TSC anatomical abnormalities detection can become automatically obtained
for children at risk of long-term neurological disorders.
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Further, it would be helpful to have the opportunity to discuss the misclassified
cases with the radiology personnel who collect the data and the observers who interpret
it to better understand the failure modes of our models. Such work would help address
reproducibility and validity of the models.

Explainable methods (XAI) are another interesting direction of work. With XAI
applied to TSC structural brain pathology based on MRI sequences, a pediatrician might
have rapid and reliable identification of TSC cases at high risk of epilepsy upon examination
of the interpreted images. 3D visualization of important features in gradient-weighted
Grad-CAM and saliency maps using deep convolutional networks to visualize the seizure
onset zone from normal brain MRIs. These maps show where a CNN model focuses within
an MRI image to place the image into the epilepsy category. Such methods may be coupled
to the electrophysiological studies of epileptic regions of the brain.

Finally, establishing a precise 3D segmentation of childrens’ brain tissues for seg-
mentation of cortical tubers, subependymal nodules (SENs), and subependymal giant
cell astrocytomas (SEGAs) would be helpful in TSC diagnosis. So-called "panoptic" seg-
mentation (where each foreground voxel is assigned one class rather than detecting and
segmenting one target structure only) can be an essential step towards comprehensive
volumetric studies and especially, quantitative analysis of early brain development in TSC
patients with epilepsy risk. 3D CNNs will likely be used for automatic TSC MR image
segmentation. The project will provide methods to aid the clinicians that interpret structural
and functional changes of infant brains that lead to elevated risk for future impairments in
cognitive function and behavior(e.g., autism spectrum disorders). Continuing to develop
advanced predictive and analytical models to better understand the child’s brain for pre-
dicting neurological disease states will be a major effort in the coming decades. These AI
methods for estimating the BDA and determining locations of tuberous structures are a
sound place to begin that program of work.



31

Appendix A

NIMH Agreement



Appendix A. NIMH Agreement 32



Appendix A. NIMH Agreement 33



Appendix A. NIMH Agreement 34



Appendix A. NIMH Agreement 35



Appendix A. NIMH Agreement 36



Appendix A. NIMH Agreement 37



Appendix A. NIMH Agreement 38



Appendix A. NIMH Agreement 39



0MB Control Number: 0925-0667 
Expiration Date: 11/30/2020 

4. Renewal Applicants Only:

Has a publication, computational pipeline, or other public disclosure of results from the analysis of data accessed in the 
NIMH Data Archive resulted from a Recipient's previous access period? QI Yes □ No 

If Yes, has an NOA Study been created? □ Yes List the NOA Study number(s): _ _ _ _ _ _ _ _ _ _ 
QI No* List the PubMed ID(s) orcitation(s): 

arXiv: 1910.1259 2019 Oct 27 
- - - - - - - - -

* See 8. Sharing of a NIMH Data Archive Study/Acknowledgements above. Contact the NOA Help Desk (NDAHelp@mail.nih.gov) to 
create an NOA Study. 

5. Other Recipient(s): List all individuals who will access, use, or analyze the data regardless of position title or data 
use role. Use additional sheets as needed. 

First Name: Mahdieh Last Name: Shabanian Degree: Ph.D 

Institution: University of Tennessee  Health Science Center 

City: Memphis State/Province: T N  Country: _U_S_A _ _ _ _ _ _ _  _ 

Phone: 9012875384 E-mail Address: mshabani@uthsc.edu - - - - -= - - - - - - - - - - - - - - - - - -

First Name: Last Name: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  Degree: _ _ _  _ 
Institution: 

City: State/Province: _ _ _ _ _ _ _ _ _  Country: _ _ _ _ _ _ _ _ _  _ 
Phone: E-mail Address: 

First Name: Last Name: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  Degree: _ _ _  _ 

Institution: 

City: State/Province: _ _ _ _ _ _ _ _ _  Country: _ _ _ _ _ _ _ _ _  _ 
Phone: E-mail Address: 

First Name: Last Name: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  Degree: _ _ _  _ 
Institution: 

City: State/Province: _ _ _ _ _ _ _ _ _  Country: _ _ _ _ _ _ _ _ _  _ 
Phone: E-mail Address: 

First Name: Last Name: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  Degree: _ _ _  _ 
Institution: 

City: State/Province: _ _ _ _ _ _ _ _ _  Country: _ _ _ _ _ _ _ _ _  _ 
Phone: E-mail Address: 

Classification of Neurodevelopmental Age in Normal Infants Using 3D-CNN based on 
Brain MRI

Appendix A. NIMH Agreement 40



Appendix A. NIMH Agreement 41



42

Appendix B

IRB Approval Letter



_______________________________________________________________________
_

_________________________________________________________________________________________

Institutional Review Board
910 Madison Avenue, Suite 600

Memphis, TN 38163
Tel: (901) 448-4824

May 21, 2021

John Joseph Bissler, M.D.
UTHSC - Peds-Nephrology
49 North Dunlap Street Room 323
Memphis, TN 38163-2242

Re:  21-08082-XM
Study Title:  Deep Neural Network Model Detection of Anatomical Biomarkers for Epilepsy in Tuberous 
Sclerosis Complex (TSC) in pediatric patients based on MRI and CT

Dear Dr. Bissler:

The Administrative Section of the UTHSC Institutional Review Board (IRB) reviewed your application 
for revision of your previously approved project, referenced above. 

The IRB determined that your revision application is eligible for expedited review under 45 CFR 
46.110(b)(2) and that your study remains eligible for exempt status under 45 CFR 46.104(d) (4) (iii). The 
attached revisions to your project were approved as complying with proper consideration of the rights and 
welfare of human subjects. The use of children as subjects is approved under 45 CFR 46.404.

The revisions to this study may not be instituted until you receive approval from the institution(s) where 
the research is being conducted.

In the event that subjects are to be recruited using solicitation materials, such as brochures, posters, web-
based advertisements, etc., these materials must receive prior approval of the IRB.  Any revisions in the 
approved application must also be submitted to and approved by the IRB prior to implementation.  In 
addition, you are responsible for reporting any unanticipated problems, including reportable adverse 
events, involving risks to subjects or others in the manner required by the local IRB policy.  Lastly, you 
must request to close your project when you have completed data analysis by submitting a study closure 
form to the IRB.

