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Preface

The body Chapters of this dissertation are organized in a way that introduces readers
to astrovirus and the host cellular response to viral infection through literature review,
followed by research aims and hypotheses. The research and methods utilized are presented,
followed by analysis and discussion of our findings. The concluding chapter discusses the
research and its impact on the field, as well as future directions and significance of this
work.

For readers to have immediate access to the full presentation of our previously
published research study, the article is presented in Appendix A. This mode of presentation
allows for Chapter 3, which uses it as its basis, to focus more narrowly on a summary
and discussion of the article in Appendix A, and to show specifically how it relates to the
dissertation’s larger goals and objectives. References in the chapters to relevant sections,
tables, or figures in Appendix A look like the following example. A chapter callout to
Figure A.1 refers to Figure 1 in Appendix A. The blue highlight links back to the appendix
figure.

NOTE ON PDF NAVIGATION: Document navigation is greatly facilitated by using
Adobe Acrobat “Previous view” and “Next view” functions. For “Previous view,” use
quick keys Alt/Ctrl+Left Arrow on PC or Command+Left Arrow on Mac. For “Next
view,” use Alt/Ctrl+Right Arrow on PC or Command+Right Arrow on Mac. Using these
quick keys in tandem allows the reader to toggle between document locations. Since every
scroll represents a new view; depending on how much scrolling is done for a specific
view destination, more than one press of the back or forward arrows may be needed. For
additional navigational tips, click View at the top of the PDF, then Page Navigation. These
Adobe Acrobat functions are not functional for other PDF readers or for PDFs opened in
web browsers.
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Abstract

Theresa Mary Taggart Bub

Understanding the Host Cellular Response to Astrovirus Infection

Astrovirus is a non-enveloped positive-sense single-stranded RNA virus that infects
the small intestine and causes gastrointestinal disease in most hosts. However, in immuno-
compromised patients, astrovirus can infect the brain, causing encephalitis and death. Here,
we characterize astrovirus induction of replication organelles and dysregulation of cellular
processes.

It is known that autophagy can play a key role in the viral lifecycle, from entry
to egress, and can be either pro-virus or pro-host depending on the virus. RNA viruses
often exploit autophagy machinery to create double membrane vesicles (DMVs) as sites of
replication and to protect viral RNAs from detection by innate immune sensors.

In these studies, we provide the first evidence that astrovirus exploits some, but not
all autophagy machinery to assist in viral replication at DMVs. Astrovirus replication and
DMV formation relies upon induction of phosphatidylinositol 3-kinase (PI3KC3) machinery,
but not LC3 conjugation machinery. Astrovirus also disrupts lysosomal enzyme expression.
These are the first studies describing astrovirus replication mechanism, and we have shown
that the machinery involved may span species infected with astrovirus.

We have also shown that astrovirus DMV formation likely originates from the
endoplasmic reticulum (ER) and may affect ER stress pathways involved in normal cellular
function. These results relate DMV formation to autophagosome biogenesis and suggest
that ER stress could play a role in DMV biogenesis.

Finally, we have shown that astrovirus replication results in cell cycle arrest during
Gap 1 (G1) phase of the cell cycle. This is beneficial to the viral life cycle, because G1 phase
may provide an environment of growth for the replicating virus.

In all, our studies have significantly grown the understanding of astrovirus replica-
tion mechanism and disruption of host cellular machinery. This has resulted in relating
astrovirus to other positive strand RNA viruses and potentially finding common therapeu-
tics for these viral infections.
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Chapter 1

Astrovirus

Astroviridae is an understudied family of positive sense, single stranded RNA (ssRNA)
viruses first discovered in 1975. These non-enveloped viruses infect a wide range of mam-
mals, including humans. In humans, astrovirus (AstV) infection causes gastrointestinal (GI)
illness and can lead to stomach pain, nausea, diarrhea, and other symptoms. Infection with
astrovirus typically results in short-lasting and mild symptoms. However, a new attention
has been brought to astrovirus infection as it can enter the brain through an unknown
mechanism. This typically occurs in at-risk populations such as the immunocompromised
and has been associated in clinical studies with encephalitis and death. Although astrovirus
is becoming more commonly recognized as a potential cause of serious disease, it remains
critically under researched. This chapter reviews the known information of astrovirus classi-
fication, structure, replication cycle, and host response to infection, as well as epidemiology
and current treatment and prevention options.

1.1 Classification

The family Astroviridae has similarities to other families of positive sense ssRNA viruses
such as Picornaviridae and Caliciviridae (Donato and Vijaykrishna, 2017; Guix, Bosch, and
Pintó, 2013; Moser and Schultz-Cherry, 2008a). It was not until 1993 that Astroviridae was
reclassified as its own family due to the differences in some elements of the genome from
other families of viruses (Monroe et al., 1993). For instance, astroviruses do not express
a helicase, have different capsid proteins, and have subgenomic RNA (sgRNA) (Cortez,
V. A. Meliopoulos, et al., 2017; Donato and Vijaykrishna, 2017; Guix, Bosch, and Pintó,
2013; Moser and Schultz-Cherry, 2008a). Generally, both deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA) viruses encode their own helicases in order to aid in the genome
replication process, making the lack of a helicase-encoding region in the astrovirus genome
unique.

There are two genera within the astrovirus family, Mamastrovirus (MAstVs) and
Avastrovirus (AAstVs) for mammalian and avian species respectively (Donato and Vijaykr-
ishna, 2017; Guix, Bosch, and Pintó, 2013; Moser and Schultz-Cherry, 2008a). Within the
genus of MAstVs at least 30 species are known to be infected, including humans, cats, mice,
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cattle, sheep, pigs, mink, camels, and sea lions. Within the AAstV genus at least 14 species
are infected, including chickens, pigeons, ducks, and turkeys (Cortez, V. A. Meliopoulos,
et al., 2017) (Figure 1.1).

Human Astrovirus Classification Human astroviruses (HAstVs) can be split into
three separate clades. The first clade includes HAstV-1-8, where HAstV-1 is the most preva-
lent detected serotype. After detection of these viruses, additional clades were discovered
in Melbourne (MLBs) and Virginia (VAs), which relate more closely to other mammalian
clades than they do to the HAstV clade. The VA clade is also known as HMO, or Human-
Mink-Ovine for its close relationship to mink and ovine clades. Although astroviruses have
been historically classified based on species infected, it is now clear with sequencing that
some astrovirus strains are closely related regardless of species infected. Among these
human strains, HAstV-1 is most prevalent worldwide (Donato and Vijaykrishna, 2017; Guix,
Bosch, and Pintó, 2013; Moser and Schultz-Cherry, 2008a). However, with recent studies
utilizing reverse transcription polymerase chain reaction (RT-PCR) methodology which can
detect VA and MLB strains, increased prevalence of these HAstVs has been recorded. In
multiple studies, MLB1 has now been recorded at an equal to or higher prevalence than
HAstV-1 (Khamrin et al., 2016; Niendorf et al., 2022; Okitsu et al., 2023).

1.2 Astrovirus Genome

The astrovirus genome is relatively small, measuring between 6.2 and 7.7 kilobase (kb)
(Cortez, V. A. Meliopoulos, et al., 2017). With three open reading frames (ORFs), ORF1
encodes a viral protease, a viral genome-linked protein (VPg), and an RNA-dependent
RNA polymerase (RdRp); alternative ORFx encodes a viroporin (XP), and ORF2 encodes a
viral capsid. There is no 5’ cap. Instead, the genome begins with a 5’ untranslated region
(UTR), followed by ORF1 (Cortez, V. A. Meliopoulos, et al., 2017; Donato and Vijaykrishna,
2017; Guix, Bosch, and Pintó, 2013; Monroe et al., 1993; Moser and Schultz-Cherry, 2008a).
Translation of the RdRp depends on a ribosomal frameshifting mechanism. There have
been five nonstructural proteins (nsps) characterized thus far, but others and their functions
have not yet been described. Within ORF2, the genome includes an alternative frame ORFX,
encoding XP, followed by capsid, a 3’ UTR, and a 3’ poly(A) tail. ORF2 is also preceded by
a subgenomic RNA (sgRNA) promoter which may be longer than previously described
(Lulla and Firth, 2020) (Figure 1.2).

1.3 Astrovirus Structure

The gene for astrovirus capsid encodes a 90 kDa protein termed VP90 (Geigenmüller et al.,
2002; Méndez, Aguirre-Crespo, et al., 2007). This precursor is cleaved to VP70 within the
host cell, and upon exit from the cell is further cleaved by extracellular proteases. The
capsid is composed of 180 VP70 subunits (Del Rocío Banos-Lara and Méndez, 2010; Méndez,
Fernández-Luna, et al., 2002; Méndez, Salas-Ocampo, and Arias, 2004). Mature virions
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Figure 1.1: Astrovirus Phylogenetic Tree. Phylogenetic tree generated using
neighbor-joining analysis in MEGA11 based on astrovirus capsid protein
sequences.
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Figure 1.2: Astrovirus Genome. Representation of astrovirus genome
organization. The genome consists of three open reading frames (ORFs).
ORF1 encodes the astrovirus protease, viral genome-linked protein (VPg),
and RNA-dependent RNA polymerase (RdRp). ORF2 encodes the capsid
protein, consisting of precursor VP90, which is subsequently cleaved to
VP70, then VP34, VP27, and VP25. An alternative frame encodes the viral
porin (XP).
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must be cleaved from VP70 to VP34, VP27, and VP25 in order to facilitate further infection
of cells. Without this cleavage step, the virion is not infectious. It should be noted that this
is not the case for the VA-1 strain of astrovirus, which does not require trypsin activation
for replication in cell culture. VP34, VP27, and VP25 are the inner core and spike domains
of the capsid (Méndez, Fernández-Luna, et al., 2002). Once fully cleaved, the astrovirus
virion appears star-shaped, with T=3 icosahedral symmetry. The virion is about 43 nm wide
(Arias and DuBois, 2017).

Viroporin ORFX is unique to human astroviruses and some mammalian astrovirus
genomes. It encodes XP, a viroporin. Generally, viroporins form hydrophilic pores that
modulate calcium signaling and membrane permeability, as well as aid in formation and
release of virions. While the function of the XP viroporin is not yet known, knocking out
ORFX attenuates the virus. The replication defect associated with XP knockout is related
to later stages of infection, and the authors suggest an association of XP with plasma and
trans Golgi membranes. Further, ORFX mutants pseudo-revert, restoring ORFX function
with passaging, suggesting that ORFX is necessary to the viral life cycle in these specific
hosts (Lulla and Firth, 2020). The XP protein is most likely important for viral assembly,
and it is possible that it resembles other viroporins necessary for passage of viral RNA
through replication organelle (RO) membranes. The question stands as to why all strains of
astrovirus would not contain ORFX. In astrovirus strains without a predicted ORFX, the
authors show a predicted ORFY potentially encoding another viroporin, the function of
which could be similar to ORFX but evolved independently from ORFX in other strains. It
is possible that for these strains of astrovirus, there is a different viral assembly mechanism
that does not require the same XP.

1.4 Viral Life Cycle

1.4.1 Viral entry

While a receptor for astrovirus has yet to be identified, one study suggests a role for the
neonatal Fc Receptor (FcRn) in viral entry (Haga et al., 2022). In vivo, host tryptophan
catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is necessary for epithelial cell
maturation and permissivity to astrovirus infection. Murine astrovirus (MuAstV) infection
is also limited to cell types in the small intestine, where mucus-secreting goblet cells are
most susceptible to infection. Knowing this may help to narrow in on cellular entry factors
for MuAstV infection that are unique to mucus-secreting, IDO1-expressing goblet cells
(Cortez, Livingston, et al., 2023).

Only certain in vitro cell types are susceptible to astrovirus infection, of which Caco-
2 cells are the gold standard for propagation of the virus. Caco-2 cells are immortalized
human colorectal adenocarcinoma cells, which can be differentiated to recapitulate an
intestinal epithelial cell layer. Interestingly, while all classic serotypes (HAstV-1-8) can
infect and replicate in Caco-2 cells in vitro, only HAstV-2 can infect baby hamster kidney
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(BHK) cells, and only HAstV-1 can infect human colorectal carcinoma epithelial (HTC) cells
in vitro. This suggests that while these classic serotypes are similar to one another, they
may require unique cellular entry factors (Brinker, Blacklow, and Herrmann, 2000). It is
likely that astroviruses require numerous cellular attachment factors based on observed
differences between human serotypes. One such potential entry factor is extracellular signal-
regulated protein kinase 1/2 (ERK1/2). The ERK1/2 cellular signaling pathway is necessary
to human astrovirus replication, and ERK becomes activated early in infection (Moser and
Schultz-Cherry, 2008b). Similarly, human immunodeficiency virus type 1 (HIV-1) requires
ERK for cellular entry (Liu et al., 2002).

It is hypothesized that the virus enters the host cell via clathrin-mediated pathways,
as clathrin inhibitors can block HAstV-8 replication, although this has not been tested
for other serotypes (Méndez, Muñoz-Yañez, et al., 2014). Also, electron microscopy (EM)
evidence has shown clathrin-coated pits containing astrovirus virions during early infec-
tion (Donelli et al., 1992). In addition, silencing Rab7 (Ras-associated binding protein 7)
expression impacts human astrovirus replication, which indicates a role for late endosome
maturation in the viral life cycle. Bafilomycin A, which inhibits acidification of endosomes
and lysosomes, also blocks astrovirus replication, further supporting a role for the endosome
(Méndez, Muñoz-Yañez, et al., 2014).

Once astrovirus virions have entered the cell and uncoated, proteolytic processing of
the capsid and translation occurs (Méndez, Murillo, et al., 2013). This results in production
of a viral replicase complex which can begin the production of negative-sense RNA from
the genomic RNA (gRNA). Formation of negative strand RNA is followed by formation of
double-stranded RNA (dsRNA), the replicative form of the genome (Fuentes et al., 2011;
Guix, S. Caballero, Bosch, et al., 2005; S. Y. Jang et al., 2010).

1.4.2 Viral replication, assembly, and release

Details of the replication mechanism for astroviruses are unknown, although it is suggested
that replication is cytoplasmic (Méndez, Muñoz-Yañez, et al., 2014). Some positive sense
ssRNA viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
hepatitis c virus (HCV) utilize double-membrane vesicles (DMVs) as replication organelles,
and double-membrane organelles have been observed during astrovirus replication (Cortese
et al., 2020; Romero-Brey et al., 2012; Snijder et al., 2020; Twu et al., 2021). However, their
role in replication has not yet been determined. It should also be noted that astrovirus
nsp1a has been shown to colocalize with the endoplasmic reticulum (ER), suggesting a
potential site of origin for replication (Guix, S. Caballero, Bosch, et al., 2004). Some strains of
astrovirus localize close to the nucleus and ER. It is likely that similarly to other viruses, the
astrovirus UTRs recruit host cellular machinery to aid in viral replication (Y. Liu, Wimmer,
and A. V. Paul, 2009; Méndez, Murillo, et al., 2013; Pogue, Huntley, and T. Hall, 1994).

Although the replication mechanism of AstV is unknown, researchers have been
able to observe the appearance of dsRNA intermediates and capsid for different strains
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of astrovirus at specific time points. It has also been shown that astrovirus virions are
initially processed within the cell by caspases from VP90 to VP70 (Del Rocío Banos-Lara
and Méndez, 2010; Méndez, Fernández-Luna, et al., 2002; Méndez, Salas-Ocampo, and
Arias, 2004; Payne, 2017).

Finally, astrovirus exits the cell through an unknown non-lytic mechanism. After
viral egress from the cell, the capsid is further processed by trypsin-like proteases extracel-
lularly to produce infectious virions (Méndez, Fernández-Luna, et al., 2002). It is unknown
whether virions exit the cell in exosomes or via other processes. One study showed that
Yuc8-infected Caco-2 cells produce more CD63 and Alix-containing extracellular vesicles
than mock-inoculated Caco-2 cells at 18 hpi. CD63 and Alix are common exosome markers.
At this same time point, the majority of extracellular virus associated with vesicle mem-
branes, supporting a role for exosomes in cellular exit during infection (Baez-Navarro et al.,
2022). If this is the case, it is likely the virion needs to exit the organelle to be processed by
trypsin-like proteases prior to infecting another cell. The same study showed that treatment
with Triton X-100 prior to treatment with trypsin significantly increased the amount of
infectious virions in cell supernatants. It will be necessary to explore these results with dif-
ferent astrovirus strains, as well as determine whether there are other organelle-associated
markers on the exit vesicles to find their source. Generally, there is little cell death associated
with astrovirus replication and cellular exit (Cortez, Sharp, et al., 2019; Hargest, Davis, et al.,
2021; Hargest, Bub, et al., 2022; Koci, L. A. Moser, et al., 2003; V. A. Meliopoulos et al., 2016;
L. A. Moser, Carter, and S. Schultz-Cherry, 2007).

1.5 Host Immune Response to Astrovirus Infection

1.5.1 Innate immune response

Upon infection with a positive sense ssRNA (+ssRNA) virus, there are many common
pathways upregulated by mammalian cells. Specifically, pathways associated with the
innate immune system are crucial to initially battling viral infection. +ssRNA viruses share
evolutionarily conserved pathogen-associated molecular patterns (PAMPs) that trigger
pattern recognition receptors (PRRs) within the infected cell. PRRs trigger interferon
(IFN) pathways, and IFN I and III pathways commonly upregulate interferon-stimulated
genes (ISGs) for innate immune response. Downstream of ISG activation are common
cellular responses such as proinflammatory response, interference with viral replication,
and induction of cell death. However, it is widely known that astrovirus infection does not
induce cell death (Nelemans and Kikkert, 2019). While our work has shown a transcriptional
upregulation of antiviral and IFN pathways, there is a lack of inflammatory response to
astrovirus infection.

Our laboratory has shown that neutralization of IFN-β leads to higher viral titers,
and this may relate to barrier permeability response in vitro (S. A. Marvin et al., 2016).
However, induction of IFN-β tends to occur only after viral replication in vitro, indicating
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that the type I IFN response is delayed and ineffective despite the sensitivity of astrovirus
to exogenous IFN (Guix, Pérez-Bosque, et al., 2015). While IFN response is delayed in
vitro, it appears to be important to viral clearance. We showed that interferon-α/β receptor
(IFNaR) knockout (IFNaR-/-) mice shed murine astrovirus for significantly longer periods
of time than wildtype (WT) mice. In addition, human intestinal enteroids (HIEs) infected
with the VA-1 strain of astrovirus demonstrate type I and III IFN response much more
strongly than infected Caco-2 cells. VA-1 also appears to be sensitive to exogenous IFN
expression (Kolawole et al., 2019). Another study of human intestinal organoids supported
the induction of IFN pathways in different cell types in response to HAstV-1 infection using
single cell RNA sequencing (scRNA-seq) (Triana et al., 2021).

Among processes downstream of type I IFN signaling is the induction of STAT1,
which controls numerous antiviral responses. In STAT1-/- mice, astrovirus increased in
replication and shedding compared to WT mice. This again supports a role for the innate
immune response in suppressing astrovirus replication, although astrovirus can successfully
replicate even during activation of type I IFN and STAT1 pathways (Yokoyama et al., 2012).

In addition to type I IFN and STAT1 response, astrovirus induces cytokine TGF-β
activity in vitro and in vivo (L. Xu et al., 2023). This response is a potential candidate for
the lack of inflammatory response during astrovirus infection, as TGF-β can be immuno-
suppressive.

Another early immune response utilized to suppress viral infection and activate
inflammatory pathways is the complement system. Studies have demonstrated that expres-
sion of astrovirus coat protein (CP), which composes the capsid, suppresses complement
activation in two ways. First, CP binds directly to C1q (Complement Component 1q),
downregulating further complement activation. This was true for HAstV-1-4 strains. C1q is
the activation molecule for the classical complement pathway, which leads to tagging of
infected cells for elimination by phagocytosis (Bonaparte et al., 2008). The same group then
asked whether astrovirus CP can affect the mannose-binding lectin (MBL) complement
pathway. MBL is capable of inducing opsonization or lysis of pathogens. The MBL pathway
also appears to be targeted by astrovirus. The CP protein is capable of binding MBL directly,
resulting in reduced lectin response (Hair et al., 2010). In these ways, astrovirus further
suppresses the initial host antiviral response.

1.5.2 Adaptive immune response

The adaptive immune response to astrovirus is understudied. It has been suggested that
T and B cells may play a role in viral clearance, due to the fact that Rag1-/- mice take
longer to clear murine astrovirus infection compared to WT mice (Yokoyama et al., 2012).
Although murine astrovirus infection differs greatly from human astrovirus infection,
previous research has shown that astrovirus-specific T cells can be found in the small
intestine of humans, as well (Molberg et al., 1998). It is clear that humans develop an
antibody response to astrovirus infection, with upwards of 70% of adults having antibodies
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to astrovirus (Kurtz and Lee, 1978; Kurtz, Lee, et al., 1979). In two T-cell immunodeficient
children, astrovirus infection was shown to persist with no detectable antibodies, suggesting
that the adaptive immune system is important for clearance of astrovirus in humans (Wood
et al., 1988). However, in a turkey model of astrovirus infection, the adaptive immune
response to TAstV infection was lacking (Koci, Kelley, et al., 2004). Immunity across strains
of human astrovirus also needs to be explored, as a child was observed with HAstV-3-
associated diarrhea and was infected with HAstV-1 9 months later (Guix, S. Caballero,
Villena, et al., 2002).

There is a lack of adaptive immune response in patients infected with astrovirus
neurological disease (AstV-ND). Within the brain, the importance of the innate immune
response is then heightened. AstV-ND can be fatal in many cases, and the brain response
includes microglial and macrophage activity (Maximova et al., 2022).

1.6 Cellular Responses to Astrovirus Infection

When our laboratory demonstrated that neutralization of IFN-β enhanced viral replication
of astrovirus in vitro, we also observed that type I IFN response protects cells from increased
barrier permeability during astrovirus infection. We now know that astrovirus induces
epithelial-mesenchymal transition (EMT), a process usually induced during cancer cell
growth to facilitate metastasis. During these studies, it was found that this EMT pathway is
TGF-β-dependent, suggesting another important role for TGF-β during astrovirus infection.
Epithelial cell-specific proteins were decreased by 24 hours post-infection, and mesenchymal
cell-specific proteins increased concurrently. During this time, infected epithelial cells also
lost polarity. The sodium/potassium adenosine triphosphatase (Na/K-ATPase) transporter,
generally localized to the basolateral membrane, showed disrupted localization, migrating
to the apical side of the cell during infection with HAstV-1. However, this phenotype did
not translate to the non-classical VA-1 strain, which showed no evidence of upregulating
EMT during infection (Hargest, Bub, et al., 2022).

While it is not yet clear which other cellular processes are manipulated by astrovirus
during infection, one study attempted to discern which host cell factors may be involved in
Yuc8 (HAstV-8) strain astrovirus replication using density gradient centrifugation and free-
flow zonal electrophoresis (FFZE). This experiment followed by tandem mass spectrometry
revealed a variety of host factors. When RNA interference was utilized to determine the
importance of these factors, it became clear that different branches of metabolism were
important to astrovirus replication, including fatty acid, cholesterol, and phospholipid
metabolism. It remains unclear what role these specific pathways play in astrovirus repli-
cation and whether this applies to other human astrovirus strains. In addition, this study
showed that proteins from the Golgi, ER, mitochondria, and nucleus were isolated from
Yuc8-containing fractions (Murillo et al., 2015). This suggests that specific membrane
fractionation and imaging experiments are required to elucidate binding partners and
membranes involved in astrovirus replication.
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1.7 Epidemiology and Disease

Gastroenteritis is an illness associated with diarrhea, nausea, vomiting, and dehydration. It
is a global disease burden, resulting in millions of deaths per year in children. Gastroenteritis
can be caused by a variety of pathogens, including bacteria and viruses, with many cases
being linked to viral infection. Astroviruses are some of many viruses that can induce acute
diarrheal gastroenteritis.

