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Abstract Abstract 
Background:Background: The kidneys play a crucial role in maintaining homeostasis of serum potassium levels (K+). 
Patients with advanced chronic kidney disease (CKD) are at a higher risk of experiencing dyskalemia 
events (i.e. hyper- and hypokalemia; especially the former) and thus future adverse outcomes. Currently, 
there is a dearth of literature on prediction models for hyperkalemia and the effects of dyskalemia on 
outcomes such as incidence of ischemic stroke and short-term hospital/emergency room (ER) utilization 
in an advanced CKD population transitioning to dialysis. Objectives:Objectives: Using a nationally representative 
sample of US veterans with advanced CKD transitioning to dialysis, in the pre-dialysis period we studied 
the following aims: Aim 1) Develop and validate a prediction model for predicting hyperkalemia in 
individual patients; Aim 2) Examine the association of dyskalemias with time to first ischemic stroke; Aim 
3) Examine the association of dyskalemias with time to short-term hospital/ER utilization. Methods:Methods: A 
retrospective cohort analysis of the Transition of Care in Chronic Kidney Disease cohort (n=102,477), a 
nationally representative sample of US veterans with advanced CKD transitioning to dialysis between 
October 1, 2007 through March 31, 2015 identified from the United States Renal Data System was 
conducted. Across the three study aims, we identified patients with an initial selection criterion (prior to 
dialysis initiation) of two estimated glomerular filtration rate (eGFR) of /min/1.73m2 90-365 days apart 
(second eGFR as index); at least one-year each of baseline period (prior to index) and follow-up period 
(following index but prior to dialysis initiation); and at least one K+ measurement each in the baseline and 
follow-up period. For each study aim, further inclusion criteria were used to yield a final sample size of 
21,654, 21,357, and 21,366 for aim 1, aim 2, and aim 3, respectively. For Aim 1 (Chapter 2), we compared 
the performance (area under the receiver operating curve [AUROC]) of different machine learning 
methods including logistic regression (LR), random forest, extreme gradient boosting, and support vector 
machines using geographical splitting (for creating training and test set) with 10-fold cross validation to 
predict the outcome of hyperkalemia (K+ >5.5 mEq/L). The method that yielded the best performance 
was used to build a reduced model with 10 predictors to develop a patient-level hyperkalemia risk score. 
For Aim 2 (Chapter 3), we assessed the association of baseline time-averaged K+ levels (distant 
exposure) and time-updated K+ levels (acute exposure) (both categorized as hypokalemia [K+ 5.5 mEq/L] 
and referent [3.5 mEq/L ≤ K+ ≤ 5.5 mEq/L]) with time to first ischemic stroke using Cox regression 
models. Finally, for Aim 3 (Chapter 4), we assessed the association of time-updated outpatient K+ levels 
(categorized as hypokalemia [K+ 5.5 mEq/L] and referent [3.5 mEq/L ≤ K+ ≤ 5.5 mEq/L]) with hospital/
ER utilization (as separate events) using generalized estimating equations. Across all the three study 
aims (Aim 1, 2, and 3) several different sensitivity analyses were conducted to test the robustness of the 
results. Results:Results: Across the analytic samples (Aim 1, 2, and 3), the mean age was 69 years, ~98% were 
males; ~28% were African Americans, ~69% had diabetes mellitus, and the one-year baseline averaged 
K+ was 4.5 mEq/L. In aim 1 (n=21,654), the LR model yielded the best performance with an average 
AUROC (95% confidence interval [CI]) of 0.765 (0.756-0.774) (training set) and 0.763 (0.753-0.771) (test 
set) using the geographical splitting with 10-fold cross validation. Using the LR method, the top 10 
predictors identified were K+ value prior to index, age, having at least 1 K+ >5.5 mEq/L in the baseline, 
index eGFR, baseline averaged SBP, baseline averaged HCO3-, number of K+ counts, thiazide use, number 
of outpatient visits, and NSAIDs use in baseline. The LR parameter estimates for the above listed 
predictors were used to develop a patient-level risk score for predicting hyperkalemia. In aim 2 (n=21,357), 
hypokalemia (distant exposure) was associated with higher risk of ischemic stroke (hazard ratio [HR]; 95 
% CI: 1.35, 1.01-1.81). Conversely, hyperkalemia (acute exposure) was associated with a lower risk of 
ischemic stroke (HR; 95% CI: 0.82, 0.68-0.98). Finally, in aim 3 (n=21,366) using outpatient K+ levels, both 
hyperkalemia (odds ratio [OR]; 95% CI: 2.04; 1.88-2.21) and hypokalemia (OR; 95% CI: 1.66; 1.48-1.86) 
were associated with higher risk of hospital visit within 2 calendar days of outpatient K+ measurement. 



Similarly, both hyperkalemia (OR; 95% CI: 1.83; 1.65-2.03) and hypokalemia (OR; 95% CI: 1.24; 1.07-1.44) 
were associated with higher risk of ER visit within 2 calendar days of outpatient K+ measurement. Across 
all the three study aims, the results were robust to various sensitivity analysis. Conclusion:Conclusion: In an advanced 
CKD population transitioning to dialysis, in the pre-dialysis period, we developed an internally valid model 
for predicting hyperkalemia. We observed that hypokalemia as a chronic exposure is associated with 
higher risk of ischemic stroke and hyperkalemia as an acute exposure is associated with lower risk of 
ischemic stroke. Finally, both hyper- and hypokalemia are associated with higher risk of short-term 
hospital/ER visits. Further studies are needed to externally validate the hyperkalemia risk prediction 
model; understand the mechanisms underlying the association of dyskalemias with stroke; and expand 
on the association of dyskalemias with short-term hospital/ER visits by including cost as an outcome. 
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Abstract

Ankur Dashputre

Predictors of Hyperkalemia and Outcomes of Dyskalemia in US
Veterans with Advanced Chronic Kidney Disease Transitioning to
Dialysis

Background. The kidneys play a crucial role in maintaining homeostasis of serum
potassium (K+) levels. Patients with advanced chronic kidney disease (CKD) are at a higher
risk of experiencing dyskalemia events (i.e. hypo- and hyperkalemia; especially the latter)
and thus future adverse outcomes. Currently, there is a dearth of literature on prediction
models for hyperkalemia and the effects of dyskalemia on outcomes such as incidence of
ischemic stroke and short-term hospital/emergency room (ER) utilization in an advanced
CKD population transitioning to dialysis.

Objectives. Using a nationally representative sample of US Veterans with advanced
CKD transitioning to dialysis, in the pre-dialysis period we studied the following aims:
Aim 1) Develop and validate a prediction model for predicting hyperkalemia in individual
patients; Aim 2) Examine the association of dyskalemias with time to first ischemic stroke;
Aim 3) Examine the association of dyskalemias with short-term hospital/ER utilization.

Methods. A retrospective cohort analysis of the Transition of Care in Chronic
Kidney Disease cohort (n=102,477), a nationally representative sample of US Veterans with
advanced CKD transitioning to dialysis between October 1, 2007 through March 31, 2015
identified from the United States Renal Data System was conducted. Across the three study
aims, we identified patients with an initial selection criterion (prior to dialysis initiation)
of two estimated glomerular filtration rate (eGFR) of <30 ml/min/1.73m2 90-365 days
apart (second eGFR as index); at least one-year each of baseline period (prior to index)
and follow-up period (following index but prior to dialysis initiation); and at least one
K+ measurement each in the baseline and follow-up period. For each study aim, further
inclusion criteria were used to yield a final sample size of 21,654, 21,357, and 21,366 for Aim
1, Aim 2, and Aim 3, respectively. For Aim 1 (Chapter 2), we compared the performance
(area under the receiver operating curve [AUROC]) of different machine learning methods
including logistic regression (LR), Random Forest, Extreme Gradient Boosting, and Support
Vector Machines using geographical splitting (for creating training and test set) with 10-fold
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cross validation to predict the outcome of hyperkalemia (K+ >5.5 mEq/L). The method
that yielded the best performance was used to build a reduced model with 10 predictors to
develop a patient-level hyperkalemia risk score. For Aim 2 (Chapter 3), we assessed the
association of baseline time-averaged K+ levels (distant exposure) and time-updated K+

levels (acute exposure) (both categorized as hypokalemia [K+ <3.5 mEq/L], hyperkalemia
[K+ >5.5 mEq/L] and referent [3.5 mEq/L ≤ K+ ≤5.5 mEq/L]) with time to first ischemic
stroke using Cox regression models. Finally, for Aim 3 (Chapter 4), we assessed the
association of time-updated outpatient K+ levels (categorized as hypokalemia [K+ <3.5
mEq/L], hyperkalemia [K+ >5.5 mEq/L] and referent [3.5 mEq/L ≤ K+ ≤5.5 mEq/L])
with hospital/ER utilization (as separate events) using generalized estimating equations.
Across all the three study aims (Aim 1, 2, and 3) several different sensitivity analyses were
conducted to test the robustness of the results.

Results. Across the analytic samples (Aim 1, 2, and 3), the mean age was 69 years,
98% were males; 28% were African Americans, 69% had diabetes mellitus, and the one-
year baseline averaged K+ was 4.5 mEq/L. In Aim 1 (n=21,654), the LR model yielded
the best performance with an average AUROC (95% confidence interval [CI]) of 0.765
(0.756-0.774) (training set) and 0.763 (0.753-0.771) (test set) using the geographical splitting
with 10-fold cross validation. Using the LR method, the top 10 predictors identified were
K+ value prior to index, age, having at least 1 K+ >5.5 mEq/L in the baseline, index
eGFR, baseline averaged systolic blood pressure, baseline averaged bicarbonate, number
of K+ measurements, thiazide use, number of outpatient visits, and non-steroidal anti-
inflammatory drugs use in baseline. The LR parameter estimates for the above listed
predictors were used to develop a patient-level risk score for predicting hyperkalemia.
In Aim 2 (n=21,357), hypokalemia (distant exposure) was associated with higher risk of
ischemic stroke (hazard ratio [HR], 95% CI: 1.35, 1.01-1.81). Conversely, hyperkalemia
(acute exposure) was associated with a lower risk of ischemic stroke (HR, 95% CI: 0.82,
0.68-0.98). Finally, in Aim 3 (n=21,366) using outpatient K+ levels, both hyperkalemia
(odds ratio [OR], 95% CI: 2.04, 1.88-2.21) and hypokalemia (OR, 95% CI: 1.66, 1.48-1.86)
were associated with higher risk of hospital visit within 2 calendar days of outpatient K+

measurement. Similarly, both hyperkalemia (OR, 95% CI: 1.83, 1.65-2.03) and hypokalemia
(OR, 95% CI: 1.24, 1.07-1.44) were associated with higher risk of ER visit within 2 calendar
days of outpatient K+ measurement. Across all the three study aims, the results were robust
to various sensitivity analysis.