Appendix B. IRB Approval Letter 43



Sincerely,

Signature applied by Lisa Robin Hagen  on 05/21/2021 07:25:40 AM CDT

Lisa Hagen BA
IRB Administrative Research Specialist
UTHSC IRB

Attachment: Revisions

1. The study application was updated to Version 1.3 to incorporate:

a) The addition of Harris Cohen as co-investigator
b) The addition of Mohammed Abdeen as research support staff
c) Updated KSP contact information and;
d) Converted to the latest application format

2. In accord with 45 CFR 46.104(d)(4), informed consent remains not required

Please note that while the IRB is still processing IRB submissions during the COVID-19 
pandemic, you must follow the UTHSC IRB’s COVID 19 policy located on our website 
here: https://www.uthsc.edu/research/compliance/irb/covid-19.php  You must review 
the policy and adhere to it as it relate to any and each of your UTHSC IRB studies.

Appendix B. IRB Approval Letter 44



45

Appendix C

MRI Classification_5 fold_ NIfTI (2D CNN & 3D
CNN)



MRI Classification_5 fold_ NIfTI (2D CNN & 3D CNN)
Mahdieh Shabanian

October 1, 2021

[ ]: # Under Review

# 2D and 3D CNN models were trained on a personal computer (NVIDIA TITAN RTX␣
↪→GPU, Python 3.7.9, TensorFlow 2.1.0)

[ ]: from __future__ import division, print_function, absolute_import

import math
import time
import sys
import cv2
import os
import random
import itertools
from pathlib import Path

import numpy as np
from PIL import Image
from os import listdir
from os.path import join, basename, isdir
from scikitplot.metrics import plot_confusion_matrix, plot_roc
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score,␣

↪→classification_report
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
from sklearn.preprocessing import normalize
from sklearn.utils import shuffle
from skimage.color import gray2rgb
from tqdm.notebook import trange, tqdm, tqdm_notebook
import scipy
from scipy import ndimage
import h5py
import zipfile
import pandas as pd

import matplotlib.pyplot as plt
import matplotlib.image as im
import matplotlib.image as img

1
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import nibabel as nb
from nibabel.testing import data_path
import SimpleITK as sitk

%matplotlib inline

[ ]: import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow import keras
from tensorflow.keras import optimizers
from tensorflow.keras.optimizers import schedules

# If you use a recent tensorflow, you HAVE TO use the tensorflow.keras␣
↪→exclusively, or you can get weird results from version mismatches.

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model, load_model, save_model, Sequential ␣

↪→#to creat hirachical layers
from tensorflow.keras.layers import Dense, Activation, Dropout,SpatialDropout2D,␣

↪→Flatten, Conv3D, Conv2D, MaxPool3D, MaxPool2D, GlobalAveragePooling3D,␣
↪→GlobalAveragePooling2D, Flatten, Input, BatchNormalization, GRU,␣
↪→Bidirectional,Reshape

from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, Callback
from tensorflow.keras.losses import categorical_crossentropy, binary_crossentropy
from tensorflow.keras.optimizers import Adadelta, Adam, SGD
from tensorflow.keras.regularizers import l1, l2
from tensorflow.keras.utils import to_categorical
from matplotlib.pyplot import cm

# more info on callbakcs: https://keras.io/callbacks/ model saver is cool too.

[ ]: # Confusion matrix
class_labels = ['Newborn', '12 Months', '24 Months', '36 Months']

def plot_confusion_matrix(cm,
target_names=class_labels,
title='Confusion matrix',
cmap=None,
normalize=True):

"""
given a sklearn confusion matrix (cm), make a nice plot

Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix

target_names: given classification classes such as [0, 1, 2]

2
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the class names, for example: ['high', 'medium', 'low']

title: the text to display at the top of the matrix

cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.

↪→html
plt.get_cmap('jet') or plt.cm.Blues

normalize: If False, plot the raw numbers
If True, plot the proportions

Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix␣

↪→created by
# sklearn.metrics.

↪→confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of␣

↪→the classes
title = best_estimator_name) # title of graph

Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/

↪→plot_confusion_matrix.html

"""
import matplotlib.pyplot as plt
import numpy as np
import itertools

accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy

if cmap is None:
cmap = plt.get_cmap('Blues')

plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()

if target_names is not None:
#plt.colorbar()
#plt.imshow(data, cmap=cmap, vmin=0, vmax=1)
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tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)

cm_norm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # [mwen]

thresh = cm.max() / 2 # [mwen]
thresh_norm = cm_norm.max() / 1.5 # [mwen]
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

if normalize:
plt.text(j, i, "{:0.2f}".format(cm_norm[i, j]) + "\n{:,}".

↪→format(cm[i, j]), # [mwen]
horizontalalignment="center", verticalalignment="center",␣

↪→fontsize=12,
color="white" if cm_norm[i, j] > thresh_norm else "black")

else:
plt.text(j, i, "{:,}".format(cm[i, j]),

horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label', fontsize=12, color='darkblue') # fontweight='bold'
plt.xlabel('Predicted label\nAccuracy={:0.2f}; Misclassification rate={:0.

↪→2f}'.format(accuracy, misclass), fontsize=12, color='darkblue')
plt.show()

[ ]: gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:

try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:

tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)

[ ]: # Global definitions
DO_3D = False

if DO_3D:
INPUT_SHAPE = (150,150,20,3)

else:
INPUT_SHAPE = (150,150,3)
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NUM_CLASSES = -1 # will be determined from the number of folders later.

[ ]: DATA_DIR = "F:/Python/Dataset/NIMH/Fusion/dev" # Directory of dataset

[ ]: os.listdir(DATA_DIR)

[ ]: # These are needed to decide based on the file path if an image belongs to train␣
↪→or valid

TRAIN_DIR_NAME = 'train_part'
VALID_DIR_NAME = 'valid_part'

0.0.1 Create a dataframe to hold the training/validation data information.

[ ]: source_files = []
for current_file in Path(DATA_DIR).rglob('*.gz'):

source_files.append(str(current_file).split('\\')[-3:])
source_files_df = pd.DataFrame(source_files)

print(source_files_df.head()) # Add this line to receive the output. It has to␣
↪→have three columns, or the format has to be fixed.