1.7.1 Clinical features and diagnosis in humans

Astroviruses typically cause diarrhea within 2 days of infection in symptomatic patients.
Other sequelae associated with gastroenteritis such as vomiting, dehydration, and headache
have also been recorded in astrovirus-infected patients. However, some people infected
with astrovirus have no symptoms (Stuempfig and Seroy, 2018). Astrovirus is transmitted
through the fecal-oral route, as well as through food and water.

Although astrovirus infection can become severe, it is usually not fatal. Those most at
risk for severe astrovirus infection include immunocompromised and elderly populations.
However, AstV infection can be dangerous. There have been multiple recorded instances of
astrovirus viremia allowing entry to the brain, although the mechanism of entry into the cen-
tral nervous system (CNS) is unknown. These cases are primarily in immunocompromised
patients. When astrovirus enters the brain, infection is often accompanied by encephalitis,
meningitis, and death. It is currently unknown whether astrovirus replicates in brain cells
or only infects them, leading to inflammation in the brain. Although cases of astrovirus in
the brain are not commonly recorded, this is likely due to a lack of screening for astrovirus
in cases of encephalitis and meningitis. The rate of astrovirus infection in these disease
states is likely higher than previously appreciated, and screening for astrovirus should
become common practice for these patients.

1.7.2 Animal disease

A wide variety of species can become infected with astrovirus. Commonly across species,
young animals including lambs, calves, pigs, turkeys, and pups experience diarrhea (Guy
and Barnes, 1991; Koci, Seal, and Schultz-Cherry, 2000; Martella et al., 2011; M. Shimizu
et al., 1990; Snodgrass and Gray, 1977; Woode et al., 1985). Although diarrhea has been ob-
served in mice infected with astrovirus, MuAstV infection occurs often in laboratory mouse
colonies with little to no pathogenicity and unsustained immune response (Kjeldsberg and
Hem, 1985). Even in severely immunodeficient mice, astrovirus fails to induce symptoms
commonly seen in symptomatic human infection (Morita et al., 2021). In one study, dams
and litters were infected with MuAstV. The mice showed no symptoms despite shedding
virus in feces for weeks post-infection, as well as demonstrating MuAstV levels in intestines
and other organs (Compton, Booth, and Macy, 2017). Our laboratory has also observed
murine astrovirus in the small and large intestine, as well as the lung, spleen, blood, and
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stomach, causing no histopathology. Therefore mice could function as an effective model of
asymptomatic, but not symptomatic, astrovirus infection in the laboratory setting (Cortez,
Sharp, et al., 2019).

Some animals experience more severe astrovirus-associated symptoms, including
birds. Both turkeys and chickens experience decreased hatch size and weight gain, better
known as runting-stunting syndrome (RSS), as well as nephritis (Koci and Schultz-Cherry,
2002; Pantin-Jackwood et al., 2011). In 1987, one survey found that flocks of turkeys present-
ing enteric disease symptoms were infected with astrovirus at a rate of 78%, demonstrating
that astrovirus infection of turkeys is more common than infection with other enteric
viruses in diseased flocks (Reynolds, Saif, and Theil, 1987). This has direct implications
for economic impact in the food industry, as astrovirus-infected avian species experience
high rates of mortality. Baby turkeys infected with turkey astrovirus (TAstV) have become
an excellent disease model to imitate symptomatic human astrovirus infection, as their
symptoms closely mimic those of humans infected with astrovirus.

Further, some species experience neurological symptoms mimicking human astro-
virus infection. In a group of cows with encephalitis, roughly one in four were infected with
bovine astrovirus (BoAstV) as shown by reverse transcription PCR (Bouzalas et al., 2014).
Another study revealed that a domestic sheep infected with ovine astrovirus (OvAstV)
had encephalitis and ganglionitis, inflammation of ganglia which are crucial for brain cell
signaling. Further analysis showed that OvAstV was related to neurotropic BoAstV (Pfaff
et al., 2017). The relationship of these distinct mammalian strains of astrovirus to one
another suggests similar disease pathogenesis.

1.7.3 Epidemiology

Classical human astrovirus (HAstV) infections tend to be more common than MLB and
VA infections. Epidemiological data is typically recorded in symptomatic patients, as
asymptomatic patients have not been routinely screened for astrovirus infection. However,
there is a likelihood that there are widespread asymptomatic astrovirus infections that go
unrecorded. Asymptomatic cases may be the result of immune response built from prior
infection, which could explain why cases can range from mild to severe.

It is estimated that almost 4 million cases of astrovirus diarrhea occur each year
(Mead et al., 1999). In 1991, a gastroenteritis outbreak in over 4700 children and adults
over a span of 5 days in Osaka, Japan was traced back to astrovirus infection through
RT-PCR and EM (Oishi et al., 1994). Another outbreak of HAstV-3 in military recruits with
gastroenteritis was recorded in 1997 in France (Belliot, Laveran, and Monroe, 1997). Since
then, a majority of epidemiological data reported on astrovirus infections has occurred
in children screened during gastrointestinal illness. Primarily, testing includes RT-PCR,
enzyme-linked immunosorbent assay (ELISA), and EM.
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Globally, children under 5 years of age with acute gastroenteritis are infected with
astrovirus at rates between 4 to 9% (Cortez, V. A. Meliopoulos, et al., 2017; De Grazia et al.,
2011; Gabbay et al., 2007; Gaggero et al., 1998; Guerrero et al., 1998; Guix, S. Caballero,
Villena, et al., 2002; Holtz et al., 2014; L. Lu et al., 2021; Pager and Steele, 2002; Palombo
and Bishop, 1996; Pang and Vesikari, 1999; Qiao et al., 1999; Reither et al., 2007; Resque
et al., 2007; Unicomb et al., 1998). For persistent cases, rates may approach closer to 15%
(Khamrin et al., 2016; Unicomb et al., 1998). Although astrovirus is less common than
rotavirus within these gastroenteritis populations, astrovirus infection is generally more
common than adenovirus and bacterial gastroenteritis cases.

Within the population of children infected with astrovirus causing gastrointestinal
illness, HAstV-1 is the most common strain, causing between 50 to 95% of AstV cases
(Cortez, Freiden, et al., 2017; De Grazia et al., 2011; Gabbay et al., 2007; Gaggero et al., 1998;
L. Lu et al., 2021; Pang and Vesikari, 1999). In a 3-year study of patients with gastroenteritis
in Barcelona, a pediatric group recorded that over 34% of astrovirus-infected patients were
hospitalized, with over 13% of these infections being nosocomial among oncologic patients
(Guix, S. Caballero, Villena, et al., 2002). Immunocompromised children are especially
at risk. In one study of immunocompromised children in Memphis, Tennessee, HAstV-1
made up 50% of astrovirus infections, followed by VA-2, MLB-1, HAstV-1, HAstV-5, and
HAstV-8 (21%, 13%, 11%, n=1, and n=1 respectively) (Cortez, Freiden, et al., 2017). In
another report, a patient with standard-risk B-cell acute lymphoblastic leukemia and CNS
leukemia had neurological symptoms and was screened for infection. Cerebrospinal fluid
(CSF) metagenomic next-generation sequencing (mNGS) revealed that the patient was
positive for VA-1 infection. Another patient with KMT2A-rearranged relapsed refractory
acute myeloid leukemia and respiratory syncytial virus (RSV) infection showed similar
symptoms to the previous patient. Use of mNGS again revealed infection with VA-1. The
first patient was treated for astrovirus infection for eight months, along with modified
scheduled chemotherapy. She survived and has since shown improvement in neurological
symptoms. The second patient received palliative care, as his leukemia was incurable, and
he experienced further neurological deterioration before dying with renal and respiratory
failure seven weeks post-diagnosis (Bami et al., 2022). These case studies emphasize the
importance of screening for astrovirus infection among immunocompromised patients
showing neurological symptoms.

As children get older, they are less likely to experience symptomatic astrovirus
infection, and this is supported by a lower number of recorded cases in adult populations.
However, elderly populations are an exception and can experience astrovirus infection at
higher rates than their younger adult counterparts. One elderly population in Scotland
experienced an outbreak of gastroenteritis associated with HAstV-5 (Jarchow-Macdonald et
al., 2015). An elder care facility had 80% of patients and 44% of staff infected with astrovirus
during a gastroenteritis outbreak. The first 9 days of this outbreak were associated with
calicivirus infection, and HAstV-1 infections followed during days 16-22 (J. Gray et al.,
1987). Based on this report and other cases of viral coinfection with astrovirus, it is possible
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that previous insult from a gastrointestinal infection can prime the intestine for astrovirus
infection (Cortez, Freiden, et al., 2017; Guerrero et al., 1998; Guix, S. Caballero, Villena,
et al., 2002; L. Lu et al., 2021; Resque et al., 2007). Finally, astrovirus was also detected in a
gastroenteritis outbreak in an elderly population in Australia (Marshall et al., 2007).

There is evidence that astrovirus cases could be seasonal, occurring primarily in the
winter months. This was recorded in groups of children under age 5 with gastroenteritis
in Australia (Mustafa, Palombo, and Bishop, 2000; Palombo and Bishop, 1996), children
with gastroenteritis in Barcelona (Guix, S. Caballero, Villena, et al., 2002), and children
with gastroenteritis in South Africa (Pager and Steele, 2002). It has been suggested that
astrovirus could be more stable in cold weather because of this observation. However,
viruses transmitted via fecal-oral route such as coxsackieviruses and other enteroviruses
show peak infection in the spring and fall. It is possible that with improved screening of
astrovirus, different seasonal patterns may be recorded (Pons-Salort et al., 2018; Xing et al.,
2014).

Typically, MLB and VA strains have been recorded in fewer cases of gastrointestinal
illness than classical strains. This was observed in the aforementioned study of children
with gastrointestinal illness in Memphis, TN (Cortez, Freiden, et al., 2017). However, this
could be due to a lack of previous testing for MLB and VA strains. One study found the
opposite. In Japan, children with gastroenteritis were evaluated, and 16% were positive for
astrovirus, with MLB-1 and MLB-2 being the predominant strains. Within the infected MLB
and HAstV groups, boys had higher rates of infection than girls. Notably, peak infection
months were March through May in this study, contrary to previous evidence suggesting
that astrovirus infection peaks in the winter. In addition, over half of the patients had
other viral coinfections (Khamrin et al., 2016). Since then, the same authors have found a
higher prevalence for MLB and VA strains than classic HAstVs in a population of children
in Japan with acute gastroenteritis from 2014 to 2021 (Okitsu et al., 2023). MLB-1 was also
the predominant strain over HAstV-1 in a group of people in Germany from 2018 to 2019
(Niendorf et al., 2022). This demonstrates the need for continuous screening of astrovirus
infections among patients with gastroenteritis globally. It is likely that infections are not
being recorded, and other epidemiological factors could affect distribution of infections,
symptoms, and strains associated with outbreaks.

1.8 Treatment and Prevention

Typical treatments for AstV infection include hydration to avoid further loss of fluids
and medication for improvement of symptoms, such as antidiarrheals. In addition, one
elderly patient diagnosed with astrovirus infection was successfully treated with intra-
venous immunoglobulin (IVIG), and his symptoms improved dramatically within 24 hours
(Björkholm et al., 1995).
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A promising treatment for astrovirus is nitazoxanide. Nitazoxanide is an FDA ap-
proved anti-infective drug. Our laboratory has found that it blocks astrovirus replication in
Caco-2 cells if administered within up to 8 hours post-infection. This was the case for multi-
ple lab-adapted serotypes, as well as clinical astrovirus isolates. It also reduced symptoms
and viral titers in turkeys infected with TAstV, suggesting that it could improve symptoms
for patients with gastroenteritis (Hargest, Sharp, et al., 2020). In the aforementioned case
reports of immunocompromised pediatric cancer patients, nitazoxanide was administered
as part of the astrovirus infection treatment regimen, alongside IVIG (Bami et al., 2022).

There is no vaccine for astrovirus infections, but development of a vaccine is certainly
possible. Due to evidence showing that infection can lead to development of protective
antibodies, this may become an effective option in the future for prevention of disease.
Work has already begun to determine which targets may be suitable for astrovirus vacci-
nation. One group explored HAstV-2, as different strains of HAstV-2 have relatively high
heterogeneity. HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2) was unable to
bind recombinant HAstV-2-Oxford capsid spike domain (Spike-2-Oxford). Crystal structure
analysis revealed that Spike-2-Oxford is locked in a downward conformation, preventing
its binding to MAb PL-2. When proline 463 was mutated to a serine, the downward con-
formation lock was resolved, allowing MAb PL-2 to bind the spike protein. Recombinant
HAstV-2-Spain capsid spike domain (Spike-2-CDC-Spain) on the other hand was able to
bind MAb PL-2. Spike-2-CDC-Spain notably has a serine at residue 463, rather than a
proline. They next immunized rabbits with recombinant Spike-2-CDC-Spain and found that
polyclonal antibodies produced were able to neutralize all HAstV-2 strains (Bogdanoff et al.,
2018). This study shows promise for finding an effective antigen for astrovirus vaccination,
but further work is needed to determine whether a multivalent vaccine could be effective
for all human astrovirus serotypes.

Prevention is currently focused on interrupting human-to-human transmission
through good hygiene practices, as well as decontamination of water supplies through
addition of chlorine and decontamination of surfaces and objects that may have viral par-
ticles with Virkon S solution. Virkon S solution is a disinfectant that is more stable than
bleach and is effective against many viruses, including highly pathogenic avian influenza.
These practices are essential to interrupting nosocomial infections. During the worldwide
SARS-CoV-2 pandemic in 2020, one study found that acute gastroenteritis cases dropped
significantly, likely due to implementation of good hygiene and decontamination practices
(Okitsu et al., 2023).

Antiviral approaches against positive sense RNA viruses Although positive sense
RNA viruses vary widely in pathogenesis and symptoms, it is possible that common
elements of viral replication may be targeted for broad antiviral treatment. As previously
mentioned, little is known about the replication process of astrovirus within host cells. It is
likely that astrovirus manipulates host membranes, similarly to other positive sense RNA
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viruses, in order to replicate and escape the cell without inducing cell death. Understanding
the replication mechanism of astrovirus is essential for finding potential antiviral treatments.

One study found that both SARS-CoV-2 and HCV utilize double membrane vesicles
to replicate and that these DMVs can be targeted using a specific inhibitor, PIK-III, in order
to reduce DMV formation and viral replication (Twu et al., 2021). Although these viruses
cause different types of disease, both are positive sense RNA viruses and replicate using
similar mechanisms. It is possible that astrovirus utilizes a similar mechanism, and its
replication organelle could prove to be an effective target to halt replication.

1.9 Summary

Human astrovirus infection is becoming more broadly studied and screened for, but there
is a significant lack of information related to entry, replication, and cellular exit mechanisms
for HAstVs. In addition to its ability to cause gastrointestinal disease, HAstV can cause
neurological disease such as encephalitis, with a greater likelihood for these occurrences in
immunocompromised patients. Despite this, the replication organelle and mechanism of its
formation during astrovirus infection has yet to be determined. Understanding the process
of astrovirus replication would greatly improve our ability to find targeted treatments
for the disease. The high mortality rate accompanying astrovirus-associated neurological
disease demonstrates that early detection and more specific antivirals are necessary to
subdue astrovirus infection.

We hypothesize that astrovirus induces formation of double-membrane vesicles
for replication, similarly to other positive sense, single-stranded RNA viruses. This work
will elucidate the mechanism of induction of replication organelles and the host cellular
machinery required for this process during human astrovirus infection.
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Chapter 2

Viral Manipulation of Host Cellular Machinery

The gastrointestinal (GI) tract has multiple lines of defense against pathogen invasion. It
is covered by a layer of mucus, containing commensal bacteria and antimicrobial proteins
secreted by cells. This protective layer can keep some pathogens at bay. However, infection
of intestinal epithelial cells is inevitable. As a result, intestinal epithelial cells have addi-
tional mechanisms to fight pathogen invasion, with some responses being specific for viral
infection (Duan, 2016; Kayisoglu, Schlegel, and Bartfeld, 2021; Vancamelbeke and Vermeire,
2017).

Upon infection, epithelial cells are capable of recognizing pathogen-associated
molecular patterns (PAMPs) corresponding to viruses via pattern recognition receptors
(PRRs), which trigger the antiviral immune response. Aside from generating cytokines and
chemokines for immune cell activation and recruitment, there are cellular pathways that can
be repurposed to fight viral infection of the epithelium, including autophagy, the unfolded
protein response (UPR) and cell cycle. Autophagy, the recycling pathway of the cell, can
selectively target and remove intracellular pathogens upon infection (Oh and H. K. Lee,
2014). The UPR is responsible for inducing endoplasmic reticulum (ER) stress within the
cell to mitigate the clearance of misfolded and accumulated host and viral proteins in the
overwhelmed ER during infection. This protective mechanism typically encourages cell
survival. Along the same lines, virus-infected cells can transition into cell cycle arrest to
avoid supporting viral replication. These processes are interconnected, in that ER stress
can increase autophagy and induce cell cycle arrest, autophagy can regulate the cell cycle
and ER stress, and the cell cycle can induce autophagy and regulate ER stress. These three
pathways also maintain the biological switch from a state of cell survival to cell death when
necessary.

However, antiviral mechanisms can be manipulated or overwhelmed during viral
infections due to viral interference with host cellular machinery. Viruses have evolved to
avoid triggering cellular responses that might threaten their replication cycles or to suppress
them once they are underway. Additionally, viruses have developed tactics to repurpose
existing cellular pathways for their own benefit. Among these cellular pathways are the
same mentioned previously, autophagy, ER stress, and the cell cycle.
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2.1 Autophagy

Autophagy is a catabolic process by which cells recycle cargo to the lysosome using double-
membrane vesicles. While lysosomes were discovered in 1955, autophagy was defined
later in 1963 as a process by which cargo is delivered to lysosomes for degradation (De
Duve et al., 1955; De Duve, 1963). Autophagy can function at basal levels within the cell,
picking up cytoplasmic cargo and delivering it to the lysosome for degradation within
5-10 minutes (Fujita et al., 2008). However, certain triggers can upregulate the autophagy
pathway for specific reasons. For instance, starvation is a well-characterized autophagy
inducer, which leads to uptake of proteins in the cytosol for recycling of their amino acids
for further use by the cell. While autophagy was discovered in 1963, it was not until 30
years later that researchers had an understanding of starvation as a trigger for the pathway,
first demonstrated in yeast and confirmed in mammals (Mizushima, Yamamoto, et al., 2004;
Takeshige et al., 1992). Other triggers such as hypoxia and genotoxic stress can also induce
autophagy with differing downstream effects (Bellot et al., 2009; Nishida et al., 2009).

Autophagy is responsible for degradation of not only proteins, but also organelles
such as depolarized mitochondria, ER fragments, endosomes, and multiple forms of ri-
bonucleic acid (RNA) (Aizawa et al., 2016; Fraser et al., 2019; Fujiwara, Furuta, et al., 2013;
Fujiwara, Hase, et al., 2015; Hase et al., 2015; Lemasters, 2005; Schuck, Gallagher, and Walter,
2014). Although this cargo can be selectively delivered to an autophagosome, autophagy
has been historically viewed as a random uptake of cytosolic contents. More recently,
researchers have shown that specific cargo can be broken down via autophagy selectively,
and the autophagy machinery involved can vary depending on type of cargo (Anding and
Baehrecke, 2017).

2.1.1 Autophagy machinery

The canonical, starvation-related autophagy pathway includes four main phases; initiation,
phagophore nucleation, autophagosome elongation and maturation, and fusion with the
lysosome. Initiation of autophagy during cellular starvation is reliant upon upstream factors
such as adenosine monophosphate-activated protein kinase (AMPK) and mammalian
target of rapamycin (mTOR) (Egan et al., 2011; Joungmok Kim et al., 2011; J. W. Lee et
al., 2010; Shang et al., 2011). Prior to starvation, mTOR can phosphorylate unc51-like
autophagy activating kinase 1 (ULK1) at Serine 757 (S757) to inhibit autophagy initiation.
However, upon starvation, AMPK phosphorylates ULK1 at S317 and S777 for activation of
the ULK1 preinitiation complex (Joungmok Kim et al., 2011). ULK1 is a kinase responsible
for phosphorylation and activation of other autophagy factors. The preinitiation complex
consists of ULK1, PTK2/FAK family-interacting protein of 200kDa (FIP200), and ATG13
(C. H. Jung et al., 2009). Once ULK1 is active, it phosphorylates Beclin1, a member of the
phosphatidylinositol-3 kinase (PtdIns3K) complex.
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There are three classes of phosphoinositide-3 kinase (PI3K) complexes. The class I
PI3K complex (PI3KC1) is part of the well-established PI3K-AKT-mTOR pathway, which
suppresses autophagy. The class III PtdIns3K, or PI3KC3 is responsible for production of
phosphatidylinositol-3 phosphate (PtdIns3P), a key component of autophagosome mem-
branes (Obara et al., 2008). Class II PI3Ks (PI3KC2) are also considered pro-autophagy,
contributing to the formation of PtdIns3P. G-protein-coupled receptors (GPCRs) and ty-
rosine kinases are responsible for the activation of PI3KC1 and PI3KC2 for production of
phosphoinositide and phosphatidylinositol phosphates (Petiot et al., 2000; Xinlei Yu, Long,
and Shen, 2015).

PI3KC3 consists of a central kinase, VPS34, bound to Beclin1 and other proteins
that can promote or inhibit autophagy-related function (Xinlei Yu, Long, and Shen, 2015).
The complex can transiently bind ATG14 and AMBRA1 (activating molecule in Beclin
1-regulated autophagy) for autophagosome formation (Di Bartolomeo et al., 2010; Itakura,
Kishi, et al., 2008; Maria Fimia et al., 2007; Matsunaga et al., 2009; Yun Zhong et al., 2009;
Yu Zhong et al., 2014). It can also bind UVRAG (UV radiation resistance-associated gene
protein) to play a role in autophagosome maturation (Funderburk, Q. J. Wang, and Yue,
2010; Itakura, Kishi, et al., 2008; C. Liang et al., 2008). Once PI3KC3 is active and producing
PtdIns3P, other proteins can be recruited to the site of the forming phagophore to assist in
autophagosome maturation.

A key component of the starvation-induced autophagy pathway is the microtubule-
associated protein light chain 3 (LC3) conjugation machinery. Autophagy-associated pro-
teins act in a cascade of reactions to conjugate LC3 to phosphatidylethanolamine (PE). In an
Adenosine Triphosphate (ATP)-dependent process, ATG7, an E1-like enzyme, and ATG10,
an E2-like enzyme conjugate ATG5 to ATG12. ATG5-ATG12 then complexes with ATG16L1
and is delivered to phagophore membranes. ATG7 reacts similarly with LC3, followed
by an E2-like enzymatic reaction between LC3 and ATG3. Finally, LC3 is conjugated to
PE via an E3-like enzymatic reaction mediated by the ATG5-ATG12-ATG16L1 complex
(Kuma, Mizushima, et al., 2002; Mizushima, Noda, and Ohsumi, 1999). This canonical
pathway is often referred to as ATG5- and ATG7-dependent for this reason (Mizushima,
Noda, Yoshimori, et al., 1998). LC3-PE is also known as LC3-II, while its unbound form
is known as LC3-I. LC3-II is membrane- bound and is widely regarded as a marker of
autophagy (Y.-K. Lee and J.-A. Lee, 2016). Quantifying the ratio of LC3-II to LC3-I while
blocking lysosomal fusion is common practice for measuring autophagic flux. LC3 turnover
is required for autophagosome maturation under starvation conditions (Klionsky et al.,
2021; Tsukada and Ohsumi, 1993).

