Date of Award
5-2009
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Program
Biomedical Engineering and Imaging
Research Advisor
Gary S. Keyes, Ph.D.
Committee
Frank A. DiBianca, Ph.D. Mostafa W. Gaber, Ph.D. Richard A. Smith, Ph.D. Herbert D. Zeman, Ph.D.
Keywords
CBCT, CT Reconstruction, FPD, MTF, Spatial Resolution, VRX-CBCT
Abstract
A new cone-beam computed tomography (CBCT) system is designed and implemented that can adaptively provide high resolution CT images for objects of different sizes. The new system, called Variable Resolution X-ray Cone-beam CT (VRX-CBCT) uses a CsI-based amorphous silicon flat panel detector (FPD) that can tilt about its horizontal (u) axis and vertical (v) axis independently. The detector angulation improves the spatial resolution of the CT images by changing the effective size of each detector cell. Two components of spatial resolution of the system, namely the transverse and axial modulation transfer functions (MTF), are analyzed in three different situations: (1) when the FPD is tilted only about its vertical axis (v), (2) when the FPD is tilted only about its horizontal axis (u), and (3) when the FPD is tilted isotropically about both its vertical and horizontal axes. Custom calibration and MTF phantoms were designed and used to calibrate and measure the spatial resolution of the system for each case described above. A new 3D reconstruction algorithm was developed and tested for the VRX-CBCT system, which combined with a novel 3D reconstruction algorithm, has improved the overall resolution of the system compared to an FDK-based algorithm.
DOI
10.21007/etd.cghs.2009.0063
Recommended Citation
Dahi, Bahram , "Spatial Resolution Analysis of a Variable Resolution X-ray Cone-beam Computed Tomography System" (2009). Theses and Dissertations (ETD). Paper 59. http://dx.doi.org/10.21007/etd.cghs.2009.0063.
https://dc.uthsc.edu/dissertations/59
Included in
Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Medical Sciences Commons