Conclusion. In an advanced CKD population transitioning to dialysis, in the pre-
dialysis period, we developed an internally valid model for predicting hyperkalemia.
We observed that hypokalemia as a chronic exposure is associated with higher risk of
ischemic stroke and hyperkalemia as an acute exposure is associated with lower risk of
ischemic stroke. Finally, both hyper- and hypokalemia are associated with higher risk
of short-term hospital/ER visits. Further studies are needed to externally validate the
hyperkalemia risk prediction model; understand the mechanisms underlying the association
of dyskalemias with ischemic stroke; and expand on the association of dyskalemias with
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short-term hospital/ER visits by including cost as an outcome.
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Chapter 1

Introduction

1.1 Chronic Kidney Disease

1.1.1 Definition

The kidneys are two bean-shaped organs responsible for removing waste from the body,
maintaining fluid and electrolyte balance, and producing hormones important for main-
taining blood pressure (BP), making red blood cells, and keeping bones strong and healthy
(National Institutes of Health. National Institute of Diabetes and Digestive and Kidney
Diseases. Your Kidneys & How They Work, 2018). Chronic kidney disease (CKD) is a
progressive disease marked by loss of kidney function over time (Centers for Disease
Control and Prevention. Chronic Kidney Disease Initiative, 2021). CKD is characterized
by persistent urine abnormalities, structural abnormalities or impaired excretory renal
function indicating a loss/damage of nephrons, the functional units of kidneys (Romagnani
et al., 2017). The National Kidney Foundation Kidney Disease Outcomes Quality Initiative
(NKF-KDQOI) and the Kidney Disease: Improving Global Outcomes (KDIGO) define CKD
as presence of kidney damage or glomerular filtration rate (GFR) <60 ml/min/1.73m2 for
≥3 months (Levey, Jong, et al., 2011).

1.1.2 Epidemiology

Globally, CKD is estimated to affect 13.4% of adults (Hill et al., 2016). In the US, CKD is
estimated to affect 15% of the adult population (approximately 37 million), most (9 in 10) of
whom are unaware of their condition (Centers for Disease Control and Prevention. Chronic
Kidney Disease Initiative, 2021). Chronic kidney disease is more common amongst adults
≥65 years (38%) as compared to younger adults (<65 years), women (15%) as compared
to men (12%), and non-Hispanic African Americans (16%) as compared to non-Hispanic
whites (13%) or Asians (12%) (Centers for Disease Control and Prevention. Chronic Kidney
Disease Initiative, 2021). Chronic kidney disease is regarded as a public health problem due
to high disease burden, disproportionate prevalence in certain groups (e.g., race, age, sex),
and lack of curative strategies; and is considered an important topic for the Department
of Health and Human Services Healthy People 2020 Initiative (Levey, Atkins, et al., 2007;
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Office of Disease Prevention and Health Promotion. HealthyPeople.gov, 2014; Schieppati
and Remuzzi, 2005; Schoolwerth et al., 2006).

1.1.3 CKD diagnosis and staging

Diagnosis

Early stages of CKD are typically asymptomatic and diagnosed by measuring serum
creatinine levels and/or by measuring the urine albumin to creatinine ratio (UACR) for
proteinuria detection (Baumgarten and Gehr, 2011; Gaitonde, Cook, and Rivera, 2017;
Romagnani et al., 2017; Vassalotti, Stevens, and Levey, 2007). Serum creatinine level is most
often used to estimate GFR, an indicator of steady state renal function (Baumgarten and
Gehr, 2011; Gaitonde, Cook, and Rivera, 2017). The GFR can be quantified as the measured
GFR (mGFR), urinary creatinine clearance (CrCl), or the estimated GFR (eGFR).

mGFR is considered as the gold standard for evaluating GFR, however, obtaining
mGFR is expensive and invasive (Hsu and Bansal, 2011; Rule and Kremers, 2016). Alterna-
tively, GFR can be estimated by measuring 24-hour urinary CrCl; however, urinary CrCl
is confounded by tubular creatinine secretion which may lead to overestimation of GFR,
especially at lower GFR levels (Alaini et al., 2017; Rule and Kremers, 2016; Shemesh et al.,
1985). Finally, GFR can be estimated using equations such as the Modification of Diet in
Renal Disease (MDRD) equation (Levey, Bosch, et al., 1999) and the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation (Levey, Stevens, et al., 2009). In addition
to serum creatinine for eGFR estimation, both the MDRD and CKD-EPI additionally account
for age, sex, and race (Levey, Bosch, et al., 1999; Levey, Stevens, et al., 2009).

Markers of kidney damage such as proteinuria and albuminuria can be used to
diagnose CKD (Baumgarten and Gehr, 2011; Gaitonde, Cook, and Rivera, 2017; Vassalotti,
Stevens, and Levey, 2007). Proteinuria is characterized by increased excretion of any
urinary protein, including albumin and other proteins like tubular proteins. Albuminuria is
a specific type of proteinuria marked by increased excretion of albumin only in the urine.
The type of protein excreted can occasionally help detect the underlying cause of CKD.
Increased excretion of albumin is a sensitive and specific marker of CKD due to diabetes,
hypertension, and glomerular diseases.

Whereas, increased excretion of non-albumin proteins may indicate tubulointerstitial
diseases due to defective reabsorption of filtered, low molecular weight proteins. The
spot UACR or protein to creatinine ratio are widely used methods for CKD diagnosis. An
UACR greater than 30 mg/g indicates albuminuria and is a marker for CKD (Levey, Jong,
et al., 2011). Other methods for CKD diagnosis include kidney biopsy, imaging (ultra-
sonography, computed tomography scan, and magnetic resonance imaging), urinalysis and
urine microscopy to test for hematuria, cellular casts, chronic pyuria, tubular concentrating
defects, and insufficient renal acidification (Baumgarten and Gehr, 2011; Gaitonde, Cook,
and Rivera, 2017).
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Figure 1.1: Stages of chronic kidney disease.
Reprinted with permission from Elsevier. Levey, Jong, et al., 2011.

Staging

CKD staging is based on the recommendations by the KDIGO guidelines (Levey, Jong,
et al., 2011). Based on the GFR levels CKD stages are classified as: stage G1 (High and
optimal; GFR >90 ml/min/1.73m2), stage G2 (mild; GFR 60-89 ml/min/1.73m2), stage
G3a (mild-moderate; GFR 45-59 ml/min/1.73m2), stage G3b (moderate-severe; GFR 30-44
ml/min/1.73m2), stage G4 (severe; GFR 15-29 ml/min/1.73m2), and stage G5 (kidney
failure; <15 ml/min/1.73m2). Stage G5 is also called as end-stage renal disease (ESRD)
(Levey, Jong, et al., 2011). Similarly, based on the UACR levels, the severity of albuminuria
can be categorized as optimal and high-normal (A1; UACR <30 mg/g), high (A2; UACR
30-299 mg/g), and very high and nephrotic (A3; UACR ≥300 mg/g). Figure 1.1 describes
the stages of CKD.
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Table 1.1: Risk factors of chronic kidney disease.

Sociodemographic/
non-modifiable

Behavioral/modifiable Clinical factors

Age Smoking Acute kidney injury
Sex Physical inactivity Diabetes Mellitus
Race Diet Hypertension
Family history/genetics Obesity Cardiovascular Diseases
Low birth weight
Socioeconomics

1.1.4 CKD risk factors

The risk factors for the development (or progression) of CKD can be broadly classified into
sociodemographic/non-modifiable factors (e.g., age, sex), behavioral/modifiable factors
(e.g., smoking, diet), and clinical factors (e.g., diabetes, hypertension). Table 1.1 lists the
different risk factors for CKD described in the sections below.

Sociodemographic/non-modifiable risk factors

Age. Kidney function decreases with age, due to the loss in the number of func-
tioning nephrons or due to structural changes (Kazancioglu, 2013; Romagnani et al., 2017).
Chronic kidney disease is more common in older adults (Centers for Disease Control and
Prevention. Chronic Kidney Disease Initiative, 2021), and might be due to physiological
ageing, genetics, arterial hypertension, diseases causing kidney injury, increased body
weight or a combination of these factors (Romagnani et al., 2017).

Sex. The prevalence of CKD is higher in women as compared to men (Centers
for Disease Control and Prevention. Chronic Kidney Disease Initiative, 2021). However,
the progression to ESRD is higher in men than women likely due to higher prevalence of
diabetes and hypertension in men (Johansen et al., 2021).

Race. CKD is more common in African Americans than in Whites or Asians (Cen-
ters for Disease Control and Prevention. Chronic Kidney Disease Initiative, 2021). Similarly,
African Americans are at a four times higher risk of progressing to ESRD compared to
Whites (Johansen et al., 2021). This racial disparity exists due to higher prevalence of
diabetes and hypertension, socioeconomics (e.g., poor diet, lack of physical activity), and
genetic mutations in genes like apolipoprotein L1 or uromodulin in African Americans
(Kottgen et al., 2010; Norris and Agodoa, 2005; Pollak, Genovese, and Friedman, 2012).

Family history/genetics. A family history of CKD is an independent risk factor for
CKD/ESRD (Kazancioglu, 2013). Genetic mutations in genes like apolipoprotein L1 or
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uromodulin are associated with risk of CKD (Kazancioglu, 2013; Kottgen et al., 2010; Pollak,
Genovese, and Friedman, 2012).

Low birth weight. Intrauterine growth restriction might cause low nephron num-
bers and thus predispose to CKD (Mackenzie, Lawler, and Brenner, 1996). Low nephron
numbers may lead to intraglomerular hypertension and hyperfiltration in existing nephrons,
lower GFR, and higher UACR, thus increasing the risk of CKD (Vikse et al., 2008).

Socioeconomics. A study by Krop et al. (Krop et al., 1999) using the Atherosclerosis
Risk in Communities study cohort, observed that socioeconomic factors such as income
<$16,000 (vs. income >$35,000), belonging to a family of unskilled workers, and less than
high school education (vs. college education) were associated with increased risk of CKD.

Behavioral/modifiable factors

Smoking. Smoking has a dose dependent relationship with the development and
progression of CKD as it can lead to the development of kidney fibrosis. The nephrotoxic
chemicals in cigarette are known to adversely impact the kidneys, by causing vasoconstric-
tion leading to transient increase in BP and decrease in kidney function (Orth and Hallan,
2008; Schrauben et al., 2019; Van Laecke and Van Biesen, 2017).

Physical inactivity. Physical inactivity is a common modifiable risk factor for the
development of chronic conditions like hypertension, cardiovascular disease (CVD), obesity,
and diabetes mellitus (DM), which may eventually lead to the development of CKD (Booth,
Roberts, and Laye, 2012). CKD is thus a secondary consequence of physical inactivity.
Regular physical activity can positively impact metabolic factors like triglycerides, BP, and
insulin resistance, subsequently reducing the risk of CKD (Johansen, 2005; Stump, 2011).

Diet. Consuming an unhealthy diet i.e. high consumption of red and processed
meat, sugar-sweetened beverages, and sodium (Na+) may lead to an increased risk of
CKD (Chang et al., 2013). Additionally, unhealthy diet is a known risk factor for obesity,
hypertension, CVD, and metabolic syndrome, which are known risk factors (discussed
later) for CKD (Bullo et al., 2007). Adopting a healthy diet might lower the risk of CKD
(Bach et al., 2019).

Obesity. Obesity is a potent risk factor for the development of CKD (Kovesdy,
Furth, et al., 2017; Rhee, Ahmadi, and Kalantar-Zadeh, 2016). The prevalence of obesity
amongst US adults has increased significantly over the last few decades and is currently
affecting 42.4% of the US adult population (2017-2018 estimates) (Hales et al., 2018). Obesity
can lead to the development of oxidative stress, inflammation, abnormal lipid metabolism,
activation of the renin-angiotensin-aldosterone system (RAAS), and increased production
of insulin and insulin resistance. These may consequently induce kidney damage and lead
to CKD (Kazancioglu, 2013; Kovesdy, Furth, et al., 2017).
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Clinical factors

Acute kidney injury. Acute kidney injury (AKI) is a syndrome characterized by an
abrupt (over hours to days) decline in kidney function (Ostermann and Joannidis, 2016).
The KDIGO guidelines define AKI as: 1) increase in serum creatinine by ≥0.3 mg/dl within
48 hours; or 2) increase in serum creatinine to ≥1.5 mg/dl times baseline, which is known or
presumed to have occurred within the prior 7 days; or 3) urine volume <0.5 ml/kg/hour for
6 hours (Kellum, Lameire, and Group, 2013). Maladaptive processes after an AKI event can
lead to fibrosis, vascular rarefaction, tubular loss, glomerulosclerosis, and chronic interstitial
inflammation which can result in a state mimicking accelerated kidney ageing and thus
decline in kidney function (Chawla and Kimmel, 2012; Venkatachalam, Griffin, et al., 2010;
Venkatachalam, Weinberg, et al., 2015). Studies have suggested that the incidence, severity,
frequency, and duration of AKI are strong independent risk factors for the development
and progression of CKD and ESRD (Chawla, Amdur, et al., 2011; Coca, Singanamala, and
Parikh, 2012; Mehta et al., 2018; See et al., 2019).