The final step of autophagosome fusion with the lysosome depends on a wide ar-
ray of machinery, including microtubules and actin filaments which guide the organelles
together (Kimura, Noda, and Yoshimori, 2008; Monastyrska et al., 2009; Pu et al., 2016;
Ravikumar et al., 2005), as well as SNAP receptor (SNARE) (Bas et al., 2018; J. Gao, Reg-
giori, and Ungermann, 2018; Itakura, Kishi-Itakura, and Mizushima, 2012; Saleeb et al.,
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2019; Takáts et al., 2013) and Ras-associated binding (Rab) proteins which facilitate fusion
(Hegedűs et al., 2016; Johansson et al., 2007; Jordens et al., 2001; McEwan et al., 2015;
H. Wang et al., 2015). Upon formation of the autolysosome, the inner membrane of the
autophagosome and the cargo within are degraded in the acidic pH by lysosomal enzymes
such as cathepsins (Mizushima, Levine, et al., 2008; Schroder et al., n.d.; Tsuboyama et al.,
2016; Xiong and M. X. Zhu, 2016).

2.1.2 Alternative autophagy

Not all autophagy pathways involve the total components of the starvation-induced au-
tophagy machinery. For instance, during erythropoiesis, mitochondria are degraded
through the autophagy pathway to give way to mature red blood cells. This process
is independent of the ATG5 and ATG7 LC3 conjugation machinery (Nishida et al., 2009;
Ji Zhang et al., 2009). Erythrocytes are not the only cells to utilize an LC3-independent mech-
anism for autophagosome formation. Multiple cell types produce autophagosomes even in
the absence of ATG5 and ATG7 activity to degrade a variety of cargo beyond mitochondria.
Isolation membranes for these autophagosomes originate from the trans-Golgi network
with TGN38 localization rather than ER calnexin-containing sites. Phosphatidylinositol
3-phosphate (PI3P)-recruited protein WD-repeat protein interacting with phosphoinosi-
tides (WIPI2), but not always its family member WIPI3, is generally required for canonical
autophagy. In this alternative ATG5-independent pathway, WIPI3 is necessary for for-
mation of autophagosomes from trans-Golgi sites (Yamaguchi et al., 2020). In place of
LC3 conjugation machinery, Rab9 has been postulated to be involved in this alternative
autophagy pathway. In its absence, the pathway cannot proceed, and Rab9 overexpression
reduces LC3-associated autophagosomes while increasing Rab9-associated autophago-
somes (Mareninova et al., 2022). Tripartite motif containing 31 (TRIM31) is another protein
that is indispensable for ATG5/7-independent autophagic clearance of bacteria within
intestinal epithelial cells specifically (Ra et al., 2016).

Alternative autophagy pathways can be specific and selective for cargo being de-
graded, involving differing types of machinery to aid in cargo delivery to autophagosomes.
For example, mitochondrial degradation, referred to as mitophagy, requires additional
autophagy components unique to mitochondrial sequestration and shuttling to the au-
tophagosome. This is referred to as the PTEN-induced kinase1, phosphatase and tensin
homologue-induced kinase 1 (PINK1) and PARKIN machinery and has been recognized for
its role in Parkinson’s Disease (Matsuda et al., 2010; D. Narendra et al., 2008; D. P. Narendra
et al., 2010; Vives-Bauza et al., 2010). Pexophagy, autophagic degradation of peroxisomes,
requires selective autophagy chaperone p62, also known as sequestosome-1 (SQSTM1), for
shuttling to the autophagosome (Zientara-Rytter and Subramani, 2016). SQSTM1 recog-
nizes ubiquitinated cargo and directs such cargo to the autophagosome. Similarly, leaky
lysosomes that can damage cells are ubiquitinated and colocalize with SQSTM1 before their
ultimate degradation via autophagy, termed lysophagy (Anding and Baehrecke, 2017). Not
only are organelles selectively degraded, but also specific proteins and enzymes can be
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targeted for unique purposes during selective autophagy. Hexokinase 2 (HK2) is one such
enzyme which can be ubiquitinated by tumor necrosis factor receptor-associated factor 6
(TRAF6) before its recognition by SQSTM1 for autophagy. This enzyme has an essential role
in glycolysis, and its specific degradation has consequences in cancer pathogenesis (Jiao
et al., 2018). These types of selective autophagy are not necessarily ATG5/7-independent,
again showing the flexibility of the host cell in supporting autophagy using a variety of
machinery.

Some autophagy pathways can also be activated through differing upstream trig-
gers. For instance, autophagy activated under genotoxic stress involves tumor protein
53 (P53) activation of protein phosphatase magnesium-dependent 1 delta (PPM1D) and
receptor-interacting protein kinase 3 (RIPK3) through differential phosphorylation of ULK1.
PPM1D is responsible for dephosphorylating ULK1 at S637, and RIPK3 phosphorylates and
activates ULK1 at S746, unique phosphorylation sites which lead to autophagy induction
independently of AMPK and mTOR activity (Torii et al., 2020).

Importantly, autophagy machinery is dysregulated within the context of a wide
variety of diseases, including cancer, beta thalassemia, bacterial infection, and viral infection
(Lechauve et al., 2019; Levine and Kroemer, 2008). Unsurprisingly, autophagy can be
manipulated by cancer cells through control of metabolism and other pathways, and
modulation of autophagy can increase the efficacy of cancer treatment (Cufí et al., 2011;
S. K. Yeo et al., 2016; Y. Zhou, Rucker III, and B. P. Zhou, 2016). Similarly, viruses have
become capable of manipulating autophagy machinery for replication purposes (Figure
2.1).

2.1.3 Autophagy during viral infection

Negative regulation of the viral life cycle by autophagy

Being that autophagy is a degradation pathway, it is unsurprising that there is evidence
of autophagic degradation of pathogens, referred to as xenophagy. Bacteria in particular
are targetable by ubiquitination and phosphorylation, patterns that are recognizable by
selective autophagy chaperones (Tumbarello et al., 2015; Wild et al., 2011; Y. T. Zheng et al.,
2009). The autophagy pathway can function as an immune effector to target and destroy
intracellular pathogens before these pathogens can cause excessive damage or be allowed
to further replicate within the host cell. This is the case for picornaviruses, which can be
targeted by the autophagy pathway for degradation of viral RNA using galectin 8 as a
sensor (Staring et al., 2017). Human immunodeficiency virus-1 (HIV-1) factor Vif is also
degraded by autophagy, preventing further HIV-1 replication (Valera et al., 2015). Similarly
to certain types of bacteria, Chikungunya virus (CHIKV) can also become ubiquitinated
and degraded by autophagy, while Sindbis virus (SV) can be targeted to autophagosomes
independently of ubiquitin pathways (Judith et al., 2013; Orvedahl, MacPherson, et al., 2010;
Orvedahl, Sumpter Jr, et al., 2011). During vesicular stomatitis virus (VSV) infection, the
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Figure 2.1: Autophagy During Viral Infection. A. Antiviral activity of
autophagy. Viruses and their proteins including Sindbis virus (SV), vesicular
stomatitis virus (VSV), picornaviruses, human immunodeficiency virus
(HIV) protein Vif, and Chikungunya virus (CHIKV) can be directly
degraded by autophagy. VSV actively inhibits autophagy to prevent its own
degradation. Additionally, Epstein-Barr virus (EBV) and herpes simplex
virus type 1 (HSV-1) antigens are processed via autophagy for antigen
presentation. B. Evasion and manipulation of autophagy by viruses. HSV,
Kaposi’s sarcoma-associated herpesvirus (KSHV), and human
cytomegalovirus (HCMV) inhibit initiation of autophagy via Beclin. KSHV
also targets LC3 machinery. Human parainfluenza virus 3 (HPIV3) and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit
autophagosome-lysosome fusion. Dengue virus (DENV) promotes
lipophagy for energy production during replication. Hepatitis C virus
(HCV), SARS-CoV-2, tomato bushy stunt virus (TBSV), and carnation Italian
ringspot virus (CIRV) manipulate the PI3K complex for double membrane
vesicle (DMV) replication organelle formation.

PI3K-Akt pathway is downregulated, leading to an increase in autophagy and a decrease in
viral replication (Shelly et al., 2009).

Autophagy can also indirectly target viral infection. For instance, Epstein-Barr virus
(EBV) antigen presentation of EBV nuclear antigen 1 (EBNA1) is facilitated via autophagy,
and blocking lysosomal degradation causes accumulation of EBNA1-containing autophago-
somes in cells (Paludan et al., 2005). Similarly, cells infected by herpes simplex virus type
1 (HSV-1) have increased MHC class I presentation of viral antigens due to autophagy
(English et al., 2009). Autophagy is also upregulated during HSV-1 infection for the purpose
of degradation of viral deoxyribonucleic acid (DNA). Aside from regulating replication of
the virus, this process also helps to avoid sustained immune activation and injury to host
tissue (Q. Liang et al., 2014). In all, autophagy is a helpful antiviral tool during infection.

Evasion and manipulation of autophagy by viruses

Due to the role of autophagy in actively preventing viral replication, some viruses have
evolved to not only evade, but also manipulate autophagy machinery for their benefit. HSV,
Kaposi’s sarcoma-associated herpesvirus (KSHV), and human cytomegalovirus (HCMV)
fight against autophagy’s antiviral properties by interacting with Beclin to inhibit initiation
of the pathway (Mouna et al., 2016; Pattingre et al., 2005; Tallóczy et al., 2002). KSHV is also
able to target LC3 conjugation machinery directly (J.-S. Lee et al., 2009). The human parain-
fluenza virus 3 (HPIV3) phosphoprotein (P) promotes viral replication by preventing the
autophagosome from fusing with the lysosome (Ding et al., 2014). Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) ORF3a protein similarly blocks lysosomal fusion
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Figure 2.1: Autophagy During Viral Infection.
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and enhances viral replication (Hayn et al., 2021; Miao et al., 2021; Qu et al., 2021; Y. Zhang
et al., 2021). In another indirect manner, dengue virus (DENV) promotes lipophagy, the
autophagic degradation of fatty acids, to increase ATP production to aid in viral replication,
supporting a unique role for other metabolic pathways in the viral life cycle (Heaton and
Randall, 2010).

Viruses can actively prevent canonical autophagy functions to avoid degradation and
detection. However, viruses can also manipulate specific parts of autophagy machinery to
promote their replication. Positive sense single stranded RNA (+ssRNA) viruses are experts
at exploiting autophagy machinery. Many +ssRNA viruses utilize double-membrane
vesicles (DMVs), which strongly resemble autophagosomes, as replication organelles (ROs).
It has also been hypothesized that DMVs have a second purpose, protecting viral RNA
from innate immune sensors within the host cell (Y. Choi, Bowman, and J. U. Jung, 2018).
Due to the fact that these replication organelles share characteristics with autophagosomes,
many studies have attempted to discern the role of autophagy machinery in formation of
DMVs during viral replication.

A variety of viruses utilize PI3KC3 for formation of DMVs, including SARS-CoV-
2 and hepatitis C virus (HCV). Chemical inhibition of PI3KC3 using inhibitor PIK-III or
knockdown of PI3KC3 components VPS34 and Beclin1 significantly reduces DMV formation
and viral replication for both SARS-CoV-2 and HCV (Twu et al., 2021). It has also been
shown that phosphatidylinositol 4-kinase (PI4K) is involved in DMV formation during HCV
and SARS-CoV-2 infection, suggesting that both PI3P and PI4P are membrane components
of ROs. Coxsackievirus B3 (CVB3) utilizes PI4KIIIβ, but not PI3K machinery in formation of
its ROs during infection (Mohamud et al., 2020). Poliovirus (PV) also uses PI4KIIIβ to form
PI4P-rich DMVs (Mosser, Caliguiri, and Tamm, 1972). Tomato bushy stunt virus (TBSV)
and carnation Italian ringspot virus (CIRV) are positive sense RNA viruses that utilize
VPS34 and PI3P for formation of their peroxisomal and mitochondrial ROs in yeast cells,
respectively (Z. Feng et al., 2019). Not all ROs require PI3KC3 specifically, but the role of
lipid kinases in viral replication is clearly significant.

Previous work has suggested a role for PI3K in astrovirus replication using wort-
mannin and Ly294002, which are pan-PI3K inhibitors. Using these inhibitors resulted in
reduction in astrovirus infection at the time of infection and for a few hours after. How-
ever, it is unclear whether this difference carries through the process of viral replication
and which PI3K complex is responsible for these differences due to the use of the broad
inhibitors and lack of mechanistic experiments (Tange et al., 2013). An alternative to deter-
mine whether astrovirus is affected by inhibition of the autophagy-specific PI3KC3 would
be the specific PIK-III inhibitor, which binds a hydrophobic pocket only present in PI3KC3
and not PI3KC1 or PI3KC2.

While upstream PI3K machinery is involved in DMV formation for multiple viruses,
the literature is varied regarding involvement of LC3 conjugation machinery in DMV
formation. Showing an increase in LC3-II formation during viral infection is insufficient
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to support a role for LC3 in formation of DMVs and viral replication. Because increased
LC3 turnover may coincide with canonical autophagy pathways and antiviral mechanisms
discussed previously, it is necessary to show that an absence of LC3 conjugation activity
affects viral replication and DMV formation directly. For instance, PV clearly utilizes LC3
machinery for DMV formation, as LC3 is localized on replication organelle membranes,
and targeting LC3 machinery via RNA interference greatly reduces PV yield (Jackson et al.,
2005). A similar approach was taken to demonstrate the importance of LC3 conjugation
machinery to foot and mouth disease virus (FMDV) and CVB3 replication (O’Donnell et al.,
2011; J. Wong et al., 2008).

On the other hand, involvement of LC3 conjugation in HCV replication has been
recently clarified. Although interference with ATG5 impacts initiation of HCV replica-
tion through transient interactions with HCV RNA polymerase NS5B, LC3 conjugation
specifically is not required for DMV formation (Dreux et al., 2009; Guévin et al., 2010). The
ATG5-12 conjugate is necessary for HCV replication, but not due to its role in LC3 turnover
(Fahmy and Labonté, 2017). While showing the involvement of PI3KC3 in HCV replication
and DMV formation, Twu and colleagues also showed that the ATG5-12/16L1 complex
is not necessary for HCV replication. The same was true for SARS-CoV-2. Thus, DMV
formation is PI3K-dependent and LC3-independent for SARS-CoV-2 and HCV, two unique
+ssRNA viruses. This suggests that although +ssRNA viruses may exhibit a wide variety of
pathology and symptoms, a common and targetable PI3K-dependent mechanism may be
employed for replication.

Biogenesis of viral-induced DMVs

Since autophagy is a highly targetable pathway, researchers have also ventured to answer
the question of DMV biogenesis. Autophagosomes can originate from multiple intracel-
lular organelles, including the ER, ER-Golgi Intermediate Compartments (ERGIC), and
mitochondrial membranes (L. Ge et al., 2013; Hailey et al., 2010). The ER was the first
demonstrated site of observed phagophore formation (Axe et al., 2008; Hayashi-Nishino
et al., 2009). It follows that DMVs formed during viral replication can originate from the
ER (Roingeard et al., 2022). Coronaviruses generate their replication organelles from ER
membranes (Cortese et al., 2020; Cottam et al., 2011; Knoops, Kikkert, et al., 2008; Mihelc,
Baker, and Lanman, 2021; Prentice et al., 2004). This is also the case for HCV, arteriviruses,
and noroviruses (Doerflinger et al., 2017; Knoops, Bárcena, et al., 2012; Romero-Brey et al.,
2012). Interestingly, while DMVs can contain calnexin, an ER marker, HCV-induced DMVs
have much higher cholesterol content than ER membranes, and SARS-CoV-2 replication is
also reliant upon cholesterol (Hoffmann et al., 2021; D. Paul et al., 2013). This suggests that
even if the ER is the source membrane material for DMVs, it becomes modified during their
formation.

Although there is evidence for the ER as the site of biogenesis for DMVs, it is possible
that in the absence of ER membrane sources, other organelles could compensate for the lack
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of membrane material to form the site of biogenesis. Enteroviruses have been observed by
electron microscopy (EM) to originate from both ER and Golgi membrane structures (Melia
et al., 2019). The ER is the initial source of replication organelles for enterovirus, followed
by the trans-Golgi membrane which disassembles and contributes lipids to budding ROs.

2.2 Endoplasmic Reticulum Stress During Viral Replication

Beyond its potential role as the site of DMV biogenesis, the ER regulates other facets
of viral replication. The well-characterized unfolded protein response (UPR) pathway
is responsible for maintaining correct protein folding and homeostasis within the host
cell. When misfolded proteins accumulate, the cell faces ER stress, a state in which a
multi-channel signaling pathway is triggered to restore the UPR and cellular homeostasis.
Misfolded proteins can collect in the ER due to inability to fold the proteins or inability to
recognize the misfolded proteins (J. H. Lin, Walter, and Yen, 2008).

Viral infection often leads to ER stress, and the UPR is induced, resulting in reduced
cell death. This can be beneficial for viral replication, allowing the cell to survive and
viral replication factories to continue producing progeny. On the other hand, ER stress can
induce apoptosis if the stress upon the cell is prolonged during viral infection (J.-A. Choi
and Song, 2020; S. Li, Kong, and Xilan Yu, 2015; V. Prasad and Greber, 2021). Therefore, the
role of ER stress during viral replication is double-edged.

2.2.1 UPR pathways

Three pathways comprise the UPR in mammalian cells, including inositol-requiring enzyme
1 (IRE1), activating transcription factor 6 (ATF6), and PKR-like endoplasmic reticulum
kinase (PERK) pathways. Each of these pathways can affect protein folding and homeostasis.
IRE1 specifically is conserved among eukaryotic cells and leads to activation of mRNA X-
box-binding protein 1 (XBP1) splicing. When XBP1 becomes spliced, it acts as a transcription
factor, translocating to the nucleus and binding ER stress-response elements (ERSE) (Calfon
et al., 2002; Misiewicz et al., 2013; Yoshida et al., 2001). ERSEs activate protein folding
and degradation responses to maintain homeostasis within the cell. Interestingly, IRE1α is
present in all cell types, and IRE1β is only present in intestinal epithelial cells (Bertolotti
et al., 2001). IRE1β deficiency is known to cause faster inflammatory bowel disease (IBD) in
mice, with higher ER chaperone immunoglobulin heavy-chain binding protein (BiP) levels.
BiP is a marker often used to indicate ER stress. This suggests that IRE1β could play an
important role in disease pathogenesis within the intestine, independent of IRE1α activity.
IRE1 also has a role in upregulation of macroautophagy pathways (K. Castillo et al., 2011).

The ATF6 and PERK pathways can be similarly upregulated within the UPR. When
ER stress occurs, ATF6 translocates to the Golgi and is cleaved into its transcription factor
form, ATF6α. ATF6α activates pathways associated with ER stress response and tends to
favor apoptosis within stressed cells (Gotoh et al., 2002; Nakanishi, Sudo, and Morishima,
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2005; Ye et al., 2000). The PERK arm of the UPR is focused on stalling the protein misfolding
process by stalling protein translation as a whole in response to ER stress. PERK is a kinase
that phosphorylates eIF2α (eukaryotic translation initiation factor 2A) to inhibit translation
(Harding et al., 2000; Hao-Yuan Jiang, L. Jiang, and Ronald C Wek, 2007; R. Wek, Jiang, and
Anthony, 2006).

2.2.2 ER stress manipulation during viral infection

As previously mentioned, ER stress can be beneficial or detrimental to viral replication.
Therefore, some viruses directly activate parts of the UPR, while actively suppressing others
for specific purposes (Figure 2.2). Studies related to astrovirus modulation of ER stress
are limited. While it has been established that astrovirus proteins can localize to the ER,
there has only been one study investigating the role of ER stress in astrovirus infection.
This work showed that protein kinase R (PKR), which normally phosphorylates eIF2α to
cause a decrease in protein translation, is upregulated at 6 hpi during astrovirus infection.
Phosphorylation of eIF2α was increased by 12 hpi. This is a common response of host cells
to viral infection, meant to decrease translation of viral proteins. However, the delay in
eIF2α phosphorylation suggests an interference of astrovirus with this pathway. Further, the
authors found that this process occurred independently of the PERK pathway, suggesting
an ER stress-independent mechanism (Tomoyasu Isobe et al., 2019). Therefore, the role of
ER stress during astrovirus infection needs to be further investigated to clarify any changes
in the UPR during infection and whether these changes affect viral replication.

For some positive sense RNA viruses, ER stress activation leads to apoptosis. This is
the case for Bovine Diarrhea Virus (BDV), which modulates apoptosis via the PERK arm
of the UPR (R. Jordan et al., 2002). During Japanese Encephalitis Virus (JEV) infection,
viral proteins build up in the ER, leading to activation of C/EBP Homologous Protein
(CHOP) and JEV-induced apoptosis (Su, C.-L. Liao, and Y.-L. Lin, 2002). Interestingly,
DENV upregulates UPR pathways and XBP1, leading to autophagy and enhanced viral
replication. However, ER stress during DENV infection actually protects the cell from cell
death processes (Datan et al., 2016; Umareddy et al., 2007; C.-Y. Yu et al., 2006). This could
certainly be the case for astrovirus, as it is a non-lytic virus.

Other positive sense RNA viruses modulate ER stress, but the effect of that activation
on cell death has not been described. This includes HCV, which upregulates ATF6 for viral
protein folding. HCV also increases IRE1, but XBP1 splicing is repressed during infection.
Lastly, HCV actively inhibits PERK to prevent translational attenuation (Tardif, Waris, and
Siddiqui, 2005). Both SARS-CoV and gamma coronavirus infectious bronchitis virus (IBV)
modulate ER stress response pathways. SARS-CoV activates ATF6, but not IRE1 or PERK
pathways. However, there is evidence that the 8ab SARS protein interacts with IRE1α, and
the spike protein increases BiP levels during infection (Chan et al., 2006; Karagöz et al., 2017;
Sung et al., 2009). IBV activates the IRE1 pathway, but not XBP1 splicing, for induction of
an ATG5-independent, Beclin-dependent autophagy pathway during infection, supporting
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Figure 2.2: Viral Manipulation of the Unfolded Protein Response
Pathways. Viruses activate or inhibit arms of the Unfolded Protein Response
(UPR) pathways to benefit their replication. Hepatitis C virus (HCV),
dengue virus (DENV), infectious bronchitis virus (IBV), Coxsackievirus B3
(CVB3), and Chikungunya virus (CHIKV) activate the IRE1 arm of the UPR.
HCV and IBV also negatively regulate XBP1 splicing. bovine diarrhea virus
(BDV), Japanese encephalitis virus (JEV), human immunodeficiency virus
(HIV), DENV, and CVB3 also activate the PERK arm of the UPR. HCV
negatively regulates PERK. Astrovirus (AstV) activates PKR in a
PERK-independent manner. CHIKV negatively regulates eIF2α. Severe acute
respiratory syndrome coronavirus (SARS-CoV), HCV, CVB3, CHIKV, HIV,
and DENV all activate the ATF6 arm of the UPR.
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another link between ER stress and autophagy induction during viral infection (Fung and
D. X. Liu, 2019). Another study showed that thapsigargin, an ER stress activator, was
antiviral during infection with three types of CoVs. Thapsigargin treatment also reduced
autophagy in CoV infection (Shaban et al., 2021). CVB3, CHIKV, and HIV are more examples
of pathogens that increase UPR activation during infection, but more should be studied to
make conclusions on the importance of ER stress to viral replication (Colli et al., 2019; Lindl
et al., 2007; Rathore, M.-L. Ng, and Vasudevan, 2013).

Knowing that positive sense RNA viruses modulate ER stress for their own benefit
justifies studying the role of the UPR in astrovirus infection. Not only is ER stress capable
of modulating viral protein folding, but it also directly affects autophagy, cell death, and
even the cell cycle. Each of these areas are understudied in astrovirus infection, and a
better understanding of the role of these pathways could lead to more efficiently targeted
treatments.