#source_files_df.columns = ['a', 'b', 'c', 'd', 'set', 'class', 'filename']
source_files_df.columns = ['set', 'class', 'filename']
filename_parts = source_files_df['filename'].str.split('_', expand=True) # Note␣

↪→that this is NOT the str.split() method, but a Pandas version! expand=True␣
↪→yields dataframe columns rather than a list.

source_files_df['patient_id'] = filename_parts[1]
source_files_df['visit'] = filename_parts[2]
ending = filename_parts[3].str.split('.', expand=True)
source_files_df['contrast'] = ending[0]
source_files_df.head()

CATEGORIES = list(source_files_df['class'].unique())
NUM_CLASSES = len(CATEGORIES)

# Create dictionary of target classes
label_dict = {
0: 'Month0',
1: 'Month12',
2: 'Month24',
3: 'Month36',

}

[ ]: FOLDS = 5 # How many folds to split into

patient_ids = source_files_df.patient_id.unique()
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# For stratified folds, we need to figure out the class for each patient. We␣
↪→assign it to the first, if imaged multiple times.

patient_classes = []
for patID in patient_ids:

patient_classes.append(source_files_df.
↪→loc[source_files_df['patient_id']==patID]['class'].unique()[0])

#print(list(zip(patient_ids, patient_classes)))

kf = StratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=4711)

# Save the folds yielded by the generator method into an array, in order not to␣
↪→need to wrap the entire training into the folds.

folds = []
for train_indices, val_indices in kf.split(patient_ids, patient_classes):

folds.append([patient_ids[train_indices], patient_ids[val_indices]])

1 Create 2D and 3D dataset

[ ]: pred = []
history = []

for TRAIN_ON_FOLD in range(FOLDS):

if DO_3D:
RESCALE_SHAPE = (250,250,30) # From this size, we will discard 50,50,5␣

↪→from each border to yield the 150x150x20 size.
else:

RESCALE_SHAPE = (250,250,50) # Don't throw away so much information for␣
↪→2D

INTERPOL_ORDER = 2

train_data = []
train_labels = []
valid_data = []
valid_labels = []

# loop over patients.
for patient in tqdm_notebook(patient_ids[:], desc='Patient'): # First, go by␣

↪→patients.
images = source_files_df.loc[source_files_df['patient_id']==patient]
# print(patient, '\n', images)
classes = images['class'].unique()

# loop over classes this patient is in.
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for the_class in classes: # Then by class (age group)
class_images = images.loc[images['class']==the_class]
#print(the_class, '\n', class_images)
visits = class_images['visit'].unique()

# Make sure there aren't multiple visits.
for visit in visits: # Then by visits...

visit_images = class_images.loc[class_images['visit']==visit]
#print(visit, '\n', class_images)

# For the fusion data, we expect 3 contrasts (which will end up␣
↪→in the channel dimension)

if len(visit_images)!=3:
print('should always have three contrasts, but have %d for␣

↪→patient %s, class %s' %(len(visit_images),patient,the_class))
continue;

if DO_3D:
image_out_size = (3,150,150,20)

else:
image_out_size = (3,150,150) # We will discard the border to␣

↪→save space.

multichannel_image = np.zeros(image_out_size)
multichannel_image_flipped = np.zeros(image_out_size)
multichannel_image_rotL = np.zeros(image_out_size)
multichannel_image_rotR = np.zeros(image_out_size)
multichannel_image_rand_rotL = np.zeros(image_out_size)
multichannel_image_rand_rotR = np.zeros(image_out_size)

# now read, preprocess, cut, average, and concatenate the images␣
↪→of one visit

for idx, (index,image) in enumerate(visit_images.iterrows()):
#print(os.path.

↪→join(DATA_DIR,image['set'],image['class'],image['filename']))
nii_data = nb.load(os.path.

↪→join(DATA_DIR,image['set'],image['class'],image['filename'])) # compose the␣
↪→filename from the current dataframe entry

np_data = np.asarray(nii_data.dataobj)

# resize data using ndimage from scipy (https://docs.scipy.
↪→org/doc/scipy/reference/ndimage.html)

original_shape = np_data.shape
scale = [(RESCALE_SHAPE[i] + 0.0)/original_shape[i] for i in␣

↪→range(len(original_shape))]
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out_data = ndimage.interpolation.zoom(np_data, scale, mode=␣
↪→"nearest", order = INTERPOL_ORDER)

out_data_mean = np.mean(out_data[50:200,50:200,int(out_data.
↪→shape[2]/2-2):int(out_data.shape[2]/2+2)], axis=2) # Select some slices in the␣
↪→middle and average.

rand_rotL = np.random.randint(10,90)
rand_rotR = np.random.randint(10,90)
if DO_3D:

multichannel_image[idx] = cv2.normalize(out_data[50:
↪→200,50:200,5:25], None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.
↪→CV_32F)

if patient in folds[TRAIN_ON_FOLD][0]: # Only augment␣
↪→training data

multichannel_image_flipped[idx] = cv2.
↪→normalize(out_data[50:200,50:200,5:25], None, alpha=0, beta=1, norm_type=cv2.
↪→NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rotL[idx] = cv2.normalize(scipy.
↪→ndimage.rotate(out_data[50:200,50:200,5:25],-10, reshape=False), None,␣
↪→alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rotR[idx] = cv2.normalize(scipy.
↪→ndimage.rotate(out_data[50:200,50:200,5:25], 10, reshape=False), None,␣
↪→alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rand_rotL[idx] = cv2.
↪→normalize(scipy.ndimage.rotate(out_data[50:200,50:200,5:25],-rand_rotL,␣
↪→reshape=False), None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.
↪→CV_32F)

multichannel_image_rand_rotR[idx] = cv2.
↪→normalize(scipy.ndimage.rotate(out_data[50:200,50:200,5:25], rand_rotR,␣
↪→reshape=False), None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.
↪→CV_32F)

else:
multichannel_image[idx] = cv2.normalize(out_data_mean,␣

↪→None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
if patient in folds[TRAIN_ON_FOLD][0]: # Only augment␣

↪→training data
multichannel_image_flipped[idx] = cv2.