Diabetes mellitus. DM is a chronic disease marked by high blood sugar levels due
to impaired insulin production or function (Centers for Disease Control and Prevention. Di-
abetes, 2021). The prevalence of CKD amongst those with DM is estimated at 36% (Johansen
et al., 2021). In patients with DM, hyperaminoacidemia promotes glomerular hyperfiltration
and hyperperfusion, and hyperglycemia, which eventually leads to alteration of kidney
hemodynamics, and inflammation and fibrosis (Alicic, Rooney, and Tuttle, 2017). These
events can eventually lead to development and progression of CKD.

Hypertension. Hypertension is a chronic disease characterized by persistent abnor-
mally elevated levels of BP (Centers for Disease Control and Prevention. Blood Pressure,
2021). The prevalence of CKD amongst those with hypertension is estimated at 31.9% (Jo-
hansen et al., 2021). An increase in BP leads to the development of arteriolar nephrosclerosis
with impaired kidney function (Bidani and Griffin, 2004; Lea and Nicholas, 2002). Due to
the persistent elevated BP levels there is continued damage to the kidneys thus leading to
the development and progression of CKD. Hypertension and CKD share a bidirectional
relationship i.e. either can be a cause or consequence of the other.

Cardiovascular disease. CVD refers to several types of heart diseases including
(but not limited to) ischemic heart disease (IHD; most common in US), heart attack, arrhyth-
mia, congestive heart failure (CHF), stroke, and peripheral vascular disease (Centers for
Disease Control and Prevention. Heart Disease, 2021). The prevalence of CKD amongst
those self-reporting CVD is 39.6% (Johansen et al., 2021). CVD and CKD share traditional
risk factors including DM and hypertension (Gansevoort et al., 2013). Due to a high preva-
lence of risk factors like DM and hypertension amongst those with CVD, the risk for CKD
is higher. CVD and CKD share a bidirectional relationship i.e. either can be a cause or
consequence of the other.
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Table 1.2: Complications and outcomes associated with chronic kidney
disease.

Systemic
complications
(clinical outcomes)

Patient reported
outcomes

Economic burden

Fluid and electrolyte
abnormalities

Poor quality of life
(e.g., cognitive impairment,
physical dysfunction etc.)

Increased direct
(e.g., medical services) and
indirect (e.g., work
productivity loss)

Anemia
Mineral bone disorders
Metabolic acidosis
Hyperuricemia
Hypertension
Dyslipidemia
Cardiovascular disease
Endocrine dysfunction
Uremia

1.1.5 CKD-associated complications and outcomes

The development and progression of CKD leads to several downstream systemic complica-
tions (or clinical outcomes), poor patient reported outcomes (e.g., poor quality of life [QoL]),
and higher economic burden (economic outcomes). Table 1.2 lists the complications and
outcomes associated with CKD described in the sections below.

Systemic complications (or clinical outcomes)

The kidneys play an important role in removing waste from the body, maintaining fluid and
electrolyte balance, and producing hormones important for maintaining BP, making red
blood cells, and keeping bones strong and healthy (National Institutes of Health. National
Institute of Diabetes and Digestive and Kidney Diseases. Your Kidneys & How They
Work, 2018). In CKD these processes are impacted and can lead to a multitude of clinical
complications.

Fluid and electrolyte abnormalities. Derangement of Na+ and water handling
occurs in CKD. Occurrence of hypervolemia (increased fluid retention) can manifest as
hypertension, edema, and/or shortness of breath (alone or in combination). Hyponatremia
(decreased Na+) in the body can occur due to water retention (Dhondup and Qian, 2017).



Chapter 1. Introduction 8

Potassium (K+; hereafter K+ means serum K+ unless otherwise noted) excretion is depen-
dent on exchange of Na+ and fluids at the distal tubule, thus those with CKD are at a higher
risk of hyperkalemia (elevated K+) due to lower eGFR and reduced Na+ and fluid delivery
to the distal tubule (Romagnani et al., 2017).

Anemia. Anemia in CKD can occur due to multiple reasons including reduced
renal erythropoietin production, reduced lifespan of red blood cells, impaired intestinal iron
absorption mediated by hepcidin and repetitive blood losses in patients on hemodialysis.
Anemia can lead to fatigue, weakness, drowsiness, reduced attentiveness and low exercise
tolerance (Romagnani et al., 2017).

Mineral bone disorders. The kidneys are responsible for maintaining bone health
(National Institutes of Health. National Institute of Diabetes and Digestive and Kidney
Diseases. Your Kidneys & How They Work, 2018). In CKD, mineral bone disorders are
characterized by abnormalities in mineral metabolism, bone structure and extra skeletal
calcification. Patients with CKD experience lower levels of 25-hydroxyvitamin D and/or
1,25-dihydroxyvitamin D3, and elevated levels of parathyroid hormone and fibroblast
growth factor 23. These hormones are key for maintaining bone integrity and mineral
(calcium and phosphate) homeostasis. Patients with CKD may thus experience bone pain,
difficulty in walking, skeletal deformities, and higher risk of fractures (Romagnani et al.,
2017).

Metabolic acidosis. Metabolic acidosis occurs due to reduced total renal ammo-
nium excretion, titratable acid excretion and bicarbonate (HCO3

-) reabsorption. Metabolic
acidosis contributes to bone demineralization, muscle wasting and CKD progression (Kraut
and Madias, 2016; Romagnani et al., 2017).

Hyperuricemia. Decreased urinary excretion of uric acid leads to hyperuricemia
(elevated uric acid levels). Serum uric acid >7.5 mg/dl is an independent risk factor for
accelerated progression of CKD (Romagnani et al., 2017).

Hypertension. Hypertension and CKD exhibit a bidirectional relationship. Hy-
pertension is a consequence of activation of catecholamines, aldosterone activity, RAAS
activation and hypervolemia. Amongst adults with CKD, 59.1% have prevalent hyperten-
sion.62 Controlling hypertension in CKD is critical to prevent CKD progression (Centers
for Disease Control and Prevention. Chronic Kidney Disease Initiative, 2021).

Dyslipidemia. In patients with CKD, abnormal lipid metabolism and uremic toxin-
related modifications in lipid particles promoting atherogenesis is common (Vaziri, 2006).
CKD-related post-translational modifications of lipid particles imply pro-inflammatory
effects and endothelial dysfunction (Romagnani et al., 2017; Speer et al., 2013).

Cardiovascular disease. CVD and CKD exhibit a bidirectional relationship. Pa-
tients with CKD experience a high incidence of CVD attributable to high prevalence of hy-
pertension, dyslipidemia, hyperuricemia, abnormal glucose metabolism, obesity, systemic
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inflammation and oxidative stress (Romagnani et al., 2017). The CKD-related cardiovascular
alterations resemble an accelerated ageing process. Initial stages of CKD are marked by
atherosclerotic processes, whereas with CKD progression, inflammatory factors and media
calcification contribute to vascular wall degeneration (Romagnani et al., 2017). As GFR
declines below 60-75 ml/min/1.73m2, the probability of CVD increases linearly, with stage
G3a to G4 CKD patients having double and triple the risk of CVD mortality, respectively,
compared to those without CKD (Sarnak et al., 2019).

Endocrine dysfunction. Patients with CKD may experience endocrine dysfunction
as kidney function declines. Abnormalities in gonadal hormones can lead to reduced
fertility in males and females. Abnormalities in thyroid function may occur (Romagnani
et al., 2017).

Uremia. Uremia is characterized by increased levels of urea and hundreds of other
proteins and metabolites in the blood. Uremia is a systemic inflammatory state that may
contribute to ESRD-related CVD, malnutrition, sarcopenia, osteoporosis, and frailty. CKD-
related intestinal barrier dysfunction causing bacterial endotoxin leakage into the circulation,
and dialysis-related or infection-related immune activation, can also contribute to uremia
(Romagnani et al., 2017).

Patient reported outcomes

Patients with CKD experience poor QoL and commonly report cognitive impairment,
dementia, sleep disturbance, pain, and emotional and physical dysfunction (Braun et al.,
2012). Perception of both general health and mental health is low across eGFR levels,
whereas that of physical health decreases with decreasing eGFR (Chin et al., 2008; Porter
et al., 2012). Studies on QoL amongst CKD patients report factors such as less education,
less exercise, depression, history of CVD, lower income, and unemployment associated
with lower QoL (Chin et al., 2008; Gorodetskaya et al., 2005; Porter et al., 2012).

Economic outcomes

Both CKD/ESRD pose a substantial burden on the society. For the year 2019, Medicare
expenditures (including Part A, B, and D) for any stage of CKD (without ESRD) and ESRD
were $87.2 billion and $51.0 billion, respectively. The per patient per year cost (2019 $) for
older and younger adults with CKD, DM, and CHF was $45,943 and $64,628, respectively.
Whereas for older and younger adults with CKD only (without ESRD) was $19,070 and
$30,208, respectively, indicating the added economic burden of comorbidities in CKD.
Hospitalization costs comprise approximately one-third of the total medical expenditures for
CKD/ESRD and are mainly driven by hospitalizations due to infections or cardiovascular
events (Johansen et al., 2021). Indirect costs for CKD/ESRD associated with presenteeism,
absenteeism, caregiver costs, and premature death are not well characterized but are
expected to be substantial, especially amongst those with stage 4-5 CKD not on dialysis and
those with ESRD (Wang et al., 2016).
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1.1.6 CKD management

The management of CKD is based on management of modifiable risk factors for those
at risk of/or with CKD. The prevalence of CVD is higher amongst those with CKD (vs
those without CKD) (Chen, Knicely, and Grams, 2019; Johansen et al., 2021). Additionally,
CKD worsens cardiovascular outcomes. Thus, lowering cardiovascular risk is critical in
the management of CKD. Prescription of low-to-moderate dose statins to CKD patients
aged 50 years and above is recommended (Anderson et al., 2016; Wanner, Tonelli, and
Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group,
2014). The KDIGO guidelines recommend a systolic BP (SBP) and diastolic BP (DBP) goal
of less than 120 mmHg and 80 mmHg, respectively, among adults with CKD (Kidney
Disease: Improving Global Outcomes Blood Pressure Work, 2021). The KDIGO guidelines
also recommend that adults with UACR ≥30 mg/24 hours should have their SBP and
DBP under 120 mmHg and 80 mmHg, respectively (Kidney Disease: Improving Global
Outcomes Blood Pressure Work, 2021).

