Date of Award
7-2022
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Program
Health Outcomes and Policy Research
Track
Health Services Research
Research Advisor
Rebecca B. Reynolds, PhD
Committee
Peter R. DeVersa, MD Charisse Madlock-Brown, PhD Angela L. Morey, PhD Simonne S. Nouer, PhD
Keywords
Medical Coding, Sepsis
Abstract
Background: Sepsis is a condition that can be very costly and very deadly. Diagnosing sepsis can be challenging as there is not one specific test that will identify whether a patient has sepsis and there are varying opinions as to the true definition of sepsis. The definition of sepsis used for this research is a combination of System Inflammatory Response Syndrome (SIRS) with an identified infection. Medical Coders must review the documentation provided in a medical record to accurately assign an ICD-10-CM code. Administrative data is then used to provide statistical information for research purposes. When coded data is not accurate, this leads to errors in administrative data and inaccuracies in research. Objectives: The main goal of this study was to identify the accuracy of medical coding for sepsis patients. There were six research questions that guided the research. These included 1) Are cases coded as sepsis that are not clinically supported as sepsis; 2) Are infection cases not coded as sepsis clinically supported as sepsis; 3) Are there any variances for certain physicians; 4) Are there any variances for certain physician specialties; 5) Are there any variances for certain payers; 6) Are there any variances for certain medical coders? Methods: We used a convenience sampling of patient records from 4th quarter 2019 from Erlanger Health Systems that were coded as sepsis and a sampling that were coded as an infection without sepsis. Research Design and Study Procedures: Following Institutional Review Board (IRB) approval from both Erlanger Health Systems and the University of Tennessee Health Science Center (UTHSC), a chart review was conducted. Clinical indicators identified in the created data abstraction tool were abstracted from the patient records. Results: Data analysis concluded that the accuracy rate of medical coding for the sepsis patient records based on the clinical documentation was 98.5%. Physician specialty and payer type had no impact on the accuracy of medical coding on these records. Data analysis concluded the accuracy rate of medical coding for the infection patient records based on clinical documentation was 59%. Logistical regression also identified there were no variances in the coding for the infection patients based on the payer type, medical coder years of inpatient coding experience and the medical coders education level. Analysis determined there was a variance in coding accuracy of the infection patients group based on physician specialty.
ORCID
https://orcid.org/0000-0002-8446-7155
DOI
10.21007/etd.cghs.2022.0599
Recommended Citation
Insco, April M. (https://orcid.org/0000-0002-8446-7155), "Sepsis: Do the Clinical Criteria Support the Medical Coding?" (2022). Theses and Dissertations (ETD). Paper 595. http://dx.doi.org/10.21007/etd.cghs.2022.0599.
https://dc.uthsc.edu/dissertations/595
Declaration of Authorship
Included in
Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Bacterial Infections and Mycoses Commons, Health Services Administration Commons, Health Services Research Commons, Quality Improvement Commons