↪→normalize(out_data_mean[::-1], None, alpha=0, beta=1, norm_type=cv2.
↪→NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rotL[idx] = cv2.normalize(scipy.
↪→ndimage.rotate(out_data_mean, -10, reshape=False), None, alpha=0, beta=1,␣
↪→norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rotR[idx] = cv2.normalize(scipy.
↪→ndimage.rotate(out_data_mean, 10, reshape=False), None, alpha=0, beta=1,␣
↪→norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
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multichannel_image_rand_rotL[idx] = cv2.
↪→normalize(scipy.ndimage.rotate(out_data_mean, -rand_rotL, reshape=False),␣
↪→None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)

multichannel_image_rand_rotR[idx] = cv2.
↪→normalize(scipy.ndimage.rotate(out_data_mean, rand_rotR, reshape=False), None,␣
↪→alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)

# Assign to either train or valid data
if patient in folds[TRAIN_ON_FOLD][0]:

train_data.append([np.moveaxis(multichannel_image,0,3 if␣
↪→DO_3D else 2), CATEGORIES.index(the_class)]) # add this to our train_data ␣
↪→

train_data.append([np.
↪→moveaxis(multichannel_image_flipped,0,3 if DO_3D else 2), CATEGORIES.
↪→index(the_class)])

train_data.append([np.moveaxis(multichannel_image_rotL,0,3␣
↪→if DO_3D else 2), CATEGORIES.index(the_class)])

train_data.append([np.moveaxis(multichannel_image_rotR,0,3␣
↪→if DO_3D else 2), CATEGORIES.index(the_class)])

train_data.append([np.
↪→moveaxis(multichannel_image_rand_rotL,0,3 if DO_3D else 2), CATEGORIES.
↪→index(the_class)])

train_data.append([np.
↪→moveaxis(multichannel_image_rand_rotR,0,3 if DO_3D else 2), CATEGORIES.
↪→index(the_class)])

else:
valid_data.append([np.moveaxis(multichannel_image,0,3 if␣

↪→DO_3D else 2), CATEGORIES.index(the_class)])

# Create traain and valid
X_train = []
y_train = []

for features,label in train_data:
X_train.append(features)
y_train.append(label)

if DO_3D:
X_train = np.array(X_train).reshape(-1, INPUT_SHAPE_3D[0],␣

↪→INPUT_SHAPE_3D[1], INPUT_SHAPE_3D[2], INPUT_SHAPE_3D[3])
else:

X_train = np.array(X_train).reshape(-1, INPUT_SHAPE[0], INPUT_SHAPE[1],␣
↪→INPUT_SHAPE[2])

y_train = to_categorical(y_train, num_classes=NUM_CLASSES)
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print ("x_train shape: ", X_train.shape)
print ("y_train shape: ", y_train.shape)

X_valid = []
y_valid = []

for features,label in valid_data:
X_valid.append(features)
y_valid.append(label)

if DO_3D:
X_valid = np.array(X_valid).reshape(-1, INPUT_SHAPE_3D[0],␣

↪→INPUT_SHAPE_3D[1], INPUT_SHAPE_3D[2], INPUT_SHAPE_3D[3])
else:

X_valid = np.array(X_valid).reshape(-1, INPUT_SHAPE[0], INPUT_SHAPE[1],␣
↪→INPUT_SHAPE[2])

y_valid = to_categorical(y_valid, num_classes=NUM_CLASSES)
print ("x_test shape: ", X_valid.shape)
print ("y_test shape: ", y_valid.shape)

np.save('xtrain-aug_%d.npy'%TRAIN_ON_FOLD, X_train)
np.save('xvalid_%d.npy'%TRAIN_ON_FOLD, X_valid)
np.save('ytrain-aug_%d.npy'%TRAIN_ON_FOLD, y_train)
np.save('yvalid_%d.npy'%TRAIN_ON_FOLD, y_valid)

####################################################################################################################␣
↪→

#CNN Model
from keras.constraints import max_norm
from tensorflow.keras.layers import Dense, Activation,␣

↪→Dropout,SpatialDropout2D, SpatialDropout3D

num_classes=4

def Conv(filters=16, kernel_size=(3,3), activation='relu', input_shape=None):
if input_shape:

return Conv2D(filters=filters, kernel_size=kernel_size,
activation=activation, input_shape=input_shape)

else:
return Conv2D(filters=filters, kernel_size=kernel_size,

activation=activation)

def Conv_3d(filters=16, kernel_size=(3,3,3), activation='relu',␣
↪→input_shape=None):
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if input_shape:
return Conv3D(filters=filters, kernel_size=kernel_size,

activation=activation, input_shape=input_shape)
else:

return Conv3D(filters=filters, kernel_size=kernel_size,
activation=activation)

# Define 2D Model
def CNN(input_dim, num_classes):

model = Sequential()

model.add(Conv(64, (3,3), input_shape=(150,150,3)))
model.add(Conv(64, (3,3)))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.2))

model.add(Conv(64, (3,3)))
model.add(Conv(64, (3,3)))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.2))

model.add(Conv(128, (3,3)))
model.add(Conv(128, (3,3)))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.2))

model.add(GlobalAveragePooling2D())
#model.add(Flatten())

model.add(Dense(128, activation='relu', kernel_constraint=max_norm(2.)))
model.add(Dropout(rate=0.7))
model.add(Dense(128, activation='relu', kernel_constraint=max_norm(2.)))
model.add(Dropout(0.2))

model.add(Dense(num_classes, activation='softmax'))

return model

###################################################################################################␣
↪→

# Define 3D Model
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def CNN_3d(input_shape = (150,150,20,3), num_classes=4):
model = Sequential()

model.add(Conv_3d(32, input_shape=(150,150,20,3)))
model.add(Conv_3d(32))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
#model.add(MaxPool3D(pool_size=(2)))
model.add(MaxPool3D())
model.add(Dropout(0.2))

model.add(Conv_3d(64))
model.add(Conv_3d(64))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
model.add(Dropout(0.2))

model.add(Conv_3d(96))
model.add(Conv_3d(96))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
model.add(Dropout(0.2))

model.add(Conv_3d(128))
#model.add(BatchNormalization())
#model.add(MaxPool3D())
#model.add(Dropout(0.2))

model.add(GlobalAveragePooling3D())
#model.add(Flatten())

model.add(Dense(128, activation='relu'))
model.add(Dropout(0.7))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(num_classes, activation='softmax'))

return model

##################################################################################################

################################################################################################
# 2D variants
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model = CNN(INPUT_SHAPE, NUM_CLASSES)