Further, KDIGO guidelines recommend initiating RAAS inhibitors for those with
CKD, high BP, and albuminuria with or without DM (Kidney Disease: Improving Global
Outcomes Blood Pressure Work, 2021). Diabetes management is also critical to the manage-
ment of CKD as glycemic control (hemoglobin A1c ∼ 7.0%) may delay CKD progression
(Chen, Knicely, and Grams, 2019; Stevens, Levin, and Kidney Disease: Improving Global
Outcomes Chronic Kidney Disease Guideline Development Work Group, 2013; Guideline
development, 2015; Shurraw et al., 2011). Avoiding drugs that are largely cleared by the kid-
neys (e.g., glyburide) and dose reducing or discontinuing drugs (e.g., metformin, and some
dipeptidyl peptidase 4 inhibitors) that are excreted by the kidneys is recommended (Chen,
Knicely, and Grams, 2019). Data from recent clinical trials such as the CREDENCE Trial
(Perkovic et al., 2019), EMPA-REG Trial (Wanner, Inzucchi, et al., 2016), and DAPA-CKD
Trial (Heerspink et al., 2020) have shown the beneficial cardio- and renoprotective effects of
Na+-glucose cotransporter-2 inhibitors such as empagliflozin and dapagliflozin amongst
those with CKD. Further, data from the FIDELIO-DKD (Bakris et al., 2020) shows the cardio-
and renoprotective effects of finerenone (a nonsteroidal, selective mineralocorticoid receptor
antagonist) those with CKD and type 2 DM.

Finally, the Kidney Disease Outcomes Quality Initiative guidelines recommend
dietary protein intake to <0.6 g/kg body weight/day in adults with CKD stages 3-5 without
DM and not on dialysis (Ikizler et al., 2020). Similarly, lowering salt intake to <90 mmol/day
is recommended (Kidney Disease: Improving Global Outcomes Blood Pressure Work,
2021). Physical activity to improve cardiovascular health and tolerance (at least 30 minutes
5 times/week) to achieve healthy weight and smoking cessation is also recommended
(Kidney Disease: Improving Global Outcomes Blood Pressure Work, 2021; Ricardo et al.,
2015).

One of the key functions of the kidneys is to maintain fluid electrolyte balance. The
kidneys play a critical role in K+ homeostasis. The following sections discuss in detail the
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importance of K+ for maintaining body functions, role of kidneys in K+ homeostasis, and
the effects of CKD on K+ homeostasis and downstream outcomes.

1.2 Potassium

1.2.1 Background

Potassium is one of six major body electrolytes along with Na+, calcium, chloride, phos-
phate, and magnesium. It is the most common cationic electrolyte in the body with 98%
present in the intracellular fluid (140 mEq/L) and 2% in the extracellular fluid (3.5-5.0
mEq/L) and is primarily responsible for maintaining normal cellular electrophysiologic
function which is necessary for proper function of excitable neuromuscular and cardiac
tissues (Gumz, Rabinowitz, and Wingo, 2015; Kovesdy, Appel, et al., 2017; Palmer, 2015;
Palmer and Clegg, 2019). Maintaining K+ within its homeostatic range is critical to maintain
proper tissue excitability and is carried out by various mechanisms (section 1.2.2).

1.2.2 Potassium homeostasis

The kidneys are the major organs responsible for K+ homeostasis and they maintain the
total body K+ levels by matching K+ intake with K+ excretion over several hours (Gumz,
Rabinowitz, and Wingo, 2015; Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and
Clegg, 2019). While the kidneys regulate K+ homeostasis over several hours, insulin and
catecholamines play an important role in the initial process of K+ homeostasis by rapidly
shifting K+ from the extracellular to the intracellular space (Palmer, 2015; Palmer and
Clegg, 2019). Insulin shifts dietary K+ to the intracellular space by increasing the activity
of the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) pump. Similarly,
catecholamines work through β2-adrenergic receptors which activate the Na+/K+-ATPase
pump leading to the shift of extracellular K+ to the intracellular space (Palmer, 2015; Palmer
and Clegg, 2019).

Kidneys and K+ homeostasis

Potassium is freely filtered by the glomerulus and almost completely reabsorbed in the
proximal convoluted tubule and ascending limb of Henle, such that less than 10% of filtered
K+ reaches the distal nephron (Gumz, Rabinowitz, and Wingo, 2015; Kovesdy, Appel, et al.,
2017; Palmer, 2015; Palmer and Clegg, 2019). The reabsorption of K+ in the proximal convo-
luted tubule is primarily through the paracellular pathway due to the convective flux in
association with salt and water reabsorption; whereas in the thick ascending limb of Henle,
reabsorption is transcellular and occurs by secondary active transport (Gumz, Rabinowitz,
and Wingo, 2015; Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019). The
transcellular reabsorption is mediated by the apical membrane sodium/potassium/chlorine
cotransporter. The Na+/K+-ATPase creates a favorable gradient for the entry of K+ into
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the cell through the apical sodium/potassium/chlorine cotransporter (Kovesdy, Appel,
et al., 2017; Palmer, 2015; Palmer and Clegg, 2019).

Secretion of K+ begins in the early distal convoluted tubule and extends into the
collecting duct (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019).
Under normal conditions, delivery of K+ to the distal nephron remains small and fairly
constant; however, the rate of K+ secretion by the distal nephron varies and depends on
the physiological needs of the body (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer
and Clegg, 2019). The cellular determinants of K+ secretion in the principal cell include
intracellular K+ concentration, luminal K+ concentration, voltage difference across luminal
membrane, and permeability of luminal membrane to K+. Secretion of K+ is increased
when cellular concentration of K+ increases, luminal K+ concentration decreases, the lumen
is rendered more electronegative, or due to increase in the K+ permeability of the luminal
membrane (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019). The level
of K+ secretion in the distal region is mainly determined by mineralocorticoid activity and
distal delivery of Na+ and water.

Aldosterone is the major mineralocorticoid that affects the cellular determinants that
affect K+ secretion. Aldosterone increases the intracellular K+ concentration by stimulating
the Na+/K+-ATPase in the basolateral membrane. It also stimulates Na+ reabsorption
across the luminal membrane, thus increasing lumen electronegativity and increasing the
electrical gradient in favor of K+ secretion. Lastly, aldosterone directly works on the luminal
membrane to increase K+ permeability (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer
and Clegg, 2019). Along with aldosterone, distal delivery of Na+ and water are important
to K+ secretion.

Increased distal delivery of Na+ stimulates distal Na+ absorption, which makes
the lumen electronegative and increases K+ secretion. Potassium secretion by water is
affected by increased flow rates. When K+ is secreted in the collecting duct, luminal
K+ concentration rises, thus decreasing the diffusion gradient and slowing additional K+

secretion. When the flow rate is high in the lumen, the same amount of K+ secretion
is diluted by larger volume such that rise in luminal K+ concentration is less. Thus,
increased distal delivery of Na+ and water stimulate K+ secretion by lowering luminal K+

concentration and creating an electronegative lumen potential (Palmer, 2015; Palmer and
Clegg, 2019).

CKD and K+ homeostasis

In CKD, K+ homeostasis is affected due to progressive damage to the nephrons leading to
reduced kidney function. The reduced kidney function may lead to hyperkalemia. Increased
renal excretion of K+ per residual functioning nephrons and supplementary gastrointestinal
excretion help in maintaining normal K+ mass balance in the body in patients with CKD
(Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019). The effectiveness of
these adaptations diminishes in the advanced stages of CKD, but the exact GFR level at
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which they become ineffective is unclear (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer
and Clegg, 2019).

Elevated K+ concentration, aldosterone, increased urine flow rate, and enhanced
Na+/K+-ATPase activity mediate the increased K+ secretion per functioning nephron to
maintain K+ within normal levels (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and
Clegg, 2019). Additionally, there are increased fecal losses of K+ through the gastrointestinal
tract (Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019). Fecal K+ excretion
may exceed 20% of intake (or even reach 75% of intake) in CKD, and especially in ESRD
(Hayes, McLeod, and Robinson, 1967).

In spite of the various adaptations to maintain normal levels of K+ in the body, the
high prevalence of chronic comorbid conditions (e.g., DM, hypertension, CHF), the use of
medications promoting hyperkalemia (e.g., RAAS inhibitors), and the declining kidney
function conspire to predispose patients with CKD to a high risk of hyperkalemia. Though
not as frequent as hyperkalemia, patients with CKD may also experience hypokalemia
due to diuretics use (e.g., loop or thiazide diuretics) and being African American and
females (Gilligan and Raphael, 2017). Overall, patients with CKD are at an increased risk of
experiencing dyskalemias (hypo- or hyperkalemia) and thus adverse outcomes associated
with dyskalemias. The sections below define dyskalemias, factors associated with and the
effects of dyskalemias.

1.2.3 Dyskalemias

Dyskalemias are the deviation of K+ levels from normal levels (3.5-5.0 mEq/L) and include
hypokalemia (reduced K+ levels; K+ <3.5 mEq/L) and hyperkalemia (elevated K+ levels;
K+ >5.0 mEq/L).

Hyperkalemia

Hyperkalemia is characterized by elevated levels of K+ in the extracellular fluid (K+ >5.0
mEq/L) (Gilligan and Raphael, 2017). The estimated prevalence of hyperkalemia amongst
those with CKD is 14%-50% depending on the K+ threshold used for defining hyperkalemia
and on CKD severity (Dashputre, Sumida, Potukuchi, et al., 2021; De Nicola et al., 2018;
Gilligan and Raphael, 2017). The common risk factors for hyperkalemia in CKD are
lower eGFR, RAAS inhibitor use, male sex, lower body mass index (BMI), prevalence of
malignancies, DM, and lower serum HCO3

- (Gilligan and Raphael, 2017).

Lower eGFR. Kidneys are critical to K+ homeostasis (Gumz, Rabinowitz, and
Wingo, 2015; Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019). Those
with CKD might thus be at higher risk of hyperkalemia due to the progressive reduction in
kidney function, with those with advanced CKD stages (GFR <30 ml/min/1.73m2) being
at almost a 7-fold higher risk of developing hyperkalemia compared to those with normal
kidney function (Weinberg et al., 2009).
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Table 1.3: Medications inducing hyperkalemia and their mechanism of
action.

Medications Mechanism of action

Beta blockers
Decrease in activity Na+/K+-ATPase
activity pump and renin release

Digoxin intoxication Inhibition of Na+/K+-ATPase pump activity
Intravenous cationic
amino acids Increase in extracellular K+ shifts
Mannitol Hyperosmolality with increase of extracellular K+

Suxamethonium Prolonged depolarization of cell membrane

Angiotensin converting
enzyme inhibitors

Blockade of angiotensin II synthesis
with decrease of aldosterone
secretion. Impaired delivery of Na+ to the
distal nephron

Angiotensin receptor
II blockers

Competitive binding to the angiotensin II
synthesis with decrease of aldosterone synthesis

Direct renin
inhibitors

Inhibition of the conversion of angiotensinogen to
angiotensin I with decrease of aldosterone formation

NSAIDs
Decrease of prostaglandin-mediated renin release,
renal blood flow and glomerular filtration rate

Calcineurin inhibitors
Decrease aldosterone synthesis and
Na+/K+-ATPase pump activity

Aldosterone antagonists Blockade of mineralocorticoid receptors
K+-sparing diuretics Blockade of luminal Na+ channels
Trimethoprim,
pentamidine

Blockade of luminal Na+ channels

Salt substitutes and
salt alternatives

Increase in K+ supply

Penicillin G,
stored blood products

Increase in K+ supply

K+: potassium; Na+: sodium; Na+/K+-ATPase: sodium-potassium adenosine
triphosphatase; NSAIDs: non-steroidal anti-inflammatory drugs. Modified with
permission from Springer Nature. Ben Salem et al., 2014.
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RAAS inhibitors use. The mineralocorticoid aldosterone plays an important role
in the secretion of K+ from the distal part of the nephron (Palmer, 2015; Palmer and Clegg,
2019). RAAS inhibitors interfere with the angiotensin II-mediated stimulation of aldosterone
secretion from the adrenal gland resulting in diminished effects of aldosterone and hence
reduced renal K+ secretion (Weir and Rolfe, 2010).