2.3 Cell Cycle Arrest During Viral Replication

Yet another cellular process manipulated by viruses during infection is the cell cycle. The
cell cycle is necessary to govern overall cellular health and whether a cell is fit to grow
and divide. Billions of cells in the human body go through this process daily. Regulation
of the cell cycle is famously evaded by cancer cells, which maneuver around checkpoints
to continue their own growth and division processes. However, the cell cycle is meant to
prevent exactly that occurrence. When a cell is healthy and properly functioning, it will
only grow and divide after passing cell cycle checkpoints. Even with these checkpoints in
place, a cell can be vulnerable to a variety of stressors. Viruses are one such stressor able to
exploit the cell cycle to promote their replication processes.

2.3.1 Stages of the cell cycle

The four stages of the cell cycle are Gap 1 (G1), Synthesis (S), Gap 2 (G2), and Mitosis (M).
During G1 phase, the cell grows and produces more protein, nucleic acids, and organelles
to be distributed to daughter cells. In S phase, the cell duplicates its DNA. Next, the cell
prepares for division, organizing its new contents during G2 phase. Finally, the cell divides
into two identical daughter cells during M phase. This process is necessary to keep the body
functioning daily, but not in all cell types. For instance, some cells are fully differentiated
and will not divide further. At this point, the cell enters an alternate Gap 0 (G0) phase, in
which it becomes quiescent (Barnum and O’Connell, 2014; Schafer, 1998).

For different phases of the cell cycle, the cell must pass checkpoints that determine
whether it is ready to move on to the following stage. For instance, if not enough nutrients
have accumulated during G1 phase, the cell will not begin S phase (Killander and Zetterberg,
1965b; Killander and Zetterberg, 1965a). Similarly, if there is DNA damage during G1, the
cell will not move into S phase to avoid replication of mutation-containing cells (Giono and
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Manfredi, 2006). Once the cell passes the G1/S checkpoint, it enters S phase. If the cell has
not replicated its DNA correctly by the end of S phase, it will not enter into G2 (Nishitani
and Lygerou, 2004). Finally, there are many events that can go wrong during cell division
in M phase. If the cell fails to divide properly, it will not pass the M phase (McLean et al.,
2011).

At each checkpoint of the cell cycle, proteins called cyclins and cyclin-dependent
kinases (CDKs) govern whether the cell moves forward to the next stage. Only when the
proper cyclin binds its associated CDK will the cell cycle gain permission to move forward
(Jeffrey et al., 1995). This is because CDKs activate cyclins so that they can phosphorylate
downstream targets, enabling downstream replication activities within the cell (De Bondt
et al., 1993). Cyclins D and E are necessary for progression through G1 phase, followed
by Cyclin A in S phase, and finally Cyclin B in M phase. Cyclin D binds CDK4/6, Cyclin
E binds CDK2, Cyclin A binds CDK2 and CDK1, and Cyclin B binds CDK1. Therefore,
although a cyclin may be present in the cell, it is not until it is bound by its partner CDK that
it becomes active in cell cycle progression (Łukasik, Załuski, and Gutowska, 2021; Pavletich,
1999).

Other proteins are also essential for cell cycle regulation, including tumor suppressors
like P53 and retinoblastoma protein 1 (RB1). These proteins interact directly with cell cycle
components so that a cell will only continue growth and division if it is ready. This is why
mutations in p53 and Rb1 are often associated with cancer. Without management of these
cell cycle checkpoints by tumor suppressors, the cell may grow uncontrolled (Engeland,
2022).

2.3.2 Viral manipulation of the cell cycle

Unsurprisingly, the cell cycle can be manipulated by viruses during infection. Different
viruses cause cell cycle arrest in unique phases of the cell cycle for specific reasons (Figure
2.3). For instance, viruses that can induce G1 phase arrest include SARS-CoV, EBV, HCMV,
HSV1, and influenza A virus (IAV) (J. P. Castillo and Kowalik, 2004; Cayrol and Flemington,
1996; C.-J. Chen, Sugiyama, et al., 2004; C.-J. Chen and Makino, 2004; Sinclair et al., 2000;
Yuan, Shan, et al., 2005; Yuan, J. Wu, et al., 2006). During IAV infection, pRb and cyclins
D and E are decreased, and p21 is increased. This is a recipe for G1 arrest (Yuan He et al.,
2010). Interestingly, during HSV1 infection, pRb is hypophosphorylated, which supports G1
arrest. However, CDKs normally involved in modulation of pRb activity are not decreased
(Diwan, Lacasse, and Schang, 2004; Schang, Phillips, and Schaffer, 1998). In fact, it has
been shown that these CDKs may benefit HSV1 infection through modulation of RNAPII
function (Durand and Roizman, 2008).

Therefore, cell cycle arrest during viral infection is not straight-forward. In fact,
some viruses manipulate multiple stages of the cell cycle. For example, while EBV protein
Zta induces G1 arrest, EBV protein LMP-1 induces G2/M arrest (K.-S. Yeo, Mohidin, and
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Figure 2.3: Viral Induction of Cell Cycle Arrest. Viruses induce cell cycle
arrest during different phases of the cell cycle to support replication and exit
from the host cell.
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C.-C. Ng, 2012). This suggests that different cell cycle phases are beneficial for specific viral
life cycle stages, not just G1 phase.

Viruses that modulate S and G2/M phases include HCV, KSHV, human papillo-
mavirus type 1 (HPV1), reovirus serotype 3, SARS-CoV-2, IBV, and HCV (Järviluoma and
Ojala, 2006; Poggioli, Dermody, and Tyler, 2001; Stark and W. R. Taylor, 2006). HCV inter-
estingly shows biphasic regulation of S phase, with an increase in cells in S phase, followed
by arrest (Munakata et al., 2007; Otsuka et al., 2000; Ruggieri et al., 2003; X.-J. Yang et al.,
2006). SARS-CoV-2 and IBV both show an accumulation of cells in S and G2/M phases
following infection. When cells are synchronized to G2/M phase, there is an increase in
SARS-CoV-2 and IBV replication (Dove et al., 2006; Sui et al., 2023). This indicates that
there is a benefit to DNA replication and cellular division stages of the cell cycle for viral
infection. In observing this phenomenon across viral families, researchers have suggested
that the benefit comes from the host cellular machinery available during this “pseudo-S
phase” (Bagga and Bouchard, 2014). While DNA replication is occurring in the cell, DNA
viruses thrive. The reason for arrest during RNA virus infection may also be related to
availability of host cellular organelles. During preparation stages for division, there is an
abundance of ER and Golgi membranes available to aid in viral replication and assembly.
Therefore, modulation of the cell cycle by viruses is beneficial for replication and assembly
purposes.

2.4 Research Aims

In these studies, I aimed to determine the site of replication for human astrovirus serotype
1 (HAstV-1) and involvement of host cellular machinery in the process. Although other
studies have begun to find cellular pathways that affect astrovirus replication, no research
thus far has elucidated which cellular machinery is necessary to replication organelle
formation. I hypothesize that astrovirus induces double-membrane vesicle formation for
replication using some host autophagy machinery.

2.4.1 Aim 1: Identify the replication organelle for HAstV-1

Using electron microscopy (EM) and UV-inactivated virus, we showed that astrovirus
induces double-membrane vesicle (DMV) formation during infection of human Caco-2
cells. There are no DMVs formed in mock-inoculated cells, and astrovirus virions associate
closely with the DMVs within HAstV-1-infected cells. In addition, UV-inactivated virus
does not induce DMV formation upon cellular inoculation, suggesting that formation of
DMVs is replication-dependent.
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2.4.2 Aim 2: Determine what host cellular machinery is necessary for astrovirus-
induced replication organelle formation

Through reverse transcription polymerase chain reaction (RT-PCR), a variety of host cellular
machinery involved in vesicular trafficking, autophagy, and cell death were analyzed for
transcriptional changes. Upstream autophagy machinery from the PI3K complex stood out
as significantly upregulated. Single-cell RNA sequencing (scRNA-seq), western blotting,
siRNA knockdowns, and use of inhibitors confirmed this upregulation and importance of
the autophagy-specific PI3K complex for astrovirus replication.

This project has revealed the site of replication and a therapeutic target for astrovirus
replication. In addition, we have supported the role of autophagy-specific PI3KC3 as a
common positive strand ssRNA virus replication factor. We have also shown that PI3KC3
inhibition is effective for reduction of VA1 replication, as well, suggesting that the mech-
anism spans clades of astrovirus. This research will lead to new insights for astrovirus
replication and novel opportunities for inhibition of replication.

2.4.3 Aim 3: Determine major differences in host cellular processes during
astrovirus infection

Using single cell RNA sequencing on HAstV-1-infected Caco-2 cells, differences in major
cellular pathways and gene expression were elucidated. Among dysregulated pathways of
interest were lysosomal activity, endoplasmic reticulum (ER) stress, and cell cycle arrest.
Lysosomal activity was further studied using flow cytometry and western blotting and
showed no significant dysregulation of the pathway despite significant transcriptional
differences.

ER stress was further explored using various inhibitors, confocal microscopy, electron
microscopy, and western blotting. During astrovirus infection, ER fragments appear to
rearrange and consolidate near the nucleus. Electron microscopy showed close association
of ER fragments with double membrane vesicles, suggesting an origin for DMVs at the
ER. In addition, nucleation promoting factor (NPF) WHAMM (WASP Homolog associated
with Actin, Golgi Membranes and Microtubules) was significantly upregulated at the
transcriptional and translational level. WHAMM has been previously associated with
budding of autophagosomes from ER membranes, which could be a mechanism for DMV
formation during viral replication. Use of ER stress inducer thapsigargin significantly
reduced astrovirus staining, suggesting that the endoplasmic reticulum plays a role in viral
replication. ER stress inhibitor ceapin had no effect on astrovirus replication, meaning that
the ATF6 arm of the ER stress pathway is likely not responsible for this phenotype.

Lastly, single cell RNA sequencing data suggested a major disruption in the cell cycle
at 24 hours post-infection (hpi) in astrovirus-infected Caco-2 cells compared to earlier time
points of infection and mock controls. Further exploration of the dataset showed that the
G2M checkpoint pathway was significantly downregulated at 24 hpi in infected cells, and
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astrovirus-infected cells were transcriptionally accumulating in G1 phase. Bystander cells
were not affected. To further explore this, immunoblotting was employed. Immunoblots
showed a significant decrease in S and G2/M-associated proteins geminin and Cyclin A2
at 24 hpi in HAstV-1 samples compared to mock-inoculated samples. There was also a
significant increase in CDK6, a kinase essential for G1 phase of the cell cycle, at 24 hpi in
HastV-1 samples compared to mock-inoculated samples. Finally, a significant decrease in
G1-associated Cyclin D1 indicates cell cycle arrest in G1 phase.

Astrovirus infection disrupts multiple elements of cellular homeostasis. The as-
trovirus infected cell is arrested in G1 phase, likely to prevent cell death. This surviving
cell experiences ER membrane rearrangement and manipulation of the UPR, supporting
activation of autophagy machinery required for replication. The autophagy machinery does
not include changes in lysosomal activity which could disrupt astrovirus survival and exit
from the cell (Figure 2.4).
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Figure 2.4: Astrovirus Modulation of Host Cellular Machinery.
Representative schematic of astrovirus manipulation of host cellular
machinery. We have determined that astrovirus infection induces
PI3KC3-dependent formation of double membrane vesicle (DMV)
replication organelles (ROs). These DMVs may bud from the endoplasmic
reticulum (ER), and interference with the ER stress pathway affects
astrovirus replication. Lastly, the cell cycle is arrested in G1 phase during
astrovirus replication, which may also contribute to cellular survival.
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Chapter 3

Discovery of the Replication Organelle for Human
Astrovirus1

NOTE: This chapter refers frequently to content in Appendix A. When using Adobe Acrobat,
after going there, return to the last viewed page using quick keys Alt/Ctrl+Left Arrow on
PC or Command+Left Arrow on Mac. For the next page, use Alt/Ctrl or Command + Right
Arrow. See Preface for further details.

3.1 Introduction

For information regarding cell and virus propagation, transmission electron microscopy
(EM), RT2 Profiler, 10X single cell RNA sequencing, immunofluorescent staining, im-
munoblotting, RT- PCR, and Huh-7.5 RavZ doxycycline induction, please refer to the
Materials and Methods section found in Appendix A.

3.2 Additional Methods

Transmission electron microscopy Caco-2 cells were plated in a six-well plate (3.5
× 105). After 48 h, appropriate samples were inoculated with supernatants taken from
VA-1-infected (Multiplicity of infection (MOI) 10) Caco-2 cells in serum-free media for 1 h.
Following virus adsorption, inoculum was replaced with fresh media. At 48 and 72 hpi,
cells were fixed in 2.5% glutaraldehyde/2% paraformaldehyde (PFA) in 0.1 M Cacodylate
Buffer.

293T cells were plated in a six-well plate (4 x 105). After 48 h, appropriate samples
were inoculated with supernatants taken from human astrovirus serotype 1 (HAstV-1)-
infected (MOI 10) or mock-inoculated Caco-2 cells in serum free media for 1 h. Following

1Reproduced with permission from the American Society of Microbiology. Theresa Bub et al. (2023).
“Astrovirus replication is dependent on induction of double membrane vesicles through a PI3K-dependent,
LC3-independent pathway”. In: Journal of Virology. DOI: 10.1128/jvi.01025-23. URL: https://journals.
asm.org/doi/10.1128/jvi.01025-23. (Appendix A).

https://doi.org/10.1128/jvi.01025-23
https://journals.asm.org/doi/10.1128/jvi.01025-23
https://journals.asm.org/doi/10.1128/jvi.01025-23


Chapter 3. Discovery of the Replication Organelle for Human Astrovirus 36

virus adsorption, inoculum was replaced with fresh media. At 24 hpi, cells were fixed in
2.5% glutaraldehyde/2% paraformaldehyde (PFA) in 0.1 M Cacodylate Buffer.

Alternatively, 293T cells were transfected with HAstV-1-associated plasmids gifted
to our laboratory by the Lennemann lab at University of Alabama at Birmingham. These
plasmids are named ORF1ab, ORF1a, ORF1ab - protease, and ORF1a - protease. 293T cells
were transfected using the Lipofectamine 2000 Reagent kit, per manufacturer’s instructions,
with 5 µg of each plasmid, Opti-MEM, and Lipofectamine 2000 Reagent in serum free media.
At 24 hours post-transfection, cells were observed using the EVOS FL cell imaging system
to confirm transfection through GFP expression. Once confirmed, cells were fixed in 2.5%
glutaraldehyde/2% paraformaldehyde (PFA) in 0.1 M Cacodylate Buffer.

Following fixation, samples were post-fixed in osmium tetroxide and contrasted
with aqueous uranyl acetate. Samples were dehydrated by an ascending series of ethanol
to 100% followed by 100% propylene oxide. Samples were infiltrated with EmBed-812
and polymerized at 60°C. Embedded samples were sectioned at 70 nm on a Leica (Wetzlar,
Germany) ultramicrotome and examined in a ThermoFisher Scientific (Hillsboro, OR) TF20
transmission electron microscope at 80 kV. Digital micrographs were captured with an
Advanced Microscopy Techniques (Woburn, MA, USA) imaging system. Unless otherwise
indicated, all reagents are from Electron Microscopy Sciences (Hatfield, PA, USA).

3.3 Double Membrane Vesicle Replication Organelles Form Dur-
ing HAstV-1 Infection in a PI3KC3-Dependent Manner

Electron microscopy (EM) showed that HAstV-1 infection induces formation of double-
membrane vesicles (DMVs) at 24 hours post-infection (hpi), while mock-inoculated cells
did not form DMVs in Caco-2 cells. DMVs continued to form at 36 hpi in HAstV-1-infected
cells (Figure A.1a). Inoculation of Caco-2 cells with UV-inactivated HAstV-1 did not induce
DMV formation, demonstrating that formation of DMVs is replication-dependent (Figure
A.1b).

Previous research showed that phosphatidylinositol-3 kinase (PI3KC3) is necessary
for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hepatitis C virus
(HCV) replication. One study also suggested that PI3K may be involved in astrovirus
replication, although nonspecific inhibitors were utilized to demonstrate this. Therefore,
we employed a specific PI3KC3 inhibitor, PIK-III, to determine whether the autophagy-
specific complex was involved in astrovirus replication. Upon inhibition with PIK-III
during infection, electron microscopy revealed a significant decrease in DMV formation
(Figure A.2a), accompanied by a significant decrease in astrovirus capsid staining and
double stranded RNA (dsRNA) replication intermediates in a dose-dependent manner at
24 hpi (Figure A.2b, SA.1a). We also observed a dose-dependent decrease in genome copies
of astrovirus in cell supernatants and lysates from PIK-III-treated compared to DMSO
control cells at 24 hpi (Figure A.2c). Finally, there was significantly less infectious virus
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in cell supernatants of Caco-2 cells treated with PIK-III prior to infection, compared to
DMSO-treated controls (Figure A.2d). To determine whether PIK-III affects VA-1 infection
similarly, we infected Caco-2 cells with VA-1 and treated them with either PIK-III or DMSO.
We again found a significant decrease in VA-1 infection in a dose-dependent manner in
PIK-III-treated cells compared to DMSO controls (Figure SA.1b).

Next, to confirm the importance of the autophagy-specific PIK3C3 to astrovirus
replication, we employed siRNA knockdown of Beclin, a PIK3C3 component. When Beclin
was knocked down during infection, genome copies in cell lysates, capsid staining, and
dsRNA staining were all significantly decreased compared to siRNA control (siControl)
(Figure A.3a-d).

3.4 Additional Autophagy Machinery is Not Required for HAstV-1
Replication

Knowing that PI3KC3 is important for astrovirus replication and DMV formation, we
sought to determine whether other autophagy machinery was necessary for astrovirus
replication. Transcriptionally, only upstream components of the autophagy machinery
were upregulated at 24 hpi in HAstV-1-infected compared to mock-inoculated Caco-2 cells.
LC3 (microtubule-associated protein light chain 3) machinery was either unchanged or
downregulated at 24 hpi in HAstV-1-infected cells, and immunoblotting confirmed no
change in ATG5 or ATG7 protein expression (Figure A.4a-b). To confirm, we used an siRNA
knockdown of ATG5 and found no change in lysate genome copies, capsid staining, or
dsRNA staining during infection (Figure A.4c-d, SA.2a, , SA.2c-d). Finally, an Huh-7.5
cell line with doxycycline-inducible expression of RavZ was utilized to confirm this in a
different cell line. RavZ is a protease that can specifically cleave LC3, disabling it from be-
coming conjugated to phosphatidylethanolamine (PE) and participating in autophagosome
formation. We confirmed the cleavage activity of RavZ and found it made no difference in
genome copies of astrovirus found in cells or supernatants during infection (Figure A.4e,
SA.2b).

3.5 Single Cell RNA Sequencing in HAstV-1 and MuAstV Infec-
tion

Single cell RNA sequencing (scRNA-seq) was utilized to determine whether changes in
autophagy machinery occurred in infected or bystander cells during HAstV-1 infection
of Caco-2 cells (Figure A.5a, SA.3, Table 1). We found that only infected cells showed an
upregulation of PIK3C3-associated genes, while bystander cells downregulated these genes
(Figure A.5c). To address whether these changes in autophagy machinery span different
species, we utilized a scRNA-seq dataset previously obtained in our laboratory for mice
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infected with murine astrovirus (MuAstV). Again, PI3KC3 was only upregulated in infected,
not bystander cells in mice (Figure A.5d).

3.6 VA-1 Replication Organelles

As shown in our publication, PIK-III successfully inhibits both HAstV-1 and VA-1 replication.
To determine whether VA-1 also forms DMVs during replication, we infected Caco-2 cells
with VA-1 for 48, 72, or 96 hours and performed electron microscopy. To our surprise,
well-defined DMVs were not observed during VA-1 infection. However, double-membrane
structures resided close by to virions. Qualitatively, there were far fewer membranous
structures around VA-1 virions compared to HAstV-1. This indicates that although PIK-III
reduces formation of DMV replication organelles during HAstV-1 infection, PIK-III may also
target phosphatidylinositol 3-phosphate (PI3P)-containing membranes other than DMVs
during viral replication (Figure 3.1).

3.7 Determination of Viral Components Involved in DMV Forma-
tion During Infection

To begin to understand which parts of the astrovirus genome are essential for DMV forma-
tion, we first infected or inoculated 293T cells with HAstV-1 or mock control respectively
for 24 hours to determine whether DMVs form in 293T cells during astrovirus infection. We
also transfected 293T cells with ORF1ab, ORF1a, or ORF1 plasmids containing a mutation
in the protease domain, disabling protease activity. These samples were submitted for elec-
tron microscopy. Representative images showed that HAstV-1-infected 293T cells produce
DMVs associated with HAstV-1 virions similarly to Caco-2 cells. Mock-inoculated cells do
not produce DMVs. Each of the plasmids did not induce DMV formation (Figure 3.2).

3.8 Discussion

Our work demonstrates that the replication organelle for HAstV-1 is a double-membrane
vesicle. DMVs form during HAstV-1 infection in Caco-2 cells in a replication-dependent
manner and require PI3KC3 machinery for formation. DMVs do not require LC3 conjugation
machinery for formation despite this being a key component of autophagosome formation.
Formation of DMVs and upregulation of PI3KC3 machinery only occurs in HAstV-1-infected
and not bystander cells. These data closely mimic findings for SARS-CoV-2 and HCV,
positive sense single stranded RNA viruses that also utilize PI3KC3 but not LC3 to form
DMV replication organelles. Despite the major differences between these viruses, HAstV-1,
SARS-CoV-2, and HCV use similar strategies to support their replication by manipulating
host cellular machinery and repurposing it for replication organelle formation. This suggests
that targeting PI3KC3 machinery could be a broad therapeutic option utilized to interrupt
infection with positive sense RNA viruses, regardless of their pathogenic differences.
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Figure 3.1: Astrovirus VA-1 Replication Organelles. Electron microscopy
(EM) shows clusters of VA-1 virions in Caco-2 cells infected with VA-1 for 48
or 72 hours. Double membrane vesicles (DMVs) are noted with arrows.
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Figure 3.2: Astrovirus-Induced DMVs in 293T Cells. Electron microscopy
(EM) shows that HAstV-1 infection induces double membrane vesicle
(DMV) formation in 293T cells, but not mock-inoculated cells. 293T cells
transfected with ORF1ab, ORF1a, or ORF1ab and ORF1a with a mutation in
the protease domain also did not show DMV formation.
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VA-1 infection is also significantly reduced by inhibition of the PI3KC3 complex,
although replication organelles for VA-1 did not closely resemble DMVs observed in HAstV-
1-infected Caco-2 cells by electron microscopy. Given the role of PI3KC3 in general for-
mation of PtdIns3P, it is possible that this membrane component could be required for
different types of replication organelle formation. It will be beneficial to determine whether
PI3KC3 is activated through canonical upstream autophagy machinery such as activation of
the ULK1 complex during astrovirus infection. If PI3KC3 is activated through a canonical
mechanism, more therapeutic targets may be utilized in interruption of DMV or RO forma-
tion during HAstV-1 or VA-1 infection. Given that an upregulation of AMPK (Adenosine
Monophosphate-Activated Protein Kinase)-associated gene PRKAA1 was observed during
HAstV-1 infection of Caco-2 cells, it is possible that AMPK activates ULK1, leading to
activation of PI3KC3 through canonical autophagy-associated mechanisms. However, if
activation of PI3KC3 is independent of AMPK and ULK1 machinery, novel targets may be
identified for interference with PI3KC3 complex activation. This could have implications
for other diseases during which PI3KC3-dependent canonical and alternative autophagy
pathways are upregulated.

Regardless of RO membrane arrangement, the fact that inhibition of PI3KC3 is a
strain-spanning tactic for reduction of astrovirus infection suggests that despite differences
among astrovirus strains, a common therapeutic target may be possible for astrovirus
infection. Not only is PI3KC3 important for human astrovirus strains, but our data also
suggest that murine astrovirus (MuAstV) infection may follow a similar pattern. PI3KC3 is
upregulated in infected, but not bystander cells during MuAstV infection. This suggests
that although human astrovirus infection is phenotypically unique from MuAstV infection,
a common replication mechanism may also span species of astrovirus.