# 3D variants
#model = CNN_3d(INPUT_SHAPE_3D, NUM_CLASSES)

trainable_count = np.sum([K.count_params(w) for w in model.
↪→trainable_weights])

non_trainable_count = np.sum([K.count_params(w) for w in model.
↪→non_trainable_weights])

print('Total params: {:,}'.format(trainable_count + non_trainable_count))
print('Trainable params: {:,}'.format(trainable_count))
print('Non-trainable params: {:,}'.format(non_trainable_count))

####################################################################################################
optimizer = tf.keras.optimizers.Adam(lr=0.001)

# Make loss more expensive for the tougher classes.

earlystop_cb = tf.keras.callbacks.EarlyStopping(monitor='val_loss',␣
↪→patience=40, restore_best_weights=True)

model.compile(loss=categorical_crossentropy, optimizer= optimizer ,␣
↪→metrics=['acc'])

history.append(model.fit(X_train, y_train, batch_size=8, epochs=300,␣
↪→validation_data=(X_valid,y_valid), class_weight=class_weight,␣
↪→callbacks=[earlystop_cb]))

##################################################################################################################

#Confusion Matrix and Classification Report

pred.append(model.predict(X_valid, batch_size=8))

Apart from now postprocessing the predictions for the desired fold, nothing has to change. . .
[ ]: # Confusion Matrix and Classification Report for individual folds

y_true_all = []
y_pred_all = []
for WHICH_FOLD in range(FOLDS):

y_pred = np.argmax(pred[WHICH_FOLD], axis=1)
y_pred_all.append(y_pred)
# Load corresponding y_valid data
y_true = np.load(str('yvalid_%d.npy'%WHICH_FOLD))

y_true = np.argmax(y_true, axis=1)
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y_true_all.append(y_true)

class_labels = ['Newborn', '12 Months','24 Months', '36 Months']
print(classification_report(y_true, y_pred, target_names=class_labels))
print(confusion_matrix(y_true, y_pred))

[ ]: # Calculate summary statistics from all validation runs
flat_y_pred_all = [item for sublist in y_pred_all for item in sublist]
flat_y_true_all = [item for sublist in y_true_all for item in sublist]
cm = confusion_matrix(flat_y_true_all, flat_y_pred_all)
class_labels = ['Newborn', '12 Months','24 Months', '36 Months']
print("Summed Metrics:")
print(classification_report(flat_y_true_all, flat_y_pred_all,␣

↪→target_names=class_labels))
print(cm)

[ ]: plot_confusion_matrix(cm, normalize=True)

[ ]: from pycm import *

cm = ConfusionMatrix(flat_y_true_all, flat_y_pred_all)
cm.table
print(cm)

[ ]: #Plot Accuracy and los for 5fold
losses = []
val_losses = []
accs = []
val_accs = []
for hist in history:

losses.append(hist.history['loss'])
val_losses.append(hist.history['val_loss'])
accs.append(hist.history['acc'])
val_accs.append(hist.history['val_acc'])

shortest = min([len(l) for l in losses])
print ('Shortest training:', shortest)

nlosses = [l[:shortest] for l in losses]
nval_losses = [l[:shortest] for l in val_losses]
naccs = [l[:shortest] for l in accs]
nval_accs = [l[:shortest] for l in val_accs]

mean_l = np.mean(nlosses, axis=0)
mean_vl = np.mean(nval_losses, axis=0)
mean_a = np.mean(naccs, axis=0)
mean_va = np.mean(nval_accs, axis=0)
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min_l = np.min(nlosses, axis=0)
min_vl = np.min(nval_losses, axis=0)
min_a = np.min(naccs, axis=0)
min_va = np.min(nval_accs, axis=0)
max_l = np.max(nlosses, axis=0)
max_vl = np.max(nval_losses, axis=0)
max_a = np.max(naccs, axis=0)
max_va = np.max(nval_accs, axis=0)

# Visualize the result
plt.figure(figsize=(12, 6))
plt.plot(mean_l, '-r', label="Train loss")
plt.fill_between(range(shortest), min_l, max_l,

color='lightcoral', alpha=0.4)
plt.plot(mean_vl, '-b', label="Val loss")
plt.fill_between(range(shortest), min_vl, max_vl,

color='cornflowerblue', alpha=0.4)
plt.legend()
plt.title("Train/Valid Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')

plt.figure(figsize=(12, 6))
plt.plot(mean_a, '-r', label="Train acc")
plt.fill_between(range(shortest), min_a, max_a,

color='lightcoral', alpha=0.4)
plt.plot(mean_va, '-b', label="Val acc")
plt.fill_between(range(shortest), min_va, max_va,

color='cornflowerblue', alpha=0.4)
plt.legend()
plt.title("Train/Valid Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

[ ]: # If you want to plot one specific fold
# plot Loss
WHICH_FOLD=1
plt.figure(figsize=(12, 6))
plt.plot(history[WHICH_FOLD].history['loss'], label="Train loss")
plt.plot(history[WHICH_FOLD].history['val_loss'], label="Val loss")
plt.legend()
plt.title("Train/Valid Loss (fold %d)"%WHICH_FOLD)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
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[ ]: # plot accuracy for one specific fold
WHICH_FOLD=1
plt.figure(figsize=(12, 6))
plt.plot(history[WHICH_FOLD].history['acc'], label="Train acc")
plt.plot(history[WHICH_FOLD].history['val_acc'], label="Val acc")
plt.legend()
plt.title("Train/Valid Acc (fold %d)"%WHICH_FOLD)
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.show()

[ ]: # Statistical results
from pycm import *

cm = ConfusionMatrix(flat_y_true_all, flat_y_pred_all)
cm.table
print(cm)
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Effective_MRI_sequences_Keras

December 5, 2021

1 Selecting Effective MRI sequences

[ ]: import math
import time
import sys
import cv2
import os
import h5py
import zipfile
import pandas as pd
import random
import itertools
import scipy
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as img
import nibabel as nb
from nibabel.testing import data_path
import SimpleITK as sitk
from PIL import Image
from os import listdir
from os.path import join, basename, isdir
from scikitplot.metrics import plot_confusion_matrix, plot_roc
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
from sklearn.preprocessing import normalize
from sklearn.utils import shuffle
from tqdm.notebook import trange, tqdm, tqdm_notebook
from pathlib import Path
from scipy import ndimage
%matplotlib inline