Malignancy. Hyperkalemia amongst those with malignancies is typically attributed
to AKI, rhabdomyolysis, or tumor lysis syndrome (Rosner and Dalkin, 2014).

Diabetes mellitus. Patients with DM experience hyporeninemic hypoaldostero-
nism, which is the primary reason for hyperkalemia in patients with DM (Uribarri, Oh, and
Carroll, 1990). Additionally, the burden of DM is high amongst those with CKD (Centers for
Disease Control and Prevention. Chronic Kidney Disease Initiative, 2021), thus predispos-
ing them to higher hyperkalemia risk due to underlying pathophysiological consequences
of DM and CKD.

Lower HCO3
-. In metabolic acidosis (lower serum HCO3

-), the decrease in extracel-
lular pH decreases the rate of Na+-H+ exchange thus inhibiting inward rate of Na+-HCO3

-

cotransport. The resultant loss in intracellular Na+ causes a loss of K+ into the extracellular
space. Additionally, fall in extracellular HCO3

- causes an inward movement of chlorine,
leading to an efflux of K+ into the extracellular space (Palmer, 2015). These physiological
changes in the setting of metabolic acidosis increase the risk of hyperkalemia.

Apart from these, other risk factors for hyperkalemia include active smoking, history
of heart disease or stroke, higher UACR and use of various medications like K+-sparing di-
uretics (Kovesdy, Matsushita, et al., 2018), non-steroidal anti-inflammatory drugs (NSAIDs),
beta blockers, calcineurin inhibitors and others (Ben Salem et al., 2014). Table 1.3 lists
medications inducing hyperkalemia and their mechanism of action (Ben Salem et al., 2014).

Hypokalemia

Hypokalemia is characterized by reduced levels of extracellular K+ (K+ <3.5 mEq/L)
(Gilligan and Raphael, 2017). The estimated prevalence of hypokalemia amongst those with
CKD is 12%-31% depending on the K+ threshold for defining K+ and CKD severity studied
(Dashputre, Sumida, Potukuchi, et al., 2021; Gilligan and Raphael, 2017). The most common
risk factors for hypokalemia in CKD are diuretic use, African American race, female sex,
higher BMI, and malignancies (Gilligan and Raphael, 2017).

Diuretic use. Loop and thiazide diuretics increase the delivery of Na+ and water
to the distal nephron (Knochel, 1984; Tannen, 1985). The distal delivery of Na+ and water is
important to the secretion of K+ from the body (Kovesdy, Appel, et al., 2017; Palmer, 2015;
Palmer and Clegg, 2019), thus increased delivery of Na+ and water by diuretics along with
inhibition of the sodium/potassium/chlorine cotransporter (responsible for transcellular
K+ reabsorption) (Ellison and Loffing, 2009; Ellison, 2019), may cause hypokalemia due to
increased K+ secretion from the body.
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Table 1.4: Medications inducing hypokalemia and their mechanism of
action.

Medications Mechanism of action

Antimicrobials Renal K+ loss

β2-receptor agonists
Shift of K+ from extracellular fluid to
intracellular fluid compartment

Diuretics Renal K+ loss

Insulin
Shift of K+ from extracellular fluid to
intracellular fluid compartment

Mineralocorticoids and
Glucocorticoids

Renal K+ loss

Laxatives Stool (gastrointestinal) K+ loss

Xanthines
Shift of K+ from extracellular fluid to
intracellular fluid compartment

Verapamil (overdose)
Shift of K+ from extracellular fluid to
intracellular fluid compartment

K+: potassium. Reprinted with permission. Veltri and Ma-
son, 2015.

Malignancy. Hypokalemia amongst those with malignancies is due to medications
causing tubular damage (e.g., cisplatin, amphotericin B, and aminoglycoside antibiotics),
poor nutrition, chemotherapy-induced gastrointestinal K+ losses, and diuretic use (Rosner
and Dalkin, 2014).

Additional risk factors for hypokalemia include higher SBP, lower serum cholesterol,
higher UACR (Kovesdy, Matsushita, et al., 2018) and drugs such as β2-receptor agonists,
insulin, laxatives and others (Veltri and Mason, 2015). Table 1.4 lists medications inducing
hypokalemia and their mechanism of action.

1.2.4 Dyskalemia-associated outcomes

Potassium plays an important role in maintaining normal cellular function necessary
for proper function of excitable neuromuscular and cardiac tissues (Gumz, Rabinowitz,
and Wingo, 2015; Kovesdy, Appel, et al., 2017; Palmer, 2015; Palmer and Clegg, 2019).
Dyskalemias (hypo/-hyper-kalemia) can lead to deviations in membrane potential in
the skeletal myocytes and cardiac myocytes that can lead to muscle paralysis and fatal
arrhythmias, respectively (Ravens and Cerbai, 2008; Toto, 2017). Fatal arrhythmias can lead
to sudden cardiac death (Ravens and Cerbai, 2008; Toto, 2017). Across various populations
(CKD vs non-CKD), dyskalemias are associated with worse cardiovascular outcomes,



Chapter 1. Introduction 17

mortality, and healthcare and economic burden (Betts et al., 2018; Collins et al., 2017;
Gilligan and Raphael, 2017; Fitch et al., 2017; Kim et al., 2019; Kovesdy, Matsushita, et al.,
2018; Luo et al., 2016; Polson et al., 2017).

1.2.5 Dyskalemia management

Hyperkalemia

Management of hyperkalemia differs based on the setting (acute vs chronic). In the acute
setting, the immediate goal is stabilization of the membrane potential with or without chang-
ing K+ concentration. The first intervention in the acute setting is typically intravenous
administration of calcium or hypertonic saline, followed by therapies that cause an influx of
K+ into the intracellular space, such as insulin and β2-agonists (Kovesdy, 2015). Intravenous
HCO3

- might be used, however its efficacy is questionable (Kovesdy, 2015). On the other
hand, the focus of management of chronic hyperkalemia is to prevent development of
hyperkalemia by identifying and correcting defects in K+ homeostasis.

Reducing K+ intake in diet, discontinuing hyperkalemia-inducing medications (e.g.,
RAAS inhibitors) or treating metabolic acidosis can be the initial steps. However, stopping
medications like RAAS inhibitors might have adverse outcomes due to their known cardio-
and renoprotective effects (Remuzzi et al., 2005). The aforementioned interventions may
not be enough to prevent hyperkalemia and might require the use of K-binding resins
such as sodium-polystyrene sulphonate (SPS), patiromer calcium, or sodium zirconium
cyclosilicate (Kovesdy, 2015). These agents work by exchanging cations (Na+ for K+ [SPS];
calcium for K+ [patiromer calcium]; and Na+ and hydrogen for K+ [sodium zirconium
cyclosilicate]) (Chaitman, Dixit, and Bridgeman, 2016).

Hypokalemia

For diuretic-induced hypokalemia interventions such as using the lowest diuretic dose possi-
ble, reducing Na+ intake, and following a K+-rich diet can be used. If these strategies aren’t
effective, oral K+ chloride supplementation (starting at 20-60 mmol/d) or administration of
K+-sparing diuretics can be used (Kovesdy, Appel, et al., 2017).

As discussed in section 1.2.4, dyskalemias are associated with various adverse
outcomes in CKD/non-CKD population. However, there are gaps in the literature that need
to be addressed, especially amongst those with advanced CKD transitioning to dialysis.
The following sections discuss the current gap in the literature, goal of this study, and the
study significance.

1.3 Research Gaps

Dyskalemias are associated with higher incidence of cardiovascular morbidity and mortality,
and higher healthcare/economic burden (Collins et al., 2017; Fitch et al., 2017; Gilligan
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and Raphael, 2017; Kim et al., 2019; Kovesdy, Matsushita, et al., 2018; Luo et al., 2016;
Polson et al., 2017). Patients with advanced CKD transitioning to dialysis represents a
unique population which is at higher risk of dyskalemias (especially hyperkalemia) due to
low eGFR, higher prevalence of comorbidities (e.g., DM, CHF, hypertension) and use of
medications (e.g., RAAS inhibitors, diuretics) inducing dyskalemias. Though, the common
risk factors for hyperkalemia like lower eGFR, RAAS inhibitor use, DM etc. are known
and largely studied, there are no studies that have developed/used a prediction model
approach to identify predictors of hyperkalemia (in the pre-dialysis period) in advanced
CKD patients transitioning to dialysis.

Secondly, patients with CKD are at a higher risk of stroke incidence due to impaired
cerebral autoregulation, remodeled cerebral vasculature, reduced cerebral blood flow, and
high prevalence of comorbid hypertension, a strong independent risk factor for stroke (Dad
and Weiner, 2015; Johansson, 1999; Masson et al., 2015; Power, 2013; Toyoda and Ninomiya,
2014). Previous studies suggested that hypokalemia might be a marker of increased RAAS
activity potentiating the effect of stroke by resulting in extensive neurologic damage and
neurologic deficits (Brown and Brown, 1986; Mattsson et al., 2018). Further, a number of
clinical and epidemiological studies suggest that higher K+ levels leads to vasodilation and
lower K+ leads to vasoconstriction, thus potentiating effects on BP and future stroke events
(Brace, 1974; Dolson et al., 1995; Haddy, 1975; Haddy, Vanhoutte, and Feletou, 2006; Ma,
Mamaril, and Young, 2000; Paller and Linas, 1982; Pikilidou et al., 2007; Webb and Bohr,
1978; Webb, 1982). Previous studies suggested that both hypokalemia and hyperkalemia
are associated with higher risk of stroke incidence (Green et al., 2002; Johnson, Mattsson,
et al., 2017; Mattsson et al., 2018; Smith et al., 2003). However, common limitations amongst
these studies (Green et al., 2002; Johnson, Mattsson, et al., 2017; Mattsson et al., 2018; Smith
et al., 2003) are the lack of representation of an advanced CKD population, use of baseline
K+ measurement to define dyskalemia, and long follow-up times for outcome assessment
(minimum follow-up of 1 year; maximum median follow-up of 26 years).

Finally, dyskalemias are associated with higher risk of hospital/emergency room
(ER) utilization (Brunelli et al., 2017; Fitch et al., 2017; Kim et al., 2019; Luo et al., 2016;
Polson et al., 2017). However, limitations for current studies (Brunelli et al., 2017; Fitch
et al., 2017; Kim et al., 2019; Luo et al., 2016; Polson et al., 2017) are lack of representation of
advanced CKD patients and use of baseline K+ (except (Luo et al., 2016) and (Brunelli et al.,
2017)) measurement for defining dyskalemia. Overall, there is a dearth of literature on
predictors of hyperkalemia and outcomes associated with dyskalemia (in the pre-dialysis
period) amongst patients with advanced CKD transitioning to dialysis.