Finally, we showed that 293T cells infected with HAstV-1 also produce DMVs. When
we transfected 293T cells with plasmids to produce ORF1ab, ORF1a, or ORF1ab and ORF1a
mutants lacking protease, we found that none of these induced DMV formation. This does
not necessarily mean that ORF1a and ORF1ab do not induce DMV formation. Because we
have found that DMVs form in a replication-dependent manner in Caco-2 cells, it may be
necessary to produce infectious astrovirus mutants to address the involvement of each part
of the astrovirus genome in DMV formation.
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Chapter 4

Disruption of Host Cellular Processes by Astrovirus

4.1 Introduction

Upon infection with a virus, it is inevitable that a host cell’s machinery will be disrupted
in a variety of ways. Host cellular machinery has evolved to fight viral infection through
unique mechanisms, including upregulating degradation pathways like autophagy and
modulating endoplasmic reticulum (ER) stress-associated pathways that might benefit viral
replication. Not only this, but cells may attempt to disrupt viral replication by modulating
cell cycle response during infection. However, just as host cells have responded successfully
to lessen viral replication, viruses have evolved to evade such responses for their own
survival.

Although autophagy machinery can be upregulated to promote viral degradation, we
have shown that astrovirus upregulates only portions of the canonical autophagy pathway
to promote its own replication in double membrane vesicles (DMVs). Some viruses can be
degraded by autophagosomal delivery to the lysosome, thwarting their viral life cycle. Yet
some others can disrupt lysosomal activity to avoid this fate. Here, we investigate whether
lysosomal activity is affected by astrovirus infection.

Further, we have attempted to discern the origins of astrovirus-induced DMVs to
determine whether other organelles and cellular pathways are involved in or necessary
for viral replication. In the process, we have found that similarly to other positive sense
RNA viruses, astrovirus DMVs may originate from the ER. It is also possible that astrovirus
infection disrupts unfolded protein response (UPR) homeostasis and affects ER stress,
similarly to other viruses.

Lastly, many viruses disrupt cell cycle progression to benefit replication. Our data
show that astrovirus arrests cells in G1 phase. This could be a mechanism employed to
support replication or to disrupt cell death pathways.
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4.2 Methods

4.2.1 Immunoblotting

Caco-2 cells were plated in a six-well plate (3.5 × 105). At 48 h post-plating, cells were inocu-
lated with supernatants taken from human astrovirus serotype 1 (HAstV-1) (Multiplicity of
Infection (MOI) 10) or mock-inoculated Caco-2 cells in serum-free media for 1 h. Following
virus adsorption, inoculum was replaced with fresh media. At the proper time point, 0, 4, 8,
or 24 hpi, cells were collected in 250 µL radioimmunoprecipitation assay (RIPA) lysis buffer
(Abcam) containing 1× protease inhibitor cocktail (Pierce) on ice. Samples were vortexed
briefly and kept on ice for 30 min. Samples were frozen at –80°C until used. Sample protein
concentration was determined using BCA Protein Assay Kit (Pierce). Equal concentrations
of protein were prepared under reducing conditions and separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (4%–20% tris-glycine 1.0 mm Mini Protein Gels
from Invitrogen (XP04200BOX). Gels were transferred to polyvinylidene fluoride (PVDF)
membranes using the iBlot 2 transfer stacks (ThermoFisher IB24002). Membranes were
probed for protein with respective primary antibodies and IRDye 680RD goat anti-rabbit
IgG secondary antibody using the ThermoFisher iBind device according to manufacturer’s
instructions. Primary antibodies included β-Actin (Cell Signaling 4970S) at 1:1,000, Cathep-
sin D (CTSD) (Abcam ab72915) at 1:1,000, WHAMM (Abcam ab122572) at 1:1000, Geminin
(Abcam ab195047) at 1:1,000, Cyclin-Dependent Kinase 6 (CDK6) (Abcam ab124821) at
1:1,000, Cyclin D1 (Abcam ab134175) at 1:1,000, Cyclin A2 (Abcam ab211735) at 1:1,000, Rb
(Abcam ab181616) at 1:1,000, p-Rb (Abcam ab47474) at 1:1,000.

4.2.2 Flow cytometry

Caco-2 cells were plated in a six-well plate (3.5 × 105). At 24 h post-plating, cell media
was replaced with serum free media. At 48 h post-plating, 24-hour infection or inoculation
cells were inoculated with supernatants taken from HAstV-1-infected (MOI 10) or mock-
inoculated Caco-2 cells in serum-free media for 1 h. Following virus adsorption, inoculum
was replaced with fresh media. At this point, control cells in starvation groups were treated
with serum-free media, or rapamycin control cells were treated with 500nM rapamycin. At
72 h post-plating, 1 hour infection or inoculation cells were inoculated with supernatants
from HAstV-1-infected (MOI 10) or mock-inoculated Caco-2 cells in serum free media for
1h. Following virus adsorption, inoculum was removed and cells from all groups were
collected by scraping in 2% FBS/PBS (FACS Buffer). Cells were centrifuged at 250xg for 5
minutes at 4°C. Samples were resuspended in FACS Buffer.

LAMP1 staining

Cells stained for lysosomal associated membrane protein 1 (LAMP1) were then blocked
in human FC block on ice for 10 minutes at 4°C (Biolegend 422301, 1:300 in FACS Buffer).
Cells were washed in 300 µL FACS buffer. Cells were then stained with Zombie Aque
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Fixable Viability Kit (Biolegend 423102, 1:100 in PBS) for 15 minutes at 4°C in the dark. Cells
were washed in 300 µL FACS buffer. Cells were then fixed and permeabilized using the
BD Biosciences Cytofix/Cytoperm Kit solution (554714, 250 µL per sample) for 40 minutes
at 4°C. Cells were washed in 300 µL cytoperm buffer. Finally, LAMP1-APC antibody was
diluted in cytoperm wash, and cells were incubated in LAMP1 buffer for 1 hour in the dark
at 4°C (BioLegend 328620, 1:100 in cytoperm wash). Cells were washed in 300 µL cytoperm
buffer. Finally, cells were resuspended in 300 µL FACS buffer for flow cytometry analysis
and kept in the dark at 4°C until use.

CTSB enzymatic activity kit

Cells stained for cathepsin B (CTSB) activity (BioRad ICT9151) were transferred into 490 µL
of cellular assay buffer. R110-(RR)2 solution was prepared per manufacturer’s instructions.
10 µL of the staining solution was added to each cell sample. Cells were incubated for 60
minutes at 37°C, avoiding light. Cells were resuspended every 20 minutes. Cells were
washed in FACS buffer and stained with Zombie Aque Fixable Viability Kit (Biolegend
423102, 1:100 in PBS) for 15 minutes at 4°C in the dark.

Flow cytometry analysis

Samples were analyzed using a 17-color LSR Fortessa (4 lasers) and DiVa software. Single
color stains were used to set parameters for each channel, and isotype controls were tested.
10,000 events were collected per sample. Samples were analyzed using FlowJo v10 software.
Cells were gated by singlets, followed by viable cells, followed by either LAMP1 positive or
CTSB positive cells, depending on the experiment. Cell frequency and mean fluorescence
intensity were calculated. Plots were made using GraphPad Prism v9.

4.2.3 10x single cell RNA sequencing and analysis

For information of single cell RNA sequencing and analysis, visit Appendix A.

4.2.4 Confocal microscopy

Confocal microscopy images were acquired with the help of Dr. George Campbell at the
Cell and Tissue Imaging Center which is supported by SJCRH and NCI P30 CA021765.
Caco-2 cells were plated on ibidi µ-Slide 8 Well high Polymer chamber slides at a density of
4 x 10 4 cells per well. At 48 hours post-plating, cells were inoculated with supernatants
taken from HAstV-1-infected (MOI 10) or mock-inoculated Caco-2 cells in serum free media
for 1 hour. Following virus adsportion, inoculum was replaced with fresh media. At 24
hpi, cells were fixed in 4% paraformaldehyde (PFA) in PBS at room temperature for 20
minutes. Cells were washed in PBS. Next, 0.1% Triton X in PBS was utilized to permeabilize
the cells for 15 minutes at room temperature. Cells were washed in PBS and blocked in 5%
normal goat serum (NGS) in PBS for 1 hour at room temperature. Cells were washed in
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PBS, and antibodies were diluted in 1% NGS/PBS. Primary antibodies included Calnexin
(Invitrogen PA5-34754) at 1:1000 and J2 (SciCons 10010500) at 1:100. Cells were incubated in
antibody solution overnight at 4°C. The next day, samples were washed in PBS. Cells were
incubated in secondary antibody solution for 45 minutes in the dark. Secondary antibodies
included Alexa Fluor 488 goat anti-Rabbit (Invitrogen A11008) at 1:1000, Alexa Fluor 555
goat anti-Mouse (Invitrogen A21422) at 1:1000, and Hoechst (ThermoFisher H3569), 1:2000
in 1% NGS/PBS. Cells were again washed in PBS, and samples were finally fixed in Prolong
Gold Antifade Mountant (Invitrogen). Prepared samples were imaged on a Zeiss LSM 780
Observer.Z1 using a Plan Apochromat 63X/1.4 objective lens. A 1024 x 1024 pixel array,
final pixel size of 88nm, and pixel dwell time of 1.27 µs was used. Based on the green
channel, a 1 AU pinhole size was selected. For each channel, the gain was set to 500. A
405nm diode laser was utilized for Hoechst fluorescence, and 410-495 nm light was detected
using an alkali PMT. A 488 nm multi-line Argon laser was utilized for Alexa Fluor 488
fluorescence, and 499-579 nm light was detected using a GaAsP PMT. Finally, a 561 nm
DPSS laser was utilized for Alexa Fluor 555 fluorescence, and 588-712 nm light was detected
using an alkali PMT. Acquisition was completed using Zen Black 2012 SP 5 (14.0.28.201).

4.2.5 ER stress inhibition experiments

Caco-2 cells were plated in a 96-well plate (2.5 x 104). At 48 hours post-plating, cells were
inoculated with supernatants taken from HAstV-1-infected (MOI 10) or mock-inoculated
Caco-2 cells in serum free media for 1 hour. Following virus adsportion, the inoculum was
replaced with fresh media or media containing 1 µg thapsigargin (thermofisher, T7458),
ceapin-A7 (Millipore Sigma, SML2330-5MG), or DMSO control. At 24 hpi, cells were fixed
in 100% methanol. Cells were washed in PBS and incubated in primary antibody solution
containing astrovirus capsid monoclonal antibody 8e7 (Invitrogen MA5-16293) at 1:100 or
J2 (SciCons 10010500) at 1:100 in 1% NGS/PBS for 1 hour at room temperature. Cells were
washed in PBS. Cells were incubated in secondary antibody solution containing Alexa Fluor
488 goat anti-Mouse (Invitrogen A10680) at 1:1000 and and Hoechst (ThermoFisher H3569)
at 1:2000 in 1% NGS/PBS for 45 minutes in the dark. Cells were again washed in PBS.
Samples were imaged using the EVOS FL cell imaging system and analyzed using ImageJ
2.9.0/1.53t software. Focus-forming units (FFU) were calculated as previously described
(S. Marvin, V. Meliopoulos, and S. Schultz-Cherry, 2014).

4.2.6 Statistical analysis

Data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons
test (western blots, flow cytometry, ER Stress FFU calculations, cell count and viability
calculations) to determine statistical significance using GraphPad Prism version 9. Asterisks
show statistical significance as follows: *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤
0.0001.
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4.3 Astrovirus Disrupts Lysosomal Enzyme Processing, but Not
Lysosomal Function During Replication

As previously reported, we used an RT2 Profiler array to assess differences in vesicular
trafficking, autophagy, lysosome, and cell death-related genes during astrovirus infection.
During this initial screen, we found that lysosomal enzymes CTSD and CTSB were sig-
nificantly downregulated at 24 hours post infection (hpi) in HAstV-1 compared to Mock
samples (Figure A.4a). This was supported by our single cell RNA sequencing (scRNA-seq)
dataset in HAstV-1-infected Caco-2 cells, but not bystander or mock-inoculated cells (Figure
A.5c).

To determine whether lysosomal enzymes were disrupted at the translational level,
we used immunoblotting for CTSD during infection. At 24 hpi, prepro-CTSD and pro-CTSD
were significantly downregulated in HAstV-1 compared to mock cell lysates. The mature
form of CTSD was trending toward a reduction in HAstV-1 lysates compared to mock at
24 hpi, but did not reach significance (Figure 4.1a,c). To assess whether these differences
were replication dependent, Caco-2 cells were inoculated with UV-inactive HAstV-1. In UV-
inactive lysates, there was no change in any form of CTSD compared to replicating HAstV-1
lysates, suggesting that the disruption in CTSD processing is unique to cells infected with
replicating astrovirus (Figure 4.1b,d).

Electron microscopy (EM) data was inconclusive regarding the amount of lysosomes
in infected cells (Figure A.1a). To determine whether there are fewer lysosomes in astrovirus-
infected cells compared to mock-inoculated lysates, we infected Caco-2 cells with HAstV-1
at an MOI of 10 or mock-inoculated cells. At 1 hpi and 24 hpi, cells were fixed and stained
with lysosomal marker LAMP1 for flow cytometry. Caco-2 cells treated with rapamycin
or starved for 24 hours were used as positive controls. Flow cytometry data showed an
increase in LAMP1-expressing cells at 24 hpi in astrovirus compared to mock controls.
However, there was no difference in LAMP1 MFI (mean fluorescence intensity) per cell
(Figure 4.2a).

To assess whether there is a difference in lysosomal activity during infection, we
employed a CTSB enzymatic activity kit for flow cytometry. Results demonstrated that
HAstV-1-infected cells showed no difference in lysosomal activity compared to mock-
inoculated cells at 1 hpi or 24 hpi (Figure 4.2b).

Altogether, these data suggest that although there is a disruption in enzymatic
processing of CTSD during infection, astrovirus does not affect the amount or activity of
lysosomes in infected cells. Although lysosomes are not disrupted, there is thus far no
evidence of degradation of astrovirus particles by lysosomes during infection, suggesting
that it may not be necessary for astrovirus to evade degradation by disrupting lysosomal
activity.
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Figure 4.1: Lysosomal Enzyme Dysregulation During Astrovirus Infection.
A,C. Immunoblots and quantification showing protein expression of
lysosomal enzyme CTSD during astrovirus infection. B,D. Immunoblots and
quantification showing protein expression of lysosomal enzyme CTSD
during astrovirus infection or UV-inactivated astrovirus inoculation.
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Figure 4.2: Lysosomal Quantity and Activity During Astrovirus Infection.
A. Frequency and mean fluorescence intensity of LAMP1 lysosomal marker
during astrovirus infection compared to mock inoculation or starvation
positive control. B. Lysosomal enzyme CTSB activity frequency and mean
fluorescence intensity during astrovirus infection compared to mock
inoculation or starvation and rapamycin positive controls.
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4.4 Dysregulation of Endoplasmic Reticulum Structure and Func-
tion During Astrovirus Infection

DMVs can originate from the ER during viral infection. To determine whether any ER-
associated genes were dysregulated during astrovirus infection, we utilized our scRNA-seq
dataset. We found that WHAMM (WASP homolog associated with actin, Golgi membranes
and microtubules) was significantly upregulated in HAstV-1-infected Caco-2 cells at 24 hpi,
compared to all other samples (Figure 4.3a-b). WHAMM is a nucleation promoting factor
(NPF). A study demonstrated that WHAMM participates in phagophore budding from ER
membranes during canonical autophagy (Kast and Dominguez, 2015). Therefore, we used
immunoblotting to determine whether WHAMM protein is upregulated during infection.
We infected Caco-2 cells with HAstV-1 or mock inoculated the cells for 8h and 24h. We
collected lysates and blotted for WHAMM. We found that WHAMM significantly increased
at 24 hpi in HAstV-1-infected, but not mock-inoculated Caco-2 cells (Figure 4.3c).

In observing previous electron microscopy data, we found that DMVs associated
closely with ER fragments at 24 hpi in Caco-2 cells (Figure 4.3d). This prompted us to
utilize confocal microscopy staining of calnexin to determine whether the ER associates
with astrovirus double stranded RNA (dsRNA) intermediates during infection. We found
that astrovirus-infected Caco-2 cells, but not bystanders, experienced a rearrangement of
ER membranes. Calnexin staining became dense and closely associated with astrovirus
dsRNA in infected cells, but remained diffuse in bystander cells (Figure 4.3e).

Calnexin is also a known marker of ER stress. Due to the role of ER stress in positive
sense viral infections, we decided to explore whether the UPR is changed during astrovirus
infection. Our scRNA-seq dataset provided evidence that the UPR was significantly down-
regulated in infected cells (Figure 4.4d). To gather more specific detail on which arms of
the UPR may be affected, we investigated specific ER stress-associated genes. XBP1 was
upregulated transcriptionally at 24 hpi and in HAstV-1-infected, but not bystander or mock-
inoculated cells. This suggests involvement of the IRE1 (inositol-requiring enzyme 1) arm of
the UPR during infection. ATF4 was slightly upregulated, indicating a potential activation
of PERK (PKR-like endoplasmic reticulum kinase), and ATF6 (Activating Transcription
Factor 6) was not changed (Figure 4.4a-b). When examining the 24 hour time point alone,
ATF4 was downregulated in HAstV-1-infected cells (Figure 4.4c).

To further explore this, we treated Caco-2 cells with thapsigargin, an ER stress acti-
vator, or ceapin A7, an ATF6 inhibitor, to determine whether either would affect astrovirus
replication. Ceapin had no effect on capsid or dsRNA expression during HAstV-1 infection.
However, thapsigargin significantly reduced both capsid and dsRNA staining at 24 hpi in
HAstV-1- infected cells. This suggests that broad activation of ER stress pathways nega-
tively regulates astrovirus replication (Figure 4.5a-b). Importantly, there was no difference
in cell viability with thapsigargin treatment compared to DMSO control. Interestingly, the
viability of ceapin-treated HAstV-1-infected cells was lower than viability of ceapin-treated
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Figure 4.3: Endoplasmic Reticulum Dysregulation During Astrovirus
Infection. A-B. Violin plot and dot plot showing expression of WHAMM
over the course of astrovirus infection or mock inoculation in Caco-2 cells
using single cell RNA sequencing. C. Immunoblot and quantification
showing protein expression of WHAMM throughout astrovirus infection or
mock inoculation in Caco-2 cells. D. Representative electron microscopy
image showing endoplasmic reticulum (ER) fragment-associated double
membrane vesicle. E. Representative confocal microscopy image showing
calnexin ER marker and J2 astrovirus double stranded RNA intermediate
marker at 24 hours post-infection in Caco-2 cells.



Chapter 4. Disruption of Host Cellular Processes by Astrovirus 51

Figure 4.4: Endoplasmic Reticulum Stress Single Cell RNA Sequencing
Data During Astrovirus Infection. A. Dot plot showing expression of
endoplasmic reticulum (ER) stress markers throughout astrovirus infection
or mock inoculation using single cell RNA sequencing (scRNA-seq). B. Dot
plot showing expression of ER stress markers in astrovirus-infected,
bystander, and mock-inoculated cells using scRNA-seq. C. Dot plot showing
expression of ER stress markers at 24 hpi in astrovirus-infected, bystander,
and mock-inoculated cells using scRNA-seq. D. Upregulated and
downregulated pathways in an astrovirus-infected scRNA-seq cluster
compared to uninfected clusters using Hallmark pathway analysis.
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Figure 4.5: Endoplasmic Reticulum Stress Manipulation During
Astrovirus Infection. A. Quantification of astrovirus capsid-expressing
Caco-2 cells at 24 hours post-infection (hpi) after treatment with
thapsigargin, ceapin, or DMSO control. B. Quantification of astrovirus
double stranded RNA intermediate (J2) expressing Caco-2 cells at 24 hours
post-infection (hpi) after treatment with thapsigargin, ceapin, or DMSO
control. C. Cell count in DMSO, thapsigargin, or ceapin-treated Caco-2 cells
at 24 hours post-treatment. D. Cell viability in DMSO, thapsigargin, or
ceapin-treated Caco-2 cells at 24 hours post-treatment.
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mock-inoculated cells. However, there was no difference in ceapin-treated cell viability
compared to DMSO controls (Figure 4.5c-d).

4.5 Astrovirus Arrests Cells in G1 Phase of the Cell Cycle

Viral infection can lead to disruption of the cell cycle. To determine whether astrovirus is
capable of regulating the cell cycle during infection, we utilized our scRNA-seq dataset.
HAstV-1-infected cells, but not bystander or mock-inoculated cells, were primarily in Gap
1 (G1) phase, according to the transcriptional data (Figure 4.6a-b). Interestingly, using
differential expression analysis, we found that the Gap 2/Mitosis (G2M) checkpoint is
significantly downregulated in infected cells compared to bystander cells, indicating a
dysregulation in the cell cycle (Figure 4.6c).

We further explored the scRNA-seq data for more specific analysis. Cyclins D1, D2,
E1, E2, B1, B2, as well as CDK4, 2, and 1 genes were downregulated in HAstV-1-infected
cells compared to mock-inoculated cells at 24 hpi (Figure 4.7a). Cyclins D1, D2, E1, B1,
B2, as well as CDK4, 6, 2, and 1 genes were downregulated in HAstV-1-infected cells
compared to bystander and mock-inoculated cells, as well (Figure 4.7b). This suggests
reduced cell cycle progression from G1 and G2/M phases. Cell cycle-associated genes RB1,
E2F1, E2F2, E2F3, BUB1, BUB1B, BUB3, ABL1, ANAPC1, ANAPC10, ANAPC11, ANAPC2,
ANAPC4, ANAPC5, ANAPC7, ATM, and ATR were all downregulated in HAstV-1-infected
compared to mock-inoculated cells at 24hpi, as well as in HAstV-1-infected compared to
bystander and mock-inoculated cells (Figure 4.7c-d). RB1 hyperphosphorylation is required
for progression from G1 to S (synthesis) phase. E2F genes are necessary for deoxyribonucleic
acid (DNA) repair and progression through S phase. BUB and ANAPC genes are associated
with mitosis progression. Finally, ATM and ATR are involved in arresting the cell cycle
upon DNA damage. Therefore, the overall downregulation of these genes in multiple
phases of the cell cycle suggests there may be additional influence of astrovirus infection on
the cell cycle transcriptional program.

We also explored our murine astrovirus (MuAstV) scRNA-seq dataset. The most
highly infected cell type was goblet cells (Figure 4.8b-c). We found that MuAstV-infected
cells were again primarily in G1 phase compared to bystander and mock cells (Figure 4.8d).
This phenotype is carried through in goblet cells (Figure 4.9).