[ ]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import optimizers
from tensorflow.keras.optimizers import schedules
from tensorflow.keras.preprocessing.image import ImageDataGenerator
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from tensorflow.keras.models import Model, load_model, save_model, Sequential ␣
↪→#to creat hirachical layers

from tensorflow.keras.layers import Dense, Activation, Dropout,SpatialDropout2D,␣
↪→Flatten, Conv3D, Conv2D, MaxPool3D, MaxPool2D, GlobalAveragePooling3D,␣
↪→GlobalAveragePooling2D, Flatten, Input, BatchNormalization, GRU,␣
↪→Bidirectional,Reshape

from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, Callback
from tensorflow.keras.losses import categorical_crossentropy, binary_crossentropy
from tensorflow.keras.optimizers import Adadelta, Adam, SGD
from tensorflow.keras.regularizers import l1, l2
from tensorflow.keras.utils import to_categorical
from matplotlib.pyplot import cm

2 Isotropic function

[ ]: #https://www.programcreek.com/python/example/123390/SimpleITK.ResampleImageFilter
# Apply resample (To the all dims same as isotropic)

def resample_img(itk_image, out_spacing=[2.0, 2.0, 2.0]):

# Resample images to 2mm spacing with SimpleITK
original_spacing = itk_image.GetSpacing()
original_size = itk_image.GetSize()

out_size = [
int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))]

resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size)
resample.SetOutputDirection(itk_image.GetDirection())
resample.SetOutputOrigin(itk_image.GetOrigin())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())
resample.SetInterpolator(sitk.sitkNearestNeighbor)

return resample.Execute(itk_image)

[ ]: gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:

try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
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tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)

[ ]: # Dataset

DATA_DIR = "E:"
TRAIN_DIR_NAME = 'E:/Train'

[ ]: os.listdir(TRAIN_DIR_NAME)

3 Create a data frame to hold the training/validation data information.

[ ]: # This is not entirely robust! The paths below DATA_DIR need to be like mine␣
↪→above.

#******************Train dataset*****************

train_source_files = []
#print("PATH:", DATA_DIR)
for current_file in Path(TRAIN_DIR_NAME).rglob('*.gz'):

#print(current_file)
train_source_files.append(str(current_file).split('\\')[-4:])
#print(source_files)

train_source_files_df = pd.DataFrame(train_source_files)
#source_files_df.columns = ['a', 'b', 'c', 'd', 'set', 'class', 'filename']
train_source_files_df.columns = ['set','class', 'MRID', 'Sequences']

print(train_source_files_df.head())

#****************Validation dataset**************
val_source_files = []
#print("PATH:", DATA_DIR)
for current_file in Path(VALID_DIR_NAME).rglob('*.gz'):

#print(current_file)
val_source_files.append(str(current_file).split('\\')[-4:])
#print(source_files)

val_source_files_df = pd.DataFrame(val_source_files)
#source_files_df.columns = ['a', 'b', 'c', 'd', 'set', 'class', 'filename']
val_source_files_df.columns = ['set','class', 'MRID', 'Sequences']

print(val_source_files_df.head())
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3.1 Counting the number of MRIs

[ ]: print("TSC :",len(train_source_files_df.loc[(train_source_files_df['class'] ==␣
↪→'TSC')]["MRID"].unique()),

"Normal :",len(train_source_files_df.loc[(train_source_files_df['class'] ==␣
↪→'Normal')]["MRID"].unique()))

[ ]: print("TSC :",len(val_source_files_df.loc[(val_source_files_df['class'] ==␣
↪→'TSC')]["MRID"].unique()),

"Normal :",len(val_source_files_df.loc[(val_source_files_df['class'] ==␣
↪→'Normal')]["MRID"].unique()))

[ ]: def normalize(volume):
"""Normalize the volume"""
min = -1000
max = 400
volume[volume < min] = min
volume[volume > max] = max
volume = (volume - min) / (max - min)
volume = volume.astype("float32")
return volume

[ ]: interpolation_order = 2
out_shape=(100,200,200)
out_spacing=[1.0, 1.0, 1.0]
mode = 'nearest'

[ ]: # what kind of MRI sequesces we want!

effective_sequences_TSC = train_source_files_df.
↪→loc[(train_source_files_df['Sequences'] == '.nii.gz')]

effective_sequences_Normal = train_source_files_df.
↪→loc[(train_source_files_df['Sequences'] == '.nii.gz')]

import os
from tqdm import tqdm
# read all train seqs
Train_seqs=[]
Train_labels=[]

classes={"TSC":1, "Normal":0}

patient_id=np.array(effective_sequences_TSC["MRID"])
seq_name=np.array(effective_sequences_TSC["Sequences"])

for i in tqdm(range(len(effective_sequences_TSC["Sequences"]))):
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sequence=sitk.ReadImage(os.path.join(r"E:
↪→\Train\TSC",patient_id[i],seq_name[i]))

################################### isotropic ###################
# isotropic
resampled_sitk_img = resample_img(sequence, out_spacing)

################################################################
read_sitk_t2=sitk.GetArrayFromImage(resampled_sitk_img)
original_shape =read_sitk_t2.shape
assert(len(original_shape) == len(out_shape))

scale = [(out_shape[i] + 0.0)/original_shape[i] for i in␣
↪→range(len(original_shape))]

read_sitk_t2 = ndimage.interpolation.zoom(read_sitk_t2, scale, mode = mode,␣
↪→order = interpolation_order)

#normalize
read_sitk_t2=normalize(read_sitk_t2)
Train_seqs.append(read_sitk_t2)
Train_labels.append(classes["TSC"])

############################### Normal ########################

patient_id=np.array(effective_sequences_Normal["MRID"])
seq_name=np.array(effective_sequences_Normal["Sequences"])

for i in tqdm(range(len(effective_sequences_Normal["Sequences"]))):
sequence=sitk.ReadImage(os.path.join(r"E:

↪→\Train\Normal",patient_id[i],seq_name[i]))

################################# isotropic ###################

resampled_sitk_img = resample_img(sequence, out_spacing)

###############################################################

read_sitk_t2=sitk.GetArrayFromImage(resampled_sitk_img)
original_shape =read_sitk_t2.shape
assert(len(original_shape) == len(out_shape))

scale = [(out_shape[i] + 0.0)/original_shape[i] for i in␣
↪→range(len(original_shape))]
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read_sitk_t2 =ndimage.interpolation.zoom(read_sitk_t2, scale, mode = mode,␣
↪→order = interpolation_order)