1.4 Goals of the Study

In the context of the current limitations, the goals of this study are to study the following
aims in the pre-dialysis period of patients with advanced CKD transitioning to dialysis:
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• Aim 1: Develop and validate a prediction model to predict risk of future hyperkalemia
events in individual patients using machine learning (ML)

• Aim 2: Assess the relationship between dyskalemias and time to incidence of first
ischemic stroke event

– Hypothesis: Dyskalemias are associated with higher risk of ischemic stroke

• Aim 3: Assess the relationship between dyskalemias and short-term hospital/ER
utilization

– Hypothesis: Dyskalemias are associated with higher risk of short-term hospi-
tal/ER utilization

1.5 Study Significance

Prediction models have extensive clinical utility and can help in assessing future risk of
events. Many such validated tools like the Framingham risk score for cardiovascular disease
risk (Wilson et al., 1998), the CHA2DS2-VASc score for atrial fibrillation stroke risk (Gage et
al., 2001), and the kidney failure risk equation (Tangri et al., 2011) are examples of prediction
models with excellent clinical utility. Due to the high risk of hyperkalemia in advanced
CKD patients and the lack of prediction models to assess future risk of hyperkalemia in
these patients, there is a need to develop and validate a prediction model that can be used to
assess the future risk of hyperkalemia (in the pre-dialysis period) in individual patients with
advanced CKD transitioning to dialysis. This study will develop and validate a prediction
model using ML methods to potentially help prevent hyperkalemia event.

Dyskalemias may affect BP levels that can potentially lead to a higher risk of ischemic
stroke. As discussed earlier, among the limitations of previous studies (Green et al., 2002;
Johnson, Mattsson, et al., 2017; Mattsson et al., 2018; Smith et al., 2003) are the lack of
representation of an advanced CKD population, use of a baseline K+ value to define
dyskalemia, and long follow-up assessment periods. In an advanced CKD population
transitioning to dialysis, we propose to assess the association of both baseline K+ levels
and time updated K+ levels with time to first ischemic stroke event (in the pre-dialysis
period), to further shed light on the association of dyskalemias with ischemic stroke in this
population.

Dyskalemia-associated complications (e.g., arrhythmias) are typically short term in
nature (Brunelli et al., 2017; Einhorn et al., 2009). As discussed earlier, previous studies
(Brunelli et al., 2017; Fitch et al., 2017; Kim et al., 2019; Luo et al., 2016; Polson et al., 2017)
have assessed the association between dyskalemia and hospital/ER utilization; however
they are limited by using a single K+ measurement (except (Luo et al., 2016) and (Brunelli
et al., 2017)) for defining dyskalemia and the lack of short-term assessment period for
hospital/ER utilization. In our study, we propose to use time-updated K+ measurement, to
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assess the association between dyskalemias and short-term hospital/ER utilization (in the
pre-dialysis period) in an advanced CKD population transitioning to dialysis.

Overall, these study goals will lead to the development of a validated tool with
practical clinical applications for early identification of patients with advanced CKD transi-
tioning to dialysis at a future risk of hyperkalemia. Additionally, the study will shed light
on the association of dyskalemias with stroke and healthcare utilization amongst those with
advanced CKD transitioning to dialysis.
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Chapter 2

Development of a Prediction Model for Advanced
Chronic Kidney Disease Patients at Risk for
Hyperkalemia Using Machine Learning

2.1 Introduction

Chapter 2 describes the research question undertaken for Aim 1, mentioned in section 1.4.
Briefly, chapter 2 describes the development and validation of a prediction risk score to
identify advanced CKD patients transitioning to dialysis at risk of hyperkalemia (in the
pre-dialysis period) using various ML methods.

The kidneys play a critical role in maintaining the K+ levels in a narrow range of
3.5-5.0 mEq/L (Kovesdy, Appel, et al., 2017; Palmer and Clegg, 2019). Patients with CKD
are at a higher risk of hyperkalemia due to declining kidney function, comorbidities (e.g.,
DM, CHF etc.), and use of medications such as RAAS inhibitors (Gilligan and Raphael,
2017; Korgaonkar et al., 2010; Kovesdy, Appel, et al., 2017; McCullough et al., 2014).
The prevalence of hyperkalemia in CKD is estimated between 14-41% and differs based
on CKD stage and the K+ threshold used to define hyperkalemia, with an estimated
prevalence of 41% (K+ >5.5 mEq/L) amongst those with advanced CKD (stage 4 and 5)
(Dashputre, Sumida, Potukuchi, et al., 2021; Gilligan and Raphael, 2017; Luo et al., 2016;
Korgaonkar et al., 2010; Moranne et al., 2009; Nakhoul et al., 2015). Hyperkalemia is
associated with poor healthcare outcomes including reduced survival, increased risk of
experiencing cardiovascular events, and increased healthcare and economic burden (Collins
et al., 2017; Fitch et al., 2017; Gilligan and Raphael, 2017; Kim et al., 2019; Korgaonkar et al.,
2010; Kovesdy, Matsushita, et al., 2018; Luo et al., 2016).

Prediction models are useful tools to inform clinical decision making (Kappen et al.,
2018; Moons et al., 2015; Vogenberg, 2009), with models such as the Framingham risk
score (Wilson et al., 1998), the CHA2DS2-VASc score (Lip et al., 2010), and the kidney
failure risk equation (Tangri et al., 2011) score aiding clinicians to make decisions for
patient management. Further, the increased implementation of artificial intelligence and
ML in healthcare has afforded newer methods to complement or even improve traditional
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regression models such as logistic regression (LR) or Cox regression for development of
prediction models (Davenport and Kalakota, 2019; Vollmer et al., 2020).

Patients with advanced CKD transitioning to dialysis represent a unique population
with a declining kidney function, high comorbidity rate and medication burden (Johansen
et al., 2021). Such patients may thus be predisposed to a higher risk of hyperkalemia as
well. Further, owing to the clinical and economic implications of hyperkalemia in CKD
as discussed earlier, developing a prediction model to predict hyperkalemia might aid
clinical decision making for management of hyperkalemia in the advanced CKD population.
Prediction models for hyperkalemia have been previously developed amongst varied
population including CKD patients initiating lisinopril (Johnson, Weinstein, et al., 2010),
RAAS inhibitors initiators in the Stockholm Creatinine Measurements (SCREAM) cohort
(Bandak et al., 2017), and US commercial/Medicare Advantage insured CKD patients
(Sharma, Alvarez, Woods, and Dai, 2020).

However, these studies are limited by the use of only traditional methods (Cox
regression or LR) for prediction model development. Further, these studies did not focus
on advanced CKD patients transitioning dialysis, who are at a higher risk of hyperkalemia.
With the increasing use of ML in healthcare, comparing the performance of ML and tradi-
tional regression methods might help in identifying and developing more robust prediction
models. To address the current gap in the literature, the aim of our study was to compare
the performance of ML and traditional regression methods and develop and validate a
prediction model to predict the risk of hyperkalemia in individual patients with advanced
CKD prior to dialysis transition.

2.2 Methods

2.2.1 Data source

To address this research aim, data from the Transition of Care in Chronic Kidney Disease
(TC-CKD) cohort was used for this study. The TC-CKD cohort (n=102,477) is a nationally
representative cohort with longitudinal data on US Veterans transitioning to dialysis from
October 1, 2007 through March 31, 2015 identified from the United States Renal Data System
(USRDS) (Dashputre, Sumida, Potukuchi, et al., 2021; Dashputre, Potukuchi, et al., 2021;
Sumida et al., 2021). The TC-CKD cohort has a median (25-75th) of 6.2 (2.8-9.3) years and
1.6 (0.6-2.3) years of data availability prior to and following dialysis initiation, respectively.

2.2.2 Study population

The aim of this study was to develop and validate a prediction model using ML methods
for the risk of hyperkalemia in the pre-dialysis period of an advanced CKD population
transitioning to dialysis. From the TC-CKD cohort, an initial sample of 60,520 US Veterans
with any pre-dialysis outpatient eGFR data was identified. Amongst these, 36,644 with two
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Figure 2.1: Study design for Aim 1. eGFR: estimated glomerular filtration
rate; K+: potassium.

outpatient eGFR <30 ml/min/1.73m2 (CKD stages 4 and 5, not yet on dialysis) measured
90-365 days apart, with the second eGFR serving as the index were further identified.
Further, the sample was restricted to 23,363 with at least one-year each of look back period
(baseline) and follow-up period (prior to dialysis initiation) from the index to allow for
sufficient baseline and follow-up period to capture predictors and outcome, respectively.
Amongst these, 21,669 had at least 1 inpatient/outpatient K+ value each in the baseline
(to establish baseline K+ value) and follow-up (to establish outcome K+ value) period.
Finally, we excluded 15 patients (age <18 years at index [n=1] and with incorrect zip code
data [n=14]) to yield a final sample size of 21,654 patients. The study design is shown in
Figure 2.1 and sample selection is shown in Figure 2.2.

2.2.3 Predictors

A total of 51 predictors (48 clinical risk factors and 3 interaction terms) including demo-
graphics, smoking status, comorbidities, healthcare utilization, medication use, vital signs,
and laboratory measures were identified based on clinical knowledge, published literature
and availability in the data (Gilligan and Raphael, 2017; Kovesdy, Matsushita, et al., 2018;
Palmer and Clegg, 2019). Demographic characteristics such as date of birth, sex, and race
were extracted from the USRDS Patient and Medical Evidence file, whereas marital status
was extracted from Veterans Affairs (VA) records and were ascertained as of the index date
(McGinnis et al., 2011; Soohoo et al., 2019). Smoking status was extracted from the VA
records(McGinnis et al., 2011; Soohoo et al., 2019) and ascertained as of the index date.

Pre-existing comorbidities as of the index date were identified from the VA Inpatient
and Outpatient Medical SAS, and the VA/Centers for Medicare and Medicaid Services
(CMS) databases using a 2 outpatient or 1 inpatient claims algorithm of the International
Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic and
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Figure 2.2: Sample selection criteria for Aim 1. eGFR: estimated
glomerular filtration rate; K+: potassium.
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Current Procedural Terminology (CPT) codes. Comorbidities include DM, CHF, hyper-
tension, IHD, peripheral vascular disease, cerebrovascular disease, chronic lung disease,
peptic ulcer disease, para-/hemiplegia, anemia, atrial fibrillation, liver disease, and ma-
lignancies. The Charlson Comorbidity Index (CCI) score was calculated using the Deyo
modification for administrative datasets as a measure of comorbidity burden with kidney
disease excluded from the algorithm (Deyo, Cherkin, and Ciol, 1992). Healthcare utilization
measures included outpatient, hospital, emergency room, and nephrology visits identified
from the VA Inpatient and Outpatient Medical SAS and the VA/CMS databases and were
ascertained in the one-year baseline period.

Prescribed medications were sourced from the VA pharmacy dispensation records
and CMS Medicare Part D and ascertained in the one-year baseline period. Patients were
considered to be users if they had at least one 30-day supply dispensation for chronic
medications (RAAS inhibitors, loop diuretics, K+-sparing diuretics, thiazide diuretics,
NSAIDs, digoxin, beta blockers, calcium channel blockers, insulin, oral hypoglycemics, β2
agonist, and calcineurin inhibitors) and at least one dispensation of any day supply for
sodium polystyrene sulphonate (SPS), trimethoprim, azole antifungals, and laxatives. Vital
signs including BMI, SBP, and DBP were extracted from the VA Clinical Data Warehouse
(CDW) Vital Signs file and captured over the one-year baseline.

Laboratory data on K+ and HCO3
- levels was identified from the Decision Support

System Lab Results Extract (DSS-LAR) and was captured over the one-year baseline. Fur-
ther, K+ characteristics such as number of K+ measurements, hyperkalemia events (K+

>5.5 mEq/L), and number of hyperkalemia events in the one-year baseline were used as
predictors. Serum creatinine was extracted from the VA CDW LabChem file and eGFR
was calculated by the CKD-EPI equation (Levey, Stevens, et al., 2009). The index eGFR
was used as a predictor in the model. Finally, three pre-specified interactions were used
in the model including race*prevalent DM, race*RAAS inhibitors use, RAAS inhibitors
use*SPS use based on strong association of these risk factors with the outcome (Gilligan
and Raphael, 2017; Kovesdy, Matsushita, et al., 2018; Palmer and Clegg, 2019). A complete
list of predictors is shown in (Table 2.1).