We then investigated cyclin, CDK, and cell cycle-associated genes within our MuAstV
scRNA-seq dataset. All cyclin and CDK genes were decreased in infected cells compared
to bystander and mock-inoculated cells, except for CCND2 and CCND3, encoding cyclins
D2 and D3. These were upregulated in infected cells (Figure 4.10a). Interestingly, Rb1,
Abl1, and Anapc2, Anapc4, and Anapc7 were all upregulated in MuAstV-infected cells,
while other cell cycle-associate genes were downregulated (Figure 4.10b). The combination
of upregulation of Cyclin D2 and D3, as well as Rb1 would suggest an increase in cells
progressing into the S phase in MuAstV infection. However, the decrease in CCND1 and
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Figure 4.6: Human Single Cell RNA Sequencing Cell Cycle Data. A. Ratio
of cells in G1, G2M, or S phase in each sample group from the human single
cell RNA sequencing (scRNA-seq) dataset. B. Ratio of cells in G1, G2M, or S
phase in mock, bystander, or HAstV-1-infected cells at 24 hpi in the human
scRNA-seq dataset. C. Differential expression analysis of Hallmark
pathways in HAstV-1-infected compared to bystander cells in the human
scRNA-seq dataset.
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Figure 4.7: Human Single Cell RNA Sequencing Cell Cycle Gene
Expression. A. Dot plot showing cyclin and CDK expression across samples
in the human single cell RNA sequencing (scRNA-seq) dataset. B. Dot plot
showing cyclin and CDK expression in mock, infected, and bystander
groups at 24 hours post infection (hpi) in the human scRNA-seq dataset. C.
Dot plot showing expression of cell cycle-associated genes across samples in
the human scRNA-seq dataset. D. Dot plot showing expression of cell
cycle-associated genes in mock, infected, and bystander groups at 24 hpi in
the human scRNA-seq dataset.
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Figure 4.8: Mouse Single Cell RNA Sequencing Cell Cycle Data. A. tSNE
plot showing cell types in the mouse scRNA-seq dataset. B. Astrovirus gene
expression in different cell types from the mouse single cell RNA sequencing
(scRNA-seq) dataset. C. Ratio of infected, bystander, and mock cells in each
cell type. D. Ratio of G1, G2M, and S phase cells in mock, bystander, and
infected groups.
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Figure 4.9: Mouse Single Cell RNA Sequencing Cell Cycle Data by Cell
Type. A. tSNE plot showing cell types in the mouse scRNA-seq dataset and
their respective cells in G1, G2M, or S phase. B. Ratio of G1, G2M, and S
phase cells in mock, bystander, and infected groups by cell type. Note that
viral transcripts were detected at low levels in tuft cells, resulting in no
recorded cell cycle data for this group.
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Figure 4.10: Mouse Single Cell RNA Sequencing Cell Cycle Gene
Expression. A. Dot plot showing cyclin and CDK expression in mock,
infected, and bystander groups in the mouse single cell RNA sequencing
(scRNA-seq) dataset. B. Dot plot showing expression of cell cycle-associated
genes in mock, infected, and bystander groups in the mouse scRNA-seq
dataset.
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CDK4/6 expression in infected cells suggests a lack of necessary G1 activity, supporting G1
arrest. These data suggest that astrovirus infection disrupts the cell cycle transcriptionally
in both human and mouse infection.

To elucidate how these transcriptional changes translate to changes in protein, we
employed immunoblotting for multiple cell cycle markers in HAstV-1-infected and mock-
inoculated Caco-2 cell lysates at 0, 8, and 24 hpi. Geminin, a marker for S and G2/M phases,
was significantly downregulated at 24 hpi in HAstV-1-infected lysates compared to mock-
inoculated 24-hour lysates. Geminin levels were also significantly decreased in HAstV-1 24
hpi lysates compared to HAstV-1 0 hpi lysates, indicating a decrease in S, G2, and M phase
cells throughout infection (Figure 4.11a). Geminin is typically degraded during metaphase
and is not present in G1 phase. Similarly, cyclin A2 was significantly reduced in HAstV-1 24
hpi compared to mock-inoculated 24 hpi samples. As cyclin A2 is present during S phase,
this again supports a decrease in S phase-associated cells in astrovirus-infected samples late
in infection. Not only this, but degradation of cyclin A is necessary for G1 arrest (Figure
4.11d).

Finally, CDK6 and cyclin D1 were utilized as markers of G1 phase. CDK6 significantly
increased at 24 hpi in astrovirus-infected samples compared to mock-inoculated 24-hour
samples. Mock-inoculated samples showed a decrease in CDK6 over time, while HAstV-
1-infected samples showed a significant increase in CDK6 over time (Figure 4.11b). This
accumulation of CDK6 in HAstV-1 24 hpi samples indicates that cells are in G1 phase.
However, without activation of CDK6 via binding to cyclin D, the cell cannot progress from
G1 to S phase. Interestingly, cyclin D1 levels are significantly decreased in HAstV-1 24 hpi
samples compared to HAstV-1 0 hpi samples and mock-inoculated 24-hour samples (Figure
4.11c). During genotoxic stress, cyclin D1 degradation is indicative of cell cycle arrest in
G1 phase. Therefore, it is likely that this significant reduction in cyclin D1 is related to G1
arrest (Figure 4.12).

4.6 Discussion

Our work has shown that astrovirus manipulates parts of the autophagy machinery to
form DMV replication organelles during infection. Here we show that although some
autophagy machinery is involved in astrovirus replication, lysosomes are not dysregulated
in the process. While there is a significant decrease in prepro-CTSD and pro-CTSD at 24 hpi,
mature CTSD is not significantly decreased. In addition, the number of lysosomes and their
enzymatic activity does not change during infection, as is evidenced by LAMP1 staining
and CTSB activity measurement using flow cytometry. Therefore, astrovirus infection is not
affected by lysosomal activity. This could be due to an active suppression of degradation
pathways by astrovirus components during infection.

Upstream of DMV replication, we have determined that the ER is the site of origin
for astrovirus-induced DMVs. With upregulation of NPF WHAMM transcriptionally
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Figure 4.11: Cell Cycle Protein Expression During HAstV-1 Infection in
Caco-2 Cells. A. Representative immunoblot and quantification of geminin
expression during HAstV-1 infection or mock inoculation of Caco-2 cells. B.
Representative immunoblot and quantification of CDK6 expression during
HAstV-1 infection or mock inoculation of Caco-2 cells. C. Representative
immunoblot and quantification of Cyclin D1 expression during HAstV-1
infection or mock inoculation of Caco-2 cells. D. Representative immunoblot
and quantification of Cyclin A2 expression during HAstV-1 infection or
mock inoculation of Caco-2 cells.
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Figure 4.12: Model of Cell Cycle Arrest During Astrovirus Infection. Our
data show a decrease in S and G2M phase-associated proteins geminin and
Cyclin A2 at 24 hours post-infection (hpi) in HAstV-1 infected cells
compared to mock-inoculated cells. There is also an increase in
G1-associated CDK6, as well as a decrease in G1-associated Cyclin D1,
indicating potential G1 phase arrest.



Chapter 4. Disruption of Host Cellular Processes by Astrovirus 62

and translationally as well as EM evidence of ER fragments associated with DMVs, it
is likely that DMVs bud from ER. This has been observed for coronaviruses, hepatitis c
virus (HCV), and noroviruses. We also used confocal microscopy and stained for calnexin
during infection. We found that ER membranes became condensed in infected cells, but not
bystander cells.

Knowing that calnexin also serves as a marker of ER stress, we explored the dysreg-
ulation of ER stress-associated pathways in our scRNA-seq dataset. This data showed a
significant downregulation in the UPR pathway in infected samples late in infection. When
we explored expression of specific ER stress-associated genes, we found an upregulation
of XBP1 and ATF4 in HAstV-1-infected cells at 24 hpi, as well as in infected compared to
bystander cells. As XBP1 is downstream of the IRE1 pathway and ATF4 is downstream of
the PERK pathway, we next employed ATF6 pathway inhibitor ceapin A7 and broad ER
stress activator thapsigargin to determine whether ER stress changes astrovirus infection.
Thapsigargin treatment reduced astrovirus infection significantly, while ceapin had no
effect. This demonstrates that the ATF6 pathway is not important to astrovirus infection,
but IRE1 and PERK pathways could modulate infection.

These findings align with evidence of IRE1 manipulation during coronavirus infec-
tion. The IRE1 pathway is activated, but XBP1 splicing is actively repressed, leading to
activation of Beclin-dependent, ATG5-independent autophagy during Infectious bronchitis
virus (IBV) replication. In addition, three separate coronaviruses showed reduced infection
when cells were treated with thapsigargin during infection, leading to a downstream reduc-
tion in autophagy. It is possible that similarly to coronaviruses, astrovirus manipulates the
IRE1 arm of the UPR to activate Beclin-dependent, LC3-independent autophagy for DMV
formation during infection. Additionally, the IRE1β paralogue of IRE1α is present only in
intestinal epithelial cells. In its absence, mice experience accelerated onset of inflammatory
bowel disease. Therefore, the intestinal-specific IRE1β could be responsible for activation of
autophagy machinery during astrovirus infection for formation of replication organelles.

Previous work explored the role of eukaryotic translation initiation factor 2A (eIF2α)
signaling in astrovirus infection and found that it was upregulated in a PERK-independent
manner. This could be the reason for increased ATF4 transcripts. However, eIF2α has further
implications for the status of the cell during infection. Activation of eIF2α can lead to cell
cycle arrest in G1 phase through decreased translation of cyclin D1.

To determine the cycling status of the cell during astrovirus infection, we explored
which phase of the cell cycle infected cells most occupied. Our scRNA-seq data suggested
that infected human and mouse cells were most often in G1 phase. We next employed
immunoblotting to explore whether this transcriptional data translated to differences in
cell cycle-associated proteins. A significant reduction in geminin and cyclin A2 in HAstV-1-
infected lysates compared to mock-inoculated lysates suggested that cells were in G1 phase
during infection. In support of this observation, CDK6 was significantly upregulated in
HAstV-1-infected samples compared to mock. Finally, a significant reduction in cyclin D1
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suggested that although the cells had readily available CDK6 for progression of the cell
cycle, they were likely arrested in G1 phase with an absence of available cyclin D1 to bind
the CDK6.

Severe acute respiratory syndrome coronavirus (SARS-CoV), Epstein-Barr virus
(EBV), human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV1), and influenza
A virus (IAV) each induce cell cycle arrest in G1 phase (J. P. Castillo and Kowalik, 2004;
Cayrol and Flemington, 1996; C.-J. Chen, Sugiyama, et al., 2004; C.-J. Chen and Makino,
2004; Sinclair et al., 2000; Yuan, Shan, et al., 2005; Yuan, J. Wu, et al., 2006). This common
tactic during viral infection may provide favorable conditions for replication since the host
cell is producing more mRNA and protein during G1. Therefore, additional nucleotides
and machinery involved in transcription and translation could be repurposed for viral
replication. Arrest in G1 may also allow astrovirus time to assemble while preventing cell
death responses. As we have shown using many different methods, astrovirus infection
does not induce cell death. This observed cell cycle arrest in G1 phase may be responsible
for the prevention of cell death to prolong viral replication in the host cell.

Therefore, our data show that astrovirus infection induces cell cycle arrest in G1
phase, reducing the risk of cell death. In this state of cellular survival, ER membranes are
rearranged and the IRE1 arm of the UPR is manipulated to enhance replication, likely via
activation of the PI3KC3-dependent, ATG5-independent autophagy machinery required
to form replication DMVs. Finally, the formation of these DMVs is not accompanied by
changes in lysosomal activity, suggesting that canonical autophagy-associated degradation
pathways do not affect astrovirus replication.
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Chapter 5

Conclusions and Future Directions

Astrovirus infection causes gastrointestinal disease but can become more serious in im-
munocompromised and elderly populations. For this reason, it is imperative that we gain
a better understanding of how astrovirus infection manipulates host cellular responses to
support its replication cycle. Here, I will discuss the discovery of the replication organelle
(RO) for human astrovirus, the ways in which human astrovirus disrupts endoplasmic
reticulum (ER) stress and cell cycle machinery during infection, the limitations of these
studies, and future directions that may clarify the astrovirus life cycle further.

5.1 Discovery of the Replication Organelle for Human Astrovirus

In 1980, Gray and colleagues published an observation of double membrane organelles in
astrovirus-infected lamb intestines (E. Gray, Angus, and Snodgrass, 1980). Since then, little
has been done to discern the purpose of these structures. We hypothesized that double
membrane vesicles (DMVs) form during astrovirus infection as replication organelles,
similarly to the replication mechanism of other positive sense RNA viruses. Our work has
added significant depth to the understanding of astrovirus replication. We have shown
that human astrovirus serotype 1 (HAstV-1) infection leads to formation of DMVs in a
replication-dependent manner. These DMVs are associated directly with HAstV-1 virions
(Bub et al., 2023).

We hypothesize that the viral genome replicates inside the DMVS, and viral assem-
bly occurs outside of the DMVs. RNA dependent RNA polymerases (RdRp) are often
membrane-associated during viral infection (Moradpour et al., 2004; Venkataraman, B. V.
Prasad, and Selvarajan, 2018). In the future, research should determine whether the astro-
virus RdRp is localized inside the DMV and whether disruption of membrane association
might reduce viral replication. Additionally, the viroporin encoded by the astrovirus
genome, XP, may play a role in passage of viral genetic material through the DMV, enabling
protection of the viral genetic material from immune sensors (Lulla and Firth, 2020; Wolff
et al., 2020). Spatially, enclosing viral genetic material in a DMV would also be beneficial
to viral replication so that genomes and replication machinery are not physically spread
out in the cytoplasm. While double membrane vesicles were also observed in astrovirus
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VA-1-infected Caco-2 cells by electron microscopy (EM), they did not always associate di-
rectly with clusters of VA-1 virions. This could suggest that VA-1-induced DMV formation
is related to replication, but viral assembly can occur separately.

We next explored the role of PtdIns3K information of DMVs during HAstV-1 in-
fection, as this complex has been previously implicated as a necessary feature of positive
sense, single- stranded viral replication for severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and hepatitis c virus (HCV) (Twu et al., 2021). We hypothesized that
PtdIns3K is necessary to DMV formation during astrovirus replication. Inhibition of Pt-
dIns3K with specific inhibitor PIK-III significantly reduced formation of DMVs and viral
particles associated with them. Additionally, PIK-III treatment reduced capsid and double
stranded RNA (dsRNA) staining during infection in a dose-dependent manner, whether
cells were treated prior to or after infection with HAstV-1. The same was true for astrovirus
VA-1, which is more closely related to astrovirus strains of other species than to HAstV-1.
PIK-III treatment also resulted in significantly fewer genome copies of HAstV-1 in cell
supernatants and lysates in a dose-dependent manner. Supernatants from PIK-III-treated,
HAstV-1-infected cells also contained less infectious virus than DMSO-treated controls,
suggesting that targeting phosphatidylinositol 3-kinase (PI3KC3) reduces not only initial
replication, but also secondary infection (Bub et al., 2023).

The PI3KC3 complex is a key component of canonical autophagy machinery, aid-
ing in the production of autophagosomes through formation of phosphatidylinositol 3-
phosphate. Although autophagy can be an antiviral pathway, previous work has shown
that autophagy machinery can be manipulated for viral replication. Due to the key role
of PI3KC3 in canonical autophagy pathways within the host cell, we examined whether
other autophagy machinery is involved in astrovirus replication. We showed that LC3
(microtubule-associated protein light chain 3) conjugation machinery is dispensable for
astrovirus replication using doxycycline-inducible cleavage of LC3 in Huh-7.5 cells, as well
as siRNA knockdown of ATG5, a necessary LC3 conjugation component (Bub et al., 2023).
This suggests that astrovirus manipulates some, but not all the autophagy machinery to
form its DMV replication organelles. This again demonstrates a similar thread between
positive sense, single-stranded RNA viruses, as the same was true for SARS-CoV-2 and
HCV.

It is possible that human astrovirus induces expression of additional phosphatidyli-
nositol phosphate kinases for DMV formation during infection. Phosphatidylinositol
4-kinase (PI4Kα) can also affect viral replication and is localized to the endoplasmic retic-
ulum (A. Balla and T. Balla, 2006; Mohamud et al., 2020; Mosser, Caliguiri, and Tamm,
1972; K. Wong, Meyers, and Cantley, 1997). Specifically, the PI4KA-G1 inhibitor has been
implicated as a specific phosphatidylinositol 4-phosphate (PI4P) production inhibitor that
disrupts replication of viruses (Bojjireddy et al., 2014; Twu et al., 2021). It is possible that
in addition to targeting PI3KC3, targeting PI4K may also disrupt astrovirus replication.
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However, it should be noted that targeting PI4K is not a safe therapeutic option. In gener-
ating a tamoxifen-inducible conditional knockout mouse model targeting the Pi4ka gene,
researchers observed that ablation of Pi4ka causes lethality. Histopathology showed necro-
sis in stomach and intestinal cells. When dosed with a PI4K inhibitor, animals given the
smallest dose survived but faced gastrointestinal abnormalities (Bojjireddy et al., 2014).
Therefore, determining whether PI4Kα plays a role in DMV formation during astrovirus
infection would help to further characterize the cellular machinery involved in the viral life
cycle, but would not provide a new therapeutic target.

We have also shown that murine astrovirus-infected cells upregulate PI3K machinery
and not LC3 machinery transcriptionally, suggesting potential for a species-spanning
mechanism for astrovirus replication (Bub et al., 2023). Autophagy-deficient mouse models
exist to help further clarify this work. To determine whether replication in mice is linked to
a PI3KC3-dependent pathway, it would be beneficial to disrupt Beclin1 expression in mice.
Beclin1 knockout mice have an embryonic lethal phenotype, while heterozygotes are viable
with increased tumor formation. It is also necessary to consider that heterozygotes have
heightened immune response to some viral infections (Kuma, Komatsu, and Mizushima,
2017). Therefore, an ideal model would be crossing Beclin1 floxed mice with Villin Cre mice
to produce intestine-specific knockout of Beclin1. This would allow for specific analysis of
the role of Beclin1 in gastrointestinal infection with astrovirus in vivo. Other autophagy-
associated models for mice, including Atg5 floxed villin-cre mice, could also be utilized
to determine whether there is any variation in host machinery manipulation by murine
astrovirus (MuAstV). Notably, murine astrovirus is not an ideal model to relate to human
astrovirus infections, as mice lack some phenotypic responses to astrovirus that are present
in humans (Compton, Booth, and Macy, 2017; Cortez, Sharp, et al., 2019; Kjeldsberg and
Hem, 1985; Morita et al., 2021). It would be more relevant to study the effects of PI3KC3
inhibition in a turkey model, as turkeys have similar symptoms during infection with
TAstV compared to humans (Koci and Schultz-Cherry, 2002; Pantin-Jackwood et al., 2011;
Reynolds, Saif, and Theil, 1987).

Although targeting the PI3KC3 complex shows promising preclinical results in
astrovirus, SARS-CoV-2, and HCV in vitro infection models, it will be necessary to evaluate
whether this specific inhibitor can be used as an antiviral therapeutic clinically. While
PIK-III specifically binds a hydrophobic pocket unique to PI3KC3, other common inhibitors
of the PI3KC3 complex broadly inhibit PI3KC1 and PI3KC2, as well. For instance, 3-
MA, wortmannin, and LY294002 are reversible PI3KC3 inhibitors that also target PI3KC1.
Thus far, all inhibitors of the PI3KC3 complex, whether specific or broadly reactive with
PI3KC1 and PI3KC2, are preclinical and need sufficient testing in vivo to determine whether
they could be effective in treating viral infections (G. Lu et al., 2022). Another beneficial
therapeutic target to explore in the future is the astrovirus protease. With other viral
infections such as HCV and HIV, inhibition of their viral protease activity is successful in
attenuating viral replication and maturation (Hayes et al., 2022; Lv, Chu, and Yong Wang,
2015). These inhibitors come with concerns regarding toxicity, but an astrovirus protease
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inhibitor may be a feasible alternate target to weaken viral infection.

Further studies should also explore the kinetics of astrovirus infection. We have
shown that treatment of cells with PIK-III prior to infection or at 1 hpi is effective for
reducing DMV formation and viral replication. However, it will be beneficial to determine
whether PI3KC3 inhibition late in infection can prevent spread of the virus to neighboring
cells. In our electron microscopy experiments, DMVs were observed no earlier than 24 hpi.
It is certainly possible that DMVs form at earlier time points during infection and may be
observed with a higher number of electron microscopy images taken. Regardless, viral
replication should be measured throughout infection to determine when genome copies
and infectious virus begin to be produced within the cell and released outside of the cell.
With this information, a time course of PIK-III treatment could be utilized to determine
whether there is a therapeutic window for treatment of cells infected with astrovirus.

While we have described the replication phase of the astrovirus life cycle, cellular
exit of astrovirus remains understudied. Knowing that astrovirus utilizes DMVs to replicate
may help to clarify the mechanism of cellular exit of this virus. Some viruses utilize their
replication organelles to eventually exit the cell. In the future, studies should focus on
determining whether astrovirus escapes the cell in an organelle and what the components
of these organelles might be. Differential ultracentrifugation would help to determine what
cellular structures astrovirus associates with. Tandem mass spectrometry would further
clarify the components of these structures and potentially provide more therapeutic targets
to prevent spread of astrovirus from one cell to another.

Additionally, it will be necessary to determine which parts of the astrovirus genome
are important to DMV formation during infection to better understand the virus itself.
While we did not observe DMV formation in 293T cells transfected with ORF1ab or ORF1a,
this does not necessarily rule out their involvement in replication organelle biogenesis.
Transfecting 293T cells with a plasmid to produce astrovirus nonstructural proteins (nsps)
may not be the most efficient way to determine their involvement in the replication process.
Future studies should employ infectious astrovirus mutants to clarify the role of each
astrovirus protein in the viral life cycle. Selection of mutants should take into consideration
viral titer to ensure that they are efficiently replicating. Newer Cryo-EM technology will
also allow researchers to take more detailed images of astrovirus replication organelles.
Studies of SARS-CoV-2 replication organelles have revealed a viral porin on the surface
of DMV replication organelles, which serves as a passageway for viral RNA (Wolff et al.,
2020). Using Cryo-EM, we will be able to elucidate whether astrovirus-induced DMVs also
contain a surface porin. This may be the porin encoded by astrovirus alternative-frame
ORFX (Lulla and Firth, 2020).
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5.2 Astrovirus Manipulation of Host Cellular Processes During
Infection

Since the autophagy pathway leads to degradation of cargo in the lysosome, we explored
lysosomal dysregulation during astrovirus infection. During infection, picornaviruses,
Chikungunya virus, Sindbis virus, human immunodeficiency virus (HIV)-associated protein
Vif, and others can be degraded by the lysosome (Judith et al., 2013; Orvedahl, MacPherson,
et al., 2010; Orvedahl, Sumpter Jr, et al., 2011; Staring et al., 2017; Valera et al., 2015).
Other viruses such as SARS-CoV-2 and human parainfluenzavirus 3 (HPIV3) actively
interfere with lysosomal function to prevent their own degradation (Ding et al., 2014; Hayn
et al., 2021; Miao et al., 2021; Qu et al., 2021; Y. Zhang et al., 2021). We showed that
while cathepsins are dysregulated transcriptionally and translationally during astrovirus
infection, their activity, and the number of lysosomes per cell during astrovirus replication
is not significantly different. These data suggest that the lysosome does not interfere with
astrovirus replication as it does with other viruses. While this may be supported by our
current data, it will be necessary to determine whether infectious astrovirus mutants are
more susceptible to lysosomal degradation. This will clarify whether specific astrovirus
proteins are actively preventing viral degradation during infection.

The site of biogenesis of replication organelles is another potential target to prevent
viral infection. Therefore, we aimed to determine the site of origin of astrovirus-induced
DMVs. Coronaviruses, HCV, arteriviruses, and noroviruses induce RO formation at the ER,
which is also a common site for autophagosome biogenesis (Cortese et al., 2020; Cottam et
al., 2011; Doerflinger et al., 2017; Knoops, Kikkert, et al., 2008; Knoops, Bárcena, et al., 2012;
Mihelc, Baker, and Lanman, 2021; Prentice et al., 2004; Romero-Brey et al., 2012). Knowing
that the astrovirus genome contains ER-localizing motifs, we turned our attention to the ER
as a potential source of DMV membranes. Single cell RNA sequencing (scRNA-seq) data
also suggested that astrovirus upregulates ER-associated WHAMM, a nucleation promoting
factor that can aid in phagophore formation from the ER (Kast and Dominguez, 2015). We
saw that this transcriptional difference translated to a significant increase in WHAMM at the
protein level during astrovirus infection. We have attempted to produce WHAMM knockout
(KO) Caco-2 cells, however they are not viable. A siRNA knockdown of WHAMM may
clarify whether it is necessary for DMV formation and astrovirus replication. We further
explored our electron microscopy data, which showed ER fragments associated with DMVs.
Finally, confocal microscopy demonstrated that calnexin-associated ER fragments were
condensed and reorganized in astrovirus-infected, but not bystander cells. Notably, calnexin
also colocalized with astrovirus dsRNA, supporting a role for these membranous structures
in astrovirus replication.

