Date of Award
5-2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Program
Speech and Hearing Science
Track
Speech and Language Pathology
Research Advisor
Tim Saltuklaroglu, Ph.D.
Committee
Andrew L. Bowers, Ph.D. Devin Casenhiser, Ph.D. Ashley W. Harkrider, Ph.D. Kevin J. Reilly, Ph.D.
Keywords
Attention, Cognitive Processes, EEG, Internal Models, Sensorimotor, Working Memory
Abstract
Internal models mediate the transmission of information between anterior and posterior regions of the dorsal stream in support of speech perception, though it remains unclear how this mechanism responds to cognitive processes in service of task demands. The purpose of the current study was to identify the influences of attention and working memory on sensorimotor activity across the dorsal stream during speech discrimination, with set size and signal clarity employed to modulate stimulus predictability and the time course of increased task demands, respectively. Independent Component Analysis of 64–channel EEG data identified bilateral sensorimotor mu and auditory alpha components from a cohort of 42 participants, indexing activity from anterior (mu) and posterior (auditory) aspects of the dorsal stream. Time frequency (ERSP) analysis evaluated task-related changes in focal activation patterns with phase coherence measures employed to track patterns of information flow across the dorsal stream. ERSP decomposition of mu clusters revealed event-related desynchronization (ERD) in beta and alpha bands, which were interpreted as evidence of forward (beta) and inverse (alpha) internal modeling across the time course of perception events. Stronger pre-stimulus mu alpha ERD in small set discrimination tasks was interpreted as more efficient attentional allocation due to the reduced sensory search space enabled by predictable stimuli. Mu-alpha and mu-beta ERD in peri- and post-stimulus periods were interpreted within the framework of Analysis by Synthesis as evidence of working memory activity for stimulus processing and maintenance, with weaker activity in degraded conditions suggesting that covert rehearsal mechanisms are sensitive to the quality of the stimulus being retained in working memory. Similar ERSP patterns across conditions despite the differences in stimulus predictability and clarity, suggest that subjects may have adapted to tasks. In light of this, future studies of sensorimotor processing should consider the ecological validity of the tasks employed, as well as the larger cognitive environment in which tasks are performed. The absence of interpretable patterns of mu-auditory coherence modulation across the time course of speech discrimination highlights the need for more sensitive analyses to probe dorsal stream connectivity.
ORCID
http://orcid.org/https://orcid.org/0000-0002-1007-8579
DOI
10.21007/etd.cghs.2018.0449
Recommended Citation
Jenson, David E. (http://orcid.org/https://orcid.org/0000-0002-1007-8579), "Sensorimotor Modulations by Cognitive Processes During Accurate Speech Discrimination: An EEG Investigation of Dorsal Stream Processing" (2018). Theses and Dissertations (ETD). Paper 455. http://dx.doi.org/10.21007/etd.cghs.2018.0449.
https://dc.uthsc.edu/dissertations/455