2.2.4 Outcome

The outcome of interest was occurrence of hyperkalemia, defined as any K+ >5.5 mEq/L
(Sumida et al., 2021) anytime during the one-year follow-up from the index. The outcome
was binary in nature, expressed as “yes” vs “no”, based on the K+ threshold above.

2.2.5 Prediction model methods

We used multivariable LR as a traditional regression model and Random Forest (RF),
Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost) as ML models.
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Table 2.1: List of predictors for hyperkalemia.

Number Predictor Definition

1 Age As of the index date
2 Sex As of the index date
3 Race As of the index date
4 Marital Status As of the index date
5 Smoking status As of the index date
6 Diabetes Mellitus Anytime prior to index date
7 Congestive heart failure Anytime prior to index date
8 Hypertension Anytime prior to index date
9 Peripheral vascular disease Anytime prior to index date
10 Cerebrovascular disease Anytime prior to index date
11 Chronic lung disease Anytime prior to index date
12 Peptic ulcer disease Anytime prior to index date
13 Ischemic heart disease Anytime prior to index date
14 Paraplegia/hemiplegia Anytime prior to index date
15 Anemia Anytime prior to index date
16 Atrial fibrillation Anytime prior to index date
17 Liver disease Anytime prior to index date
18 Malignancies Anytime prior to index date
19 Charlson comorbidity index Anytime prior to index date
20 Outpatient visits Number of visits in the baseline
21 Hospital visits Number of visits in the baseline
22 Emergency room visits Number of visits in the baseline
23 Nephrology visits Number of visits in the baseline

24 Renin angiotensin aldosterone system inhibitors
At least one 30-day supply prescription
in the baseline

25 Loop diuretics
At least one 30-day supply prescription
in the baseline

26 K+ sparing diuretics
At least one 30-day supply prescription
in the baseline

27 Thiazide diuretics
At least one 30-day supply prescription
in the baseline

28 Sodium polystyrene sulphonate
At least one 30-day supply prescription
in the baseline

29 Nonsteroidal anti-inflammatory drugs
At least one 30-day supply prescription
in the baseline

30 Digoxin
At least one 30-day supply prescription
in the baseline

31 Beta Blockers
At least one 30-day supply prescription
in the baseline

32 Calcium channel blockers
At least one 30-day supply prescription
in the baseline

33 Insulin
At least one 30-day supply prescription
in the baseline

34 Oral hypoglycemics
At least one 30-day supply prescription
in the baseline

35 Calcineurin inhibitors
At least one 30-day supply prescription
in the baseline

36 β2 agonists
At least one 30-day supply prescription
in the baseline

37 Trimepthoprim
At least one 30-day supply prescription
in the baseline

38 Azole antifungals
At least one 30-day supply prescription
in the baseline

39 Laxatives
At least one 30-day supply prescription
in the baseline

40 Body mass index Time-averaged value in the baseline
41 Systolic blood pressure Time-averaged value in the baseline
42 Diastolic blood pressure Time-averaged value in the baseline
43 Estimated glomerular filtration rate Measured at index date
44 Bicarbonate Time-averaged value in the baseline

45 Last K+ Measured as the last K+ value
prior to the index date in the baseline

46 Number of K+ measurements Counts of K+ measurements in the baseline
47 Hyperkalemia (K+ >5.5 mEq/L) event At least one event of hyperkalemia in the baseline
48 Number of hyperkalemia (K+ >5.5 mEq/L) events Counts of hyperkalemia events in the baseline
49 Race*Diabetes Mellitus Interaction term of race by prevalent diabetes mellitus

50 Race* Renin angiotensin aldosterone system inhibitors use
Interaction term of race by
Renin angiotensin aldosterone system inhibitors use

51
Renin angiotensin aldosterone system inhibitors use*
sodium polystyrene sulphonate use

Interaction term of Renin angiotensin aldosterone system
inhibitors use by sodium polystyrene sulphonate use

K+: potassium.
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Random Forest

RF is a supervised ensemble ML method which builds multiple decision trees to predict
or classify an outcome of interest. At each iteration, RF generates a random subset of the
predictors to build a decision tree. This process is repeated multiple times where simple
decision trees are obtained and embedded into the RF framework to predict or classify
the outcome (Breiman, 2001). For our study, we employed 500 individual trees for the RF
algorithm and used the default “\sqrt{n}” predictors to build individual decision trees as
RF error rates are largely insensitive to number of predictors selected at each node (Breiman,
2001).

Support Vector Machine

SVM is a supervised ML method that can be most commonly applied to classification
problems (Cortes and Vapnik, 1995). The SVM algorithm tries to find a hyperplane (decision
boundary) to distinctly classify data points. SVM tries to find a hyperplane which has
maximum margin i.e. maximum distance between data points (outcome) of a classification
problem. For our study we used the linear kernel.

Extreme Gradient Boosting

XGBoost (Tianqi and Guestrin, 2016) is an ensemble ML method based on gradient boosting
(Friedman, 2001), which sequentially constructs and combines a series of weak prediction
models with the aim to correct errors made at each time in the prediction by the previous
model to eventually form a strong prediction model. XGBoost is essentially a computa-
tionally faster implementation of gradient boosting, which controls for over-fitting and
provides better performance than gradient boosting (Friedman, 2001). For this study, we
used the default learning rate of 0.3 and interaction depth of 6 as hyperparameters for the
XGBoost model (Friedman, 2001).

2.2.6 Prediction modeling and statistical analysis

Prediction modeling

We first compared the performance of our ML methods (LR, RF, SVM, and XGBoost) and
chose the best performing model for final model development and validation as described
hereafter.

As our main model building and validation method, we split our data into training
and test set based on geographical splitting (Akbilgic et al., 2019; Moons et al., 2015). We
used this method to avoid and address possible geographical-based overfitting. To employ
this method, for example, we selected patients with zip codes starting with 0 to 8 as our
training set and built a 10-fold cross validated model (internal validation). A 10-fold cross
validation was implemented on the training set to address overfitting due to random data
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Figure 2.3: Geographical splitting with 10-fold cross validation.

splitting. This internally validated data was then tested on the test set (external validation)
that consisted of patients belonging to zip codes starting with 9. This process was repeated
10 times such that each zip code from 9 to 0 served as a test set with those zip codes not
a part of the test set being a part of the training set (Figure 2.3). The described method
was implemented based on a previously published paper by Akbilgic et al. (Akbilgic et al.,
2019).

The geographical-based splitting method was implemented for all the ML methods
(LR, RF, SVM, and XGBoost) using the 51 predictors. The performance of these methods
was compared using the area under the receiver operating curve (AUROC) statistic. The
AUROC is a plot of the sensitivity versus 1-specificity with a value ranging from 0.5-1.0,
where 0.5 means no class separation capacity and 1.0 means perfect measure of separability
(Mandrekar, 2010; Zou, O’Malley, and Mauri, 2007). The method yielding the highest
cross-validated AUROC was used as the method of choice to develop and validate the final
prediction model. In our study LR had the best AUROC of all the tested methods and hence
was used as our method of choice to further develop and validate the final prediction model.
As a sensitivity, we also used the split-sample method by splitting the data as 70%:30%
(training: test set) (Moons et al., 2015). A 10-fold cross validation was implemented on
the training set (70%; internal validation) and performance was tested on the test set (30%;
external validation). Finally, the geographical-splitting method was also conducted using
complete case analysis (n=15,236).

The most important predictors associated with the outcome of hyperkalemia for the
LR method were ascertained by the absolute value of the z-statistic (Herrin et al., 2021;
Kuhn, 2008; Moons et al., 2015; Nusinovici et al., 2020). For comparison, the most important
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variables ascertained by the RF and XGBoost methods were also assessed using the mean
decrease accuracy metric. The mean decrease accuracy was reported on a normalized
scale of 0-100, where 0 indicates minimum importance (lowest decrease in accuracy when
excluded) and 100 represents maximum importance (highest decrease in accuracy when
excluded from the model). The SVM method does not inherently identify important
predictors and hence important predictors ascertained by this method were not presented.
To derive a model with clinical applicability, a reduced model with top 10 predictors
identified by the LR method based on absolute value of the z-statistic was constructed.
Further, calibration plots by deciles of predicted probability were constructed to assess
how well the predicted probability reflected the observed probability using the reduced
model. Slope and intercept were reported to assess calibration with a slope of 1 and
intercept of 0 indicating perfectly calibrated model (Miller et al., 1993; Steyerberg et al.,
2010). Subgroup analysis using the reduced model was conducted to test the model
robustness after categorizing patients by age, race, prevalent DM and CHF, baseline use of
SPS, RAAS inhibitors, and index eGFR.

A patient-level risk score to assess the predicted risk of hyperkalemia (PRHK) was
developed by using the LR parameter estimates from the reduced model of top 10 predictors.
The risk score is calculated as the sum of the parameter estimates (∑ β) derived from the
reduced LR model with the top 10 predictors. The PRHK for each individual patient can
then be calculated as follows (Grant, Collins, and Nashef, 2018; Moons et al., 2015; Pavlou
et al., 2015):

PRHK = exp(∑ β)/1 + exp(∑ β)

Statistics

Patient characteristics were summarized for the entire analytic sample and by the outcome
category (i.e. K+ >5.5 mEq/L vs K+ ≤5.5 mEq/L). Data were presented as counts (per-
centages), mean (standard deviation [SD]), or median (25-75th percentile) and differences
across categories were ascertained by chi-square tests, independent samples t-test, and
Mann-Whitney U test as appropriate. Missingness was observed for marital status (0.05%),
smoking status (0.1%), SBP and DBP (0.7% each), medications (1.1%), BMI (10.9%), and
HCO3

- (22.2%). As our main approach, we used single regression imputation to impute the
missing variables based on the complete variables. Subgroup analysis using the reduced
model as discussed earlier was conducted using singly imputed data.

Compared to those included in the study cohort (n=21,654), those excluded (n=81,823)
were older (70.3 vs 68.7), less likely to be males (91.9% vs 98.1%), African Americans (24.3%
vs 28.2%), married (55.0% vs 57.8%), current smokers (19.8% vs 32.3%), and have DM (59.5%
vs 68.9%). Data manipulation was conducted in SAS Enterprise guide v8.2 (SAS Institute;
Cary, NC) and prediction modeling was conducted in R version 4.0.2 using “gmodels”,
“randomForest”, “e1071”, “xgboost”, “caret” packages. The study was approved by the
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Institutional Review Board of the Memphis VA Medical Center, with exemption from
informed consent.