Altogether, our data suggest an ER origin for DMV replication organelles. If this
is the case, disrupting the ER would help to clarify whether DMVs are able to originate
from other sites such as the Golgi during infection. There are available ER protein transport
inhibitors that may help to clarify this question (Kalies and Römisch, 2015). Additionally,
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electron microscopy using immunogold labeling of ER or Golgi-associated markers such as
calnexin or TGN38 respectively would help to determine whether DMVs associate with
both ER and Golgi fragments.

After observing the restructuring of calnexin-associated ER fragments during infec-
tion, we hypothesized that ER stress could play a role in astrovirus infection. Our scRNA-seq
data showed an upregulation in XBP1 and ATF4 transcripts later in astrovirus infection,
in infected but not bystander cells. The scRNA-seq dataset also suggested that genes as-
sociated with the Hallmark unfolded protein response (UPR) pathway were significantly
downregulated during astrovirus infection. We saw that treatment of astrovirus-infected
cells with thapsigargin significantly decreased both capsid and dsRNA staining at 24 hpi,
but ceapin treatment had no effect. Thapsigargin broadly activates ER stress, while ceapin
inhibits the ATF6 (Activating Transcription Factor 6) arm of the pathway. In interpreting
these data, we hypothesize that the IRE1 (inositol-requiring enzyme 1) arm of the UPR
may be upregulated in response to astrovirus infection, leading to an increase in XBP1
transcripts. XBP1 activation can lead to upregulation of autophagy-associated genes. On the
other hand, XBP1 transcripts are also upregulated during coronavirus infection. However,
XBP1 splicing is decreased, which leaves it inactive. This process results in activation of
PI3K-dependent, ATG5-independent autophagy during infectious bronchitis virus (IBV)
replication (Fung and D. X. Liu, 2019). Therefore, it will be important to specifically target
the IRE1 pathway to clarify whether XBP1 is spliced during astrovirus infection and to
determine whether this affects PI3KC3 activity and DMV formation.

Previous work has also shown that astrovirus upregulates eIF2α (eukaryotic trans-
lation initiation factor 2A) phosphorylation in a PERK (PKR-like endoplasmic reticulum
kinase)-independent manner (Tomoyasu Isobe et al., 2019). Our work supports an upreg-
ulation in eIF2α phosphorylation, as we observe an increase in ATF4 transcripts during
infection. Additionally, eIF2α plays a role in Gap 1 (G1) phase cell cycle arrest. Specifically,
eIF2α phosphorylation leads to decreased translation of cyclin D1, causing cell cycle arrest
in G1 phase. Our scRNA-seq datasets for both human and mouse astrovirus infection
show an increased proportion of cells in G1 phase. Using immunoblotting, we showed that
geminin and cyclin A2 were downregulated during infection, suggesting that cells are in G1
phase. Further, G1-associated Cyclin-Dependent Kinase 6 (CDK6) was upregulated. Finally,
cyclin D1 was translationally decreased, supporting arrest in G1 phase.

SARS-CoV, Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), herpes
simplex virus type 1 (HSV-1), and influenza A virus (IAV) are all capable of inducing G1
phase cell cycle arrest (J. P. Castillo and Kowalik, 2004; Cayrol and Flemington, 1996; C.-J.
Chen, Sugiyama, et al., 2004; C.-J. Chen and Makino, 2004; Sinclair et al., 2000; Yuan, Shan,
et al., 2005; Yuan, J. Wu, et al., 2006). Since G1 is a growth phase of the cell cycle, additional
nucleotides and amino acids are present and could be repurposed for viral replication.
Future studies should explore whether infected cells have enhanced nucleotide and amino
acid metabolism compared to bystander cells or mock-inoculated cells.
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EBV manipulates multiple stages of the cell cycle through expression of two proteins,
Zta and LMP-1. Zta induces G1 arrest, while LMP-1 induces Gap 2/Mitosis phase (G2/M)
arrest (K.-S. Yeo, Mohidin, and C.-C. Ng, 2012). Viruses can differentially regulate proteins
and pathways for unique purposes throughout their life cycles. While our studies suggest
cell cycle arrest in G1 phase for astrovirus, it will be necessary to explore whether this arrest
lasts past the 24 hpi time point or whether G1 arrest is only necessary during active viral
replication.

It would also be impactful to determine whether disruption of ER stress pathways
affects cell cycle processes during astrovirus infection, as the UPR is linked to cell cycle
regulation. Alternatively, synchronization of cells in specific stages of the cell cycle may
affect the organization of ER membranes and their use in DMV formation during astrovirus
infection. Additionally, the relationships between these host cellular processes and cell
survival should be explored. It is widely known that astrovirus infection does not cause
cell death (Cortez, Sharp, et al., 2019; Hargest, Davis, et al., 2021; Hargest, Bub, et al., 2022;
Koci, L. A. Moser, et al., 2003; V. A. Meliopoulos et al., 2016; L. A. Moser, Carter, and S.
Schultz-Cherry, 2007). It is certainly possible that manipulation of UPR pathways and cell
cycle arrest are responsible for this cell survival during infection. Promoting cell survival
would enable astrovirus to continue to replicate and exit the cell to continue its life cycle.

To confirm the findings of these studies related to autophagy, ER stress, and cell
cycle regulation, additional tools and model systems should be developed. An enteroid
model would be ideal to validate our results from Caco-2, Huh-7.5, and 293T cells. The cell
lines utilized in these studies are helpful tools to learn basic information about astrovirus
replication. However, using these methods and inhibitors in a model more closely reflective
of the human intestine would allow us to characterize response to astrovirus infection in
differing cell types. It would also allow us to begin to characterize the communication
that occurs between infected and bystander cells. We have shown that the transcriptional
response of bystander cells closely mimics that of mock-inoculated cells, rather than infected
cells, for autophagy, ER stress, and cell cycle-associated genes. During the HCMV viral
life cycle, infected cells have a unique proteomic profile when compared with immediate
bystander cells. The bystander cells have suppressed cellular responses, which is attributed
to HCMV creating a more susceptible immediate environment for replication (T. M. White
and Goodrum, 2023). Astrovirus infection in both human Caco-2 cells and murine epithelial
cells may behave similarly, given the scRNA-seq profiles we observe here. It will be
necessary in the future to characterize the response of both bystander epithelial cells and
circulating immune cells to determine whether their proteomic profiles indicate antiviral
activity.

Additionally, the development of infectious astrovirus mutants would clarify the
mechanism by which astrovirus regulates and exploits the host cellular machinery. Viral
nonstructural proteins (nsps), proteases, and capsid proteins can induce unique cellular
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responses. Determining the role of each of these proteins beyond viral replication would
greatly develop our understanding of astrovirus and its life cycle.

Altogether, these studies demonstrate that astrovirus uses a replication mechanism
similar to other positive sense, single stranded RNA viruses. It also manipulates cellular
processes such as ER stress and cell cycle pathways to create a pro-replication environment.
Unveiling the mechanisms by which astrovirus hijacks the infected host cell and suppresses
bystander cell responses will undoubtedly reveal therapeutic targets, which could reduce
the disease burden of astrovirus globally.
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Abstract

Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection
causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised
patients. Positive-strand RNA viruses typically utilize host intracellular membranes to
form replication organelles, which are potential antiviral targets. Many of these replication
organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection
leads to an increase in DMV formation through a replication-dependent mechanism that
requires some early components of the autophagy machinery. Results indicate that the
upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation
machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K
complex lead to significant reduction in DMVs, as well as viral replication. Elucidating
the role of autophagy machinery in DMV formation during astrovirus infection reveals a
potential target for therapeutic intervention for immunocompromised patients.

Importance

These studies provide critical new evidence that astrovirus replication requires formation of
double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but
not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with
replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K
could be a promising therapeutic option for not only astrovirus, but other positive-sense
RNA virus infections.
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Introduction

Astroviruses are positive-sense, single-stranded, non-enveloped RNA viruses that cause
disease in a variety of mammals and birds (1–4). In humans, infection is often associated
with gastrointestinal symptoms such as nausea, vomiting, loss of appetite, stomachaches,
and diarrhea (4–7). However, astrovirus infections can also result in fatal encephalitis, par-
ticularly in immunocompromised individuals (2, 7–12). Astrovirus infections are typically
under-reported despite high prevalence (13, 14), and there are significant gaps in knowledge
about astrovirus pathogenesis including the mechanisms behind viral replication.

Many positive-sense, single-stranded RNA viruses including hepatitis C virus (HCV),
coronaviruses, picornaviruses, and noroviruses utilize double-membrane vesicles (DMVs)
as replication chambers during infection. These replication organelles shield viral RNA
from recognition by intracellular pattern recognition receptors that could alert the immune
system (15–22). It has been suggested that DMVs form with the aid of autophagy machin-
ery. Generally, autophagy serves as the recycling system of the cell. During autophagy,
double-membrane vesicles called autophagosomes deliver cytoplasmic material to the
lysosome for degradation. Autophagy can also be selective, targeting specific cargo such as
depolarized mitochondria, damaged endoplasmic reticulum (ER) fragments, and others.
The lysosome then fuses with the autophagosome, and cargo is degraded due to lysosomal
enzymatic activity and acidic pH, recycling it for further use by the cell (23–26). The forma-
tion of the autophagosome can vary depending on whether the pathway is canonical or
non-canonical. The canonical autophagy pathway involves machinery first characterized
in starvation-induced autophagy, including the ULK1 pre-initiation complex, the class III
phosphatidylinositol 3-kinase (PI3K) complex required for production of phosphatidyli-
nositol 3-phosphate (PI3P), and the LC3 conjugation system required for autophagosome
maturation. Non-canonical pathways may utilize only some parts of the originally charac-
terized autophagy machinery (27). Regardless of the pathway, these cellular components
are often manipulated by viruses during infection to enhance viral replication.

Positive-strand RNA viruses can hijack components of the autophagy machinery to
form DMVs, which share characteristics with autophagosomes. However, viral-induced
DMVs can be distinct from autophagosomes. They are not always delivered to lysosomes
for degradation, tend to be smaller in size compared to autophagosomes, and importantly,
canonical autophagy machinery is not necessarily involved in the formation of these vesicles
(15, 17–20, 22). Notably, viruses can induce the formation of DMVs from the ER, Golgi
apparatus, mitochondria, and other sites in the cell, which may have virus-specific implica-
tions for antiviral therapies (19, 22, 28). Recent evidence has shown that DMV formation is
independent of LC3 lipidation machinery in both severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) and HCV infection; instead, both viruses appear to rely on the PI3K
complex for formation of PI3P in DMV membranes (21, 29). Coxsackievirus B3, on the other
hand, induces DMV formation that is independent of PI3K and ULK1 machinery, relying
instead upon PI4KIIIβ for formation of these vesicles (30–32). Although electron microscopy
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images have shown association of lamb astrovirus with DMVs in lamb intestines (33), the
role of autophagy in astrovirus infection has remained uncharacterized in both humans and
animal models.

In the present study, we find that DMVs formed during astrovirus infection rely on a
PI3K-dependent, LC3-independent autophagy pathway and may originate from the ER.
This machinery is targetable and using an autophagy-specific PI3K inhibitor and specific
small interfering RNA (siRNA) knockdown significantly reduces DMV formation and
astrovirus replication. Targeting DMV formation through inhibition of the PI3K complex
during astrovirus infection offers a potential therapy for astrovirus infection, and this
therapy may further be applicable to other positive-sense RNA viruses.

Results

Astrovirus induces DMV formation during replication

A previous study showed that astrovirus infection in lambs resulted in the formation of
DMVs (33). To determine if this was also true with human astroviruses, we performed trans-
mission electron microscopy (TEM) on mock and human astrovirus-1 (HAstV-1)-infected
Caco-2 cells at 8, 12, 24, and 36 h post-infection (hpi). Beginning at 24 hpi, HAstV-1-infected
cells had widespread formation of DMVs of approximately 200–500 nm in size compared
to mock-inoculated Caco-2 cells (Fig. 1A). The DMVs were associated with HAstV-1 viri-
ons. Induction of DMV formation was dependent on productive viral replication, as
UV-inactivated virus failed to induce DMVs (Fig. 1B).

Inhibition of the PI3K complex significantly reduces astrovirus replication

Like autophagosomes, DMVs have a double membrane and can utilize components of
the autophagy machinery during formation. A recent study of SARS-CoV-2 and HCV
replication demonstrated that the PI3K complex involved in the formation of PI3P during
autophagy is necessary to the formation of DMVs during viral replication (21). One study
showed that pan-PI3K inhibitors wortmannin and LY294002 were effective in reducing
HAstV-1 infection (34, 35). However, this study did not address which PI3K complex
is necessary for astrovirus infection or which part of the replication pathway is affected
by inhibition. To test whether the autophagy-specific class III PI3K complex is required
for astrovirus replication, we infected Caco-2 cells with HAstV-1 and treated Caco-2 cells
with PIK-III, a specific class III phosphatidylinositol 3-kinase (PI3KC3) complex inhibitor,
or DMSO (dimethyl sulfoxide) at 1 hpi. At 24 hpi, the cells were fixed for TEM. PIK-
III treatment significantly reduced the presence of DMVs and viral particles at 24 hpi,
suggesting that the PI3K complex may support viral replication via formation of DMVs
(Fig. 2A).
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To determine whether inhibition of the PI3K complex affects astrovirus replication,
we infected Caco-2 cells with HAstV-1 and treated cells with varying concentrations of
PIK-III or DMSO at 2 h pre-infection or 1 hpi. At 24 hpi, we fixed and stained the cells for
HAstV-1 capsid or dsRNA. We observed significantly less capsid and dsRNA staining in the
PIK-III-treated Caco-2 cells compared to the DMSO control at 24 hpi, and this difference was
dose-dependent. Pre-infection treatment with PIK-III was not significantly different from
post-infection treatment (Fig. 2B; Fig. S1a). We then repeated the experiment, collecting
cells and supernatants at 24 hpi, and extracted RNA to quantify HAstV-1 genome copies.
Similarly, we found that PIK-III decreased HAstV-1 genome copies in both cell lysates and
supernatant significantly in a dose-dependent manner (Fig. 2C). Then, using supernatants
from these cells, we found that cells that had been treated with PIK-III after HAstV-1
infection produced significantly less infectious virus than cells treated with DMSO (Fig.
2D). Finally, to determine whether this PI3K-dependent replication mechanism expands
to other human astrovirus genotypes, we infected Caco-2 cells with the human astrovirus
VA-1 strain and treated them with varying concentrations of PIK-III or DMSO at 1 hpi.
At 48 hpi, we fixed and stained the cells for VA-1 capsid and observed significantly less
VA-1 infection in Caco-2 cells treated with PIK-III compared to DMSO controls in a dose-
dependent manner (Fig. S1b). These experiments suggest that the PI3K complex aids in
viral replication through formation of DMVs.

To confirm these results, we knocked down a key component of PI3KC3, Beclin.
Caco-2 cells were transfected with siRNA for Beclin or a control siRNA at about 70%
confluence. After 2 days, cells were infected with HAstV-1. At 24 hpi, cells were collected,
and genome copies were measured. Caco-2 cells transfected with siBeclin had at least 50%
less Beclin expression and had significantly reduced genome copies of astrovirus compared
to siControl (Fig. 3A and B). The experiment was repeated, and cells were fixed at 24
hpi for imaging. Cells treated with siBeclin had significantly less astrovirus capsid and
double-stranded RNA at 24 hpi compared to siControl, further supporting a role for the
PI3KC3 complex in astrovirus replication (Fig. 3C and D).

LC3 conjugation machinery is not required for astrovirus replication

To determine whether astrovirus-induced DMV formation was accompanied by an upreg-
ulation in other autophagy machinery, we utilized a real-time polymerase chain reaction
(RT-PCR) array (custom Qiagen RT2 Profiler) of canonical and alternative autophagy-related
genes, as well as cell death-related genes, vesicular trafficking genes, and exosome-related
genes. At 24 hpi, there was a significant upregulation in autophagy-related genes in HAstV-
1 infected cells compared to the 2 hpi time point including ULK1, AMBRA1, UVRAG,
SQSTM1, and GABARAPL1, in addition to IDO1. However, MAP1LC3A, ATG5, and ATG7
genes associated with LC3 conjugation machinery were unchanged (Fig. 4A).

Immunoblots of lysates from mock and HAstV-1-infected Caco-2 cells confirmed
that ATG5 and ATG7 were not upregulated (Fig. 4B). Given that we did not observe an
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upregulation of ATG5 and ATG7, we hypothesized that astrovirus-induced DMVs form
independently of LC3 conjugation machinery. To test this, we repeated the siRNA experi-
ment, knocking down Atg5 to disrupt LC3 conjugation machinery. Atg5 was significantly
reduced translationally in siATG5 cells compared to siControl, and there was no difference
in astrovirus genome copies in siATG5 cells compared to siControl (Fig. 4C; Fig. S2a).
In addition, in siATG5-treated Caco-2 cells, there was no difference in capsid or double-
stranded RNA at 24 hpi compared to siControl (Fig. 4D; Fig. S2c and d). To validate
these results, we utilized Huh-7.5 cells expressing doxycycline-inducible RavZ cysteine
protease. RavZ has been shown to cleave LC3, impairing its ability to become conjugated to
phosphatidylethanolamine (PE), leading to a reduction in autophagosome formation (36,
37). After validating that induction of RavZ expression decreases LC3 levels, as shown by
immunoblot (Fig. S2b), we induced RavZ activity and infected the cells with HAstV-1. After
infection with HAstV-1, we collected RNA from cells and supernatants for quantification of
HAstV-1 genome copies at 24 hpi. There was no change in genome copies in the absence of
LC3 lipidation activity, suggesting that LC3 lipidation machinery and production of LC3-II
are not required for astrovirus replication (Fig. 4E)

Transcriptional changes in autophagy machinery occur in astrovirus-infected
cells in vitro and in vivo

Finally, to determine if there were changes in autophagy gene expression specifically in
astrovirus-infected cells, we performed single-cell RNA sequencing on astrovirus-infected
Caco-2 cells at 4, 8, and 24 hpi (Table 1). At 24 hpi, most cells in the HAstV-1-infected
Caco-2 sample were infected and clustered together (Fig. 5A). To characterize differences
between samples at 24 hpi, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Hallmark pathway analyses to determine differences between
gene expression pathways in mock, astrovirus-infected, and bystander cell types (Fig. S3).
Next, we explored whether autophagy-related genes were dysregulated in the data set
across time points and between infected, bystander, and mock groups. The single cell RNA
sequencing (scRNA-seq) data set confirmed that the regulation of PI3KC3-associated genes
in HAstV-1-infected samples followed the same pattern as the RT-PCR array, increasing over
time (Fig. 5B). In addition, upregulation in upstream autophagy pathway genes occurred
only in astrovirus-infected but not bystander cells (Fig. 5C).

Using a single-cell RNA sequencing data set previously collected by our laboratory
(13), we found that intestines from murine astrovirus-infected mice had an upregulation
in Pik3c3 in Murine Astrovirus (MuAstV)-infected but not bystander cells. This data set
showed a downregulation in Map1lc3a and its homologs Gabarap and Gabarapl2, as well
as Ulk1, Rb1cc1, Atg7, Atg10, Atg5, and Lamp1 in infected but not bystander cells (Fig.
5D). This suggests that murine astrovirus replication could also utilize the PI3K complex
but not the LC3 conjugation machinery, for replication in vivo. Future work will address
the involvement of the PI3K complex in murine astrovirus replication and whether PI3K
could be a therapeutic target for astrovirus infection spanning different species. These
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experiments provide evidence that astrovirus infection upregulates certain, but not all,
components of autophagy machinery in vitro and in vivo to facilitate viral replication.

Discussion

Here, we show that astrovirus infection induces formation of DMVs, and this process is
replication dependent. Formation of these DMVs also requires some, but not all, canonical
autophagy machinery. We demonstrate that astrovirus uses the autophagy-specific PI3KC3
complex for formation of DMVs. The PI3K complex initiates phagophore formation and
production of PI3P during canonical autophagy (27, 38, 39). Inhibiting this complex either
chemically or through siRNA knockdown of complex component Beclin1 greatly reduces
astrovirus replication and infectious virus production, as well as formation of DMVs as
seen by electron microscopy. VA1 infection is also significantly reduced upon chemical
inhibition of PI3KC3, suggesting a strain-spanning mechanism for astrovirus replication.

Previous studies of positive-sense RNA virus replication have shown that canonical
LC3 machinery may not be necessary for RNA virus replication using DMVs (21, 29). The
LC3 conjugation system is indispensable for canonical, starvation-induced autophagy. It
consists of E1- and E3-like proteins ATG5 and ATG7, which work together to conjugate
LC3-I to PE to form LC3-II. This crucial step leads to autophagosome maturation (27, 38).
Our work is consistent with previous literature, as we also observed that inhibition of
LC3 machinery in multiple cell types does not affect astrovirus replication. These data are
consistent with recent studies showing that SARS-CoV-2 and HCV utilize the PI3K complex,
but not LC3 conjugation machinery for DMV formation and replication (21, 29). Our
work suggests that early parts of autophagy machinery are essential for DMV formation,
while LC3 conjugation is not required. This is supported by transcriptional data from
single-cell RNA sequencing data sets, showing that astrovirus-infected cells upregulate
PI3K-associated genes, while bystander and mock-inoculated cells do not in both human
and murine data sets. This suggests a species-spanning mechanism.

Without LC3 involvement in the formation of DMVs, it is possible that an LC3 ho-
molog, such as the significantly upregulated GABARAPL1, could be active in the formation
of DMVs during astrovirus replication. Notably, while inhibition of PI3K significantly re-
duces astrovirus replication, it does not ablate replication entirely. One possible explanation
for this is that other phosphatidylinositol kinases are also involved in the formation of these
DMV replication organelles, such as PI4K (19, 21, 22, 24). Use of a PI4K inhibitor during
astrovirus infection could determine whether this is the case.

While it is clear that formation of DMVs during astrovirus infection is replication-
dependent, it is not yet determined which parts of the astrovirus genome are necessary for
inducing formation of DMVs. Nonstructural proteins alone from other viruses such as HCV
and SARS-CoV-2 are sufficient for induction of DMV formation (40–42). Little is known
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about the function of astrovirus nonstructural proteins, and it is likely that they play a role
in DMV formation (43, 44).

Altogether, our results indicate that astrovirus replication relies upon the formation
of DMVs using early autophagy machinery, including the PI3K complex, but not LC3
conjugation machinery. Future studies will address whether the PI3K complex is necessary
for astrovirus infection in brain cells, leading to encephalitis in immunocompromised
populations. These results emphasize how distinct positive-strand RNA viruses utilize
similar mechanisms of replication. Although SARS-CoV-2, HCV, and HAstV-1 are different,
their common use of the PI3K machinery implies the possibility of a conserved therapeutic
target for many positive-sense RNA viruses. Understanding these replication mechanisms
will help to determine future antiviral therapies.

Materials and Methods

Cells and virus propagation

Caco-2 human intestinal adenocarcinoma cell line was obtained from ATCC (HTB-37). Cells
were grown in Corning minimum essential medium containing 20% fetal bovine serum (FBS;
HyClone), GlutaMax (Gibco), 1 mM sodium pyruvate (Gibco), and penicillin-streptomycin
(Fisher).

The Huh-7.5 RavZ inducible cell line was a generous gift from Brett Lindenbach’s
lab at the Yale School of Medicine. These cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM) (ThermoFisher) containing 10% FBS (HyClone) and 3 µg/mL puromycin
(Invitrogen).

HAstV-1 and VA1 lab-adapted viral stocks were propagated in Caco-2 cells. Viral
titer was quantified using focus-forming unit assay (FFU) as previously described (45).
For UV inactivation experiments, a UV cross-linker was utilized to subject HAstV-1 to 100
mJ/cm2, and inactivation was confirmed using FFU assay.