#normalize
read_sitk_t2=normalize(read_sitk_t2)

Train_seqs.append(read_sitk_t2)
Train_labels.append(classes["Normal"])

Train_seqs=np.array(Train_seqs)
Train_labels=np.array(Train_labels)

3.2 Counting the number of MRI sequesnces in VALID

[ ]: # Checking the number of MRI sequesnces in valid

effective_sequences_TSC = val_source_files_df.
↪→loc[(val_source_files_df['Sequences'] == '.nii.gz')]

effective_sequences_Normal = val_source_files_df.
↪→loc[(val_source_files_df['Sequences'] == '.nii.gz')]

[ ]: print("TSC",val_source_files_df.loc[(val_source_files_df['Sequences'] == 'AX T2␣
↪→FLAIR.nii.gz')].nunique())

[ ]: print("Normal",val_source_files_df.loc[(val_source_files_df['Sequences'] == 'MR␣
↪→AX T2 FLAIR.nii.gz')].nunique())

[ ]: # Checking the number of MRI sequesnces

effective_sequences_TSC = val_source_files_df.
↪→loc[(val_source_files_df['Sequences'] == '.nii.gz')]

effective_sequences_Normal = val_source_files_df.
↪→loc[(val_source_files_df['Sequences'] == '.nii.gz')]

############## read all Valid seqs ##############
Valid_seqs=[]
Valid_labels=[]

############################TSC###################

patient_id=np.array(effective_sequences_TSC["MRID"])
seq_name=np.array(effective_sequences_TSC["Sequences"])

for i in tqdm(range(len(effective_sequences_TSC["Sequences"]))):
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sequence=sitk.ReadImage(os.path.join(r"E:
↪→\Valid\TSC",patient_id[i],seq_name[i]))

###################### isotropic ###############
# isotropic
print('Old shape: ', sitk.GetArrayFromImage(sequence).shape)
plt.imshow(sitk.GetArrayFromImage(sequence)[5,:,:])
plt.title("before isotropic")

plt.show()
print ("spacing before isotropic " ,sequence.GetSpacing())
resampled_sitk_img = resample_img(sequence, out_spacing)
print("Spacing after isotropic",resampled_sitk_img.GetSpacing())

#################################################
read_sitk_t2=sitk.GetArrayFromImage(resampled_sitk_img)

plt.imshow(read_sitk_t2[5,:,:])
plt.title("after isotropic")

plt.show()
print('New shape for isotropic: ', read_sitk_t2.shape)
print('Old shape for resize: ', read_sitk_t2.shape)
original_shape =read_sitk_t2.shape
assert(len(original_shape) == len(out_shape))

scale = [(out_shape[i] + 0.0)/original_shape[i] for i in␣
↪→range(len(original_shape))]

read_sitk_t2 = ndimage.interpolation.zoom(read_sitk_t2, scale, mode = mode,␣
↪→order = interpolation_order)

print('New shape: ', read_sitk_t2.shape)

plt.imshow(read_sitk_t2[5,:,:])
plt.title("after resize")

plt.show()
# Normalize
read_sitk_t2=normalize(read_sitk_t2)

Valid_seqs.append(read_sitk_t2)
Valid_labels.append(classes["TSC"])

################### Normal #######################
patient_id=np.array(effective_sequences_Normal["MRID"])
seq_name=np.array(effective_sequences_Normal["Sequences"])
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for i in tqdm(range(len(effective_sequences_Normal["Sequences"]))):

sequence=sitk.ReadImage(os.path.join(r"E:\Madi\TSC_project\80-20␣
↪→class\Valid\Normal",patient_id[i],seq_name[i]))

#################### Isotropic ###################
# Isotropic
print('Old shape: ', sitk.GetArrayFromImage(sequence).shape)

print ("spacing before isotropic " ,sequence.GetSpacing())
resampled_sitk_img = resample_img(sequence, out_spacing)
print("Spacing after isotropic",resampled_sitk_img.GetSpacing())

###################################################
read_sitk_t2=sitk.GetArrayFromImage(resampled_sitk_img)
print('New shape for isotropic : ', read_sitk_t2.shape)
print('old shape for resize: ', read_sitk_t2.shape)

original_shape =read_sitk_t2.shape
assert(len(original_shape) == len(out_shape))

scale = [(out_shape[i] + 0.0)/original_shape[i] for i in␣
↪→range(len(original_shape))]

# Resize
read_sitk_t2 =ndimage.interpolation.zoom(read_sitk_t2, scale, mode = mode,␣

↪→order = interpolation_order)
#read_sitk_t2 = read_sitk_t2.crop((0, top, right, bottom)) #(left, top,␣

↪→right, bottom)
print('New shape: ', read_sitk_t2.shape)

# Normalize
read_sitk_t2=normalize(read_sitk_t2)
Valid_seqs.append(read_sitk_t2)
Valid_labels.append(classes["Normal"])

Valid_seqs=np.array(Valid_seqs)
Valid_labels=np.array(Valid_labels)

[ ]: print("Valid seqs shape",Valid_seqs.shape,"\nValid label shape", Valid_labels.
↪→shape)
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4 Making Isotropic

5 Prepare train and valid dataset

[ ]: #convert the label To categorical
NUM_CLASSES=2
Train_labels = to_categorical(Train_labels, num_classes=NUM_CLASSES)

# print("the label before convert",Train_labels[-1])
print("the label after convert",Train_labels[-1])

Valid_labels = to_categorical(Valid_labels, num_classes=NUM_CLASSES)
Valid_labels.shape

[ ]: Train_seqs=Train_seqs.reshape(Train_seqs.shape[0],200,200,100)
Valid_seqs=Valid_seqs.reshape(Valid_seqs.shape[0],200,200,100)

Train_seqs=np.expand_dims(Train_seqs,axis=-1)
Valid_seqs=np.expand_dims(Valid_seqs,axis=-1)

Train_seqs.shape ,Valid_seqs.shape

6 CNN Models

[ ]: #CNN Model
from keras.constraints import max_norm
from tensorflow.keras.layers import Dense, Activation, Dropout,SpatialDropout2D,␣