2.3 Results

2.3.1 Baseline characteristics

The baseline characteristics of the analytic sample are described in Table 2.2. The mean
(SD) age of the sample was 68.7 (10.4) years; 98.1% were males; 28.2% were African Amer-
icans; and 68.9% had DM. The most commonly used medications were RAAS inhibitors
(73.6%), beta blockers (67.9%), and calcium channel blockers (65.3%). Approximately 8%
of the patients used SPS. The median (25-75th percentile) index eGFR was 24.8 (20.9-27.6)
ml/min/1.73m2. Patients had a median (25-75th percentile) of 3 (2-6) K+ measurements,
with a mean (SD) last K+ prior to index of 4.6 (0.6) mEq/L in the baseline. Approximately
17% of the patients experienced at least 1 hyperkalemia event in the baseline. Those who
had at least 1 K+ >5.5 mEq/L in the follow-up period (vs those who did not have K+ >5.5
mEq/L) were more likely to be younger; African American; current smokers; have preva-
lent DM and liver disease; have frequent healthcare encounters; use RAAS inhibitors, loop
diuretics, K+ sparing diuretics, SPS, NSAIDs, beta blockers, insulin, oral hypoglycemics,
trimethoprim, azole antifungals, β2 agonists, and laxatives; have higher levels of SBP, DBP,
and last K+ (prior to index), but, lower levels of BMI, eGFR and HCO3

- (all p-values <0.05).

2.3.2 Prediction modeling

A total of 5,061 patients (23.4%) experienced a hyperkalemia event (K+ >5.5 mEq/L) in the
one-year follow-up. Using the geographical splitting method with 10-fold cross validation,
LR showed the best performance across the training and test set, followed by RF, XGBoost,
and SVM (Table 2.3). The average AUROC (95% confidence interval [CI]) for the training
set using the geographic splitting method for LR, RF, XGBoost, and SVM was 0.765 (0.756-
0.774), 0.754 (0.747-0.763), 0.752 (0.734-0.780), and 0.734 (0.727-0.742) respectively. The
average AUROC (95% CI) for the test set for LR, RF, XGBoost, and SVM was 0.763 (0.753-
0.771), 0.758 (0.743-0.787), 0.753 (0.736-0.785), 0.733 (0.725-0.741), respectively. Results
were consistent using the split-sample method (70% training: 30% test) with 10-fold cross
validation, with LR yielding the best performance, followed by RF, XGBoost, and SVM
(Table 2.4). Further, using complete cases only (n=15,236), both the geographical splitting
and split-sample methods with 10-fold cross-validation showed that LR yielded the best
performance, followed by RF, XGBoost, and SVM (Table 2.5 A, B, respectively).

As LR yielded the best performance using the geographical splitting method with
singly imputed data, LR was chosen as the primary method to identify the top 10 predictors.
The LR parameter estimates and z-statistic using all the 51 predictors are shown in Table 2.6.
Based on the absolute value of the z-statistic, the top 10 predictors (ranked as decreasing
absolute z-statistic value) were last K+ value prior to index, age at index, having at least
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Table 2.2: Sample baseline characteristics for Aim 1 (n=21,654).

Characteristic
All

(N=21,654)
K+ >5.5 mEq/La

(N=5,061)
K+ ≤5.5 mEq/La

(N=16,593)
P-value

Age at index (years) 68.7 (10.4) 66.4 (10.1) 69.4 (10.4) <0.0001b

Males 21,248 (98.1) 4,962 (98.0) 16,286 (98.2) 0.63c

African Americans 6,111 (28.2) 1,511 (29.9) 4,600 (27.7) 0.003c

Married 12,518 (57.8) 2,650 (52.4) 9,868 (59.5) <0.0001c

Zip codee <0.0001c

0 1,582 (7.3) 455 (8.9) 1,127 (6.8)
1 1,982 (9.2) 485 (9.6) 1,497 (9.0)
2 2,758 (12.7) 662 (13.1) 2,096 (12.6)
3 3,806 (17.6) 856 (16.9) 2,950 (17.8)
4 2,407 (11.1) 546 (10.8) 1,861 (11.2)
5 1,120 (5.2) 203 (4.0) 917 (5.5)
6 1,784 (8.2) 378 (7.5) 1,406 (8.5)
7 2,759 (12.7) 614 (12.1) 2,145 (12.9)
8 1,276 (5.9) 280 (5.5) 996 (6.0)
9 2,180 (10.1) 582 (11.5) 1,598 (9.6)

Smoking status <0.0001c

Current 7,004 (32.4) 1,858 (36.7) 5,146 (31.0)
Past 7,635 (35.3) 1,652 (32.6) 5,983 (36.1)
Never 6,989 (32.3) 1,551 (30.7) 5,438 (32.8)

Comorbidities
Diabetes Mellitus 14,937 (68.9) 3,797 (75.0) 11,140 (67.1) <0.0001c

Congestive heart failure 7,567 (34.9) 1,651 (32.6) 5,916 (35.7) <0.0001c

Hypertension 20,944 (96.7) 4,878 (96.4) 16,066 (96.8) 0.12c

Peripheral vascular disease 6,688 (30.9) 1,440 (28.5) 5,248 (31.6) <0.0001c

Cerebrovascular disease 5,485 (25.3) 1,093 (21.6) 4,392 (26.5) <0.0001c

Chronic lung disease 6,397 (29.5) 1,380 (27.3) 5,017 (30.2) <0.0001c

Peptic ulcer disease 1,014 (4.7) 259 (5.1) 755 (4.6) 0.09c

Ischemic heart disease 10,727 (49.5) 2,297 (45.4) 8,430 (50.8) <0.0001c

Paraplegia/hemiplegia 523 (2.4) 135 (2.7) 388 (2.3) 0.18c

Anemia 10,307 (47.6) 2,389 (47.2) 7,918 (47.7) 0.52c

Atrial fibrillation 2,494 (11.5) 434 (8.6) 2,060 (12.4) <0.0001c

Liver disease 1,585 (7.3) 451 (8.9) 1,134 (6.8) <0.0001c

Malignancies 4,297 (19.8) 867 (17.1) 3,430 (20.7) <0.0001c

Charlson comorbidity index 4 (2-6) 4 (2-5) 4 (2-6) 0.053d

Utilization measures
Outpatient visits 16 (9-28) 19 (11-32) 15 (9-26) <0.0001c

Hospital visits 0 (0-1) 0 (0-1) 0 (0-1) <0.0001d

Emergency room visits 0 (0-1) 0 (0-1) 0 (0-1) <0.0001d

Nephrology visits 0 (0-1) 0 (0-2) 0 (0-1) <0.0001d

Medications
RAAS inhibitors 15,939 (73.6) 4,014 (79.3) 11,925 (71.9) <0.0001c

Loop diuretics 12,010 (55.5) 2,911 (57.5) 9,099 (54.8) <0.0001c

K+ sparing diuretics 1,959 (9.0) 478 (9.4) 1,481 (8.9) 0.0003c

Thiazide diuretics 6,988 (32.3) 1,522 (30.1) 5,466 (32.9) <0.0001c

SPS 1,689 (7.8) 835 (16.5) 854 (5.2) <0.0001c

NSAIDs 7,226 (33.4) 2,026 (40.0) 5,200 (31.3) <0.0001c

Digoxin 1,007 (4.6) 212 (4.2) 795 (4.8) <0.0001c

Beta blockers 14,699 (67.9) 3,566 (70.5) 11,133 (67.1) <0.0001c

Calcium channel blockers 14,134 (65.3) 3,249 (64.2) 10,885 (65.6) <0.0001c

Insulin 8,718 (40.3) 2,428 (47.9) 6,290 (37.9) <0.0001c

Oral hypoglycemics 7,532 (34.8) 1,912 (37.8) 5,620 (33.9) <0.0001c

Calcineurin inhibitors 228 (1.1) 66 (1.3) 162 (0.9) <0.0001c

Trimethoprim 393 (1.8) 101 (2.0) 292 (1.8) 0.0003c

Azole antifungals 2,312 (10.7) 656 (12.9) 1,656 (9.9) <0.0001c

β2-agonists 3,226 (14.9) 828 (16.4) 2,398 (14.5) <0.0001c

Laxatives 5,893 (27.2) 1,694 (33.5) 4,199 (25.3) <0.0001c

Vitals
Body mass index, kg/m2 29.8 (6.1) 29.6 (6.3) 29.9 (5.9) <0.0001b

Systolic blood pressure, mm/Hg 143.6 (16.3) 144.9 (15.9) 143.2 (16.4) <0.0001b

Diastolic blood pressure, mm/Hg 74.9 (10.8) 75.4 (10.3) 74.8 (11.0) <0.0001b

Laboratory measures
Index eGFR, ml/min/1.73m2 24.8 (20.9-27.6) 24.4 (20.4-27.5) 24.9 (21.0-27.6) <0.0001d

Last K+, mEq/L 4.6 (0.6) 4.9 (0.6) 4.5 (0.6) <0.0001b

Number of K+ measurements 3 (2-6) 4 (2-9) 3 (2-6) <0.0001d

Bicarbonate, mEq/L 24.9 (3.2) 24.0 (3.1) 25.2 (3.2) <0.0001b

Hyperkalemia event
At least 1 K+ >5.5 mEq/L 3,746 (17.3) 1,886 (37.3) 1,860 (11.2) <0.0001c

Number of K+ >5.5 mEq/L 0 (0-0) 0 (0-1) 0 (0-0) <0.0001d

Data are presented as n (%), mean (standard deviation), median (25-75th percentile). eGFR: estimated
glomerular filtration rate; K+: potassium; NSAIDs: nonsteroidal anti-inflammatory drug; RAAS:
renin-angiotensin-aldosterone system; SPS: sodium polystyrene sulphonate. a Number of patients
based on outcome K+ >5.5 mEq/L observed during 1-year of follow-up from index; b p-value for
independent samples t-test; c p-value for chi-square test; d p-value for Mann-Whitney U test; e First
digit of a 5-digit zip code.
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Table 2.3: Prediction model performance across the machine learning
methods using geographical splitting (n=21,654).

Data split
Logistic

Regression
Random

Forest
Extreme Gradient

Boosting
Support Vector

Machine

Training 0.765 (0.756-0.774) 0.754 (0.747-0.763) 0.752 (0.734-0.780) 0.734 (0.727-0.742)
Test 0.763 (0.753-0.771) 0.758 (0.743-0.787) 0.753 (0.736-0.785) 0.733 (0.725-0.741)

Data presented as area under the receiver operating curve (95% CI) as the average of the
10-fold cross-validation using geographical splitting. CI: confidence interval.

Table 2.4: Prediction model performance across the machine learning
methods using split-sample (70%:30%) method (n=21,654).

Data split
Logistic

Regression
Random

Forest
Extreme Gradient

Boosting
Support Vector

Machine

Training 0.761 (0.748-0.773) 0.755 (0.750-0.768) 0.753 (0.736-0.789) 0.729 (0.716-0.742)
Test 0.762 (0.749-0.775) 0.756 (0.739-0.767) 0.744 (0.729-0.757) 0.731 (0.717-0.744)

Data presented as area under the receiver operating curve (95% CI) as the average of the
10-fold cross-validation using split-sample validation. CI: confidence interval.

Table 2.5: Prediction model performance across the machine learning
methods using geographical splitting and split-sample (70%:30%)
method for complete cases (n=15,236).

Data split
Logistic

Regression
Random

Forest
Extreme Gradient

Boosting
Support Vector

Machine

(A) Geographical splitting
Training 0.765 (0.757-0.773) 0.753 (0.745-0.763) 0.749 (0.731-0.778) 0.745 (0.737-0.753)
Test 0.762 (0.753-0.771) 0.757 (0.727-0.778) 0.749 (0.730-0.776) 0.742 (0.732-0.751)

(B) Split-sample (70%:30%)
Training 0.756 (0.746-0.766) 0.752 (0.743-0.764) 0.749 (0.739-0.759) 0.731 (0.717-0.745)
Test 0.762 (0.752-0.772) 0.755 (0.736-0.768) 0.750 (0.738-0.762) 0.739 (0.725-0.753)

Data presented as area under the receiver operating curve (95% CI) as the average of the
10-fold cross-validation. CI: confidence interval.
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