Transmission electron microscopy

Caco-2 cells were plated in a six-well plate (3.5 × 105). After 46 h, appropriate samples
were treated with 10 µM PIK-III or DMSO. Two hours later, cells were inoculated with
supernatants taken from HAstV-1 (Multiplicity of infection (MOI) 10) or mock-inoculated
Caco-2 cells in serum-free media for 1 h. Following virus adsorption, inoculum was replaced
with either fresh media, media containing 10 µM PIK-III, or media containing DMSO. At 8,
12, 24, or 36 hpi, cells were fixed in 2.5% glutaraldehyde/2% paraformaldehyde (PFA) in
0.1 M Cacodylate Buffer. Following fixation, samples were post fixed in osmium tetroxide
and contrasted with aqueous uranyl acetate. Samples were dehydrated by an ascending
series of ethanol to 100% followed by 100% propylene oxide. Samples were infiltrated
with EmBed-812 and polymerized at 60°C. Embedded samples were sectioned at 70 nm
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on a Leica (Wetzlar, Germany) ultramicrotome and examined in a ThermoFisher Scientific
(Hillsboro, OR) TF20 transmission electron microscope at 80 kV. Digital micrographs were
captured with an Advanced Microscopy Techniques (Woburn, MA, USA) imaging system.
Unless otherwise indicated, all reagents are from Electron Microscopy Sciences (Hatfield,
PA, USA).

RT2 profiler

Caco-2 cells were plated in a six-well plate (3.5 × 105). After 48 h, cells were inoculated with
supernatants taken from HAstV-1 (MOI 10) or mock-inoculated Caco-2 cells in serum-free
media for 1 h. Following virus adsorption, the inoculum was replaced with fresh media. At
2, 8, and 24 hpi, cell supernatants were collected in TRIzol for liquid samples (LS). Cells
were collected in TRIzol, and RNA was extracted from all samples per manufacturer’s
instructions. RNA quality was checked using Thermo Scientific NanoDrop 2000 per manu-
facturer’s instructions. Then, qRT-PCR was performed on supernatant RNA to determine
genome copies of HAstV-1 in supernatants, as previously described (46). We confirmed that
genome copies of astrovirus increased in HAstV-1-infected cell supernatants over time, and
no genome copies were detected in mock-inoculated cell supernatants. Then, RNA from
cells was reverse transcribed using the RT2 First Strand Kit from Qiagen (Qiagen 330401).
After cDNA was collected, it was utilized with SYBR Green qPCR Mastermix (Qiagen
330500) in a custom-designed real-time RT2 Profiler PCR Array (Qiagen 330171). Cycle
threshold (CT) values were collected, and data analysis was performed using Qiagen’s data
analysis web portal (http://www.qiagen.com/geneglobe). In addition, we have found that
astrovirus induces epithelial to mesenchymal transition, reducing epithelial markers on
Caco-2 cells later in infection (47). It has also been shown that IDO1 is upregulated during
astrovirus infection (48). Thus, IDO1 and EpCAM were included in the panel to verify
normal cellular response to astrovirus infection.

Mock and HAstV-1-treated samples were designated as control and test groups,
respectively. All samples passed quality checks. Reference genes were included in the RT2
panel, and data were normalized to these genes. The Qiagen data analysis protocol included
fold change/regulation calculations based on ΔΔCT calculations. Statistical analysis on
the Qiagen web portal utilized a Student’s t-test to calculate P-values, where parametric,
unpaired, two-sample equal variance, two-tailed distribution was utilized.

10x single-cell RNA sequencing sample preparation

Caco-2 cells were plated in a six-well plate (3.5 × 105). Samples were assigned to wells
corresponding to 4, 8, or 24 h post-infection. At 48 h post-plating, 24 hpi cell wells were
inoculated with supernatants taken from HAstV-1 (MOI 10) or mock-inoculated Caco-2
cells in serum-free media for 1 h. After virus adsorption, the inoculum was replaced with
fresh media. At 64 h post-plating, 8 hpi cell wells were inoculated with supernatants taken
from HAstV-1 (MOI 10) or mock-inoculated Caco-2 cells in serum-free media for 1 h. After
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virus adsorption, the inoculum was replaced with fresh media. At 68 h post-plating, 4
hpi cell wells were inoculated with supernatants taken from HAstV-1 (MOI 10) or mock-
inoculated Caco-2 cells in serum-free media for 1 h. After virus adsorption, the inoculum
was replaced with fresh media. At 72 h post-plating, all cells were washed with phosphate
buffered saline (PBS) and harvested using trypsin. Cells were filtered through at 70 µm
cell strainer. Cells were spun down at 1,200 rpm for 10 min at 4°C. Cells were washed in
cell wash buffer (1% bovine serum albumin (BSA) in PBS) and spun down again at 1,200
rpm for 10 min at 4°C. Finally, cells were resuspended in 50 µL of cell wash buffer and
counted using a hemocytometer. Cells were resuspended in appropriate volume to reach
1,000 cells/µL. Next, 9,000 cells were loaded onto the 10× Genomics Chromium controller
for partitioning of single cells into gel beads with a goal of recovering 6,000 cells. Next,
using a 10× Genomics 3’ Gene Expression Kit (version 3.1) according to manufacturer’s
instructions, single-cell transcriptomics libraries were produced. Libraries were sequenced
using Illumina NovaSeq 2000 at suggested sequencing lengths and depths.

10x single-cell RNA sequencing analysis

The 10× transcriptomics data were first processed using CellRanger count (version 6.1.1,
10× Genomics). GRCh38 was used as our reference, which was altered to include the
human astrovirus 1 genome (accession ID MK059949.1). Samples were aggregated and
normalized by the median number of mapped reads per identified cell using CellRanger
aggr. Normalized gene expression matrices were then imported into Seurat (version 4.1.1)
for downstream analysis and data visualization.

Data were first filtered by excluding any gene that was not present in at least 0.1% of
total called cells (23 cells). Cells that exhibited extremes in the total number of transcripts
expressed (>6,000), the total number of genes expressed (<400 or >3,000), or mitochondrial
gene expression (>8%) were then excluded from downstream analyses. Data were log-
normalized using default parameters. We identified the top 2,000 variable features using
the variance-stabilizing transformation (VST) method.

The fastMNN algorithm was then utilized to integrate data sets from distinct libraries,
effectively minimizing subject- and sample-specific differences in order to identify similar
transcriptional subsets. The first 25 fastMNN dimensions were used for Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduction and for nearest-neighbor
graph construction for identifying transcriptional clusters in Seurat. Markers for each
cluster were identified using FindAllMarkers function (min.pct = 0.25, logfc.threshold =
0.25).

We also generated a subset for 24 hpi samples alone. This subset was processed as
described above. We split cells in the 24 hpi infected group to two sub-groups: “HAstV1-
Infected” included cells that detected at least one astrovirus gene, “HAstV1-Bystander”
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included cells that did not detect astrovirus gene. Over-representation analysis was per-
formed using clusterProfiler (function: Function enrichGO, enrichKEGG, and enricher) to
explore the biological and molecular functions of each group (49).

Immunofluorescent staining

For PIK-III experiments, Caco-2 cells were plated in a 96-well plate (2.5 × 104). At 46 h
post-plating, appropriate wells were treated with 5, 10, or 25 µM PIK-III or DMSO control.
At 48 h post-plating, cells were inoculated with supernatants taken from HAstV-1 (MOI 10)
or mock-inoculated Caco-2 cells in serum-free media for 1 h. Following virus adsorption,
the inoculum was replaced with fresh media or media containing 5, 10, or 25 µM PIK-III
or DMSO control. At 24 hpi, cells were fixed in 100% methanol. Cells were washed in
PBS and incubated in primary antibody solution containing astrovirus capsid monoclonal
antibody 8e7 (Invitrogen MA5-16293) at 1:100 in % normal goat serum (NGS)/PBS for 1 h at
room temperature. Cells were washed in PBS. Cells were incubated in secondary antibody
solution containing Alexa Fluor 488 goat anti-Mouse (Invitrogen A10680) at 1:1,000 and and
Hoechst (ThermoFisher H3569) at 1:2,000 in 1% NGS/PBS for 45 min in the dark. Cells were
again washed in PBS. Samples were imaged using the EVOS FL cell imaging system and
analyzed using ImageJ 2.9.0/1.53t software. FFU was calculated as previously described
(45). The same method was used for supernatants from PIK-III- and DMSO-treated cell
supernatants used to infect fresh Caco-2 cells in a 96-well plate.

For siRNA experiments, Caco-2 cells were plated in a 96-well plate (1.5 × 104). At
24 h post-plating, appropriate wells were treated with 15 µM siRNA (Atg5, Beclin, or
Control siRNA). Cells were allowed to incubate in the siRNA-containing media for 2 days
for optimal knockdown. At 48 h post-treatment with siRNA, cells were inoculated with
supernatants taken from HAstV-1-infected (MOI 10) Caco-2 cells in serum-free media for
1 h. Following virus adsorption, the inoculum was replaced with fresh media. At 24 hpi,
cells were fixed in 100% methanol. Cells were washed in PBS and incubated in primary
antibody solution containing astrovirus capsid monoclonal antibody 8e7 (Invitrogen MA5-
16293) at 1:100 in 1% NGS/PBS for 1 h at room temperature. Cells were washed in PBS.
Cells were incubated in secondary antibody solution containing Alexa Fluor 488 goat anti-
Mouse (Invitrogen A10680) at 1:1,000 and and Hoechst (ThermoFisher H3569) at 1:2,000
in 1% NGS/PBS for 45 min in the dark. Cells were again washed in PBS. Samples were
imaged using the EVOS FL cell imaging system and analyzed using ImageJ 2.9.0/1.53t
software. FFU was calculated as previously described (45). The same method was used for
supernatants from PIK-III- and DMSO-treated cell supernatants used to infect fresh Caco-2
cells in a 96-well plate.

Immunoblotting

Caco-2 cells were plated in a six-well plate (3.5 × 105). At 48 h post-plating, cells were
inoculated with supernatants taken from HAstV-1 (MOI 10) or mock-inoculated Caco-2
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cells in serum-free media for 1 h. Following virus adsorption, inoculum was replaced
with fresh media. At the proper time point, 8 or 24 hpi, cells were collected in 250 µL ra-
dioimmunoprecipitation assay (RIPA) lysis buffer (Abcam) containing 1× protease inhibitor
cocktail (Pierce) on ice. Samples were vortexed briefly and kept on ice for 30 min. Samples
were frozen at –80°C until used. Sample protein concentration was determined using BCA
Protein Assay Kit (Pierce). Equal concentrations of protein were prepared under reducing
conditions and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(4%–20% tris-glycine 1.0 mm Mini Protein Gels from Invitrogen (XP04200BOX). Gels were
transferred to polyvinylidene fluoride (PVDF) membranes using the iBlot 2 transfer stacks
(ThermoFisher IB24002). Membranes were probed for protein with respective primary anti-
bodies and IRDye 680RD goat anti-rabbit IgG secondary antibody using the ThermoFisher
iBind device according to manufacturer’s instructions. Primary antibodies included β-Actin
(Cell Signaling 4970S) at 1:1,000, Atg5 (Abcam ab108327) at 1:1,000, and Atg7 (Abcam
ab52472) at 1:1,000.

For siRNA experiments, Caco-2 cells were plated in a six-well plate (2.5 × 105). At
24 h post-plating, appropriate wells were treated with 15 µM siRNA (Atg5, Beclin, or
Control siRNA). Cells were allowed to incubate in the siRNA-containing media for 2 days
for optimal knockdown. At 48 h post-treatment with siRNA, cells were inoculated with
supernatants taken from HAstV-1-infected (MOI 10) Caco-2 cells in serum-free media for
1 h. Following virus adsorption, the inoculum was replaced with fresh media. At 24 hpi,
cells were collected in 250 µL RIPA lysis buffer (Abcam) containing 1× protease inhibitor
cocktail (Pierce) on ice. Samples were vortexed briefly and kept on ice for 30 min. Samples
were frozen at –80°C until used. Gels were run using the same protocol as above. Primary
antibodies included β-Actin (Cell Signaling 4970S) at 1:1,000, Atg5 (Abcam ab108327) at
1:1,000, and Beclin (Abcam ab207612) at 1:1,000.

For Huh-7.5 immunoblots, Huh-7.5 cells were plated in a six-well plate (3 × 105).
After 48 h, cells were treated with 1.5 µM or 6 µM doxycycline to induce RavZ protease
activity or DMSO controls. At 24 h post-treatment, cells were inoculated with supernatants
taken from HAstV-1-infected (MOI 10) Caco-2 cells in serum-free media for 1 h. Follow-
ing virus adsorption, the inoculum was replaced with media containing the appropriate
concentration of doxycycline or DMSO, as well as 30 µM chloroquine to enable monitor
monitoring of LC3-II/LC3-I (50). At 24 hpi, cells were collected in 250 µL RIPA lysis buffer
(Abcam) containing 1× protease inhibitor cocktail (Pierce) on ice. Samples were vortexed
briefly and kept on ice for 30 min. Samples were frozen at –80°C until used. Sample protein
concentration was determined using BCA Protein Assay Kit (Pierce). Immunoblots were
performed the same way as described with Caco-2 cell lysates. Membranes were probed for
LC3 (Cell Signaling 2775S) at 1:1,000 overnight at 4°C in 5% BSA/tris-buffered saline and
Tween 20 (TBST). The following day, membranes were incubated in secondary antibody
solution containing IRDye 680RD goat anti-rabbit IgG secondary antibody in 5% BSA/TBST
for 1 h at room temperature. Membranes were imaged on the LI-COR Odyssey Fc (software
version number 1.0.36). Next, membranes were stained for β-Actin (Cell Signaling 4970S) at
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1:1,000 using the ThermoFisher iBind device as described above. All immunoblots were
performed in triplicate. Each blot was imaged on the LI-COR Odyssey Fc. Densitometry
was measured using Image Studio version 5.2 software.

PIK-III, siRNA, and astrovirus infection RT-PCR

For PIK-III experiments, Caco-2 cells were plated in a 96-well plate (2.5 × 104). At 48 h
post-plating, cells were inoculated with supernatants taken from HAstV-1 (MOI 10) or
mock-inoculated Caco-2 cells in serum-free media for 1 h. Following virus adsorption, the
inoculum was replaced with fresh media or media containing 5, 10, or 25 µM PIK-III or
DMSO control. At 24 hpi, supernatants were collected in TRIzol LS, cells were collected in
TRIzol, and RNA was extracted per manufacturer’s instructions. RNA was then utilized in
RT-PCR to determine astrovirus genome copies, as previously described (46).

For siRNA experiments, Caco-2 cells were plated in a six-well plate (2.5 × 105). At
24 h post-plating, appropriate wells were treated with 15 µM siRNA (Atg5, Beclin, or
Control siRNA). Cells were allowed to incubate in the siRNA-containing media for 2 days
for optimal knockdown. At 48 h post-treatment with siRNA, cells were inoculated with
supernatants taken from HAstV-1-infected (MOI 10) Caco-2 cells in serum-free media for
1 h. Following virus adsorption, the inoculum was replaced with fresh media. At 24 hpi,
cells were collected in TRIzol, and RNA was extracted per manufacturer’s instructions.
RNA was then utilized in RT-PCR to determine astrovirus genome copies, as previously
described (46).

Huh-7.5 Rav-Z Induction

Huh-7.5 cells were plated in a six-well plate (3 × 105). After 48 h, cells were treated with
3 µM doxycycline to induce RavZ protease activity or DMSO control. At 24 h post-treat
treatment, cells were inoculated with supernatants taken from HAstV-1-infected (MOI 10)
Caco-2 cells in serum-free media for 1 h. Following virus adsorption, the inoculum was
replaced with media containing the appropriate concentration of doxycycline or DMSO. At
24 hpi, supernatants were collected in TRIzol LS, and cells were collected in TRIzol. RNA
was extracted from these samples according to the manufacturer’s instructions. RNA was
then utilized in RT-PCR to determine astrovirus genome copies, as previously described
(46).

MuAstV 10x data set

The murine astrovirus 10× single-cell RNA sequencing data set was collected previously, as
described (13).
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Statistical analysis

Data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons test
(western blots, PIK-III genome copies, and PIK-III FFU analysis) or unpaired two-tailed t-test
(Huh-7.5 cell genome copies and DMV electron microscopy quantification) quantification)to
determine statistical significance using GraphPad Prism version 9. Asterisks show statistical
significance as follows: *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
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Figure Legends

Figure 1. Astrovirus associates with DMVs during infection. (A) TEM images of mock-
inoculated or HAstV-1-infected Caco-2 cells at 12, 24, and 36 hours post-infection (hpi). (B)
TEM images of UV-inactive HAstV-1-inoculated Caco-2 cells and HAstV-1-infected Caco-2
cells at 24 hpi. (A & B) Yellow arrows indicate (DMVs).

Figure 2. Inhibition of the PI3K complex reduces astrovirus replication. (A) TEM of
PIK-III-treated and DMSO control HAstV-1-infected Caco-2 cells at 24 hpi and quantification
of number of DMVs. Arrows indicate DMVs. Statistical analysis was by unpaired two-
tailed t test. ***, P ≤ 0.001. (B) HAstV-1-infected Caco-2 cells were either pre-treated for
2 hours prior to infection or treated 1 hpi with 5, 10, or 25 µM PIK-III or DMSO control.
EVOS microscope images represent Caco-2 cells treated at 1 hpi, with astrovirus capsid
in green and nucleus (Hoechst) in blue. Quantification shows FFU of samples treated 2
hours before infection and 1 hpi with statistical analysis by two-way ANOVA followed by
Tukey’s multiple comparison test. (C) Genome copy number of human astrovirus in cell
lysate and supernatant at 24 hpi from HAstV-1-infected Caco-2 cells treated with 5, 10, or 25
µM PIK-III or DMSO control at 1hpi with statistical analysis by two-way ANOVA followed
by Tukey’s multiple comparison test. (D) Supernatants from HAstV-1-infected Caco-2 cells
treated with 5, 10, or 25 µM PIK-III or DMSO control were collected and trypsin-treated at
24 hpi. Supernatants were used to infect Caco-2 cells. EVOS images show astrovirus capsid
(green) and nucleus (Hoechst, blue). Quantification of FFU fold change to average DMSO
control is shown. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.

Figure 3. Knockdown of Beclin1 reduces astrovirus replication. (A) Representa-
tive immunoblot and quantification of immunoblots for Beclin expression after siBeclin
knockdown compared to siControl with statistical analysis by unpaired two-tailed t test. (B)
Genome copy number of human astrovirus in cell lysate at 24 hpi from HAstV-1-infected
Caco-2 cells treated with either siBeclin or siControl with statistical analysis by unpaired
two-tailed t test (C-D) Caco-2 cells were treated with siBeclin or siControl 24 hours after
plating, once cells had reached 70% confluency. At 48 hours post-treatment with siRNAs,
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Caco-2 cells were infected with HAstV-1. At 24 hpi, Caco-2 cells were fixed. (C) EVOS micro-
scope images show astrovirus capsid in green and nucleus (Hoechst) in blue. Quantification
shows FFU with statistical analysis by unpaired two-tailed t test. (D) EVOS microscope
images show astrovirus double-stranded RNA (J2) in green and nucleus (Hoechst) in blue.
Quantification shows FFU with statistical analysis by unpaired two-tailed t test.

Figure 4. LC3 conjugation machinery is not required for astrovirus replication. (A)
Heat map of gene fold regulation from RT2 profiler dataset. (B) Immunoblot showing
expression of ATG5 and ATG7 at 8 and 24 hpi in mock-inoculated and HAstV-1-infected
Caco-2 cell lysates. Quantification of 8h and 24h time points was performed with statistical
analysis by two-way ANOVA followed by Tukey’s multiple comparison test. (C) Genome
copy number of human astrovirus in cell lysate at 24 hpi from HAstV-1-infected Caco-2
cells treated with either siATG5 or siControl with statistical analysis by unpaired two-tailed
t test. (D) Caco-2 cells were treated with siATG5 or siControl 24 hours after plating, once
cells had reached 70% confluency. At 48 hours post-treatment with siRNAs, Caco-2 cells
were infected with HAstV-1. At 24 hpi, Caco-2 cells were fixed. Quantification shows FFU
for astrovirus capsid and double-stranded RNA (J2) with statistical analysis by unpaired
two-tailed t test. (E) Genome copies per µL of astrovirus in cell lysate and supernatant RNA
collected from HAstV-1-infected Huh-7.5 cells, where cells treated with doxycycline had
induced RavZ protease activity. Statistical analysis was by unpaired two-tailed t test.

Figure 5. Changes in autophagy-related genes in astrovirus-infected cells in human
and murine single cell RNA sequencing datasets. (A) UMAP showing clustering of HAstV-1
and Mock 4, 8, and 24 hpi samples (B) Dot plot showing percent expression and average
expression of autophagy-related genes in HAstV-1-infected Caco-2 cell samples at 4, 8, and
24 hpi from 10X single cell RNA sequencing dataset. (C) Dot plot showing percent expres-
sion and average expression of autophagy-related genes in HAstV-1-infected Caco-2 cells,
HAstV-1 uninfected (bystander) Caco-2 cells, and mock-inoculated Caco-2 cells at 24 hpi
from 10X single cell RNA sequencing dataset. (D) Dot plot showing percent expression and
average expression of autophagy-related genes in MuAstV-infected, MuAstV uninfected
(bystander), and mock-inoculated cells at 24 hpi from 10X single cell RNA sequencing
murine astrovirus dataset (13).
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Supplemental Material

Supplementary Figure 1. Inhibition of the PI3K complex reduces astrovirus replication
for multiple human strains (A) HAstV-1-infected Caco-2 cells were either pre-treated for
2 hours prior to infection or treated 1 hpi with 5, 10, or 25 µM PIK-III or DMSO control.
EVOS microscope images represent Caco-2 cells treated at 1 hpi, with astrovirus dsRNA
(J2) in green and nucleus (Hoechst) in blue. Quantification shows FFU of samples treated
2 hours before infection and 1 hpi with statistical analysis by two-way ANOVA followed
by Tukey’s multiple comparison test. (B) VA1-infected Caco-2 cells were treated at 1 hpi
with 5 or 10 µM PIK-III or DMSO control. EVOS microscope images show VA1 in green and
nucleus (Hoechst) in blue. Quantification shows FFU fold change to average DMSO control
with statistical analysis by two-way ANOVA followed by Tukey’s multiple comparison test.

Supplementary Figure 2. siATG5 knockdown and Huh-7.5 validation. (A) Represen-
tative immunoblot and quantification of immunoblots for ATG5 expression after siATG5
knockdown compared to siControl with statistical analysis by unpaired two-tailed t test. (B)
Validation of Huh-7.5 LC3 dysregulation upon doxycycline treatment. Immunoblot and
quantification of LC3-II/LC3-I expression in cell lysates from Huh-7.5 cells treated with
1.5 or 6 µM doxycycline or DMSO control. (C-D) Caco-2 cells were treated with siATG5
or siControl 24 hours after plating, once cells had reached 70% confluency. At 48 hours
post-treatment with siRNAs, Caco-2 cells were infected with HAstV-1. At 24 hpi, Caco-2
cells were fixed. (C) EVOS microscope images show astrovirus capsid in green and nucleus
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Figure S3
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(Hoechst) in blue. (D) EVOS microscope images show astrovirus double-stranded RNA (J2)
in green and nucleus (Hoechst) in blue.

Supplementary Figure 3. Single cell RNA sequencing pathway analysis. (A) GO
Pathway analysis comparing mock, infected, and bystander groups at 24 hpi. (B) KEGG
Pathway analysis comparing mock, infected, and bystander groups at 24 hpi. (C) HALL-
MARK Pathway analysis comparing mock, infected, and bystander groups at 24 hpi.

Table 1. Top 15 upregulated genes in mock, infected, and bystander clusters for the
HAstV-1 Caco-2 single cell RNA sequencing dataset at 24 hpi
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