↪→SpatialDropout3D
NUM_CLASSES=2

INPUT_SHAPE=(200,200,100,1)

def Conv_3d(filters=16, kernel_size=(3,3,3), activation='relu', padding= 'same',␣
↪→kernel_regularizer=l2(0.001), kernel_constraint=max_norm(2.),␣
↪→input_shape=None):

if input_shape:
return Conv3D(filters=filters, kernel_size=kernel_size,

activation=activation, padding=padding,␣
↪→kernel_regularizer=kernel_regularizer,input_shape=input_shape,␣
↪→kernel_constraint=kernel_constraint)

else:
return Conv3D(filters=filters, kernel_size=kernel_size,

activation=activation)

######################################################################
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# Define 3D Model
def CNN_3d(input_shape = INPUT_SHAPE, num_classes=NUM_CLASSES):

model = Sequential()

#model.add(Conv_3d(32, input_shape=(1,150,150,20,1)))
model.add(Conv_3d(32,(3,3,3) , padding= 'same', activation = 'relu' ,

kernel_regularizer=l2(0.001) , input_shape = INPUT_SHAPE))␣
↪→#kernel_regularizer=l2(0.001)

model.add(Conv_3d(32))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
model.add(Dropout(0.15))

model.add(Conv_3d(64))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
model.add(Dropout(0.15))

model.add(Conv_3d(96))
model.add(BatchNormalization())
model.add(MaxPool3D())
model.add(MaxPool3D(pool_size=(2,2,2)))

model.add(Conv_3d(128))
model.add(BatchNormalization())
model.add(MaxPool3D(pool_size=(2,2,2)))
model.add(Dropout(0.15))

model.add(GlobalAveragePooling3D())
#model.add(Flatten())

model.add(Dense(1024, activation='relu', kernel_constraint=max_norm(2.)))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(512, activation='relu', kernel_constraint=max_norm(2.)))
model.add(BatchNormalization())
model.add(Dropout(0.25))

model.add(Dense(512, activation='relu', kernel_constraint=max_norm(2.)))
model.add(BatchNormalization())
model.add(Dropout(0.15))

model.add(Dense(num_classes, activation='softmax'))
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return model

[ ]: # 3D variants
model = CNN_3d(INPUT_SHAPE, NUM_CLASSES)

[ ]: model.summary()

[ ]: # Define class weights for imbalacned data
from sklearn.utils import class_weight
class_weights = class_weight.compute_class_weight('balanced', np.unique(np.

↪→argmax(Train_labels, axis=1)), np.argmax(Train_labels, axis=1))
# class_weights = class_weight.compute_class_weight('balanced', np.

↪→unique(Train_labels), Train_labels)

print("Class weights:", class_weights)

[ ]: optimizer = keras.optimizers.SGD(learning_rate=0.001 , momentum=0.96)

model.compile(loss="binary_crossentropy", optimizer= optimizer ,␣
↪→metrics=['acc']) #

[ ]: history = model.fit(Train_seqs, Train_labels, batch_size=2, epochs=100,␣
↪→validation_data=(Valid_seqs,Valid_labels))

[ ]: model.save("TSC.h5")

[ ]: from keras.models import load_model
model = load_model('TSC.h5')
model.summary()

[ ]: model.evaluate(Train_seqs, Train_labels, batch_size=2)

[ ]: model.evaluate(Valid_seqs, Valid_labels, batch_size=4)

[ ]: plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label="Training loss")
plt.plot(history.history['val_loss'], label="Val loss")
plt.legend()
plt.title("Training vs Validation Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
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[ ]: plt.figure(figsize=(12, 6))
plt.plot(history.history['acc'], label="Training acc")
plt.plot(history.history['val_acc'], label="Test acc")
plt.legend()
plt.title("Training vs Validation Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.show()

[ ]: # Confusion matrix
from sklearn.metrics import confusion_matrix, classification_report

#Confusion Matrix and Classification Report
pred = model.predict(Valid_seqs, batch_size=2)
pred = np.argmax(pred, axis=1)
y = np.argmax(Valid_labels, axis=1)

#pred=model.predict_classes(X_valid)
cm= confusion_matrix(y, pred)

class_labels = ['Normal', 'TSC']
print(classification_report(y, pred, target_names=class_labels))

print(confusion_matrix(y, pred))

[ ]: def plot_confusion_matrix(cm,
target_names=class_labels,
title='T2w Flair_Confusion matrix',
cmap=None,
normalize=True):

"""
given a sklearn confusion matrix (cm), make a nice plot

Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix

target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']

title: the text to display at the top of the matrix

cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.

↪→html
plt.get_cmap('jet') or plt.cm.Blues
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normalize: If False, plot the raw numbers
If True, plot the proportions

Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix␣

↪→created by
# sklearn.metrics.

↪→confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of␣

↪→the classes
title = best_estimator_name) # title of graph

Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/

↪→plot_confusion_matrix.html

"""
import matplotlib.pyplot as plt
import numpy as np
import itertools

accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy

if cmap is None:
cmap = plt.get_cmap('Blues')

plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()

if target_names is not None:
#plt.colorbar()
#plt.imshow(data, cmap=cmap, vmin=0, vmax=1)
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)

if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

thresh = cm.max() / 1.5 if normalize else cm.max() / 2

13

Appendix D. Effective_MRI Sequences_ Selection 75



for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:

plt.text(j, i, "{:0.2f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

else:
plt.text(j, i, "{:,}".format(cm[i, j]),

horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label', fontsize=12, color='darkblue') # fontweight='bold'
plt.xlabel('Predicted label\naccuracy={:0.2f}; misclass={:0.2f}'.

↪→format(accuracy, misclass), fontsize=12, color='darkblue')
plt.show()

[ ]: plot_confusion_matrix(cm, normalize=True)

[ ]: # ROC curve

from sklearn.metrics import roc_curve, auc

nn_fpr_keras, nn_tpr_keras, nn_thresholds_keras = roc_curve(y, pred)
auc_keras = auc(nn_fpr_keras, nn_tpr_keras)
plt.plot(nn_fpr_keras, nn_tpr_keras, marker='.', label='3D CNN (auc = %0.3f)' %␣

↪→auc_keras)

plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='best')
plt.show()

[ ]: from sklearn.metrics import roc_auc_score, roc_curve, auc
print('Area under ROC curve : ', roc_auc_score(y, pred) *100 )

[ ]: from pycm import *

cm = ConfusionMatrix(y, pred)
cm.table
print(cm)
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